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Abstract. SMT solvers are widely used as core engines in many applications. There-
fore, robustness and correctness are essential criteria. Current testing techniques used
by developers of SMT solvers do not satisfy the high demand for correct and robust
solvers, as our testing experiments show. To improve this situation, we propose to
complement traditional testing techniques with grammar-based blackbox fuzz test-
ing, combined with delta-debugging. We demonstrate the effectiveness of our ap-
proach and report on critical bugs and incorrect results which we found in current
state-of-the-art SMT solvers for bit-vectors and arrays.

1 Introduction

Many applications use Satisfiability Modulo Theories (SMT) solvers as core deci-
sion engines. For example, SMT solvers are used to generate test cases, to find
bugs [5,11,12,30,31], and to verify systems [2,6,19,20,21,23]. A crashing SMT solver
may lead to a crash of the application, or even worse, an incorrect solver may lead
to wrong results. For example, if an SMT solver concludes unsat although the input
formula is sat, a verification system may spuriously conclude that an implementation
respects its specification, i.e. defects are missed.

In this paper we show that although there is a high demand for robustness and
correctness of SMT solvers, almost all state-of-the-art solvers, at least for bit-vectors
and arrays, were broken at the time of our tests. They contained defects that led to
crashes, or even worse, to incorrect results where the solver concludes sat although
the formula is unsat, or vice versa. We demonstrate that many critical defects can
be found by a testing technique called grammar-based blackbox fuzz testing, and
propose to complement traditional testing approaches with this technique. Moreover,
we propose to integrate delta-debugging [34] into the debugging process in order to
minimize failure-inducing SMT formulas.

2 Fuzzing

Fuzzing is a powerful testing technique which is typically used in the domains of
software security and quality assurance [28,29]. The main idea of the original fuzzing
approach is to test programs with random inputs in order to detect security bugs,
e.g. buffer overflows. Fuzz testing techniques were already applied by software engi-
neers around 1980. For example, a tool called ”the monkey“ was developed to test



the original Macintosh system. It fed random events to the current application. It
appeared as if the computer was operated by an angry monkey [29]. In [24], fuzz
testing was used to find bugs in UNIX tools.

The first tools were simple, used blackbox testing, i.e. testing was performed
against the interface without access to implementation details, and had no knowledge
of the expected input format. In the context of SMT solvers we are typically not
interested in fuzzing techniques that are unaware of the input syntax. Although
useful, such techniques would mainly test syntax error handling routines of the
parser1. We would only scratch the surface and would not be able to test deeper
parts of the solver. However, in this paper we focus on finding critical bugs such as
crashes upon syntactically valid inputs, and incorrect results.

Nowadays, various fuzzing tools are available [28,29]. Moreover, there is an on-
going research on whitebox fuzz testing tools, which are a new generation of sophis-
ticated fuzzers that use recent advances in symbolic execution and dynamic test
generation [17,18]. Whitebox fuzzing is an interesting application for SMT solvers.
However, in this paper we use fuzzing techniques in order to test solvers. Although
the whitebox fuzzing approach seems promising for testing solvers, it has its limi-
tations when it is used for programs that expect highly structured inputs such as
the SMT format [26]. Sophisticated and complicated techniques like grammar-based
whitebox fuzzing [17] are necessary in order to use whitebox techniques for testing
deep parts of SMT solvers, e.g. error prone optimizations.

We propose to use grammar-based blackbox fuzzing for testing SMT solvers. A
fuzzer randomly generates syntactically valid SMT formulas in order to detect criti-
cal defects. Unlike grammar-based whitebox fuzzing, grammar-based blackbox fuzzing
is easy to implement and integrate, generates no false positives, and is impressingly
effective in finding bugs that traditional testing techniques miss. This is confirmed
by our experiments in section 4. Moreover, in contrast to fuzzing techniques such
as [13], it does not need any user specifications and can be fully automated.

2.1 Generating Random Bit-Vector Formulas

We use a layered approach for generating random formulas, similar to [32]. In the
following we focus on bit-vector formulas. However, the main concepts and ideas
can also be used in the context of other theories.

Although the main algorithm is rather simple, many details have to be considered
as the quantifier-free theory of fixed-size bit-vectors has many different operators.
While some of them use bit-vector arguments only, other operators, e.g. extract,
also use integer constants. Moreover, the operators require different preconditions,
e.g. equal bit-width of the operands, valid index positions, etc., which have to be
fulfilled. In contrast to [32], we also have to consider more types, i.e. unlike the

1 Try to pipe cat /dev/urandom to an arbitrary SMT solver.



BTOR format [8], the SMT-LIB format [26] distinguishes between type boolean and
bit-vector of bit-width one.

In principle, we structure a bit-vector formula into four layers: input, main,
predicate, and boolean. During the formula construction we maintain a set of all
nodes that have been created, including their types.

First, we generate the input layer with a random number of bit-vector variables
and constants. The bit-width is also selected randomly which makes generating
random bit-vector formulas more complicated than formulas that contain natural
numbers. We have to consider many different types as we do not want to restrict all
bit-vector terms to the same bit-width.

Second, we generate the main layer. We iteratively choose either a random bit-
vector operator2, or one of {=, distinct, ite}. Then, depending on the arity of the
operator, we randomly select operands from our set, generate the final node, and
insert it into the set. The main problem in this step is that the operands might have
different bit-widths, but almost every bit-vector operator requires them to be equal.
We use the extension operators zero extend and sign extend, and the extraction
operator extract to solve this problem. If the operands do not have the same bit-
width, then we either extend the ”smaller“ operand, or select a sub-vector of the
”larger“ operand.

In the main layer we are interested in bit-vector nodes only. However, some
operators, i.e. =, distinct, and bit-vector predicates, result in boolean nodes. In
order to convert them to bit-vector terms we use an if-then-else wrapper. Assume t1
and t2 are bit-vector terms with the same bit-width, and p is a bit-vector predicate.
We convert p(t1, t2) into a bit-vector term as follows:

(ite (p t1 t2) bv1[1] bv0[1])

If p(t1, t2) is true, we return the bit-vector constant one with bit-width one, and zero
otherwise. Hence, we can use wrapped predicates as inputs to bit-vector operations.
This technique aims to detect subtle bugs that are not found by tests that use
predicates in a boolean context only.

Third, we analogously generate the predicate layer. However, we restrict our
operator selection to =, distinct, and bit-vector predicates. Finally, we generate the
boolean layer by randomly combining boolean nodes to one final root. We iteratively
select roots, i.e. boolean nodes without parents, from our boolean layer, and combine
them by a random boolean operator. We continue this process until there is only
one root left.

2.2 Bit-vector Arrays

Adding one-dimensional bit-vector arrays is straightforward. We extend our algo-
rithm for generating random bit-vector formulas as follows. First, we add array
2 In the SMT-LIB there are 35 bit-vector operators in QF BV.



variables to the input layer. Then, during the process of building the main layer, we
also build an array layer by using write(a, i, e), where a is an array, i a bit-vector
index and e a bit-vector value. The result of write(a, i, e) is an array where the value
at position i has been overwritten by e. All other elements of a remain the same.
We select a, i, and e randomly from the terms that have already been created. If the
bit-widths of i and e are incompatible to a, we use the techniques described earlier.

Moreover, while we are building the main bit-vector and array layer we also
create reads by using read(a, i), where a is an array and i is a bit-vector index.
Analogously to write(a, i, e), we select a and i randomly from the terms that have
been created before, and either extend or slice i if necessary.

Interleaving the phases of creating regular bit-vector terms, reads and writes
ensures that reads are also used as read indices, write indices, write elements, and
also as operands of regular bit-vector operations. Moreover, nested writes may be
created. Generating such formula structures aims to find subtle bugs in array al-
gorithms that use abstraction refinement loops [7,15] where reads are internally
replaced by fresh variables.

If we want to support the extensional theory of arrays where we can compare
arrays in addition to array elements, then we can extend the main bit-vector layer
with array equalities, encoded as bit-vectors. Moreover, array equalities may also be
added to the boolean layer.

3 Delta-Debugging SMT Formulas

After we have found failure-inducing inputs, we typically want to minimize them.
Delta-debugging techniques [1,13,25,34,35] automatically simplify and isolate failure-
inducing inputs by using a divide-and-conquer strategy. Typically, minimized inputs
speed up debugging as non-irrelevant input parts do not have to be considered.
Moreover, large inputs may be practically infeasible to debug.

A delta-debugger repeatedly calls the program with simplified variants of the
failure inducing input. If the program shows the same observable behavior, e.g. re-
turns the same exit code or prints out the same error message, the delta-debugger
continues with the simplified input, and backtracks otherwise.

Generally, delta-debugging does not generate a minimal failure-inducing input.
However, this feature is rarely needed in practice. Typically, the goal of delta-
debugging is to reduce the input as much and as fast as possible. It is not feasible
for engineers to wait for a delta-debugging tool that needs days or even weeks to
terminate. Therefore, we use a small and simple set of simplifications which allows
fast delta-debugging while generating very small failure-inducing inputs. This is also
confirmed by our experiments in Tab. 3.

In the context of SMT we have highly structured inputs, and type information.
As Zeller’s original delta-debugging technique [34] does not explicitly use any knowl-
edge of the input structure, we use a variant of hierarchical delta-debugging [25].



Hierarchical delta-debugging techniques have also been proposed for BTOR [32]. We
use the knowledge of formula structures and types to speed up the delta-debugging
process, and to minimize inputs even further.

First of all, we represent an SMT formula as DAG with one boolean root. Typi-
cally, SMT formulas are layered, e.g. there is a boolean layer on top of the formula.
We use the knowledge of a boolean layer to prune large irrelevant parts of the input
up front. We iteratively try to replace the current root by one of its boolean children,
i.e. we perform a search through the boolean layer.

Then, we perform further term-level simplifications, driven by a breath-first-
search. Whenever new nodes are created, we insert them into a queue for further
simplifications. We try to substitute each node either by the constant zero, one, or
by one of its children, but only if the types of the current node and its child match.
Note that this is not possible for bit-vector predicates, as they have a boolean type
while their children have bit-vector types. If one child is a chain of unary operator
applications, or writes, we try to skip it, i.e. we try to replace the current node by
the node at the end of the chain. By using this technique we may immediately prune
irrelevant operator chains, e.g. deeply nested writes.

Finally, after all nodes have been processed, we try to find a new root again.
Boolean nodes may not only occur within the boolean layer, but also deeper inside
the formula, used as conditions in if-then-else operators. We expect that the input
formula has now been simplified significantly by the delta-debugging process. There-
fore, we can try to substitute the current root by arbitrary boolean nodes that occur
deeper in the formula. In this way we may minimize the formula even further and
eliminate irrelevant if-then-else nodes in upper formula layers.

3.1 Delta-Debugging Crashes

Typically, fuzz testing leads to a high number of system crashes, i.e. the program
terminates without providing a result. This is also confirmed by our experiments in
section 4. The randomness of the input is responsible for triggering statements that
have not been tested before. Executing untested statements may lead to erroneous
internal states, and thus, crashes.

In the context of SMT solvers, we have observed that crashes typically occur
almost immediately after starting a solver. We conjecture that this observation also
holds for other kinds of solvers that use complex and error prone optimization tech-
niques, e.g. SAT solvers. We can use this observation to improve the performance
of delta-debugging.

First, we introduce the concept of timeouts. During delta-debugging, each call
to the solver is executed using a time limit. Whenever the solver exceeds its limit,
we treat this case as if the simplification of the failure-inducing input has failed,
and backtrack. Note that using timeouts during delta-debugging can also be useful
for other kind of defects. For example, it can be used for delta-debugging failure-
inducing formulas that lead to an infinite loop within the solver.



Whenever we want to delta-debug a formula that leads to a crash, we typically
set the time limit to a few seconds above the time which leads to a crash on the
original formula. Using timeouts may heavily speed up delta-debugging formulas
that are hard to decide. For example, assume we want to delta-debug a complex
SMT formula. Whenever a specific sub-formula structure occurs, the solver crashes
almost immediately. However, whenever delta-debugging simplifications destroy this
sub-formula structure, the solver works correctly and may run for days. By using
timeouts we can backtrack simplifications that do not lead to a crash almost im-
mediately, and thus, speed up delta-debugging significantly, i.e. the delta-debugger
may terminate with a small failure-inducing input already within a few minutes.

4 Experiments

To evaluate the effectiveness of our approach, we fuzz-tested and delta-debugged
publicly available state-of-the-art SMT solvers with our fuzzer FuzzSMTBV and our
delta-debugger DeltaSMT. The failure-inducing inputs and delta-debugged results
are available at www.fmv.jku.at/brummayer/fuzz-dd-smt.tar.7z.

We ran our experiments under Ubuntu Linux on an Intel Core 2 Quad machine
with 2.66 GHz and 8 GB RAM. Our fuzzing test framework used each of the four
cores for testing. Our delta-debugging experiments were performed on the same
machine, but were not run simultaneously.

The process of testing SMT solvers was rather complicated and complex. At the
time of our tests, only two solvers, Boolector [7] and Z3 [14], supported all bit-vector
operators of the SMT-LIB [27] without crashing. Therefore, we used Boolector as
a filter to rewrite high-level operators, e.g. smod, into a combination of supported
low-level base operators according to [8]. Although we had to restrict the tests to
at most 11 out of 35 bit-vector operators, we found an impressive number of bugs.
We conjecture that we would have found even more bugs if we had been able to use
the full set of operators.

For the quantifier-free theory of bit-vectors QF BV we tested the following solvers:
Beaver [22] 1.1-RC1, Boolector [7] 1.0 and 1.1, a development version of CVC3 [4]
1.5 (downloaded April 29th, 2009), MathSAT [9] 4.2.3, Spear [2] 2.7 with SMT2SF
1-9, Sword [33] from SMT-COMP’08 [3], Z3 [14] 1.2, Z3 from SMT-COMP’08 [3],
and an unstable internal version of OpenSMT [10]. The results are summarized in
Tab. 1. Note that the current versions of CVC3 and OpenSMT do not support
bit-vector division. Moreover, we could not test STP for bit-vector formulas as we
encountered serious problems when we tried to use CVC3 to convert SMT formulas
to CVC format which is needed by STP. However, we could test STP for a more
restricted bit-vector logic combined with arrays. These results are shown in Tab. 2.

We detected incorrect results, i.e. solvers report sat although the status is unsat
or vice versa, in the following way. First, we compared the result of each solver on
each formula to the result of Boolector 0.4 and Z3 from SMT-COMP’08. If Boolector



no-div guard-div

solver crash incorrect crash incorrect

Beaver 1.1 rc1 0 0 12430 1
Boolector 1.0 0 0 0 0
Boolector 1.1 0 0 0 0
CVC3 1.5 902 8 - -
MathSAT 4.2.3 0 113 2097 83
OpenSMT 19871 8 - -
Spear 2.7 0 6 3577 71
Sword smt-comp 0 1 0 0
Z3 1.2 0 0 2264 0
Z3 smt-comp 0 0 0 0

Table 1. Experimental results of fuzzing bit-vector solvers. The file size of random SMT formulas
typically ranges from a few KB to 1 MB. The results are divided into bit-vector formulas without
division operators (no-div) and formulas with “guarded” division (guard-div). Moreover, the re-
sults show the number of crashes, i.e. solver terminates in an unexpected way without providing
a result, and number of incorrect results, i.e. solver reports unsat although formula is sat, or vice
versa. Guarded division adds top-level constraints that rule out models where division by zero oc-
curs. This guarantees that the semantics of dividing by zero does not influence the satisfiability
status of the formula. We used a maximum bit-width of 16 for no-div formulas and tested each
solver with the same set of 23100 randomly generated SMT formulas in three hours. For guard-div
formulas that may additionally contain bvudiv and bvurem, we used a maximum bit-width of 10, as
bit-vector division significantly slowed down some solvers. In this category we tested 23100 formulas
in about one hour.

and Z3 agreed on the result3, but the tested solver reported the opposite, we collected
this formula.

Then, we inspected the collected formulas. Beaver claims that one formula is
sat although other solvers report unsat. However, Beaver crashes with an asser-
tion failure when asked to provide a model. For CVC3 we could use its built-in
on-the-fly proof checker to confirm nearly all cases where CVC3 wrongly concludes
unsat. Moreover, most of the remaining wrong answers are caused by CVC3’s query
preprocessor. After disabling preprocessing, CVC3 reports the expected answer in
most of the cases. For MathSAT we used the command line argument -smtcomp as
it is documented in the MathSAT 4 invocation guide on their webpage. However,
we found out that this argument is responsible for many incorrect results where
MathSAT spuriously reports unsat. If we use -input=smt, tsolver=bv and -solve
instead of -smtcomp, MathSAT reports the expected results in almost every case.
Similarly, Spear reports the expected results when common subexpression elimina-
tion is turned off via --cse 0. The remaining incorrect results were confirmed by
the majority voting principle where we used at least Boolector 1.1, Z3 from SMT-
COMP’08 and another solver where error prone optimizations were turned off.

3 We could not find any formulas where Boolector and Z3 disagreed.



For the quantifier-free theory of bit-vectors, arrays and uninterpreted functions
QF AUFBV, we tested the following solvers: Boolector [7] 1.0 and 1.1, a development
version of CVC3 [4] 1.5 (downloaded April 29th, 2009), STP [16] 0.1 (November 18th,
2008), and Z3 [14] 1.2 and from SMT-COMP’08 [3]. The results are summarized in
Tab. 2.

solver crash

CVC3 1.5 9812
STP 0.1 24

Table 2. Experimental results of fuzzing bit-vector and array solvers. The formulas contain bit-
vector arrays, reads and writes, but no equalities between arrays as STP does not support them.
We tested each solver with the same set of 12000 randomly generated formulas in about two hours.
In order to be able to use CVC3 as filter to test STP, we had to restrict the set of operators which
was used for the results in Tab. 1 even further, i.e. the formulas neither contain division nor shift
operators. For Boolector and Z3 we could not find any defects. Generally, no incorrect results were
found, but serious internal crashes. An analysis of the error messages showed that some crashes
were caused by defects in the implementation of decision procedures.

Finally, we delta-debugged failure-inducing formulas found for QF BV. Before
delta-debugging, we semi-automatically divided them into bug classes with a limit
of 50 formulas for each class. The results are shown in Tab. 3. We encountered only
a few non-deterministic bugs that we were not able to delta-debug as they were
not always reproducible. Incorrect results were delta-debugged as follows. Instead
of calling the incorrect solver directly, the delta-debugger calls a shell script during
delta-debugging. The script calls three trusted solvers and the incorrect solver. It
returns 1 only if the three trusted solvers agree on the satisfiability status and the
incorrect solver reports the opposite, and 0 otherwise.

5 Conclusion

The goal of this paper is to show that traditional testing techniques obviously do
not suffice to fulfil the high demand for robustness and correctness of SMT solvers.
SMT solvers contain a lot of error prone optimizations that need to be heavily tested.
Although fuzz testing is not a complete solution for this problem, i.e. it can only find
bugs but cannot prove the absence, we have shown that it is a useful ”tool in the
toolbox“ which can find many bugs in state-of-the-art SMT solvers that traditional
testing techniques obviously miss.

We conclude that fuzz testing in combination with delta-debugging is an effec-
tive approach which can be easily integrated in the development process of SMT
solvers in order to increase robustness and correctness. Moreover, we believe that
this combination can be of great value in other domains as well. Blackbox fuzzing
is able to find many defects, even without any knowledge of implementation details.



no-div guard-div

solver f c t s r f c t s r

Beaver 1.1 rc1 - - - - - 469 12 5 319 98%
CVC3 1.5 139 9 172 2429 98% - - - - -
MathSAT 4.2.3 50 1 10 611 97% 190 5 58 3709 76%
OpenSMT 154 4 5 492 96% - - - - -
Spear 2.7 6 1 5 401 96% 100 2 4 228 99%
Sword smt-comp 1 1 4 135 99% - - - - -
Z3 1.2 - - - - - 50 1 734 254 99%

Table 3. Experimental results of delta-debugging bit-vector solvers. The columns labelled f and
c represent the number of formulas, and the number of bug classes. The number of classes is a
rough approximation for the number of different solver defects. The columns t, s, and r show the
average delta-debugging time in seconds, the average file size in bytes after delta-debugging, and
the average file size reduction. We encountered some statistical outliers. The median of time t is 2
seconds for OpenSMT, 14 seconds for CVC3 and 648 seconds for Z3. The medians for time t, file
size s after delta-debugging, and reduction in file size r are 13 seconds, 715 bytes and 91% for the
guard-div examples of MathSAT. Moreover, the median of s is 918 bytes for CVC3.

It is therefore a reasonable conjecture that using knowledge of these details in a
whitebox fuzzing approach may be even more successful in finding more, or more
subtle, defects.
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