Effective Bit-Width and Under-Approximation

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Abstract. Recently, it has been proposed to use approximation tech-
niques in the context of decision procedures for the quantifier-free theory
of fixed-size bit-vectors. We discuss existing and novel variants of under-
approximation techniques. Under-approximations produce smaller mod-
els and may reduce solving time significantly. We propose a new tech-
nique that allows early termination of an under-approximation refine-
ment loop, although the original formula is unsatisfiable. Moreover, we
show how over-approximation and under-approximation techniques can
be combined. Finally, we evaluate the effectiveness of our approach on
array and bit-vector benchmarks of the SMT library.

1 Introduction

The problem of Satisfiability Modulo Theories (SMT) is to decide satisfiability of
logical formulas expressed in a combination of first-order theories. SMT solvers
are used in many applications, e.g. optimization, scheduling, verification, and
test case generation. For text books about SMT see [4, 16].

The quantifier-free theory of fixed-size bit-vectors plays an important role
in specifying and verifying software and hardware systems. Modelling programs
and digital circuits on the bit-vector level, e.g. addition of fixed-size bit-vectors
with two’s complement arithmetic, allows bit-precise and exact reasoning. Not
taking modular arithmetic into account, i.e. using natural numbers instead of bit-
vectors, may lead to unsound verification results, e.g. bugs caused by overflows
may not be detected.

The theory of bit-vectors can be combined with the theory of arrays in order
to model memory in a bit-precise way. This enables reasoning about pointers and
pointer arithmetic which is important in software verification. Even reasoning
about assembler programs on a symbolic processor is possible [7].

Typically, a system and its properties are represented by formulas. These
formulas are combined to one verification formula which is checked by an SMT
solver. The solver tries to satisfy the formula in order to find a counter-example
where the system violates a property. If the formula is satisfiable, most modern
SMT solvers can generate a model of the formula. A model can be used to
construct a concrete execution of the system that leads to a property violation.



2 Formula Approximation Techniques

The main motivation of most approximation techniques is to speed-up decision
procedures. While over-approximation technique tend to speed-up unsatisfiable
formulas, under-approximation techniques tend to speed-up satisfiable formulas.
In order to remain sound and complete, approximation techniques are typically
combined with a refinement loop. Recently, approximation techniques are also
used in the context of decision procedures for bit-vectors [8, 15].

Over-approximation techniques are in the spirit of the Counter Example
Guided Abstraction Refinement Framework [10] (CEGAR) and are typically
used in lazy SMT approaches [17]. For example, over-approximation techniques
are used to decide complex array formulas in [5,13]. In the rest of this paper we
will focus on under-approximation techniques.

The basic idea of under-approximation techniques in the context of bit-
vectors is to restrict individual bits of bit-vectors. While such domain restrictions
typically lead to a smaller search space and a speed-up for satisfiable formulas,
it additionally produces “smaller” models which means that the domain of the
variables are smaller. If a small model can be found, it must also be a model of
the original formula. Small models are beneficial for diagnosis, for instance if the
model is directly analyzed by users for debugging. Furthermore, in the area of
test case generation, small models lead to test cases with reduced test data size.

One way of using over-approximations and under-approximations in bit-
vector logic has been pioneered in [8]. In the context of under-approximation, the
m most significant bits of variables are additionally restricted. The remaining n
least significant bits are not concerned by the under-approximation and remain
variable. In the rest of this paper we call n the effective bit-width.

in [8] it is proposed to use an under-approximation technique which corre-
sponds to sign-extension. Let n be the effective bit-width. The m most-significant
bits of a variable are forced to be equal to the n*" least significant bit, the last ef-
fective bit. This technique reduces the domains of variables and leads to smaller
models where bit-vectors are interpreted in the context of two’s complement. An
example with an effective bit width of four is shown left in Fig. 1.

It is also possible to force the m most significant bits to zero resp. one which
we call zero-extension resp. one-extension. Zero-extension has been suggested
in [8]. While zero-extension leads to smaller models where bit-vectors are inter-
preted in an unsigned context, one-extension is beneficial if a formula has small
models with negative values. Examples with an effective bit-width of four are
shown in Fig. 1 resp. Fig. 2. In [14] zero-extension and one-extension were used
for bounded model checking of embedded software.

We propose an additional under-approximation technique that partitions bits
of individual bit-vectors into equivalence classes. All bits in one class are forced to
have the same value. An example is shown Fig. 2. The under-approximation re-
finement increases the number of classes per variable, or splits individual classes.
The idea of this technique is that only some individual bits of the vector are im-
portant to satisfy the formula. Therefore, the other bits can be forced to the
same value in order to reduce the search space.



sign—extend eff. width zero—extend eff. width

'x3 'x3 'x3 'x3 'x3 'x2 'x] 'x() 0 0 0 0 x3 x2 xl xO

Fig. 1. Under-approximation techniques: Sign-extension is shown left and zero-
extension is shown right. The effective bit-width is four in both examples.

one—extend eff. width C3 C2 C1 CO

1 1 1 1 ‘x3 ‘x2 ‘xl 'x() 'x3 'x3 'x2 'x2 'xl 'xl 'x() 'x()

Fig. 2. Under-approximation techniques: One-extension is shown left and class splitting
is shown right. The effective bit-width resp. number of classes is four.

3 Under-Approximation Refinement on CNF Layer

We propose to perform under-approximations with the help of additional clauses
on the CNF layer. The original formula is translated to CNF once. In each
refinement iteration ¢ we perform an under-approximation by adding new clauses
to the SAT solver incrementally and also use assumptions as in [9].

First, we introduce a fresh boolean under-approximation variable e. Then, we
perform an under-approximation by adding new clauses. Let n be the effective
bit width of a bit-vector variable v of bit-width w. To perform a sign-extending
under-approximation we add the following clauses:

w—1

N\ (n-1 VTV E) A (Trg Vi VE))

i=n

Finally, we assume e to enable the under-approximation.

For example, let v be a bit-vector variable with bit-width eight and an effec-
tive bit-width of six. We add the following clauses to perform a sign-extending
under-approximation:

(vs VTG VE) A (Ts Vg VeE)A (vs VT7 VE)A (Ts Vur Ve)

Assuming e enforces v5 = vg = vy.
Zero-extension can be encoded as follows. Again, let n be the effective bit
width of a bit-vector variable of bit-width w. We add the following clauses:

w—1

N\ @ ve)

=n
One-extension can be encoded analogously.

If we have to refine our approximation, we add the unit clause € in order to
disable the current approximation. This gives the SAT solver also the opportu-
nity to recycle clauses. Then, a refined under-approximation is performed with
the help of another fresh boolean under-approximation variable.



4 Refinement Strategies

Generally, the effective bit-width can be used as a metric of approximation.
Typically, the effective bit-width is initialized to one, i.e. the domain of a bit-
vector variable is restricted to {—1,0} in a signed resp. {0,1} in an unsigned
context. During the refinement the effective bit width is increased. In order to
avoid too many refinement loops, the effective bit-width is typically doubled in
each iteration. Traditionally, in the worst case, e.g. if the original formula is
unsatisfiable, the effective bit-width reaches the original bit-width.

With the proposed refinement on the CNF layer, two main refinement strate-
gies are possible which we call global and local. On the one hand, local refinement
strategies maintain one fresh boolean under-approximation variable e for each
bit-vector in each refinement. The benefit is a precise refinement as we can ask
the SAT solver if it has used the respective e to derive unsatisfiability. Only
those under-approximations that have been used need to be refined. However, in
the worst case we have to introduce k - r fresh variables, where k is the number
of bit-vector variables and r is the maximum number of refinements.

On the other hand, the global refinement strategy maintains exactly one
under-approximation variable for all bit-vector variables. The benefit is less over-
head, as we need only r additional boolean variables, where 7 is the number of
refinements. However, the refinement is imprecise.

5 Early Unsat Termination

Traditional under-approximation techniques perform the under-approximation
outside the SAT solver. The CNF is generated from scratch in each refine-
ment iteration. This makes it impossible to find out whether the current under-
approximation has been responsible for deriving unsatisfiability or not. In the
worst case, the original formula is unsatisfiable and we have the additional over-
head of the under-approximation refinement, which is slower than solving the
original formula up front.

The proposed under-approximation refinement on the CNF layer enables the
decision procedure to terminate earlier, even if the original formula is unsatis-
fiable. If the under-approximated formula is unsatisfiable, then we can use the
under-approximation variables to ask the SAT solver which under-approximations
have been used to derive unsatisfiability. If no under-approximation variables
have been used, then we can conclude that the original formula is unsatisfiable,
and terminate. The early unsat technique is shown in Fig. 3.

Furthermore, the refinement on the CNF layer allows the SAT solver to keep
learned conflict clauses over refinement iterations. This would be impossible if
the CNF was generated on scratch in each refinement iteration.

In a first implementation we let the SAT solver generate unsat cores mod-
ulo assumptions, but simply recording those assumptions [9] that were used in
deriving the empty clause is enough, much faster and easier to implement, both
on the side of the SAT solver and on the side of the SMT solver.



Encode input to CNF Refine under—approx.
Add under—approx. clauses C

Call SAT solver

Formula is satisfiable Formula is unsatisfiable

Fig. 3. Early Unsat Termination.

6 Combining Approximation Techniques

Figure 4 shows how over-approximation and under-approximation techniques
can be combined to solve complex SMT formulas. We consider the quantifier-
free theory of arrays combined with the quantifier-free theory of bit-vectors.
The idea is to use over-approximation techniques for the array part [5,13] and
under-approximation techniques for the bit-vector part.

First of all, we perform an over-approximation by replacing reads by fresh
bit-vector variables. Then, we translate the bit-vector part of the formula to
CNF and add a set C of under-approximation clauses. In each iteration we call
the SAT solver. Depending on the result we have to perform an additional check.
On the one hand, if the result is satisfiable we have to check if the current model
o respects the theory of arrays. If not, we have to refine our over-approximation
with a lemma on demand [11, 12, 2]. Otherwise, we can terminate with the model
o and the result satisfiable. On the other hand, if the result of the SAT solver is
unsatisfiable we have to check if the current set of under-approximation clauses
has been used. If not, we can terminate with the result unsatisfiable. Other-
wise, we disable the current under-approximation and continue with a refined
approximation.

7 Experiments

We implemented the presented approximation techniques in our SMT solver
Boolector [6]. Boolector implements a decision procedure for the quantifier-free
theory of fixed-size bit-vectors combined with the quantifier-free extensional the-
ory of arrays [5]. It is the winner of the last SMT competition in 2008 [1] in
the bit-vector category (QF_BV) and also in the division of bit-vectors with ar-
rays (QF_AUFBV). Moreover, Boolector can be used as word-level bounded model



Array formula ——————————=] Replace reads by variables

Encode to CNF

Refine under—approx.

Add under—approx. clauses C

Formula is satisfiable

Call SAT solver

Call SAT solver

Formula is unsatisfiable

- Add lemma
Refine over—approx.

Fig. 4. Combining over-approximation and under-approximation techniques.

checker for synchronous hardware and software systems [7]. For our experiments
we used Boolector 1.0.

The results of our experiments are shown in Fig. 5 and Fig. 6. We used
benchmarks from QF_AUFBF of the SMT library [3] (June 1st, 2008). As expected,
under-approximation techniques speed up satisfiable instances, but slow down
unsatisfiable instances. We summarize further observations.

First, the under-approximation by classes technique performs as good as the
under-approximation by sign-extension technique on the satisfiable instances of
QF_AUFBF. However, it performs worse on the unsatisfiable benchmarks. Second,
the average ratio effective bit-width / original bit-width is 16% (without egt ex-
amples) on satisfiable and 27% on unsatisfiable benchmarks, which corresponds
to an impressive reduction of 84% resp. 73%. Third, early unsat termination oc-
curs in 1553 from 3552 unsat cases. Finally, the global refinement strategy seems
to be a good approximation of the local strategy. It is much easier to implement,
is often as good as the local strategy, and should be sufficient in most cases.

8 Conclusion

We presented formula approximation techniques, in particular for bit-vector. We
discussed different techniques and refinement strategies and showed how they can



10000

[%) P
g
S 1000 | 1
o
(0]
2]
© +
3 Ve +
8 s +
S 100} X ]
! T -+
o N Lt 4 +
< A .
5 Ty
=1 * o+ +
1% ﬁ, 4
Q@ ¥ +I+++ +

L + 4
3 10 + e

+ +hT
@ e B CH
44;*#
A + +
ey + F
ALY+ +
1 ot I | + I
1 10 100 1000 10000

Boolector-1.0 seconds

Fig. 5. Boolector (x-axis) vs. Boolector with class under-approximation and local re-
finement strategy (y-axis). Benchmarks are from QF_AUFBF and are all satisfiable.

10000

1000 e 7 1
100 | . |

10 + + ot o+ +y i

Boolector-1.0-uac-ual seconds

t . .
1 10 100 1000 10000
Boolector-1.0 seconds

Fig. 6. Boolector (x-axis) vs. Boolector with class under-approximation and local re-
finement strategy (y-axis). Benchmarks are from QF_AUFBV and are all unsatisfiable.



be implemented on the CNF layer which enables further optimizations like early
unsat termination. Finally, we showed how under-approximation techniques for
bit-vectors can be combined with over-approximation techniques for arrays and
evaluated the effectiveness of our approach on benchmarks from the SMT library.

Formula approximation techniques help to handle complex and hard formu-
las. Under-approximation techniques speed up decision procedures in the context
of falsification and generate small models with restricted domains.

References

1. C. Barrett, M. Deters, A. Oliveras, and A. Stump. SMT-Comp, 2008.
WWW.smtcomp.org.

2. C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas
by Incremental Translation to SAT. In Proc. CAV’02. Springer, 2002.

3. C. Barrett, S. Ranise, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, June 2008.

4. A. Bradley and Z. Manna. The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer, 2007.

5. R. Brummayer and A. Biere. Lemmas on Demand for the Extensional Theory of
Arrays. In Proc. SMT’08. ACM, 2008.

6. R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In Proc. TACAS’09. Springer, 2009.

7. R. Brummayer, A. Biere, and F. Lonsing. BTOR: Bit-Precise Modelling of Word-
Level Problems for Model Checking. In Proc. BPR’08. ACM, 2008.

8. R.E. Bryant, D. Kroening, J. Ouaknine, S. Seshia, O. Strichman, and B. Brady.
Deciding Bit-Vector Arithmetic with Abstraction. Software Tools for Technology
Transfer (STTT) , 2009.

9. K. Claessen and N. Sérensson. New Techniques that Improve MACE-style Finite
Model Finding. In CADE-19, Workshop W/, Model Computation — Principles,
Algorithms, Applications, 2003.

10. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Ab-
straction Refinement for Symbolic Model Checking. Journal of the ACM (JACM),
2003.

11. L. de Moura and H. Ruefl. Lemmas on Demand for Satisfiability Solvers. In
Proc. SAT’02. Springer, 2002.

12. C. Flanagan, R. Joshi, and J. Saxe. Theorem Proving Using Lazy Proof Explica-
tion. In Proc. CAV’03. Springer, 2003.

13. V. Ganesh. Decision Procedures for Bit-Vectors, Arrays and Integers. PhD thesis,
Computer Science Department, Stanford University, 2007.

14. N. He and M. Hsiao. Bounded Model Checking of Embedded Software in Wireless
Cognitive Radio Systems. In Proc. ICCD. TEEE, 2007.

15. N. He and M. Hsiao. A new Testability Guided Abstraction to Solving Bit-Vector
Formula. In Proc. BPR’08. ACM, 2008.

16. D. Kroening and O. Strichman. Decision Procedures: An algorithmic Point of
View. Springer, 2008.

17. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), 3, 2007.



