
Submitted by
Dipl.-Ing.
Katalin Fazekas

Submitted at
Institute for Formal
Models and Verification

First Advisor
Univ.-Prof. Dr.
Armin Biere

Second Advisor
Univ.-Prof.
Roderick Bloem, Ph.D.

Co-Advisor
Assoc.-Univ. Prof. Dr.
Martina Seidl

Thesis Reviewer
Prof. Laurent Simon

Thesis Reviewer
Prof. Ofer Strichman

June 2020

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

On SAT-based
Solution Methods for
Computational Problems

Doctoral Thesis

to obtain the academic degree of

Doktorin der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Abstract

Many decision problems, search problems and optimization problems raise ques-
tions that can be answered automatically by computers. These computational
problems are of great interest in computer science. Deciding the satisfiability of
a propositional formula (in short the SAT problem) is a classical NP-complete
computational problem that has been studied thoroughly in the last six decades.
As a result of this vast research, current SAT solvers are efficiently used in a
wide variety of application domains.

The focus of this thesis is on how to exploit these efficient SAT solvers and
solving techniques in solution methods for computational problems that are
beyond SAT. We model most of the considered methods as conditional transi-
tion systems over abstract states. This formalization abstracts away the com-
plex implementation details while it allows to formally reason about invariants,
soundness, completeness and termination of the procedures.

First we provide a formal framework to describe and capture how conflict-
driven clause learning, the solution technique employed by current SAT solvers,
can be applied and extended to address the PSPACE-complete decision problem
of quantified Boolean formulas.

Then we focus on the computational task where the SAT problem is extended
with some first-order theories (e.g. functions, arrays). Our aim is to find a satis-
fying solution that optimizes a pseudo-Boolean objective function. We propose
a procedure where optimization, propositional reasoning, and theory reasoning
are clearly separated. This allows the exploitation of efficient specialized solvers
for each of these three components.

Further, we address incremental SAT solving and continuous formula simplifi-
cations: two crucial components for efficient computation in several applications.
We propose a sound solution method that combines these powerful techniques
with less effort and more benefits than before.

Finally, we take a look at the antibandwidth problem, a graph labeling task
with an objective to maximize the smallest difference between labels of neigh-
bouring nodes. We introduce a very compact representation of that problem
based on binary decision diagrams and then show how to use SAT solvers as
efficient black-boxes in an iterative solution method.

iii

Zusammenfassung

Viele Entscheidungsprobleme, Suchprobleme und Optimierungsprobleme werfen
Fragen auf, die von Computern automatisch beantwortet werden können. Diese
Rechenprobleme sind von großem Interesse in der Informatik. Entscheidung
über die Erfüllbarkeit einer aussagenlogischen Formel (d. H. das SAT Prob-
lem) ist ein klassisches NP-vollständiges Rechenproblem. In den letzten sechs
Jahrzehnten wurde dieses Problem gründlich erforscht. Als Ergebnis dieser um-
fangreichen Forschung werden aktuelle SAT Löser in einer Vielzahl von Anwen-
dungsbereichen effizient eingesetzt.

Der Schwerpunkt dieser Arbeit liegt auf Lösungsmethoden, die auf diesen
effizienten Lösern und Techniken basieren, um bestimmte Rechenprobleme jen-
seits von SAT zu lösen. Wir modellieren die meisten der betrachteten Methoden
als bedingte Übergangssysteme über abstrakte Zustände. Diese Formalisierung
lässt die komplexen Implementierungsdetails aus, ermöglicht es jedoch formal
über Invarianten, Korrektheit, Vollständigkeit und Beendigung der Verfahren
zu argumentieren.

Zunächst presentieren wir einen formalen Rahmen zur Beschreibung wie kon-
fliktgetriebenes Klausellernen, eine von aktuellen SAT Lösern angewandte Lö-
sungstechnik, angewandt und erweitert werden kann, um das PSPACE-vollstän-
dige Erfüllbarkeitsproblem für quantifizierte boolesche Formeln zu adressieren.

Dann konzentrieren wir uns auf das Rechenproblem bei dem das SAT Problem
mit erstrangigen Theorien (z. B. Funktionen, Arrays) erweitert wird. Unser Ziel
ist es, eine Lösung zu finden, die eine pseudo-Boolesche Zielfunktion optimiert.
Wir schlagen ein Verfahren vor, bei dem Optimierung, logisches Schließen und
theoretisches Schließen klar getrennt sind. Dies ermöglicht die Nutzung effizien-
ter spezialisierter Löser für jede dieser drei Komponenten.

Darüber hinaus befassen wir uns mit inkrementeller SAT-Lösung und kon-
tinuierlicher Formel Vereinfachungen: zwei wesentliche Komponenten für eine
effiziente Berechnung in mehreren Anwendungen. Wir schlagen eine Lösungs-
methode vor, die diese leistungsstarken Techniken mit weniger Aufwand und
mehr Vorteilen kombiniert als bisher.

Schließlich werfen wir einen Blick auf das Antibandwidth-Problem, ein Graph-
enmarkierungsproblem mit dem Ziel, die kleinste Differenz zwischen Markierun-
gen von benachbarten Knoten zu maximieren. Wir führen eine sehr kompakte
Kodierung dieses Problems, basierend auf binären Entscheidungsdiagrammen,
ein und zeigen, wie generische SAT Löser in einer iterativen Lösungsmethode
eingesetzt werden können.

v

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have
not used other than the sources indicated, and that all direct and indirect sources
are acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Parts of this thesis have been published as international conference articles
(see [93], [94], [96], and [97] for further details).

Place, date Signature

vii

Acknowledgements

Attending lectures held by Armin Biere during my exchange semester in Austria
has changed the course of my life on many different levels. I will always be
grateful for these changes. I am thankful not just for the teaching, the chance,
the freedom and the guidance, but also for the great example that Armin sets.
And of course, for providing access to the amazing cluster. I want to convey my
gratitude also to my co-advisor, Martina Seidl, whom I could always ask and
from whom I could learn from the very beginning.

I wish to thank my second advisor Roderick Bloem for his support. Moreover,
I thank Ofer Strichman and Laurent Simon for taking the time to review this
thesis. I am grateful for the LogiCS doctoral program for providing a frame for
research among universities of Austria. I am very thankful for the FORSYTE
group at TU Wien for including me as a long-term visitor during my studies. I
am grateful for the collaboration with all my co-authors, it was a pleasure and
I could learn a lot during it. Further, I am thankful for Florian Lonsing for the
discussions and his technical support regarding depQBF.

I would like to thank Fahiem Bacchus for the chance to see the cooler side
of the planet by hosting me in Toronto and for his inspiring opinion regarding
academic life. I also thank Sheila McIlraith and her group for taking me in and
for providing a piece of home in the form of espresso coffee there.

I had the great opportunity to visit Christoph Scholl during my PhD. I am
very grateful for the endless kindness of him and his group that made my stay
in Freiburg such a nice memory.

I also would like to thank all my past and present colleagues and officemates
in Linz and Vienna. I am grateful for all the help and advice, for the friendly
environment and for the interesting discussions.

My gratitude goes to my mother, who made my education possible in the first
place and who always encouraged me to see the world. I am grateful for the
continuous support and home provided by my family. I also want to thank my
friends for being my company along the way.

Finally, I would like to thank my partner in crime for being there and for
being simply the best.

ix

Contents

1 Introduction 1
1.1 Background . 2
1.2 Outline . 10

2 A Duality-Aware Calculus for
Quantified Boolean Formulas 13
2.1 Introduction . 14
2.2 Preliminaries . 14
2.3 Abstract QCDCL Solving . 16
2.4 Extensions . 20
2.5 Conclusion and Future Work . 21
2.6 Acknowledgment . 22
2.7 Appendix . 22

3 Implicit Hitting Set Algorithms for
Maximum Satisfiability Modulo Theories 25
3.1 Introduction . 26
3.2 Preliminaries . 27
3.3 Abstract Hitting Set based MaxSMT Solving 28
3.4 Generic Hitting Set based MaxSMT 33
3.5 Related Work . 36
3.6 Experimental Evaluation . 36
3.7 Conclusion . 41

4 Incremental Inprocessing in SAT Solving 43
4.1 Introduction . 44
4.2 Preliminaries . 45
4.3 Inprocessing Rules for Incremental Solving 48
4.4 Formal Correctness . 53
4.5 Implementation . 56
4.6 Experiments . 57
4.7 Conclusion . 59

5 Duplex Encoding of Staircase At-Most-One Constraints
for the Antibandwidth Problem 61
5.1 Introduction . 62
5.2 Preliminaries . 63
5.3 Staircase At-Most-One Constraint Sets 65

xi

Contents

5.4 Duplex Encoding of Staircase Constraint Sets 66
5.5 Comparing Encodings of Staircase Constraints 70
5.6 Experimental Evaluation . 73
5.7 Conclusion and Outlook . 75

6 Extensions to Published Work 77
6.1 Quantified Boolean Formulas and Theory Reasoning 77
6.2 Maximum Satisfiability and Theory Reasoning 92
6.3 Incremental SAT Solving and Inprocessing 96
6.4 Duplex Encoding of Staircase At-Most-One Constraint Sets . . . 105

7 Conclusion 115
7.1 Thesis Contributions . 115
7.2 Author Contributions . 116
7.3 Future Work . 118

Bibliography 119

xii

Chapter 1

Introduction

Many interesting real-world problems can be decomposed into smaller sub-tasks
that are automatically solvable by computers. These smaller tasks are called
computational problems. Due to their practical relevance they are of great in-
terest in computer science. Deciding the satisfiability of a propositional formula
(in short the SAT problem) is a classical NP-complete computational problem
that has been studied thoroughly in the last six decades. As a result of this vast
research, current SAT solvers are efficiently used in a wide variety of application
domains, ranging over many different fields.

The focus of this thesis is on how to exploit these efficient SAT solvers and
solving techniques in solution methods for computational problems that are be-
yond SAT. For example, solving optimization problems with pseudo-Boolean
linear objective functions can employ SAT solvers as black-box NP-oracles. Al-
ternatively, one can adapt the internal search of a SAT solver to address opti-
mization problems over bit-vectors. Searching for a solution or a refutation of
a quantified Boolean formula can follow similar approaches as state-of-the-art
SAT solvers. Deciding the satisfiability of first-order formulas with respect to
certain background theories can efficiently combine SAT solving with special-
ized theory reasoning. These are just some of many examples where the central
role and great potential of SAT solvers in combined procedures is already recog-
nized. In general, understanding the challenges of computational problems that
are beyond, but related to, SAT enlarges the range of possibilities that can be
exploited by novel solution methods. Thus, our goal is to improve this under-
standing and thereby support the development of enhanced solution methods.

Our methodology is mostly based on modelling the solution methods as ab-
stract solvers. This is a commonly used technique in order to analyse, compare
or reason about different formal methods without defining them with exact algo-
rithms or pseudo-code. That approach considers an abstraction of every possible
state of the computation and introduces conditional transition rules to abstract
the possible operations to manipulate these states. Different strategies to apply
these rules may lead to completely different solution methods. The resulting for-
mal frameworks can be seen as reasoning calculi where every possible derivation
captures a possible execution of an implementation on an abstract level. Thus,
this formalization abstracts away the complex implementation details while it
allows to formally reason about invariants, soundness, completeness and termi-

1

1 Introduction

nation of the procedures. Beyond reasoning formally about methods, we also
implement several practical tools and evaluate their performance compared to
alternative approaches.

1.1 Background

The following chapters are all self-contained in the sense that they formally
define and succinctly introduce the necessary concepts and notations. As an
extension to it, the goal here is to give a rather high level, informal description
of the underlying concepts and to reveal some similarities and differences among
the computational problems that are addressed in this thesis. For a formal and
exhaustive introduction of the discussed problems and solution approaches, see
for example [151] and [43].

1.1.1 Propositional Satisfiability

The Boolean satisfiability problem, also called the SAT problem, is a central con-
cept in this thesis. This computational problem is formulated in propositional
logic, a simple fragment of logic that focuses on the logical connections between
propositions. A proposition in that context means a declarative sentence like
“Today is Monday.” or “42 < 3”, that is either true or false, but never both
or none. Considering these sentences (also called atoms) as building blocks and
representing them with Boolean variables, we can combine them with logical
connectives to construct formulas. Common logical connectives are represented
here by the symbols ¬,⇒,⇔,∧,∨, expressing their standard meaning, i.e. nega-
tion, implication, equivalence, conjunction and disjunction, respectively.

There are some specific forms of formulas that are more interesting for us than
others. We say that a propositional formula is in conjunctive normal form (CNF)
if it is built up as a conjunction of clauses. A clause is a disjunction of literals,
where a literal is either a Boolean variable or the negation of it. Note that any
propositional formula can be transformed into CNF relatively easily [198, 227].
The dual of CNF is the disjunctive normal form (DNF), where the formula is
built up as a disjunction of cubes, where a cube is a conjunction of literals.
Sometimes we consider and represent clauses and cubes not as disjunctions or
conjunctions of literals, but rather as sets of literals. A clause (or cube) that
has only a single literal is called a unit clause (unit cube respectively). Further,
an empty clause is always false and an empty cube is always true.

Assigning a single truth value (> or ⊥, representing true or false, respectively)
for each Boolean variable determines the truth value of the containing formula.
A truth assignment can be represented in different ways, for example explicitly as
an assignment (e.g. {x← >, y ← ⊥}, where x and y are Boolean variables) or in
shorter form as a set of those literals that evaluate to true under it (e.g. {x,¬y}).
Each literal in that set is called satisfied, while literals evaluating to false are
called falsified. A clause is satisfied by an assignment if at least one of the

2

1.1 Background

contained literals is satisfied, while a cube is satisfied only if all literals of it
evaluate to true. A CNF formula under a truth assignment is the formula
where every satisfied clause is removed and from the remaining clauses every
falsified literal is deleted. A formula in CNF is satisfiable if there exists a truth
assignment such that it satisfies all clauses.

To illustrate these introduced definitions, consider the CNF formula F =
(x ∨ ¬y) ∧ (¬x ∨ y). In total, four possible truth value combinations can be
assigned to the two variables of it (x and y). Figure 1.1 depicts each of these
truth assignments organized into a tree structure. Each node of the tree is a
formula under a certain truth assignment and each edge assigns a truth value
for one of the variables. Notice that the variables are assigned in the same order
on each path from root to leaf and on each dashed edge a ⊥ value is assigned.
Starting from F under the empty truth assignment in the root node of the tree,

(x ∨ ¬y) ∧ (¬x ∨ y)

(¬y)

>

y ← ⊥

⊥

y ← >

x← ⊥

(y)

⊥

y ← ⊥

>

y ← >

x← >

Figure 1.1: Formula F = (x ∨ ¬y) ∧ (¬x ∨ y) under truth assignments to variables x
and y. A path of that tree that satisfies F is highlighted with green.

we first consider the two possible truth values of x. In case it is assigned false
(left branch on Figure 1.1), the second clause of F becomes satisfied, and in the
first clause one literal becomes falsified. Thus, F under the assignment {x← ⊥}
is the formula consisting of the unit clause (¬y), as it is shown on Figure 1.1.
Assigning y to true would falsify this clause and thus would make F false (⊥ leaf
in Fig. 1.1). Assigning y to false on that branch satisfies the remaining clause,
i.e. the assignment {x ← ⊥, y ← ⊥} is a solution (also called a model) of the
formula F . Another model of the formula, where both x and y are assigned true
is highlighted with green in Figure 1.1.

Deciding the satisfiability of a CNF formula was shown to be an NP-complete
problem already several decades ago [76]. And so in theory it is an intractable
problem. Nevertheless, in practice there are many tools that can solve problems
over millions of Boolean variables in a few seconds. Thus, several practical prob-
lems are solved by SAT solvers in industry. To name just a few of them, SAT
solvers are used for hardware and software design and verification [170,201,231],
for test pattern generation [156], for planning [68, 144] and for configuration
management [132]. The theoretical relevance of that problem is probably shown
the best by the observation that the so far longest section of ”The Art of Com-
puter Programming”, the fundamental computer science book series written by

3

1 Introduction

Donald Knuth, is concerned solely with the Boolean satisfiability problem [147].

1.1.2 Quantification

Allowing to explicitly quantify existentially (∃) or universally (∀) the variables
of a propositional formula leads to the concept of Quantified Boolean Formulas
(QBF). And with that new concept comes a new decision problem that gives
a twist to the question of SAT. In SAT we asked whether there is at least one
solution, i.e. an arbitrary satisfying truth assignment to the variables of a given
propositional formula. The new task is to find a certain set of truth assignments
to the Boolean variables of a propositional formula such that these assignments
together fulfil some requirements. More precisely, we look for several models of
the formula such that every possible truth-value combination of the universally
quantified Boolean variables occurs in the found solutions and every existen-
tially quantified variable can be expressed as a Boolean function over a specific
subset of the universally quantified variables. And so here we ask not simply the
existence of a single solution, but rather seek a specific combination of several
solutions. At the end, this set of solutions can be organized into a tree structure,
also called tree model, where at each node the truth value of a variable of the
formula is decided and the order of these decisions is determined by the quan-
tification of the problem. This tree will be actually a sub-tree of the assignment
tree that we introduced for illustration in the previous section in Figure 1.1.

This representation of solutions is easier to understand if we interpret QBFs
as a game between two players (see e.g. [146]). There is one player to control
the existentially quantified variables and there is another one that is responsible
for the universally quantified variables. The order of the players is determined
by the order of the quantifiers at the beginning of the formula. The existential
player would like to satisfy each clause of the formula, while the universal player
always tries to falsify at least one of the clauses. Thus, the previously described
tree models are also called the winning strategy of the existential player [103],
since they show to the existential player how to choose a value for the variables
based on the choices of the universal player on each branch. Similarly, for false
formulas one can construct a winning strategy for the universal player, showing
how to pick a value for the universally quantified variables, based on the current
choices of the existential player, such that at least one clause is falsified on each
path. This tree is called a tree refutation or counter-model of the formula.

The following example illustrates a tree model built for a very simple QBF.
Consider the quantified Boolean formula ∀x∃y.(x ∨ ¬y) ∧ (¬x ∨ y) and see Fig-
ure 1.2 that depicts the solution of it by highlighting those assignments (paths)
that belong to it. We already saw in the previous section that the formula
(x∨¬y)∧(¬x∨y) has two possible solutions. Now considering the quantification
of the variables, we see that these assignments are both needed to construct one
solution to the QBF problem. So the solution of the QBF ∀x∃y.(x∨¬y)∧(¬x∨y)
contains two satisfying truth assignments of the formula (x∨¬y)∧ (¬x∨y), one

4

1.1 Background

∀x∃y.(x ∨ ¬y) ∧ (¬x ∨ y)

∃y.(¬y)

>

y ← ⊥

⊥

y ← >

x← ⊥

∃y.(y)

⊥

y ← ⊥

>

y ← >

x← >

Figure 1.2: Tree model of formula ∀x∃y.(x∨¬y)∧ (¬x∨ y) is highlighted with green.

where x is true (right branch) and another where x is false (left branch). Notice
that each branch of that model can be written as a cube, which are ¬x∧¬y and
x∧ y. Also notice that every possible choice of the universal player belongs to a
path from the root to a leaf of the tree. The choice of the existential player in
both assignments is to assign the same truth-value to y as x. Thus, the winning
strategy of the existential player could be described as a function of variable x;
for example as (y = x ?> : ⊥).

One can similarly construct a tree refutation (i.e. a winning strategy for the
universal player) in case of unsatisfiable (i.e. false) quantified Boolean formulas.
Consider the quantified formula ∃y∀x.(x∨¬y)∧ (¬x∨ y), that is very similar to
the previous example, but the order of the quantified variables is flipped. In that
case, the existential player must make the first decision, and whatever choice
it makes, the universal player can always pick a value for x s.t. one of the two
clauses is falsified. This is presented on Figure 1.3, where, again, all possible
truth assignments of the variables are shown, and the winning strategy of the
universal player is highlighted with red. In that example we could summarize
this strategy as a Boolean function that takes y as a parameter, and assigns the
opposite value of it to x (e.g. as (x = y ?⊥ : >)).

∃y∀x.(x ∨ ¬y) ∧ (¬x ∨ y)

∀x.(¬x)

>

x← ⊥

⊥

x← >

y ← ⊥

∀x.(x)

⊥

x← ⊥

>

x← >

y ← >

Figure 1.3: Tree refutation of formula ∃y∀x.(x∨¬y)∧ (¬x∨y) is highlighted with red.

Our examples here are of course rather trivial and in practice much larger
problems are tackled. Application domains for QBFs are for example planning,
synthesis and model checking (see e.g. [30, 219] for surveys of applications).

5

1 Introduction

1.1.3 Background Theories

What happens when the subject of our reasoning is slightly more complicated
or more abstract than what we can express with sentences like “Today is Mon-
day.”? For example, consider the statements “s = t”,“t = u” and “s 6= u”,
where we use (for the sake of this example integer) variables s, t and u. Beyond
these non-Boolean variables, some relations between them are defined with the
mathematical symbol “=” and the negation of it. The standard interpretation
of the equals sign is well-known, in principle it expresses that two objects are
indistinguishable from each other. Mathematically it is a reflexive, symmetric
and transitive congruence relation. But these well-known properties remain in
the background and they are not written explicitly anywhere in our formulas.

(x ∨ y ∨ ¬z)

(y ∨ ¬z)

(¬z)

>
s 6= t
t 6= u
s 6= u

z ← ⊥

⊥

z ← >

y ← ⊥

>

>
s 6= t
t = u
s 6= u

z ← ⊥

>
s 6= t
t = u
s = u

z ← >

y ← >

x← ⊥

>

>

>
s = t
t 6= u
s 6= u

z ← ⊥

>
s = t
t 6= u
s = u

z ← >

y ← ⊥

>

>
s = t
t = u
s 6= u

z ← ⊥

>
s = t
t = u
s = u

z ← >

y ← >

x← >

Figure 1.4: An example solution of the SMT formula (s = t ∨ t = u ∨ s 6= u). The
Boolean skeleton of the problem is the propositional formula (x∨y∨¬z), where variable
x stands for “s = t”, y for “t = u” and z for “s = u”.

If we would like to describe the disjunction of these statements in propositional
logic, it could be started by the simple formula x ∨ y ∨ ¬z, where the Boolean
variable x stands for the truth value of “s = t”, y for “t = u” and z for
“s = u”. This partial representation of the problem, called the Boolean skeleton,
completely neglects the meaning and the properties of equivalence but grasps the
logical connections between the statements of our problem (i.e. of the formula
(s = t∨t = u∨s 6= u)). Moreover, in this abstraction 7 from the 8 possible truth
assignments to variables x, y and z satisfy the formula. However, assigning a
truth value to one of the Boolean variables implicitly assigns a truth value to
the equality which it encodes. And thus every solution of the disjunction (x∨y∨
¬z) naturally translates to a 3-long conjunction of equalities and disequalities.
Considering our background knowledge, like the domains of the variables s, t and
u and the properties of the equality relation (e.g. symmetry and transitivity),

6

1.1 Background

some of these conjoined equalities and disequalities can not be true at the same
time. For example, assigning true to the equalities s = u and t = u implies that
s and t must be equal (due to the transitivity of equality), and thus in that case
the equality s = t is not allowed to be assigned false.

Figure 1.4 depicts all possible truth assignments over the Boolean variables
x, y, z. Under each satisfying truth assignment it presents the set of equalities
and disequalities (also called theory literals) that the assignment translates to.
The background color of each of these sets indicates whether the given set of
theory literals is consistent with the notion of equality, i.e. whether the proper-
ties reflexivity, symmetry and transitivity are maintained. Notice that from the
7 SAT solutions only 4 translated to a consistent set.

A solution for a satisfiability modulo theories (SMT) problem can be seen as a
solution for the pure SAT abstraction of the problem, such that the assignment
translates to a consistent set of theory literals. The consistency of a set of theory
literals is determined by the axioms of the underlying background theory (or
set of background theories). In our example this background theory was the
simplest, most essential, so called equalities over uninterpreted functions (EUF)
theory, but in practice there is a wide range of possibilities for background
theories and for their combinations. Many solvers support for example the
theory of linear (sometimes even non-linear) arithmetic over rational and integer
numbers, bit-vectors, arrays, or their combinations. See for example [215] or [27]
for a more detailed description of these systems.

What is important to observe here is that SMT problems naturally decompose
into two subproblems. First, we need to consider the Boolean abstraction of the
formula as a SAT problem. Second, we need to determine efficiently the theory
consistency of any set of theory literals built from truth assignments over the
variables of this Boolean skeleton. In practice this decomposition is the main or-
ganizing principle behind SMT solver implementations. The theory consistency
check is the responsibility of the so called theory solvers (one dedicated for the
conjunctive fragment of each background theory) which are closely collaborating
with a SAT solver during SMT solving.

The resulting combined tools are important assets in many practical fields.
Formal methods participate in the daily process of many industrial companies in
the form of SMT solvers. For example, Amazon uses them to verify properties
of access policies [17], Facebook employs them for static analysis of their code
base [66] and Microsoft builds on them for efficient debugging [110].

1.1.4 Optimization

In case of SMT solving, one basically has to distinguish “good” SAT solutions
from “bad” SAT solutions, depending on whether it translates to a consistent
set of theory literals or not. In many computational problems there is in fact
a fine-grained range between “good” and “bad” solutions (independently from
any background theory) and this quality is usually quantitatively measurable.

7

1 Introduction

Thus, in an optimization problem our objective is to find the “best” solution,
where “best” is identified based on this quantitative measurement.

The purest extension of SAT with optimization can be formulated such that we
can compare solutions with each other by simply counting the number of satisfied
literals in a predefined set of literals. The more of these literals are satisfied, the
“better” the found SAT solution. For example, consider the following formula

Fo = (a1 ∨ ¬x ∨ ¬y) ∧ (a2 ∨ x) ∧ (a3 ∨ y)

where the number of satisfied literals from the set A = {¬a1,¬a2,¬a3} are the
ones that determine the quality of any found SAT solution. Figure 1.5 depicts
each possible model (i.e. satisfying truth assignment) of Fo, together with the
measurement how “good” each of them is w.r.t. A. While in SMT each SAT
solution was mapped to a conjunction of theory literals, in this optimization
problem each SAT solution translates to a number. Notice that while the SAT
problem Fo has 14 possible solutions, only three of them have the optimal value
of 2 (there is no SAT solution where all three literals of A are satisfied). One of
these optimal solutions is highlighted with green in Figure 1.5.

(a1 ∨ ¬x ∨ ¬y) ∧ (a2 ∨ x) ∧ (a3 ∨ y)

a2 ∧ (a3 ∨ y)

a2 ∧ a3

a2 ∧ a3

⊥ a3

⊥>
1

a2 ∧ a3

⊥ a3

⊥>
0

a2

a2

⊥ >

>
2
>
1

a2

⊥ >

>
1
>
0

(a1 ∨ ¬y) ∧ (a3 ∨ y)

a3

a3

a3

⊥>
2

a3

⊥>
1

a3

a3

⊥>
1

a3

⊥>
0

a1

⊥ >

>

>
2

a3 ← ⊥

>
1

a2 ← ⊥

>

>
1
>
0

a1 ← >

y ← >

x← >

Figure 1.5: An example solution of the optimization problem (a1 ∨ ¬x ∨ ¬y) ∧ (a2 ∨
x) ∧ (a3 ∨ y) with the objective to maximize the number of satisfied literals in the set
{¬a1,¬a2,¬a3}. Although the variable assignments are marked explicitly only on the
solution path, the order of the variables is the same on every branch.

In that example we measured the quality of solutions (i.e. our objective value)
based only on the number of the satisfied literals of A in each SAT solution. In
general, the maximum satisfiability problem (MaxSAT) maximizes the number
of satisfied clauses in a formula among each truth assignment over its variables.

8

1.1 Background

However, one can always construct a set A by introducing a new literal into
each clause and adding it’s negation to A. Nevertheless, it is important to see
that while MaxSAT usually deals with unsatisfiable formulas, extending it with
a counter set A makes it trivially satisfiable, which allows us to represent the
problem as filtering found SAT solutions. This becomes an important feature
when we try to combine MaxSAT with other problems (e.g. with reasoning
w.r.t. some background theories).

Another important aspect of computational optimization problems is the com-
plexity of the objective function, i.e., the subject of our maximization (or mini-
mization) attempt. In our previous example we aimed to maximize the sum of
values based on some Boolean variables. This is a simple, linear pseudo-Boolean
function. More general optimization problems might consider non-linear objec-
tive functions or functions over non-Boolean variables and terms. Our focus
in this thesis is mostly on simpler objective functions, but even these problems
can occur in several practical domains, such as planning [236], fault localization
and debugging [71], package management [8], automated type inference in code
analysis [117] or in Bayesian network structure learning [31].

1.1.5 Incremental Problems

Sometimes computational problems do not come in single. For example, in the
context of bounded model checking or in planning, instead of having a single
SAT problem, a sequence of similar SAT problems need to be solved. During
solving a satisfiability problem, a solver learns many details about the formula,
like hidden consequences of the clauses or obvious dead-ends of the derivation.
A great portion of this learned information continues to hold in a similar formula
that is somehow related with this solved problem. In case these related problems
are defined explicitly as incremental problems, a solver can exploit and utilise
these details to speed up derivations.

An incremental satisfiability problem [131] can be seen as a sequence of formu-
las, such that each formula extends the previous one with a set of constraints.
Thus, in each step the problem becomes larger, but a great part of the formula is
always such that it was previously already seen and solved by the solver. Coun-
terexample guided abstraction refinement (CEGAR, see e.g. [75]) is a common
solution technique, used not just in model checking, that heavily relies on these
kind of continuous formula extensions.

Another aspect of incrementality that is supported by SAT (and SMT) solvers
is the concept of assumptions [126, 155]. Assumptions can be seen as temporal
unit clauses that are fixing the truth values of some of the variables in the prob-
lem. Solving a SAT problem under assumptions means that we are looking for a
satisfying truth assignment where the assumptions already fixed some values. It
might be that a satisfiable SAT problem is unsatisfiable under certain assump-
tions. Nevertheless, solving the same formula but under different assumptions
can reuse many previous efforts.

9

1 Introduction

In practice these two kinds of incremental problems interleave, i.e. formulas
are continuously extended with new constraints and they are evaluated mul-
tiple times under different sets of assumptions. This combination also allows
to deactivate some previously added constraints (by satisfying them with as-
sumptions) and still benefit from incremental solving. Combined procedures
that are involving SAT solvers as black-box components usually exploit and
build on these incremental possibilities of the solver (see e.g. in model check-
ing [40,52,87,89,154,225], planing [78,109] and in unsatisfiable core enumeration
or minimization [178,183]). Thus, support of efficient incremental solving is es-
sential in any state-of-the-art SAT solver.

1.2 Outline

This thesis is split up into three main parts. This chapter constitutes the first
part and it is concerned with the conceptual cornerstones and structure of this
dissertation. In the previous section we informally introduced the computa-
tional problems that are addressed in the upcoming chapters. In this section we
shortly describe our motivation behind our work while we overview the remain-
ing chapters of this thesis.

The next part (Chapter 2-5) consists of four peer-reviewed and published pa-
pers where the author of this thesis is the main author. The presentation of each
publication begins with a short bibliographical description. The style of each
paper is modified such that they follow a unified format. These modifications
affect not just the representation of the texts (such as fonts, spacing, layout),
but the numbering of figures, definitions, theorems, tables and citations.

It is helpful to organize the subjects of the publications and discussions of
the following chapters around the computational problems that they attempt
to address. Figure 1.6 visualizes it explicitly by connecting the problems and
chapters of this thesis. The central concept of the discussed computational
problems, as it can be seen in Figure 1.6, is the Boolean satisfiability problem.

In Chapter 2 we consider this problem in combination with Boolean quantifi-
cation, more precisely we focus on quantified Boolean formulas. In the presented
paper [96] we provide an abstract calculus to capture and formally describe
duality-aware search-based QBF solvers. The duality-awareness in that con-
text means that these solvers are considering and handling conflict clauses and
solution cubes as duals of each other (see e.g. [112,113,210,237]). Although cur-
rent search-based QBF solvers are not that symmetric and are rather organized
around clauses (e.g. the problems are defined only in a clausal form), the pre-
sented work provides important theoretical insights. Cubes in the derivations
of QBF solvers, especially in the case of true formulas, are essential and the
better understanding of their role provides more possibilities to exploit them.
In Section 6.1 we describe a line of work that builds on our findings from [96].

In Chapter 3 we present our paper [93] where the Boolean satisfiability prob-

10

1.2 Outline

OPTIMIZATION SATISFIABILITY QUANTIFICATION

INCREMENTAL
PROBLEMS

BACKGROUND
THEORIES

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6.1

(SYNASC’16)

(IJCAR’18)

(SAT’19)

(CPAIOR’20)

Figure 1.6: Relation between chapters of this thesis and the addressed problems.

lem is extended with theory reasoning and, at the same time, with a pseudo-
Boolean objective function to optimize. Though both SMT and MaxSAT are
well studied subjects, their combination, where the objective function is defined
completely in the Boolean layer, is rarely addressed explicitly. To the best of
our knowledge, this paper is the first to define an abstract, assumption-based
MaxSAT (and MaxSMT) solver. Extensions of the DPLL(T) framework to
describe optimization modulo theories were presented previously (for example
in [192]), but not with the focus on the optimization process from the SAT
perspective. Further, our described solution instantiates the so-called Implicit
Hitting Set (IHS) approach [69, 181, 211], though the presented abstract solver
is relatively easy to adapt for other MaxSAT solving approaches. The IHS ap-
proach is a general way to address combinatorial optimization problems. Lifting
it to the context of MaxSMT allows to completely separate Boolean and theory
reasoning from optimization and so has the potential to lead to improved and
more robust solvers. An observation of that work is that while most MaxSAT
solving methods can be used “as is” to address MaxSMT, an efficient approach
must be flexible enough to consider the difference in the relative costs between
calling an SMT or a SAT oracle.

Chapter 4 contains our paper [94] where the focus is on improving SAT solving
in the context of incremental problems. Incremental SAT solving and continuous
formula simplifications (i.e. inprocessing) are two crucial components of efficient
tool chains in several applications. In this paper we proposed a sound solution, in
the form of a calculus, that allows one to efficiently combine these two powerful
techniques with less effort and more benefits than before. As a side-effect, our
proposed solution simplifies the way how incremental solvers can be used, by
eliminating the necessity to manually identify reoccurring variables in problem
encodings. This paper won the best student paper award of the SAT conference
in 2019 and significantly shaped the state-of-the-art in incremental SAT solving.

11

1 Introduction

Another optimization problem is addressed in Chapter 5, where our latest
paper [97] is presented. In that work we consider the so-called antibandwidth
problem, a graph labeling problem with an objective to maximize the smallest
difference between numerical labels of neighbouring nodes. We introduced a
binary decision diagram (BDD) based SAT encoding with linear size for the at-
most-one staircase constraints (called at-most-one sequence constraints in the
constraint programming (CP) literature [57, 229]). Thereby we can exploit a
SAT solver to efficiently answer the feasibility questions of an integer program-
ming (IP) problem. Sequence constraints are frequently employed in problem
representations of CP. Thus, providing a small and efficient alternative encod-
ing for the at-most-one sub-case has a wide application domain. Beyond that,
this work illustrated that considering multiple BDDs simultaneously over the
same problem but with different variable orderings has great potential to gain
compact problem representations.

The last part of this thesis (Chapter 6-7) reflects on, extends and shortly
concludes the presented work. In Chapter 6 we extend each of the published
work with further details and results and we also succinctly present some unpub-
lished work in progress. In the last chapter (Cahpter 7) we conclude the thesis,
summarize our contributions and discuss the current limitations and potential
future works based on our findings.

12

Chapter 2

A Duality-Aware Calculus for
Quantified Boolean Formulas

Published

In Proceedings of the 18th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2016), pages 181-186, Timisoara,
Romania. See [96].

Authors

Katalin Fazekas, Martina Seidl and Armin Biere.

Abstract

Learning and backjumping are essential features in search-based decision proce-
dures for Quantified Boolean Formulas (QBF). To obtain a better understanding
of such procedures, we present a formal framework, which allows to simultane-
ously reason on prenex conjunctive and disjunctive normal form. It captures
both satisfying and falsifying search states in a symmetric way. This symmetry
simplifies the framework and offers potential for further variants.

13

2 A Duality-Aware Calculus for Quantified Boolean Formulas

2.1 Introduction

Quantified Boolean Formulas (QBF) extend the language of propositional logic
by quantifiers over the propositional variables. In consequence, the decision
problem becomes PSPACE-complete making QBF solving interesting for many
applications in verification, synthesis, artificial intelligence, etc. (see [30] for
a survey). The combination of conflict-driven clause and solution-driven cube
learning (QCDCL, see e.g., [108,239]) is the most successful approach for search-
based QBF solving [105, 162], lifting conflict-driven clause-learning (CDCL),
originating in SAT [176], to QBF. However, if a QBF solver only gets a QBF in
prenex conjunctive normal form (PCNF) as input, the search is biased towards
conflicts. This asymmetry impedes the whole search process. To overcome this
asymmetry, duality-aware QCDCL solving considers not only a representation
of the input in PCNF but also in prenex disjunctive normal form (PDNF), treat-
ing solution and conflict states symmetrically [237]. In [113] it was shown that
duality-aware reasoning can easily be added to PCNF-based QCDCL solvers.
This paper gives a concise characterization of the behavior of such solvers ex-
ploiting the symmetry in the search for conflicts and solutions.

Related Work

The seminal paper of Nieuwenhuis, Oliveras, and Tinelli [194] introduced a rule-
based calculus to concisely model the classical CDCL approach for SAT. This
work forms the basis of many theoretical investigations on SAT and SMT solv-
ing, for instance the recent formalization of CDCL-SAT solving in Isabelle [47].
For QBF, however, we are not aware of any similar rule-based formulation of
QCDCL. The abstract QBF solver presented rather informally in [58] lacks non-
chronological backtracking (backjumping) and learning, i.e., the essential rules
of QCDCL. The literature on QCDCL (e.g., [108,239]) is missing a precise for-
malization too. In [133] the focus is on the relation of QCDCL with Q-resolution
instead of capturing the search precisely.

Outline

We introduce a new calculus which formally captures the behavior of QCDCL
solvers. To this end, we first provide generic rules defining a state transition
system. Then we introduce a strategy that describes how to apply these rules
to get a duality-aware QBF solver which is correct and terminates. Finally, we
relate our calculus to standard PCNF QCDCL solvers.

2.2 Preliminaries

A propositional formula over variables V is in conjunctive normal form (CNF)
if it is a conjunction of clauses. A clause is a disjunction of literals and a literal

14

2.2 Preliminaries

is a variable or its negation. A propositional formula is in disjunctive normal
form (DNF) if it is a disjunction of cubes, where a cube is a conjunction of
literals. If literal ` is v or ¬v, then var(`) = v. A quantified Boolean formula
(QBF) Q(ϕ) consists of the propositional matrix ϕ over V and the quantifier
prefix Q = Q1V1 . . . QnVn where Vi are disjoint sets of variables, Qi ∈ {∃, ∀},
and Qi 6= Qi+1. In this paper, we assume V =

⋃
Vi, i.e., all variables of the

matrix are quantified. Such QBFs are called closed. If ϕ of QBF Q(ϕ) is in
CNF (DNF), then Q(ϕ) is in prenex CNF (DNF), denoted PCNF (PDNF). We
also write `∀ and `∃ for a universal or existential literal. In that way, the prefix
Q defines a partial ordering relation <Q between variables vi and vj such that
vi <Q vj if level(vi) < level(vj). This ordering is extended to the literals over
the variables, that is, `i <Q `j if var(`i) <Q var(`j). An assignment A is a
consistent list of literals which defines a mapping from literals to truth values
as follows. If v ∈ A then v is true under A, if ¬v ∈ A then v is false under
A. An assignment A is called total assignment of V if every v ∈ V is assigned
by A, otherwise it is called partial. Occasionally we interpret assignments as
cubes. Given an assignment A and a CNF ϕ with a fixed quantifier prefix Q,
we denote by ϕ[A] the CNF under assignment A, where all clauses containing
` are removed and all occurrences of ¬` are deleted (and Q is unchanged). For
DNF ϕ, ϕ[A] is defined dually. The negation of a quantifier prefix Q (denoted
with ¬Q) is the simultaneous substitution of ∀ quantifiers for ∃ quantifiers and
vice versa in Q. We define tree models and tree refutations of QBFs as in [103].
We denote an empty clause or cube by ∅, an empty CNF (DNF) by > (⊥). A
QBF ∀xQ(ϕ) is true iff Q(ϕ)[x] and Q(ϕ)[¬x] are true. A QBF ∃xQ(ϕ) is true
iff Q(ϕ)[x] or Q(ϕ)[¬x] is true. Two QBFs ψ1 and ψ2 are equivalent (written
as ψ1 ≡ ψ2) if they have the same truth value.

Definition 2.2.1. QBFs Q(C) in PCNF and Q(D) in PDNF have the duality
property if Q(C) ≡ Q(D).

The duality property holds under assignment A, if Q(C[A]) ≡ Q(D[A]). Based
on the duality property, dual search-based solvers [113,237] use both a CNF as
well as a DNF of the input QBF (as explained e.g. in [237]) to treat conflicts and
solutions symmetrically. Note that in that case the introduced Tseitin variables
are existentially quantified in the CNF, and universally quantified in the DNF
encoding. Therefore, the joint prefix Q of CNF and DNF has some variables
that occur only in the CNF matrix (the existential Tseitin variables) and some
that occur only in the DNF matrix (the universal Tseitin variables).

Definition 2.2.2. Given QBF Q(ϕ) in PCNF and a clause C, we define ϕ �Q C
to hold if Q(ϕ ∧ C) ≡ Q(ϕ).

Definition 2.2.3. Given QBF Q(ϕ) in PDNF and a cube C, we define ϕ �Q C
to hold if Q(ϕ ∨ C) ≡ Q(ϕ).

15

2 A Duality-Aware Calculus for Quantified Boolean Formulas

Note that �Q and �Q define the entailment relation w.r.t. prefix Q. Standard
propositional entailment is denoted by �. Immediately from the definitions we
obtain:

Lemma 2.2.1. Let Q(ϕ) be a closed QBF in PCNF and C a clause. Then
ϕ �Q C iff ¬ϕ �¬Q ¬C.

In the following we fix a quantifier prefix Q together with the ordering <Q
(on all variables and literals).

Definition 2.2.4. The universally tailing literals T Q∀ (C) of clause C are
{`∀ ∈ C | `∃ <Q `∀ for all `∃ in C}.

Definition 2.2.5. The universal reduction of a clause C is defined as RQ∀ (C) =
C \ T Q∀ (C).

Analogously, existential reduction RQ∃ (C) removes the tailing existential liter-
als T Q∃ (C) from cube C. Universal (existential) reduction can be extended to a
set of clauses (cubes) C as RQ∀ (C) = {RQ∀ (C) | C ∈ C} (RQ∃ (C) = {RQ∃ (C) | C ∈
C}). W.l.o.g. we assume clauses (cubes) of the input QBFs to be non-tautological
(non-contradictory) and ∀-reduced (∃-reduced).

The literal `∃ is an existential unit in clause C iff RQ∀ (C) = {`∃}. Then C
is called a unit clause. Unit cubes and universal units are defined analogously.
We also simply call C a unit, if C is a unit clause or unit cube. We further
extend these definitions to clauses C (and cubes) under an assignment A, by
using C[A] instead of C. For instance, `∃ is an existential unit in C under A iff
`∃ is an existential unit in C[A]. In this case we assume that C is not satisfied
by A, i.e., C[A] 6= >. A literal is called pure in QBF Q(ϕ) if it occurs only in
exactly one polarity.

2.3 Abstract QCDCL Solving

Our abstract QCDCL solver is described in terms of a state transition system.
It explicitly traverses the assignment tree of a QBF given in CNF and DNF to
prove its (un)satisfiability. States S of the form A ‖ D ‖ C consist of a CNF C,
a DNF D, and of an assignment A (also called trail in solver implementations)
over variables of the fixed quantifier prefixQ. The literals in A are either decided
or implied (see below). A decision literal is written as `d. The initial state of
our abstract QCDCL solver is ∅ ‖ D ‖ C, where D contains the input QBF in
DNF, while C is the input QBF in CNF. Therefore the duality property holds,
i.e., Q(C) ≡ Q(D). Next, we introduce the rules of our abstract QCDCL solver.

Unit propagation extends the current assignment by unit literals with respect
to their quantifier type.

Due to the duality property, we can identify pure literals either from C or D.
Note that this is not possible in decision procedures without duality-awareness
because there D is not a complete representation of the input QBF.

16

2.3 Abstract QCDCL Solving

A ‖ D ‖ C ∧ C
Unit∃:

A `∃ ‖ D ‖ C ∧ C

`∃ existential unit in C[A]

A ‖ D ∨ C ‖ C
Unit∀:

A ¬`∀ ‖ D ∨ C ‖ C

`∀ universal unit in C[A]

A ‖ D ‖ C
Pure∃:

A `∃ ‖ D ‖ C

`∃ ∈ RQ∃ (D[A]) is pure

A ‖ D ‖ C
Pure∀:

A ¬`∀ ‖ D ‖ C

`∀ ∈ RQ∀ (C[A]) is pure

A ‖ D ‖ C
Decide:

A `d ‖ D ‖ C

` is unassigned and all `′ with `′ <Q ` are assigned in A

Rule Decide adds the decision literals to the current assignment A. The
quantifier prefix restricts the set of decision candidate variables. Further, each
decision must preserve consistency with A.

A ‖ D ‖ C
LearnCNF:

A ‖ D ‖ C ∧ C
C �Q C

A ‖ D ‖ C
LearnDNF:

A ‖ D ∨ C ‖ C

D �Q C

LearnCNF and LearnDNF describe the clause and cube learning of the solver.
The only restriction on learned clauses, and dually for cubes, is that they are
implied by the formula w.r.t. the prefix, which by definition requires Q(C) ≡
Q(C ∧ C). Deciding equivalence of two QBFs is PSPACE hard. In practice
polynomial derivation techniques are used, e.g., some form of Q-resolution.

A`d∃A
′ ‖ D ‖ C

Undo∃:
A ‖ D ‖ C

A`d∀A
′ ‖ D ‖ C

Undo∀:
A ‖ D ‖ C

The Undo-rules are responsible for backtracking. These steps have no side
condition, but at least one decision literal in the current assignment is required.
Backtracking is allowed only precisely before such a decision literal, because
backtracking to other points of the trail could lead to unnecessary repetitions
of steps.

A ‖ D ‖ C ∧ ∅
FinalCNF: ⊥

A ‖ D ∨ ∅ ‖ C
FinalDNF: >

17

2 A Duality-Aware Calculus for Quantified Boolean Formulas

If the empty clause (cube) is in C (D), the formula simplifies to ⊥ (>). We
also denote such a state by ⊥ (>). If the application of a rule causes a transition
from a state S = (A ‖ D ‖ C) to a state S′ = (A′ ‖ D′ ‖ C′), we denote this
by S ` S′. For multiple rule applications we write S `∗ S′. Now we obtain the
following lemmas from our definitions and, for instance, using facts from [65].

Lemma 2.3.1. If S ` S′ using the Learn or Final rules, then
Q(C) ≡ Q(C′) and Q(D) ≡ Q(D′). For all other rules, C′ = C and D′ = D.

Lemma 2.3.2. If S ` S′ using rules Unit or Pure, then
Q(C[A]) ≡ Q(C[A′]) and Q(D[A]) ≡ Q(D[A′]).

Corollary 2.3.3. Each rule preserves the duality property.

To get closer to real QBF solvers and to enforce termination, we have to
restrict the application of rules based on the actual state of the solver.

Definition 2.3.1 (Leaf Condition). State A ‖ D ‖ C has

(Conflict Condition) L⊥ iff ∅ ∈ RQ∀ (C[A])

(Satisfaction Condition) L> iff ∅ ∈ RQ∃ (D[A])

(Leaf Condition) L iff L>∨ L⊥

The duality property guarantees L⊥ and L> to be mutually exclusive. When-
ever the solver finds a satisfying or falsifying assignment, we say that it reached
a leaf of the assignment tree. Then L is true in that state.

Definition 2.3.2. A state has the Propagation Condition, denoted P , if one of
the Unit or Pure rules can be applied.

Definition 2.3.3 (Driving Condition). In AA′ ‖ D ‖ C assume A′ contains a
decision `d, where `d is existential if C is a clause in C and universal if C is a
cube in D.

(Driving Clause) D⊥(C) iff C[AA′] = ∅, C[A] unit

(Driving Cube) D>(C) iff C[AA′] = ∅, C[A] unit

(Driving Condition) D(C) iff D⊥(C) ∨D>(C)

The driving condition holds (i.e., D is true) in a state AA′ ‖ D ‖ C iff there is
a clause (cube) C in C (D) s.t. D(C) holds. Then C is a driving clause (cube)
and C is driving the existential (universal) unit literal `′ ∈ C[A].

If a driving clause C is learned in state AA′ ‖ D ‖ C, then the Undo rule can
be applied to remove A′ from the trail and then the Unit rule can be used to add
C[A] (the driven literal) to the current assignment. In that way, backjumping
can be simulated with a sequence of small steps. This makes the whole process
more transparent.

18

2.3 Abstract QCDCL Solving

Table 2.1: Additional strategy constraints.

Rule Pre-condition Post-condition

Unit ¬F ∧¬L∧¬D
Pure ¬F ∧¬L∧¬D
Decide ¬F ∧¬L∧¬D∧¬P
Learn ¬F ∧ L∧¬D D∨F
Undo ¬F ∧ L∧ D ¬D
Final F

Definition 2.3.4 (Final Condition). In state A ‖ D ‖ C we define the following
final conditions:

(Inconsistency Condition) F⊥ iff ∅ ∈ C
(Tautology Condition) F> iff ∅ ∈ D

(Final Condition) F iff F> ∨ F⊥

Lemma 2.3.4. If in A ‖ D ‖ C, F or D holds, then also L.

Now, to guarantee termination, a strategy for applying our rules is enforced
by further restricting their side conditions (see Table 2.1). Our strategy requires
to stop propagation as soon as a leaf is reached (which in turn is required for
learning to be applied). In SAT it has been considered to lift this requirement,
which however requires additional care during learning [111]. It is unclear at this
point whether this also applies to our calculus or QBF. Decisions can be made
(rule Decide) only when no other rule is applicable but the Final Condition
does not hold yet. The strongest constraint is introduced for the Learn rules.
It ensures that learning prunes the search space. Hence, the learned clause (or
cube) is either empty or driving. The Undo-rules force the solver to backtrack
exactly where the driving clause (cube) leads. Below we assume the constraints
of Table 2.1.

Lemma 2.3.5. If in A ‖ D ‖ C there is no existential (universal) decision
literal in A and ¬F ∧ ¬D and L⊥ (L>) hold, then C �Q ∅ (D �Q ∅).

Proof. By semantics of QBF and Lemma 2.3.2.

Lemma 2.3.6. If in A ‖ D ‖ C there is an existential (universal) decision literal
in A and ¬F ∧ ¬D and L⊥ (L>) hold, then there exists a driving clause (cube)
C s.t. C �Q C (D �Q C).

Proof. Given A ‖ D ‖ C where ¬F ∧L⊥∧¬D holds, i.e., ∅ /∈ C, but ∅ ∈ RQ∀ (C[A])
and there is no driving clause in C. Then A has the form L0`

d
1L1...`

d
nLn for some

n > 0, where `d1, ..., `
d
n are the existential decision literals of A and L0, ..., Ln con-

tain the implied literals (from Unit and Pure rules) and the universal decision
literals. Let C ′ be the clause (¬`d1∨...∨¬`dn). Then by construction C ′[A] = ∅ and

19

2 A Duality-Aware Calculus for Quantified Boolean Formulas

¬`dn is an existential unit in C ′ under the assignment A′ = {L0`
d
1L1...`

d
n−1Ln−1}

(which is a prefix of A), thus C ′ is driving `dn. We further have to show that
C �Q C ′, i.e. Q(C) ≡ Q(C ∧ C ′). Due to Lemma 2.3.2 and QBF semantics, if
Q(C) is true, then there is no tree model with a branch that contains `d1, ..., `

d
n.

Therefore, conjoining (¬`d1 ∨ ... ∨ ¬`dn) to Q(C) is satisfiability preserving. The
case L> is analogous.

In practice the learned clause or cube is not built as in the proof above. Con-
flict and solution analysis of QCDCL solvers rely on some form of Q-resolution,
where the derived clause or cube can be safely added to the formula by con-
struction. We further obtain the following facts, without complete proofs, due
to space constraints.

Lemma 2.3.7. There are no infinite derivations of the form (∅ ‖ D ‖ C) ` S1 `
S2 ` · · · ` Si ` · · ·

Lemma 2.3.8. If (∅ ‖ D ‖ C) `∗ S and no rule applies to S then S is either ⊥
or >.

Lemma 2.3.9. If (∅ ‖ D ‖ C) `∗ S ∈ {⊥,>}, Q(C) ≡ S.

Theorem 2.3.10. Our abstract QCDCL calculus is sound and complete. Apply-
ing the additional strategy constraints always produces terminating derivations.

2.4 Extensions

In our framework termination depends on learning of the empty clause or cube.
Thus, in its basic form, it can not simulate pure search-based solvers without
learning. Further, as memory is limited in practice, it is necessary to forget
learned clauses and cubes which became irrelevant. Moreover, in practice, it
can be beneficial to stop the current search and start over again with an empty
trail. Extending the framework with further rules, we can easily capture also
these aspects of practical solvers.

A ‖ D ‖ C ∧ C
ForgetCNF:

A ‖ D ‖ C
C �Q C

A ‖ D ∨ C ‖ C
ForgetDNF:

A ‖ D ‖ C

D �Q C

The side conditions of the Forget-rules guarantee that only redundant in-
formation is discarded. With these additional rules we can also simulate solvers
without learning, if the strategy enforces to apply Forget right after back-
tracking (Undo) and propagation (Unit & Pure). Obviously, as soon as an
empty clause or cube is learned, Final termination rules have to be applied
immediately. Restart of the search has no side condition, but on the strategy
level additional care is necessary in order to maintain termination.

20

2.5 Conclusion and Future Work

A ‖ D ‖ C
Restart: ∅ ‖ D ‖ C

A ‖ D ‖ C
Learn’DNF:

A ‖ D ∨ C ‖ C

D �Q C or C � C

Usually the input of a QBF solver is only available in PCNF, therefore we
can not assume the duality property as invariant. However, the following weaker
invariant over the clauses and cubes serves a similar purpose: Q(D) ⇒ Q(C).
This invariant ensures that whenever the DNF is satisfied, the CNF is satisfied
as well. To adapt our framework to this new invariant, some modifications are
necessary. For instance, Pure∃ has to search for the existential pure literals
in the clause set (instead of the cube set). Moreover, since in that case the
DNF is incomplete, ForgetDNF can be applied without side condition, and
the constraints of learning new cubes has to be weakened (see Learn’DNF).
There are now two possible solution scenarios (as in [239]). First, one of the
cubes in the database is satisfied. In that case we learn as we did before and the
driving cube construction remains the same. Second, all the clauses in the clause
database are satisfied but no satisfied cube exists. Note that the Satisfaction
Condition in Def. 2.3.1 has to be updated.

Definition 2.4.1 (Satisfaction Condition). A ‖ D ‖ C has

(DNF Satisfaction) SDNF iff ∅ ∈ RQ∃ (D[A])

(CNF Satisfaction) SCNF iff C[A] = >
(Satisfaction Cond.) L> iff SCNF ∨ SDNF

Since we can learn cubes which are weakening the DNF, Lemma 2.3.1 ceases
to hold. Instead we obtain:

Lemma 2.4.1. If S ` S′ using the Learn or Final rules, then Q(C) ≡ Q(C′)
and Q(D′)⇒ Q(C′).

2.5 Conclusion and Future Work

We presented a formal framework for concisely capturing search-based QBF
solving. Such a framework is useful for better understanding of various types of
QCDCL solvers.

We plan to use our framework to close the gap between QCDCL solving and
other approaches, including expansion-based techniques [120,134]. Currently, it
is not clear how these approaches relate to one another w.r.t. solving strength.
While there is some work on relating proof systems (e.g., [135]), the actual search
strategies have not been compared yet. Especially when different techniques
are integrated as currently proposed in [166], a better understanding of the
individual solving techniques is indispensable.

21

2 A Duality-Aware Calculus for Quantified Boolean Formulas

2.6 Acknowledgment

The authors would like to thank the anonymous reviewers for their helpful com-
ments. This research has been supported by the Austrian Science Fund (FWF)
under projects W1255-N23 and S11408-N23.

2.7 Appendix

Example 2.7.1. Consider the QBF ψ = ∃x∀y. x⇔ y. It can be transformed to
CNF as ∃x∀y∃p. p∧(¬p∨¬x∨y)∧(¬p∨x∨¬y), and to DNF as ∃x∀yq. q∨(¬q∧
¬x ∧ ¬y) ∨ (¬q ∧ x ∧ y), where p and q are newly introduced Tseitin-variables.
Given these two representations of the input formula ψ, the initial state of the
abstract solver is ∅ ‖ D ‖ C, where Q = ∃x∀y∃p∀q, D = q ∨ (¬q ∧ ¬x ∧ ¬y) ∨
(¬q ∧ x ∧ y) and C = p ∧ (¬p ∨ ¬x ∨ y) ∧ (¬p ∨ x ∨ ¬y). Note that p and q are
interchangeable in the prefix, thus ∃x∀yq∃p is another possible prefix for that
example. A possible derivation from that state would be as follows.

∅ ‖ D ‖ C `Unit∃ (2.1)

p ‖ D ‖ C `Unit∃ (2.2)

p x ‖ D ‖ C `LearnCNF
(2.3)

p x ‖ D ‖ C ∧ ∅ `FinalCNF
(2.4)

⊥ (2.5)

In the initial state there is an existential unit (p) in the CNF and there is a
universal unit (q) in the DNF formula. Assume that the solver first propagates
p, that yields state (2.2). In that state, there is still q as universal unit. Further,
the second and third clauses of the CNF formula are the existential units ¬x and
x respectively, since under the assignment p the universal literals y and ¬y are
reduced.

Consider the case that the solver propagates x as a next step, which yields
state (2.3). Here the second clause of the CNF formula is falsified, i.e. ∅ ∈
RQ∀ (C[p, x]), so the Conflict Condition (L⊥) holds. Since there is no decision
literal on the trail, no driving clause can be constructed, but the empty clause
can be learned. After that step, in state (2.4), F⊥ holds, therefore the only rule
that can be applied is FinalCNF, that yields the state ⊥.

It is not hard to see, that if the initial formula would have been ∀x∃y. x⇔ y
(instead of ∃x∀y. x ⇔ y), then the derivation of state > could have been the
dual of the above steps (i.e. apply rules Unit∀, LearnDNF, FinalDNF instead
of the rules Unit∃, LearnCNF, FinalCNF respectively).

Example 2.7.2. Consider the initial state of the abstract solver as ∅ ‖ D ‖ C,
where Q = ∀x∃y∀z, C = (x ∨ y) ∧ (¬x ∨ ¬y) and D = (x ∧ ¬y ∧ z) ∨ (x ∧ ¬y ∧
¬z) ∨ (¬x ∧ y ∧ z) ∨ (¬x ∧ y ∧ ¬z). A possible derivation from that state would

22

2.7 Appendix

be as follows.

∅ ‖ D ‖ C `Decide (2.6)

xd ‖ D ‖ C `Pure∃ (2.7)

xd ¬y ‖ D ‖ C `Unit∀ (2.8)

xd ¬y ¬z ‖ D ‖ C `LearnDNF
(2.9)

xd ¬y ¬z ‖ D ∨ x ‖ C `Undo (2.10)

∅ ‖ D ∨ x ‖ C `Unit∀ (2.11)

¬x ‖ D ∨ x ‖ C `Pure∃ (2.12)

¬x y ‖ D ∨ x ‖ C `Unit∀ (2.13)

¬x y ¬z ‖ D ∨ x ‖ C `LearnDNF
(2.14)

¬x y ¬z ‖ D ∨ x ∨ ∅ ‖ C `FinalDNF
(2.15)

> (2.16)

Initially, the only possible step is to apply rule Decide, since ¬P∧¬F∧¬L∧¬D
holds. The only variable satisfying the side condition of rule Decide is x.
Assume it is decided to be true. Then in state (2.7) there is ¬y as existential
unit in RQ∀ (C[x]) and at the same time it is pure in RQ∃ (D[x]). Assume that
pure literal propagation has higher priority and the solver propagates then ¬y
using rule Pure∃.

In state (2.8), although all clauses are satisfied in C by the current assignment,
there is neither an empty clause nor empty cube in C or D, so the Leaf Condition
does not hold. But, there are z and ¬z as universal units in cubes (x ∧ ¬y ∧ z)
and (x ∧ ¬y ∧ ¬z) respectively. Assume that the solver decides to use the first
cube for propagation, which extends the current assignment with ¬z. With this
step (in state (2.9)) the second cube becomes empty. Therefore L> (and thus
L) holds. Since there is no driving cube in the DNF (otherwise in the very first
step unit propagation instead of decision would have been possible), the only rule
that is applicable is LearnDNF. The solver learns the driving cube x, which
yields state (2.10). Now there is a driving cube, so rule Undo is applicable
to backtrack. In state (2.11) the recently learned cube becomes universal unit,
therefore Unit∀ is a valid step and extends the current assignment with ¬x.
Then, there is y as existential unit in RQ∀ (C[¬x]) and as pure in RQ∃ (D[¬x]).
Application of rule Pure∃ yields state (2.13). Just like in state (2.7), z and ¬z
are universal units, but this time in the cubes (¬x ∧ y ∧ z) and (¬x ∧ y ∧ ¬z)
respectively. After unit propagation, there is an empty cube in RQ∃ (D[¬x, y,¬z]),
so L> holds. This time there is no universal decision literal on the trail, thus
the only cube to learn is ∅. Then F> (and so F) holds, thus, finally, the only
allowed step is FinalDNF, which terminates the derivation.

23

Chapter 3

Implicit Hitting Set Algorithms for
Maximum Satisfiability Modulo
Theories

Published

In Proceedings of the 9th International Joint Conference on Automated Rea-
soning (IJCAR 2018), pages 134-151, held as Part of the Federated Logic Con-
ference, FloC Oxford, UK. See [93].

Authors

Katalin Fazekas, Fahiem Bacchus and Armin Biere.

Abstract

Solving optimization problems with SAT has a long tradition in the form of
MaxSAT, which maximizes the weight of satisfied clauses in a propositional
formula. The extension to maximum satisfiability modulo theories (MaxSMT)
is less mature but allows problems to be formulated in a higher-level language
closer to actual applications. In this paper we describe a new approach for solv-
ing MaxSMT based on lifting one of the currently most successful approaches for
MaxSAT, the implicit hitting set approach, from the propositional level to SMT.
We also provide a unifying view of how optimization, propositional reasoning,
and theory reasoning can be combined in a MaxSMT solver. This leads to a
generic framework that can be instantiated in different ways, subsuming exist-
ing work and supporting new approaches. Experiments with two instantiations
clearly show the benefit of our generic framework.

25

3 Implicit Hitting Set Algorithms for MaxSMT

3.1 Introduction

SMT solvers have become indispensable tools for solving a wide range of prob-
lems in many areas. Such solvers provide either a satisfying assignment (e.g.,
a witness for a bug) or a proof of unsatisfiability (e.g., proving that a partic-
ular abstraction does not display a bug). However, in many applications the
problem to be solved is more naturally cast as an optimization problem: find
an assignment that minimizes some cost function. Li et al. [159], for instance,
give a range of applications where optimization is critical. The need to solve
such applications has led to a range of work addressing optimization in SMT
(e.g., [45, 74,159,171,192,216,217,218]).

Work on SMT optimization varies in the generality of the objective functions
that can be modeled. For example, [159,216] address optimizing objective func-
tions stated in the theory of linear real arithmetic, while [171] can deal with
linear objective functions in which some variables are restricted to be integer.
MaxSMT [192] is a restricted but important sub-problem in which the objec-
tive functions are linear expressions over Boolean variables (Pseudo Boolean
expressions).

In this paper we focus on MaxSMT. Although MaxSMT is not as general as
some other optimization approaches, MaxSMT specific solvers are often more
efficient on problems where Pseudo Boolean objectives suffice [218], and recent
rapid progress in the efficiency of MaxSAT solvers [5] indicates that this special
case may more likely scale to practical problems than more general optimization
approaches. Furthermore, MaxSAT already has a wide and growing range of
applications including planning, fault localization in C code, design debugging,
and a variety of problems in data analysis (see [15]). This indicates that Pseudo
Boolean objectives are sufficient in a range of applications, and hence MaxSMT,
with its addition of theories, is likely to have even greater applicability.

The implicit hitting set (IHS) approach [79] for solving MaxSAT has seen
considerable recent progress and is now one of the most effective ways of solving
MaxSAT. For example, IHS solvers have been the top performing solvers on
weighted problems in the most recent 2016 and 2017 evaluations of MaxSAT
solvers [5]. One of the key benefits of the IHS approach is that it provides a clear
separation between optimization and propositional reasoning. In particular, in
IHS solvers optimization is performed by a separate minimum cost hitting set
solver, while the SAT solver is used solely for propositional reasoning. This
separation of concerns supports the observed improved performance by allowing
the exploitation of more efficient specialized solvers for each component.

Since MaxSAT and MaxSMT are quite similar problems, this naturally leads
to the question of how MaxSMT can be similarly separated into optimization,
propositional reasoning, and theory reasoning. In this paper we provide a general
view of how these separate components can be combined to solve MaxSMT by
providing a formal reasoning calculus [194] for MaxSMT solvers that achieves a
clear separation of these different components. The calculus formalizes a notion

26

3.2 Preliminaries

of state that abstracts the more complex notions of state used in implemented
solvers, and a set of inference rules for transforming the state that abstracts
the operations performed by implemented solvers. The power of the calculus
is that almost any scheme for scheduling the application of these rules leads
to a solution. Hence, it supports the design of a wide range of different im-
plementations of the basic inferences and of control structures for scheduling
their application. It also provides a formal framework for effective harvesting of
advances in MaxSAT for improving MaxSMT and vice versa.

3.2 Preliminaries

We consider formulas F in conjunctive normal form (CNF) consisting of a set
of clauses, where each clause C is a disjunction of literals, which are first-order
atoms or propositional variables, or their negation. MaxSAT problems are spec-
ified by a purely propositional CNF F , without first-order atoms, partitioned
into hard and soft clauses, hard(F) and soft(F). A feasible solution to the
MaxSAT problem is a truth assignment that satisfies all of the hard clauses. A
core in MaxSAT solving is a set of soft clauses (a subset of soft(F)) that when
combined with the hard clauses forms an unsatisfiable set of clauses.

Each soft clause C has a positive weight, denoted by cost(C), which specifies
the cost of falsifying it. The cost of a set of soft clauses S is the sum of the costs
of the soft clauses it contains: cost(S) =

∑
C∈S cost(C). The cost of a feasible

solution π is the sum of the costs of the soft clauses it falsifies: cost(π) =
cost({C ∈ S | π 6|= C}). An optimal solution for a MaxSAT problem is
a feasible solution with minimum cost among all feasible solutions. Solving a
MaxSAT problem is the task of finding an optimal solution.

We can restrict our attention, w.l.o.g., to formulas F in which all soft clauses
are unit. In particular, any non-unit soft clause C can be converted to a unit
soft clause by (i) adding a new (relaxed) hard clause C ∨ v where v is a new
propositional variable (called a relaxing or selector variable), and (ii) replacing
the soft clause C with a new unit soft clause (¬v) with cost((¬v)) = cost(C).
This transformation is sound since any optimal solution satisfies C ↔ ¬v.

Considering ground first-order atoms generalizes MaxSAT to MaxSMT [192],
as SMT [215] generalizes SAT. As in MaxSAT, a MaxSMT problem consists of
a set of hard and soft clauses with each soft clause having a weight. However, in
MaxSMT literals can be formed from theory atoms as well as from propositional
variables. For example, over the theory of linear real arithmetic (LRA) we could
form clauses like (p ∨ ¬(1 ≤ y) ∨ (x + y ≥ 2)), with a propositional variable p
and LRA theory atoms (1 ≤ y) and (x+ y ≥ 2).

Let atoms(F) be the set of atoms in F , which range over propositional vari-
ables as well as theory atoms. We extend this notion to literals, clauses, and
sequences of literals accordingly. A (partial truth) assignment over atoms(F)
is a sequence of literals from atoms(F) that (i) does not contain both x and ¬x

27

3 Implicit Hitting Set Algorithms for MaxSMT

for any x ∈ atoms(F) and (ii) has no repeated literals. If A and M are two se-
quences of literals we write AM to indicate their concatenation. An assignment
π over atoms(F) is called a propositional model of F , denoted by π |= F ,
if it satisfies the Boolean abstraction of F in which theory atoms are treated
simply as new independent propositional variables. A propositional model of F ,
π, is also a theory consistent model of F if the conjunction of theory literals
made true by π is consistent with all theory axioms, denoted π |=T F .

A feasible solution π for a MaxSMT formula F is required to be theory consis-
tent model of hard(F) (π |=T hard(F)). The cost of π is defined as in MaxSAT.
Accordingly, solving MaxSMT means finding an optimal (minimum cost) feasi-
ble solution. Again, w.l.o.g., we can assume that all soft clauses are unit clauses.
Similarly, a core in MaxSMT is a subset of soft clauses that when combined
with the hard clauses does not have a theory consistent model.

Let K be a set of cores, i.e., a set of sets of soft clauses. A hitting set η of
K is a set of soft clauses that has a non-empty intersection with every set in K:
∀κ ∈ K. η ∩ κ 6= ∅. As defined above cost(η) =

∑
C ∈ η cost(C).

3.3 Abstract Hitting Set based MaxSMT Solving

The main contribution of our paper is to introduce and formalize a calculus for
the implicit hitting set (IHS) approach for MaxSMT, which at the same time
provides the first formal calculus for the IHS approach to MaxSAT [79]. Our
calculus captures a flexible separation between optimization, propositional rea-
soning, and theory reasoning, supporting a number of different implementation
strategies. The separation between optimization and propositional reasoning is
achieved by exploiting the IHS approach for solving MaxSAT/MaxSMT. Other
approaches to MaxSAT solving, e.g., [6, 177, 187], employ exclusively propo-
sitional reasoning, doing optimization by solving a sequence of SAT decision
problems.

Our calculus can be modified to model such approaches by combining the
optimization and propositional reasoning components into a single “MaxSAT”
component. This would provide a formal model of MaxSMT approaches like [74].
However, as we will demonstrate below, even without such a formal model our
calculus still provides a framework for understanding the approach of [74].

IHS and the above cited approaches to solving MaxSAT use propositional
reasoning to find cores by exploiting SAT solving under assumptions [88]. In
particular, for any subset of soft clauses S we can determine if S and the hard
clauses are satisfiable by assuming that the literal of each (unit) soft clause in S is
true. If the conjunction of these literals with the hard clauses is unsatisfiable, the
SAT solver assumption mechanism returns a clause falsified by the assumptions.
Hence, this clause contains only negations of assumed literals, identifying a
subset of S that, with the hard clauses, is unsatisfiable (i.e., a core).

Hence, as a first step towards a formal calculus for IHS MaxSMT solving, we

28

3.3 Abstract Hitting Set based MaxSMT Solving

Table 3.1: Transition rules for solving SAT under assumptions (A-Sat)

UnitProp
A |M | F =⇒ A |M ` | F if

{
There is a clause (C ∨ `) ∈ F s.t.
AM |= ¬C and atom(`) /∈ atoms(AM)

Decide
A |M | F =⇒ A |M `d | F if atom(`) ∈

(
atoms(F) \ atoms(AM)

)
Backjump
A |M`dN | F =⇒ A |M `′ | F if

 There is a clause C ∈ F s.t. AM`dN |= ¬C
and a clause C′ ∨ `′ s.t. F |= C′ ∨ `′,
AM |= ¬C′ and atom(`′) ∈ atoms(`dN)

Learn
A |M | F =⇒ A |M | F,C if

{
F |= C and C 6∈ F
atoms(C) ⊆

(
atoms(F) ∪ atoms(AM)

)
Forget
A |M | F,C =⇒ A |M | F if F |= C

Sat-Model
A |M | F =⇒ SAT (AM,F) if AM |= F

Unsat
A |M | F =⇒ conflict(F,C) if

{
There is a clause D ∈ F s.t. AM |= ¬D
M contains no decision literals
and C is a clause s.t. F |= C and A |= ¬C

provide a calculus for assumption based SAT and SMT reasoning. To the best of
our knowledge, such a calculus has not been specified before. This contribution
should be useful independent of MaxSMT since assumption based reasoning is
used in many different applications besides optimization.

3.3.1 SAT/SMT Solving under Assumptions

To formalize assumption based incremental SAT solving [88] and lift it to SMT,
we extend the DPLL(T) calculus originally presented in [194]. As above let F
be a first-order quantifier-free CNF formula over theory T . The states of our
calculus are specified by a triple A |M | F , where F is a CNF formula (initially
the input formula), A and M are non-overlapping assignments over atoms(F).
A is the given set of assumptions, and M is the solver’s current set of implied
and decided (noted by a superscript d, e.g., `d) literals.

The transition rules given in Table 3.1 specify an abstract assumption based
SAT solver (A-Sat). These rules follow [194] but are adapted to handle as-
sumptions; the main changes are as follows. First, the abstract states and
rules have been extended with a (possibly empty) set of assumption literals
A over atoms(F). For example, Learn is the same, but UnitProp requires
AM |= ¬C, instead of M |= ¬C. Second, we modified the rule Fail to obtain
a new rule Unsat that transitions into a conflict(F,C) state when M has no
decision literals and AM |= ¬D for some D ∈ F . In that case, F ∧ A must be
unsatisfiable, and we can always find a clause C implied by F and falsified by
A (e.g., by resolving all literals negated by M from the clause D). And third,
we introduce a transition rule that leads to an explicit SAT (AM,F) state when
AM |= F holds. This facilitates combining the assumption based transitions
with a MaxSAT or MaxSMT transition system. It can be noted that our cal-
culus captures the technique of [88] which uses one particular control scheme
to derive the clauses D and C used in the Unsat rule (it is irrelevant that [88]
intermixes A and M).

29

3 Implicit Hitting Set Algorithms for MaxSMT

Table 3.2: Additional rules for solving SMT under assumptions (A-Smt)

T-Backjump
A |M`dN | F =⇒ A |M `′ | F if

 There is a clause C ∈ F s.t. AM`dN |= ¬C
and a clause C′ ∨ `′ s.t. F |=T C′ ∨ `′,
AM |= ¬C′ and atom(`′) ∈ atoms(`dN)

T-Learn
A |M | F =⇒ A |M | F,C if

{
F |=T C and C 6∈ F
atoms(C) ⊆

(
atoms(F) ∪ atoms(AM)

)
T-Forget
A |M | F,C =⇒ A |M | F if F |=T C

T-Model
A |M | F =⇒ T -SAT (AM,F) if AM |=T F

Abstract assumption based SMT solving (A-Smt) is specified by the rules
of Table 3.2 along with the rules UnitProp, Decide and Unsat of Table 3.1.
Note that T -entailment subsumes propositional entailment, i.e., F |= C implies
F |=T C. Hence, T-Learn can learn any clauses that Learn can, and T-
Learn need not always employ theory reasoning (it can also use propositional
reasoning to perform learning). This can be important in practice if reasoning
in T is expensive. The same remark holds for T-Backjump and T-Forget.

It can also be noted that Unsat requires a falsified clause D to be in F .
Hence, when F ∧A is propositionally satisfiable but T -unsatisfiable our calculus
requires sufficient theory lemmas from T-Learn so as to obtain a falsified clause
in F and to derive a clause C falsified by A.

We say that a state S in a transition system is final when no rules are appli-
cable to it. Given a set of assumed literals A and a formula F , the initial state of
assumption based SAT/SMT solving is A | ∅ | F . Deciding the satisfiability/T -
satisfiability of F assuming A is a derivation of the form A | ∅ | F =⇒ · · · =⇒ Sn,
where Sn is a final state in the A-Sat/A-Smt system.

Theorem 3.3.1 (Termination). Any sequence of transitions A | ∅ | F =⇒ · · ·
in A-Sat (A-Smt) that contains no infinite subsequence consisting only of rules
from the set {Learn,Forget} ({T-Learn,T-Forget}), is finite.

Theorem 3.3.2 (Soundness). For any derivation A | ∅ | F =⇒ · · · =⇒ S in
A-Sat (A-Smt) where S is final w.r.t. A-Sat (A-Smt) we have

1. S = conflict(F ′, C) with F ′ |= C, A |= ¬C iff
F ∧A is (T -)unsatisfiable.

2. S = (T -)SAT (AM,F ′) with AM |=(T) F
′ iff

F ∧A is (T -)satisfiable.

We can treat A as a prefix of decision literals of M that can not be changed
by backjumping. Under this interpretation the results of [194] can be extended
to obtain proofs for Theorems 3.3.1 and 3.3.2. We omit the details due to space
constraints.

30

3.3 Abstract Hitting Set based MaxSMT Solving

Table 3.3: Transition rules for Optimization (∗ is any SAT/SMT state) (A-MaxSMT)

SAT/SMT-Transition
(LB ,UB , µ) |K | 〈∗〉 =⇒

(LB ,UB , µ) |K | 〈∗′〉
if

{ ∗′ is reachable from ∗ by
a single A-Sat/A-Smt transition
step (see Table 3.1 and Table 3.2)

Core
(LB ,UB , µ) |K | 〈conflict(F,C)〉 =⇒

(LB ,UB , µ) |K,κ | 〈conflict(F,C)〉
if

{
κ = {(¬`) | ` ∈ C} and κ 6∈ K
(κ is set of soft clauses)

HS
(LB ,UB , µ) |K | 〈∗〉 =⇒

(LB ,UB , µ) |K | 〈A′ | ∅ | F 〉
if

{
η = HS(K)
A′ = {` | (`) ∈ (soft(F)− η)}

MinHS
(LB ,UB , µ) |K | 〈∗〉 =⇒

(LB ′,UB , µ) |K | 〈A′ | ∅ | F 〉
if

{
η = minHS(K)
A′ = {` | (`) ∈ (soft(F)− η)}
LB ′ = max(LB , cost(η))

ImprovedSolution
(LB ,UB , µ) |K | 〈T -SAT (AM,F)〉 =⇒

(LB , cost(AM), AM) |K | 〈T -SAT (AM,F)〉
if cost(AM) < UB

OptimalSolution
(LB ,UB , µ) |K | 〈∗〉 =⇒ optSoln(µ) if LB ≥ UB

3.3.2 IHS MaxSAT/MaxSMT Solving

To obtain an abstract IHS based MaxSMT solver we add the rules given in
Table 3.3. These rules extend the states of A-Smt by adding K and the triple
(LB ,UB , µ), where K is a set of cores, LB and UB are lower and upper bounds
on the cost of an optimal solution to the input CNF F , and µ is a feasible
solution, represented as a sequence of literals over atoms(F), with cost(µ) = UB .
Let A-MaxSMT be the transition system defined by the rules in Table 3.3 along
with the rules A-Smt.1 The initial state of A-MaxSMT is always the state
IS = (0,∞, undef) | ∅ | 〈{` | (`) ∈ soft(F)} | ∅ | hard(F)〉, i.e., we start with
valid lower and upper bounds, an empty set of cores, an initial assumption that
all soft clauses are satisfied, and all of the hard clauses of F .

The calculus computes a growing set of cores K, each obtained from assump-
tion based SMT solving, and uses the two subroutines, minHS (K) which returns
a minimum cost hitting set of K, and HS (K) which returns an arbitrary hitting
set of K. It can be noted that the assumptions (initially and after the rules
HS or MinHS) are always asserting that some subset of the soft clauses along
with the hard clauses are satisfied. Hence, as explained above, the subset of
soft(F) identified by the returned conflict and added to K by rule Core must
be a core. Furthermore, the assumptions always specify that all soft clauses
except those in some hitting set η of K are true. Thus, the returned conflict
must identify a new core κ that cannot already be in K. In particular, κ is a
subset of soft(F) − η (it is a subset of the assumed true soft clauses) but no
s ∈ K is a subset of soft(F)− η since s contains a non-empty subset s ∩ η not
in soft(F)− η.

We say that S1 =⇒ · · · =⇒ Sn is a progressing subsequence if (a) S1 is
the result of applying the MinHS rule, (b) all transitions in the sequence arise

1IHS MaxSAT solvers can be obtained by using the A-Sat rules and replacing
T -SAT (AM,F) in ImprovedSolution with SAT (AM,F).

31

3 Implicit Hitting Set Algorithms for MaxSMT

from applying one of the A-Smt rules (i.e. are SAT/SMT-Transition steps),
and (c) Sn is final with respect to the rules of A-Smt (i.e., no SAT/SMT-
Transition is applicable).

Theorem 3.3.3 (Termination). If hard(F) is T -satisfiable then any derivation
IS ⇒ S1 ⇒ · · · of A-MaxSMT is finite if it satisfies the following conditions:

1. contains no infinite subsequence of rules from the set
{T-Learn, T-Forget}

2. contains no infinite subsequence not containing a progressing subsequence

3. always applies the transitions OptimalSolution, ImprovedSolution
and Core whenever they are applicable (with OptimalSolution being
applied first).

Theorem 3.3.4 (Soundness). If hard(F) is T -satisfiable, IS ⇒ · · · ⇒ Sn is a
finite sequence of transitions in A-MaxSMT, and Sn is final in A-MaxSMT,
then Sn is optSoln(µ) and µ is an optimal solution of F .

Theorem 3.3.4 is immediate from the fact that (a) optSoln(µ) is the only
final state in A-MaxSMT, (b) LB and UB are always valid bounds, and (c)
cost(µ) = UB .

Hence, the main result is that the calculus terminates under the conditions of
Theorem 3.3.3. A sketch of the proof follows. First, from Theorem 3.3.1 it can
be seen that all progressing subsequences must be finite, and thus any infinite
sequence of transitions must contain an infinite number of progressing subse-
quences. Theorem 3.3.2 shows that every progressing subsequence must reach
either a T -SAT or a conflict final state. If a conflict state is reached, then Core
must be applied next. As explained above this must add a new core to K. Each
core is a subset of soft(F) so only a finite number of cores exist. Hence, only a
finite number of progressing subsequences can end in conflict . Otherwise, the
progressing subsequence reaches T -SAT . But this can happen only once since
the feasible solution found, AM , must be an optimal solution. AM satisfies
all clauses except those in a minimum cost hitting set η of K (obtained from
MinHS), and hence cost(AM) ≤ cost(η). Every feasible solution π satisfies
hard(F) and every core is unsatisfiable when added to hard(F). Hence, π must
falsify at least one soft clause in every core; i.e., the set of clauses falsified by
π is a hitting set of K. So by the definition of cost and the minimality of η,
cost(η) ≤ cost(π), and thus cost(AM) ≤ cost(π) for every feasible solution π.
Once AM is found, ImprovedSolution must be applicable and the condition
cost(AM) = UB ≤ cost(η) ≤ LB is achieved (MinHS ensures cost(η) ≤ LB).
Then OptimalSolution must be applied and the derivation terminates. In
sum, under the stated conditions only a finite number of progressing subse-
quences can be executed and so the derivation must be finite.

32

3.4 Generic Hitting Set based MaxSMT

SMT Solver

MaxSAT Solver

SATOPT Theories

optSoln(AM)

hard(F) atoms(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

AM

Lemma

C
Opt. Sol.

Figure 3.1: General architecture for an IHS based MaxSMT solver

3.4 Generic Hitting Set based MaxSMT

Here we present a general framework that realizes the previously introduced
ideas for IHS based MaxSMT solving. Following the desiderata presented in our
introduction, we decompose the problem of MaxSMT into three sub-problems:
optimization (over Boolean atoms), Boolean satisfiability, and theory reasoning.
Although modern SMT solvers are equipped with efficient engines for arith-
metic reasoning, in MaxSMT the optimization problem depends purely on the
Boolean abstraction of the formula and thus delegating the task of optimization
to a specialized solver can be more efficient [218]. Figure 3.1 shows a general
architecture to solve MaxSMT as an implicit hitting set problem [69,212]. The
method combines three components that are responsible for our three subtasks:
OPT, an optimizer for hitting set computation; SAT, a SAT solver for Boolean
reasoning; and Theories, a set of theory solvers to perform theory reasoning.
The framework expects as input a MaxSMT formula (F) with a satisfiable set
of hard clauses. The SAT and Theory solvers consider only the hard clauses,
while the soft (unit) clauses and their costs are only considered by the optimizer.
Note that we can initially check the hard clauses for satisfiability. If they are
unsatisfiable there is no optimal solution.

The evaluation starts with OPT, which computes a (potentially optimal) hit-
ting set η of the current set of unsatisfiable cores (K). This is translated into a
set of assumptions (noted as A in Fig. 3.1) that requires the satisfaction of all
soft clauses not in η (see HS and MinHS steps of A-MaxSMT).

The SAT solver can then decide if there exists a feasible solution satisfying
hard(F) and the assumptions. Theory solvers can be invoked at various points
to check the T -consistency of the SAT solver’s current partial assignment AM
and to perform T -learning. As in [194] there are a range of flexible (e.g., more
eager or more lazy) strategies for deciding when theory reasoning should be
invoked.

For a given conjunction of theory literals, a theory solver might return a subset
that is T -unsatisfiable forming a conflict clause after negation, or additional

33

3 Implicit Hitting Set Algorithms for MaxSMT

SMTMIP

optSoln(AM)

hard(F)
cost over

soft(F) K = ∅

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

MaxSAT Theories

optSoln(AM)

F atoms(F)
AM

Lemma

C
Opt. Sol.

Figure 3.2: Example merged (i.e. single-SAT) instantiations of our framework

theory clauses for T -learning. In both cases the returned clauses are valid lem-
mas of the theory (C in Fig. 3.1). The SAT and theory solvers continue their
collaboration under the assumption of A until either a theory consistent model
of hard(F) ∧ A is found (i.e. state T -SAT (AM,F) is reached), or hard(F) ∧ A
is found to be unsatisfiable (i.e. state conflict(F,C) is reached). In the latter
case, the SAT solver constructs an unsatisfiable core (κ in Fig. 3.1) that con-
sists of a subset of the soft clauses assumed to be satisfied in A. After that,
the optimizer can compute a new hitting set that hits κ as well. Note that the
new hitting set need not be of minimum cost. From the new hitting set, a new
A is constructed and a new iteration starts. Any theory consistent model that
is found for hard(F) ∧ A is a feasible solution of the MaxSMT problem. The
optimality of these solutions can be decided by the optimizer component based
on their costs. In case the found solution is not optimal, a new hitting set is
computed in order to find a better solution. Otherwise, the model is returned
as a final optimal solution.

3.4.1 Possible Instantiations

A practical tool following our proposed general architecture can be achieved in
various ways. Based on Fig. 3.1, one could combine a hitting set calculator
with a SAT solver and a set of theory solvers. However, this implementation
would not automatically benefit from the advanced techniques implemented in
MaxSAT and SMT solvers nor from any future improvements to such solvers.
So a more practical question is how to combine already existing tools to obtain
a MaxSMT solver. Here we consider mixed integer programming solvers (MIP),
for example CPLEX, for solving the minimum hitting set problem since they are
widely available and display state of the art performance on a range of instances.

As Fig. 3.1 hints, some MaxSAT solvers already implement efficient collab-
oration between MIP and SAT solvers, while SMT solvers combine SAT and
theory solvers. Combining these solvers as black-boxes results in an engine that
contains two SAT solvers, while merging these engines results in a tool with a
single SAT solver. Figure 3.2 shows two possible instances of the latter case.
On the left, we keep an SMT solver as a black-box and combine it with a MIP
solver that is responsible for the hitting sets (and so the assumptions) in each

34

3.4 Generic Hitting Set based MaxSMT

SMTMaxSAT

optSoln(AM)

F hard(F)

κ/AM

Core/Sol.

A

Assume

Opt. Sol.

SMTMaxSAT

optSoln(AM)

F hard(F)

C

Lemma

AM

Opt. Sol.

Figure 3.3: Example combined (i.e. double-SAT) instantiations of our framework

iteration. A benefit of this instance is efficient SMT solving and the ability to
use the full power of the MIP solver to express complex objective functions (e.g.,
multi-objective optimization). One disadvantage is the lack of MaxSAT prepro-
cessing and simplifications. A tighter combination could replace the SAT solver
in an IHS based MaxSAT solver with an SMT solver. However, in IHS MaxSAT
solving SAT calls are considered relatively cheap compared to MIP calls [80],
but SMT calls can be more expensive, so the tradeoffs of some techniques would
have to be reevaluated. The instance on the right side of Fig. 3.2 considers a
(not necessarily IHS based) MaxSAT solver as a black-box to find an optimal
solution for the abstraction of the problem, and forms a lazy lemmas on demand
structure with a set of theory solvers for theory consistency checks. The bene-
fit here is efficient optimization solving, but the disadvantage is delayed theory
support.

Instantiations in Fig. 3.3 present possibilities for combining black-box (i.e. not
necessarily IHS based) MaxSAT and SMT solvers, providing the advantage of
efficient optimization and SMT solving at the same time. These combinations
contain multiple SAT solvers where the connecting interface determines the
work distribution among them. On the left side, the solvers communicate via
assumptions and cores or solutions. Whenever the MaxSAT solver finds an
optimal propositional model for its current problem, the SMT solver has to
verify that the soft clauses satisfied in that model are also T -satisfiable (via a
set of assumptions that forces their satisfaction). If not, it returns a new core
to refine the MaxSAT problem. In practice, the effectiveness of this instance
would be compromised if many iterations are needed to refine the MaxSAT
model. Another possible disadvantage of this instance is that the SMT solver
could learn lemmas that would be useful to the MaxSAT engine but are never
passed to it.

An alternate instance (right side in Fig. 3.3) involves the MaxSAT solver
giving to the SMT solver the complete propositional model it found (the optimal
model for its current problem). If that model is not theory consistent the SMT
solver can return any number of lemmas to refine the MaxSAT problem. In this
instance the MaxSAT solver can learn theory related constraints from the SMT
solver beyond unsatisfiable cores. The approach introduced in [74] can be seen
as a combination of the instances in Fig. 3.3. There the MaxSAT optimal model
is used to provide assumptions to the SMT solver (as in the left-hand instance),

35

3 Implicit Hitting Set Algorithms for MaxSMT

but the SMT solver can return many lemmas to the MaxSAT solver not just
cores (as in the right-hand instance). A potential drawback of that approach is
that the returned lemmas might or might not be useful to the MaxSAT solver,
and there is a risk of overloading the MaxSAT solver.

Based on these instances, it appears that support of assumption based in-
cremental solving and efficient extraction of small cores are important features
of the involved tools. Thus techniques that improve these aspects of solvers
(e.g., [155]) have the potential to improve modular MaxSMT solvers as well.
Further, note that our calculus allows the interruption of SMT calls in certain
cases (see conditions in Theorem 3.3.3), which may be worth considering in
practice.

3.5 Related Work

As argued in the introduction the focus of this paper is on the important class
of MaxSMT solvers. Thus this section will concentrate on the closest related
approaches. Additional experimental results are provided in the next section.

We modify and extend a general DPLL(T) framework introduced in [194] to
formalize our MaxSMT solving approach. Another extension of DPLL(T) by
Nieuwenhuis and Oliveras in [192] represents the optimization task explicitly as
a set of theory constraints and progressively strengthens this theory by deriving
tighter bounds. Our extension of DPLL(T) focuses only on MaxSMT problems
and separates the optimization task from theory reasoning.

A modular approach was proposed by Cimatti et al. in [74] where MaxSAT
and SMT solvers are employed as black-boxes for MaxSMT solving. As we
showed in Section 3.4.1, our framework includes this approach. In Section 3.6
we present some empirical results comparing their approach with other instan-
tiations.

In the context of core-guided MaxSAT solving, SMT solvers have been used
instead of SAT, e.g., [7], to handle cardinality constraints more efficiently. We
focus on IHS based MaxSMT solving in which no cardinality constraints are
introduced into the SMT sub-problems.

Manolios et al. introduced the theoretical underpinnings of a Branch and Cut
Modulo Theories framework and developed an optimization procedure where in-
teger linear programming (ILP) and stably-infinite theories are combined [171].
Our approach delegates Boolean reasoning to a SAT solver, while in their con-
struction this is done by the ILP solver.

3.6 Experimental Evaluation

We implemented two instantiations of our framework. Both use MathSAT5 [73]
version 5.5.1 as the SMT component. Our first implementation maxhs-msat
follows the architecture proposed on the left side of Fig. 3.3. It combines maxHS

36

3.6 Experimental Evaluation

3.0 as the optimizer with MathSAT5. To evaluate the potential of lifting theory
lemmas to the MaxSAT level, as proposed in [74] and described in Section 3.4.1
as a combination of the instances in Fig. 3.3, the configuration maxhs-msat-
ll lifts and adds all used theory lemmas to the MaxSAT solver in addition to
unsatisfiable cores. Our second solver cplex-msat implements the architecture
shown on the left of Fig. 3.2 which combines MathSAT5 directly with a hitting
set solver (CPLEX 12.7 as in maxHS 3.0) as the optimizer. In this implemen-
tation the components interface only with assumptions and unsatisfiable cores.

In both solvers the optimizers compute an optimal hitting set η. In maxhs-
msat maxHS computes an optimal solution to its current Boolean abstraction,
but the clauses falsified by that solution form an optimal hitting set. The SMT
solver then tests if the other soft clauses (soft(F)− η) are T -satisfiable. If not,
a new core is added to the optimizer (along with additional theory lemmas
in maxhs-msat-ll). Following [80], rather than calling the optimizer in each
iteration we allow non-optimal hitting sets. In particular, the new SMT core
can be added to the previous hitting set (-djnt), or a single minimum weight
clause from the new core can be added to the hitting set (-min). In both cases
we obtain a new (non-minimum) hitting set covering the new core. For cplex-
msat only, we can also use CPLEX to compute a linear programming solution
of the hitting set problem which when rounded up yields a new hitting set (-lp).
In these cases we continue to use non-minimum hitting sets η′ until soft(F)− η′
becomes T -satisfiable, and then we again use the optimizer to compute a hitting
set with minimum cost.

We compare against two state-of-the-art MaxSMT solvers. OptiMathSAT
(version 1.4.5) [217] is a general purpose Optimization Modulo Theories (OMT)
solver that we use in two different configurations. The default configuration
is denoted by optimathsat-omt, while optimathsat-maxres employs the
maximum resolution approach of [187]. We also compare against z3 (version
4.6.0) with two different MaxSAT engine configurations (z3-maxres and z3-
wmax). Note, that the hitting set based engine in z3 has been deprecated and
was removed.

We considered three sets of benchmarks from three different sources. The
LL-benchmark set consists of all 398 quantifier free MaxSMT benchmarks used
in [74] with annotations replaced by soft assertions, split into 212 benchmarks
over the theory of linear integer arithmetic and 186 benchmarks over linear
real arithmetic. For each theory, half the instances have Unit weight for soft
assertions, while the other half contains Random weights in the interval of 1
and 100. The runtime limit on these instances was set to 20 minutes.

Our second benchmark set LEX-benchmark, consisting of equalities over propo-
sitional atoms, are lexicographically-optimum realization problems used in [218].
We only considered the 6098 instances where three groups of soft assertions
(Time, Cost and Weight) have different priorities and the objective is to lexi-
cographically minimize the sum of the falsified assertions with respect to a given
priority order of T, C, W). The time limit was set to 100 seconds.

37

3 Implicit Hitting Set Algorithms for MaxSMT

Table 3.4: Results of various solvers and configurations on LL-benchmarks from [74].

Solver
LIA(212) LRA(186)

Total SMT% OPT%
U R U R

cplex-msat 82 90 85 85 342 99.22% 0.13%
cplex-msat-djnt 85 91 85 85 346 98.83% 0.33%
cplex-msat-min 83 86 85 85 339 99.22% 0.04%
cplex-msat-lp 84 89 85 85 343 98.26% 0.97%

maxhs-msat 85 87 85 85 342 88.15% 11.20%
maxhs-msat-djnt 86 89 85 85 345 83.85% 15.36%
maxhs-msat-min 84 89 85 85 343 92.31% 7.04%

maxhs-msat-ll 80 84 83 78 325 82.57% 15.45%
maxhs-msat-ll-djnt 78 84 83 77 322 87.97% 10.37%
maxhs-msat-ll-min 79 86 82 85 332 80.13% 17.03%

optimathsat-maxres 87 90 85 86 348 – –
optimathsat-omt 75 72 85 85 317 – –

z3-maxres 73 79 86 85 323 – –
z3-wmax 69 77 88 88 322 – –

Finally, in order to further exercise the strengths of the different approaches,
we generated a set of scaled problems from one (arbitrarily chosen) QF-LIA
SMT-LIB benchmark family (Bofill-scheduling waste water treatment schedul-
ing problems from [50]). The original family contained 156 randomly generated
(referred as rand-wwtp) and 251 industrial (ind-wwtp) satisfiable SMT problems.
We derived instances from these SMT problems by adding randomly chosen the-
ory atoms with random polarity as unit soft clauses. The four groups of derived
instances introduced four different percentages (10%, 25%, 50% and 100%) of
the atoms in the original problem as soft assertions. All instances were gener-
ated once with unit weights and once more with random weights between 1 and
the total number of atoms. Due to space constraints, we only present results on
instances derived from rand-wwtp problems, where we observed an interesting
pattern. The time limit was set to 5 minutes.

The experiments were performed on a cluster in which each computing node
consisted of two Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz CPUs and 128 GB of
main memory. We limited memory usage of each tool to 7GB on each instance
and used different time limits as described above.

Table 3.4 presents results on the LL-benchmarks. For each solver configura-
tion the first two columns list the number of solved instances with linear integer
arithmetic as background theory, where the soft assertions have Unit weights
in the first column and Random weights in the second. Analogously, the next
two columns present results in linear real arithmetic. The fifth column contains
the total sum of solved instances in the previous four columns. The last two
columns show the percentage of time spent in the SMT and in the optimization
component (considering only solved instances). The optimization component in
cplex-msat is CPLEX, while in maxhs-msat it is maxHS.

It turns out that optimathsat-maxres outperforms the other tools and con-
figurations on these instances, but our implementations remain competitive.
Furthermore, lemma lifting (maxhs-msat-ll and its different configurations)
reduces the percentage time spent in SMT solving, but has a negative effect

38

3.6 Experimental Evaluation

Table 3.5: Results of various solvers and configurations on LEX-benchmarks from [218].

Solver CTW Time[s] WTC Time[s] cores opt. HS

cplex-msat 3499 27825 2399 1942 1610031 1615150
cplex-msat-djnt 3687 5936 2399 1455 920387 137339
cplex-msat-min 3699 2479 2399 1391 909828 27245
cplex-msat-lp 3699 4564 2399 1493 1260683 19056

maxhs-msat 3699 2401 2399 1367 0 5319
maxhs-msat-djnt 3699 2224 2399 1359 0 5319
maxhs-msat-min 3699 2451 2399 1409 0 5319

maxhs-msat-ll 3699 2302 2399 1518 0 5319
maxhs-msat-ll-djnt 3699 2394 2399 1406 0 5319
maxhs-msat-ll-min 3699 2441 2399 1437 0 5319

optimathsat-maxres 3410 13851 1850 10209 – –
optimathsat-omt 3481 9710 2068 10483 – –

z3-maxres 3699 4555 2399 2231 – –
z3-wmax 3651 5566 2295 9513 – –

with respect to the number of solved instances compared to maxhs-msat and
its different configurations. None of the involved tools appears to be sensitive
to the type of weights (Uniform vs. Random). Although cplex-msat does not
contain any MaxSAT preprocessing or simplification technique, the results of
that tool in this experiment are similar to maxhs-msat.

Results on the LEX-benchmark are shown in Table 3.5. The 6098 problems
contained two groups of problems. The first group of 3699 instances used the
lexicographic preference ordering Cost, Time and then Weight, and are shown
in the first two columns which list the number of solved instances and the total
run time used to solve them. The second group of 2399 instances used the
reversed lexicographic preference and are shown in the next two columns. For
our tools we also give the total number of unsatisfiable cores and of optimal
hitting set calculations (considering again only solved instances) in the last two
columns.

On these instances most versions of our approach solve at least as many
problems as the state-of-the-art tools and in significantly less time. Due to the
background theory of these instances it is enough to find a propositional model,
i.e., solve a MaxSAT problem, since every propositional solution also happens
to be T -satisfiable. This is reflected in the last two columns, where the two
instantiations of our framework show different behaviour. For maxhs-msat,
which combines maxHS with the SMT solver, the number of iterations is always
one (in all 5319 satisfiable instances). In this case maxHS finds an optimal
Boolean model (through several iterations of its internal SAT solver), which the
SMT solver then verifies to be theory consistent in one call. In case of cplex-
msat there is no additional SAT solver between the SMT and the optimization
components. Therefore it has to learn all the necessary transitivity properties
of the equalities in form of cores from the SMT solver. Thus the number of
unsatisfiable cores is higher for cplex-msat, which can significantly increase
solving time depending on the type of hitting sets used.

39

3 Implicit Hitting Set Algorithms for MaxSMT

Table 3.6: Results of considered solvers and configurations on rand-wwtp family with
10%-100% random unit soft clauses. Each %-group consists of 312 problems.

Solver 10% 25% 50% 100% Total SMT% OPT%

cplex-msat 289 271 203 4 767 60.85% 38.46%
cplex-msat-djnt 286 247 114 2 649 97.35% 1.96%
cplex-msat-min 282 244 142 16 684 91.46% 7.68%
cplex-msat-lp 287 262 184 13 746 83.4% 15.27%

maxhs-msat 288 270 179 0 737 42.28% 57.31%
maxhs-msat-djnt 289 249 112 1 651 93.91% 5.69%
maxhs-msat-min 281 242 132 15 670 87.99% 11.59%

maxhs-msat-ll 266 166 16 0 448 7.69% 84.93%
maxhs-msat-ll-djnt 266 161 9 0 436 11.30% 77.59%
maxhs-msat-ll-min 263 166 27 0 456 11.36% 68.11%

optimathsat-maxres 291 258 123 0 672 – –
optimathsat-omt 240 130 0 0 370 – –

z3-maxres 280 224 103 0 607 – –
z3-wmax 304 288 4 0 596 – –

These benchmarks in essence allow us to compare the effectiveness of the
optimization components independently of the SMT component. This benefits
our hitting set based methods, while other solvers rely on alternative approaches.
Another important difference is that our prototypes solve lexicographic problems
as single objective functions in one run by aggregating the cost functions [175].

The last table (Table 3.6) presents results for the randomized rand-wwtp
benchmarks on which cplex-msat performs better than maxhs-msat. Using
non-minimum hitting sets measurably reduces the performance of both imple-
mentations on these instances. From the last two columns we can deduce that
the best performing methods are those where more time was spent within the
optimization component. Although lemma lifting does result in significant more
time spent in maxHS calls, some part of it is spent in the SAT solver, and not
in actual optimization. This might explain its bad performance.

To summarize, the experiments support the need for a generic framework for
MaxSMT. More concretely we make the following three observations. First,
there is no overall best configuration. Performance depends on the distribu-
tion of the workload among the involved components, since in general the dif-
ficulty of the optimization and SMT problems differ. For instance, improved
MaxSAT performance does not necessarily translate into improved MaxSMT
performance, simply because of different relative costs between SMT calls and
SAT calls. Accordingly, non-minimum hitting sets (like disjoint cores or LP
relaxation) usually reduce the workload of the optimizer but put more stress on
the SMT solver.

Second, the number of extracted unsatisfiable cores or calculated optimal
hitting sets is not always an expedient metric to measure the performance of
MaxSMT. Finally, most of the time, lemma lifting does not improve but actually
seems to reduce performance of a modular MaxSMT solver, particularly with
an implicit hitting set based approach. All of our experimental results as well

40

3.7 Conclusion

as the evaluated benchmarks are available at http://fmv.jku.at/maxsmt/.

3.7 Conclusion

We have proposed an abstract framework to gain a unifying view of how op-
timization, propositional reasoning, and theory reasoning can be combined in
IHS based MaxSMT solving. Our framework is very flexible supporting a rich
space of possible implementation architectures all of which are provably sound.
Our empirical results show that different architectures yield quite different per-
formance on different problems sets. This implies that there is considerable
potential in more fully exploiting the flexibility of our framework to obtain im-
proved and more robust performance in MaxSMT solvers.

Acknowledgments

This research has been supported by the Austrian Science Fund (FWF) under
projects W1255-N23 and S11408-N23.

41

http://fmv.jku.at/maxsmt/

Chapter 4

Incremental Inprocessing in SAT
Solving

Published

In Proceedings of the 22nd International Conference on Theory and Applications
of Satisfiability Testing (SAT 2019), pages 136-154, Lisbon, Portugal. See [94].

Authors

Katalin Fazekas, Armin Biere and Christoph Scholl.

Abstract

Incremental SAT is about solving a sequence of related SAT problems efficiently.
It makes use of already learned information to avoid repeating redundant work.
Also preprocessing and inprocessing are considered to be crucial. Our calculus
uses the most general redundancy property and extends existing inprocessing
rules to incremental SAT solving. It allows to automatically reverse earlier
simplification steps, which are inconsistent with literals in new incrementally
added clauses. Our approach to incremental SAT solving not only simplifies the
use of inprocessing but also substantially improves solving time.

43

4 Incremental Inprocessing in SAT Solving

4.1 Introduction

Solving a sequence of related SAT problems incrementally [11,19,88,131] is cru-
cial for the efficiency of SAT based model checking [40,52,89,154], and important
in many domains [109,178,183,215]. Utilizing the effort already spent on a SAT
problem by keeping learned information (such as variable scores and learned
clauses) can significantly speed-up solving similar problems. Equally important
are formula simplification techniques such as variable elimination, subsumption,
self-subsuming resolution, and equivalence reasoning [16,86,118,137].

These simplifications are not only applied before the problem solving starts
(preprocessing), but also periodically during the actual search (inprocessing)
[138]. In this paper we focus on how to efficiently combine simplification tech-
niques with incremental SAT solving.

Consider the SAT problem F 0 = (a∨b)∧(¬a∨¬b). Both clauses are redundant
and can be eliminated by for instance variable or blocked clause elimination
[86,137]. The resulting empty set of clauses is of course satisfiable and the SAT
solver could for example simply just assign false to both variable as a solution.
That is of course not a satisfying assignment of F 0, but can be transformed into
one by solution reconstruction [136,138], taking eliminated clauses into account.
As we will see later, this would set the truth value of either a or b to true.

Now consider the SAT problem F 1 = (a ∨ b) ∧ (¬a ∨ ¬b) ∧ (¬a) ∧ (¬b) which
is actually an extension of F 0 with the clauses (¬a) and (¬b). Simply adding
them to our simplified F 0 (i.e. to the empty set of clauses) would result in a
formula that again is satisfied by assigning false to each variable. However,
using solution reconstruction on that assignment leads to the same solution as
before, one that satisfies (a ∨ b), and thus would actually falsify (¬a) or (¬b).
The solver would incorrectly report that F 1 is satisfiable, and even return an
invalid solution. Thus naively using inprocessing in an incremental setting is
not sound.

Obviously one can just give up on incrementality and simply solve F 1 from
scratch but with pre- and inprocessing. Another trivial approach is to use
learned information from solving F 0, but then disable inprocessing. A compro-
mise is to disallow inprocessing partially by freezing [89] those variables that are
not allowed to be involved in simplifications (“Don’t Touch” variables in [154]).
This is rather error-prone and cumbersome for the user, and even often impos-
sible [185].

Our approach benefits from most inprocessing techniques, without freezing
any variables. It identifies potential problems between an eliminated clause,
such as (a∨ b) in the example, and new clauses, such as (¬a) and (¬b). In such
a case it moves back the eliminated clause to the formula before adding the new
clauses. This greatly simplifies the way how incremental SAT solvers can be
used.

The specialized approach in [185] focuses on three preprocessing techniques
(variable elimination, subsumption and self-subsumption of [86]). It applies a

44

4.2 Preliminaries

preprocessing phase before each incremental SAT call. Instead of that, we adapt
and extend the framework of [138] and present a generic calculus which allows to
combine a much broader set of pre- and inprocessing techniques with incremental
SAT solving. Actually, we use the most general redundancy property [124, 125]
that covers not only all techniques in [185], but also provides optimized pro-
cedures for equivalence literal reasoning [16] and even blocked clause elimina-
tion [137]. However, we do not yet support techniques that remove models, such
as blocked clause addition [10,138,153,173] (neither does [185]).

Our approach is also more precise than [185] since it allows to distinguish
simplification steps applied on different phases of variables, i.e. we provide a
literal- and not just variable-based approach. On the practical side, beyond
enabling a wider range of pre- and inprocessing techniques, we present a simple
algorithm, which yields an efficient implementation as confirmed by our experi-
ments. Using dedicated techniques for inprocessing under assumptions, as [186]
extends [185] based on [184], is orthogonal to the approach presented in this
paper.

After preliminaries we present our new rules for incremental SAT solving in
Sect. 4.3 which are proven correct in Sect. 4.4. We discuss implementation de-
tails in Sect. 4.5 followed by experimental results in Sect. 4.6 before we conclude
in Sect. 4.7.

4.2 Preliminaries

Satisfiability A literal is either a Boolean variable (v), or its negation (¬v).
A clause is a disjunction of literals, and a formula in conjunctive normal form
(CNF) is a conjunction of clauses. If convenient, we consider a clause as a set
of literals and a formula as a set of clauses. A (partial) truth assignment τ is
a consistent set of literals assigning truth values to variables as follows. In case
v ∈ τ , then v is assigned true by τ (denoted as τ(v) = >), while if ¬v ∈ τ ,
then v is assigned false (τ(v) = ⊥). A truth assignment satisfies a literal `
(denoted as τ(`) = >) if ` ∈ τ and it falsifies it (denoted as τ(`) = ⊥) if ¬` ∈ τ ,
where ¬` = ¬v if ` = v and ¬` = v if ` = ¬v. Neither satisfied nor falsified
literals are undefined. A clause is a tautology if it contains both a literal and
the negation of it. The application of a truth assignment τ to an arbitrary
formula F , denoted as τ(F) or F|τ , is defined as usual. When it is convenient,
we will use sets of literals directly as truth assignments. We further use τ1 ◦ τ2
to denote the composition of truth assignments τ1 and τ2 in the natural way,
i.e., (τ1 ◦ τ2)(F) = τ1(τ2(F)).

The satisfiability problem (SAT) for a CNF asks whether there is a truth
assignment such that all clauses contain at least one satisfied literal. A truth
assignment satisfying a formula is also called a model. Formulas F1, F2 are
logically equivalent, denoted as F1 ≡ F2, if they are satisfied by exactly the same
truth assignments, while they are satisfiability equivalent, denoted as F1 ≡sat F2,

45

4 Incremental Inprocessing in SAT Solving

if both of them are satisfiable or both of them are unsatisfiable.

Incremental SAT problems An incremental SAT problem F is a sequence
of clause sets 〈∆0, . . . ,∆n〉. In phase i = 0, . . . , n the task is to determine the
satisfiability of F i = ∧s=0...i∆s, the conjunction of all added clauses up to this
point. If F i is unsatisfiable, then F j for all j > i is unsatisfiable as well, as
each iteration just augments the set of clauses. The focus of this paper is on the
case where F i is satisfiable. We rely on the common approach to always choose
the given assumptions, literals that are assumed to be true in a phase, as first
decisions during search and thus w.l.o.g. do not need to consider assumptions in
this paper explicitly. See Minisat [88] for implementation details or [46, 93] for
abstract solvers following that approach. However, the variables of assumptions
are not allowed to be eliminated or occur in witnesses (e.g., as blocking literal in
blocked clauses [137]), i.e., they have to be considered frozen [89,154] internally.

Example 4.2.1. Consider the incremental SAT problem F = 〈{(a∨b)}, {a, b}〉.
It consists of two SAT queries: F 0 = (a∨b) and F 1 = F 0∧a∧b = (a∨b)∧a∧b.

Redundancy in SAT Inprocessing in SAT solving relies on the concept of
adding and removing redundant clauses. To simplify matters, in this paper we
use the most general redundancy notion [124, 125]. It covers most techniques
used in current SAT solvers including resolution asymmetric tautology (RAT),
which was used in the original work on inprocessing [138]. As [124, 125] points
out, any clause redundancy can produce a “witness”, e.g. a blocking literal in
case of a blocked clause, which allows polynomial solution reconstruction. The
following two essential definitions are adapted from [124,125]:

Definition 4.2.1 (Witness Labelled Clause). A set of literals ω and a clause
C such that ω ∩C 6= ∅ is called a witness labelled clause and written as (ω : C).

A witness is a set of literals and can be interpreted as a partial truth assign-
ment. With this interpretation, the truth assignment α which falsifies a given
clause C but is undefined otherwise is also written as α = ¬C.

Definition 4.2.2 (Clause Redundancy). A witness labelled clause (ω : C) is
redundant with respect to a formula F if ω(C) = > and F |α |= F |ω for α = ¬C.
This is also denoted as F ∧ C ≡ωsat F .

As has been shown in [124,125], this is the most general notion of redundancy
and allows to simulate all other types of clause redundancy. The corresponding
proof (of Thm. 1 in [124, 125]) allows to “fix” an assignment using the witness.
We formalize that part of the proof and extend it to partial truth assignments,
which allows to use partial truth assignments in the witness reconstruction pro-
cess satisfying only the simplified formula and is further useful to produce a
partial satisfying assignment after reconstruction (used for instance in [20]).

46

4.2 Preliminaries

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

ϕ ∧ C [ρ] σ

ϕ [ρ ∧ C] σ · (l : C)
[

Learn Forget Strengthen Weaken

where] is “C has RAT w.r.t. ϕ ∧ ρ” and [is “C has RAT on l w.r.t. ϕ”.

Figure 4.1: Instantiated (with RAT) inprocessing rules as introduced in [138]

Proposition 4.2.1. Assume F ∧ C ≡ωsat F as above. Let τ be a (partial) truth
assignment with τ(F) = > and τ(C) 6= >. Then γ(F ∧ C) = > with γ = τ ◦ ω.

Proof. Clearly γ(C) = ω(C) = >. We need to show γ(D) = > for all D ∈ F .
Observe α ◦ τ = τ ◦ α with α = ¬C since τ(C) 6= > and α and τ are consistent.
Thus, > = τ(F) = (α ◦ τ)(F) = (τ ◦ α)(F) = (τ ◦ α)(F ∧ ¬C) = τ(F |α)
since α(¬C) = >. Using F |α |= F |ω and because F |ω remains satisfied for all
extensions of τ , we get > = (β ◦ τ)(F |ω) = (β ◦ τ ◦ ω)(F) = (β ◦ γ)(F), where
β = ¬D is the truth assignment falsifying the clause D ∈ F , which in particular
gives (β ◦ γ)(D) = >. Since β(D) = ⊥ we obtain > = (β ◦ γ)(D) = γ(D).

Inprocessing Our goal is to adjust and extend the abstract framework of [138]
such that incremental SAT solving with inprocessing can be handled. The
derivation performed by an inprocessing SAT solver is modelled as a sequence
of abstract states. Each state consist of three components: a set of irredundant
clauses ϕ that the solver aims to satisfy, a set of redundant clauses ρ that can be
removed without changing the satisfiability of the formula under consideration
and an ordered sequence of witness labelled clauses σ (that are actually just
literal-clause pairs in [138]), to keep track of eliminated clauses.

To make the paper more self contained Fig. 4.1 lists the original rules of [138],

together with the proposed RAT instantiation of side conditions] and [.
Rule Strengthen strengthens the irredundant set of clauses, by moving a
clause from the redundant set into it, while rule Forget allows to eliminate
a redundant clause from ρ. Rule Learn introduces a new clause C into the
redundant set of clauses in case C has RAT w.r.t. ϕ∧ρ. Rule Weaken simplifies
the irredundant set by eliminating a clause C from it if C has RAT on a literal
l of C w.r.t. ϕ. The eliminated clause is moved to the end of the literal-clause
pair sequence σ.

Model Reconstruction One challenge of using inprocessing is to guarantee
that a satisfying assignment of the final formula can be transformed to a satis-
fying assignment of the original, non-processed formula. A sequence of witness
labelled clauses σ is used as part of the abstract state to keep track of clauses
eliminated by Weaken during inprocessing. The process of solution reconstruc-
tion described through pseudo code in [138] can be formalized as follows:

47

4 Incremental Inprocessing in SAT Solving

Definition 4.2.3 (Reconstruction Function). Given a truth assignment τ and
a sequence of witness labelled clauses σ, the reconstruction function is defined
as

R(τ, ε) = τ, R(τ, σ · (ω : D)) =

{
R(τ, σ) if τ(D) = >
R((τ ◦ ω), σ) otherwise.

The reconstruction function takes a (partial) truth assignment τ and a sequence
of witness labelled clauses σ as inputs. It traverses σ in reverse order and sets
truth values of those literals in τ to true that are witnesses of not yet satisfied
clauses in σ. We are now ready to formalize the central concept of this paper:

Definition 4.2.4 (Reconstruction Property). A sequence of witness labelled
clauses σ satisfies the reconstruction property w.r.t. a formula F iff for all truth
assignments τ satisfying F , the result of the reconstruction function R on τ and
σ is a satisfying assignment for F ∧ σ. An abstract state ϕ [ρ] σ satisfies the
reconstruction property iff σ satisfies the reconstruction property w.r.t. ϕ.

For the expression F ∧σ in this definition we interpret σ as a set of its clauses.

4.3 Inprocessing Rules for Incremental Solving

Our first goal is to determine how information, such as learned clauses, can
be transferred from one incremental solving phase to the next, utilizing that
the sub-problem F i+1 is an extension of the previously solved sub-problem F i.
Thus, instead of solving F i+1 from scratch, previously learned facts are reused
to avoid repeated work. This is sound if the incremental approach gives the
same answer (satisfiable or unsatisfiable) as solving from scratch.

More formally, it is crucial that ϕiki ∧ ∆i+1 ≡sat F i+1 holds, where ϕiki is

the set of irredundant clauses at the end of the evaluation of F i. We also need
to make sure that F i+1 |= ρiki , i.e. the redundant clause set at the end of the

evaluation of F i can be reused. Furthermore, we need to guarantee that a model
for F i+1 can be resconstructed from any satisfying assignment of ϕi+1

ki+1
.

To establish notation and to emphasize what we would like to improve in this
paper, we briefly describe how inprocessing in a non-incremental solver (as in
e.g. [36] with cloning) would look like using only the original inprocessing rules
of [138] (shown in Fig. 4.1). Each phase i = 0, . . . , n of solving an incremental
problem F consists of a derivation of a formula ϕiki ∧ ρ

i
ki

as a sequence of states〈
ϕi0 [ρi0] σi0, . . . , ϕ

i
ki

[ρiki] σiki
〉
, where (for all j = 1, . . . , ki)

(a) ϕ0
0 = F 0, ρ00 = ∅, σ00 = ε

(b) ϕij−1 [ρij−1] σij−1 results in ϕij [ρij] σij as

application of a rule in Fig. 4.1

(c) ϕi+1
0 = F i+1, ρi+1

0 = ∅, σi+1
0 = ε.

48

4.3 Inprocessing Rules for Incremental Solving

The initial state defined in (a) starts the derivation with F 0 as irredundant set
of clauses, with an empty σ and without any redundant clause. Then following
(b) the solver applies the rules of Fig. 4.1 until it reaches a state ϕiki [ρiki] σiki in

which satisfiability of ϕiki ∧ρ
i
ki

is determined. The new phase starts by adding a
set of clauses to the problem, as described by (c). Such a derivation only relies
on the original rules of [138], so each phase has to restart with completely empty
ρ and σ and no information learned from solving F i can be reused to solve F i+1.

To capture inprocessing in an incremental solver we have to extend and modify
the calculus of [138] (in Fig. 4.1). The initial state in (a) and the components
of abstract states remain the same as in [138] (see Sect. 4.2), except that σ is
more general. In our new calculus it consists of witness labelled clauses instead
of literal-clause pairs, which allows to capture any redundancy property (not
just RAT). We will refer on that component of a state as reconstruction stack.

Next sections describe the derivations of ϕij+1 [ρij+1] σij+1 from ϕij [ρij] σij for
each 0 ≤ j < ki in each phase i = 0, . . . , n and show a sound way to start a new
phase i+ 1 from state ϕiki [ρiki] σiki when adding ∆i+1 to ϕiki .

4.3.1 Constrained Learning

The side condition] of rule Learn in Fig. 4.1 allows to learn clauses that re-
move models of the current formula. However, as the following example demon-
strates, this is not correct in the context of incremental solving.

Example 4.3.1. Consider the incremental SAT problem F = 〈{(a∨b)}, {a, b}〉.
First in phase i = 0 the evaluation of F 0 starts from the initial state (a ∨ b) [∅] ε.
Now the clause (¬a ∨ ¬b) can be learned since it has the RAT property w.r.t.

(a∨ b) (this is] in Fig. 4.1). Then, rule Strengthen can be applied on

(¬a∨¬b) which yields state (a ∨ b) ∧ (¬a ∨ ¬b) [∅] ε, with a satisfiable set of
irredundant clauses. In the next phase i = 1 we add ∆1 and target to solve the
formula F 1 = (a∨b)∧a∧b, which still is satisfiable. However, conjoining ∆1 to
the irredundant clause set of the last state of the previous phase leads to the state
(a ∨ b) ∧ (¬a ∨ ¬b) ∧ a ∧ b [∅] ε with an unsatisfiable irredundant clause set.

Thus in our calculus the precondition of learning (Learn−) is ϕ ∧ ρ |= C,
i.e. we allow to learn only implied clauses. Compared to [138] our new rule
Learn− is weaker due to this stronger side condition. It still covers most learn-
ing techniques in current SAT solvers, except forms of extended resolution such
as blocked clause addition [10, 138, 153, 173]. Learned clauses can be forgotten
(Forget) or moved to the irredundant formula (Strengthen) as in [138].

4.3.2 Stronger Weakenings

We decompose the original weakening rule (Weaken in Fig. 4.1) of [138] into
two rules: Weaken+, as the name suggests, weakens the current formula by

49

4 Incremental Inprocessing in SAT Solving

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

Weaken+ Drop

where [is ϕ ∧ C ≡ωsat ϕ and ø is ϕ |= C

Figure 4.2: New weakening and dropping rules

eliminating a clause C from the irredundant set while pushing it to the recon-
struction stack. The Drop rule allows to weaken the current formula by elimi-
nating an implied clause from the irredundant set. Removal of implied clauses
from ϕ does not introduce (nor remove) models and so it is not necessary to save
these clauses on the reconstruction stack. In our implementation the Drop rule
is also used for more advanced equivalence-literal reasoning techniques [9,16,55].
Further, in current implementations weakening is always immediately followed
by a forget step (simulating Weaken+).

4.3.3 Incremental Clause Addition

The main feature of incremental SAT solving is the possibility to extend the
previously solved formula with a set of new clauses. In non-incremental SAT
solving, clauses determined to be redundant, always remain redundant. In in-
cremental SAT solving arbitrary clauses can be added and thus previous sim-
plifications might need to be reconsidered and potentially reversed.

Example 4.3.2. Consider the incremental SAT problem F = 〈{F 0}, {(¬a ∨
b)}〉, where F 0 = (a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬b) and F 1 = F 0 ∧ (¬a ∨ b). Phase
i = 0 starts from the state (a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ ¬b) [∅] ε. Resolving the
first clause on a always produces tautological resolvents (i.e. it is blocked [137]).
Thus Weaken+ can be applied with witness a. Afterwards no other irredun-
dant clause contains literal b and so both remaining irredundant clauses are
blocked on ¬b. Thus they can be eliminated by Weaken+ too, which results in
state ∅ [∅] (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b)) · (¬b : (a ∨ ¬b)), without irredundant
clauses left, and the solver concludes F 0 to be satisfiable. Adding the new clause
(¬a ∨ b) to incrementally solve F 1 yields a state with a satisfiable set of irre-
dundant clauses. But F 1 is actually unsatisfiable, so just adding (¬a∨ b) is not
sound.

There are different ways to avoid unsoundness. An obvious way is to simply
disallow simplifications over variables (or actually literals in our calculus) that
might occur in later phases. In essence, this is the solution implemented through
freezing in current SAT solvers [89], which ensures that the reconstruction stack
does not contain frozen variables as witnesses. These frozen variables are then
the only variables of the current formula that are allowed to reoccur in new
clauses. We capture this property as follows.

50

4.3 Inprocessing Rules for Incremental Solving

ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

AddClauses

where I is that each clause of ∆ is clean w.r.t. σ

Figure 4.3: New rule to capture clause set augmentation

Definition 4.3.1 (Clean Clause). A clause C is clean w.r.t. a sequence of
witness labelled clauses σ iff for all (ω : D) ∈ σ we have that ¬C ∩ ω = ∅.

Example 4.3.3. The clause (a∨b) is not clean w.r.t. (¬b : (¬a∨¬b)) ·(¬b : (a∨
¬b)) because ¬(a∨b)∩(¬b) 6= ∅. On the other hand, (¬a∨¬b) is clean w.r.t. the
witness labelled clause sequence (¬b : (a ∨ ¬b)) since ¬(¬a ∨ ¬b) ∩ (¬b) = ∅.

With this definition the freezing approach guarantees that every added clause
is clean w.r.t. the reconstruction stack. Building on that observation, we can
now introduce clause addition (AddClauses in Fig. 4.3), where the side condi-
tion requires that each new clause in ∆ is clean w.r.t. the reconstruction stack σ.
If the added clauses are clean w.r.t. the reconstruction stack, then every assign-
ment satisfying them will remain satisfying after applying the reconstruction
function:

Lemma 4.3.1. If a clause C is clean w.r.t. a sequence of witness labelled clauses
σ, then for all truth assignments τ with τ(C) = > we have that R(τ, σ)(C) = >.

Proof. By induction on the length of σ. The base case σ = ε is trivial. Now
consider σ · (ω : D) and τ ′ = τ if τ(D) = >, τ ′ = τ ◦ ω otherwise. If τ(D) = >,
then τ ′(C) = τ(C) = >. For τ(D) 6= > there is ` ∈ C with τ(`) = >. As C is
clean w.r.t. (ω : D), i.e., ¬C ∩ω = ∅, we have ¬` /∈ ω and so τ ′(`) = (τ ◦ω)(`) =
τ(`) = >. This also holds if ` ∈ ω, since then ω(`) = >. Now it follows by
induction applied to τ ′ and σ: > = R(τ ′, σ)(C) = R(τ, σ · (ω : D))(C).

Thus, as long as all our clause elimination steps are based on witnesses that
never occur in new clauses, we can add clauses without any problem in new
incremental calls. However, this approach requires to know in advance in every
phase i every literal of every ∆j with j > i. Beyond that, it allows less clauses
to be eliminated. Fortunately we can do better.

Instead of prohibiting simplifications, we allow arbitrary inprocessing as in a
non-incremental SAT solver, but later reverse simplifications inconsistent with
new clauses. It would be easy to just reverse all simplifications by reintroducing
all eliminated clauses, but this is costly (as our experiments show). Therefore,
it would be desirable to reverse a minimal subset of simplifications, but such a
minimal set is in general difficult to identify.

As compromise we try to cheaply identify a sufficient subset of problematic
simplifications as follows. If a new clause is not clean w.r.t. the reconstruc-
tion stack, we reverse those simplifications which have a negated literal of the

51

4 Incremental Inprocessing in SAT Solving

ϕ [ρ] σ · (ω : C) · σ′

ϕ ∧ C [ρ] σ · σ′ ∂

Restore

where ∂ is C is clean w.r.t. σ′

Figure 4.4: New rule to reverse a weakening step

new clause in the witness. Reversing all these problematic steps yields a clean
reconstruction stack for all new clauses that in turn allows to apply rule Add-
Clauses.

4.3.4 Reversing Weakening

The side condition of rule AddClauses identifies which simplifications need to
be reversed in order to add a set of new clauses to the formula. What is missing
is a rule to actually reverse these steps. The challenge with reversing clause
eliminations is that many simplification steps are dependent on each other,
e.g., in F 0 of Ex. 4.3.2 the last two clauses became blocked only after the first
simplification step. Therefore one can not just arbitrarily reverse simplifications:

Example 4.3.4. Consider again the inprocessing of F 0 in Example 4.3.2, with
the final state ∅ [∅] (a : (a ∨ b)) · (¬b : (¬a ∨ ¬b)) · (¬b : (a ∨ ¬b)). Assume we
reverse the first simplification step, i.e., we move (a∨ b) from the reconstruction
stack to the irredundant clauses. The truth assignment τ = {¬a, b} would satisfy
in the resulting state (a ∨ b) [∅] (¬b : (¬a ∨ ¬b)) · (¬b : (a ∨ ¬b)) the irredundant
clauses. The reconstruction function on that assignment and the current stack
would be R(τ, (¬b : (¬a ∨ ¬b)) · (¬b : (a ∨ ¬b))). Since τ(a ∨ ¬b) 6= >, it
first updates τ with the witness of that clause and becomes τ ′ = (τ ◦ {¬b}) =
{¬a,¬b}. Then, τ ′ satisfies the next clause of the stack and so R(τ ′, (¬b :
(¬a ∨ ¬b))) = R(τ ′, ε) = τ ′. However, τ ′(a ∨ b) = ⊥. Thus, reversing only the
first simplification step led to a state where we failed to reconstruct a solution
for F 0.

Our main contribution is the rule Restore in Fig. 4.4 which provides a sound
way to reintroduce selected clauses from the stack back to the formula using the
concept of clean clauses of Def. 4.3.1 as precondition.

Example 4.3.5. Consider again formula F 0 of Example 4.3.2. Example 4.3.3
shows that the first clause of the stack is not clean w.r.t. its suffix ((a ∨ b)
w.r.t. (¬b : (¬a ∨ ¬b)) · (¬b : (a ∨ ¬b))), but the second and third clauses are
both clean ((¬a ∨ ¬b) w.r.t. (¬b : (a ∨ ¬b)) and (a ∨ ¬b) w.r.t. ε). Restoring
the second clause leads to the state (¬a ∨ ¬b) [∅] (a : (a ∨ b)) · (¬b : (a ∨ ¬b)).
A satisfying assignment of (¬a ∨ ¬b) is τ = {¬a,¬b}. The reconstruction
function on τ and the current stack would be then R(τ, (a : (a ∨ b)) · (¬b :
(a ∨ ¬b))) = R(τ, (a : (a ∨ b))), since τ(a ∨ ¬b) = >. Because τ(a ∨ b) 6=

52

4.4 Formal Correctness

ϕ [ρ] σ

ϕ [ρ ∧ C] σ
]

ϕ [ρ ∧ C] σ

ϕ [ρ] σ

ϕ [ρ ∧ C] σ

ϕ ∧ C [ρ] σ

ϕ [ρ] σ

ϕ ∧∆ [ρ] σ
I

Learn− Forget Strengthen AddClauses

ϕ ∧ C [ρ] σ

ϕ [ρ] σ · (ω : C)
[

ϕ ∧ C [ρ] σ

ϕ [ρ] σ
ø

ϕ [ρ] σ · (ω : C) · σ′

ϕ ∧ C [ρ] σ · σ′ ∂

Weaken+ Drop Restore

where] is ϕ ∧ ρ |= C, [is ϕ ∧ C ≡ωsat ϕ, ø is ϕ |= C,

∂ is C is clean w.r.t. σ′ and I is that each clause in ∆ is clean w.r.t. σ

Figure 4.5: Incremental inprocessing rules

>, τ needs to be updated with the witness a, τ ′ = τ ◦ {a} = {a,¬b}. Then
R(τ, (a : (a∨ b))) = R(τ ′, ε) = τ ′. The resulting assignment τ ′ satisfies not just
the irredundant formula but each clause of the stack as well. Similarly, starting
from any other satisfying assignment of (¬a∨¬b), the result of the reconstruction
function satisfies all clauses.

4.3.5 Incremental Inprocessing Rules

The final and complete version of our calculus is shown in Fig. 4.5. To keep the
notation simple the precise indexing of the states were so far omitted. Following
the convention introduced at the beginning of this section, each single-line rule
allows to derive a state ϕij+1 [ρij+1] σij+1 from a state ϕij [ρij] σij , with 0 ≤ i ≤ n
and 0 ≤ j < ki, while our double-line rule AddClauses transits from a state
ϕiki [ρiki] σiki to state ϕi+1

0 [ρi+1
0] σi+1

0 .

4.4 Formal Correctness

First we show that learned clauses are still valid in the next phase, and then
prove that solutions can be reconstructed in each satisfiable state. In these
proofs the set of irredundant clauses are always considered in combination to-
gether with the clauses on the reconstruction stack, i.e., ϕij ∧ σij . An important
finding of our paper is that these combined formulas always imply the redundant
clauses.

Proposition 4.4.1. In any derivation in our calculus starting from the initial
state the property ϕij ∧ σij |= ρij holds for each phase i = 0 . . . n and j with
0 ≤ j ≤ ki.

Proof. In the initial state ϕ0
0 ∧ σ00 |= ρ00 trivially holds because ρ00 is empty.

Assume that ϕij ∧ σij |= ρij holds (for any i and j s.t. 0 ≤ i ≤ n and 0 ≤ j < ki).
We show that any transition maintains the property. In case rule Forget or
Strengthen is applied, ρij+1 is weaker than ρij . In case of Forget, ϕij+1 = ϕij

53

4 Incremental Inprocessing in SAT Solving

and σij+1 = σij , while in case of Strengthen ϕij+1 is even stronger than ϕij ,

and thus ϕij+1 ∧ σij+1 |= ρij+1 trivially follows in both cases. Rules Weaken+

and Restore only move a clause between ϕij and σij and so ϕij ∧ σij remains

unchanged. Due to ø , in case of Drop, ϕij ≡ ϕij+1, and so it also trivially
maintains the property. When Learn− transits from state j to j + 1, we get
from the inductive assumption that ϕij ∧ σij |= ϕij ∧ ρij and due to] , we know

that ϕij ∧ ρij |= C, and so ϕij ∧ σij |= ρij ∧ C = ρij+1. When starting a new phase
(i.e. moving from i to i + 1 where 0 ≤ i < n and j is ki) only new clauses are
added to ϕiki by AddClauses, and so ϕi+1

0 ∧ σi+1
0 |= ρi+1

0 clearly holds.

With this proposition we can now prove that the combined formulas remain
logically equivalent during a derivation, unless new clauses are added.

Proposition 4.4.2. In any derivation starting from the initial state, the prop-
erty ϕij∧σij ≡ ϕij+1∧σij+1 holds for phase i = 0 . . . n and each j with 0 ≤ j < ki.

Proof. Only the rules Strengthen and Drop change the combined formula.
However, Strengthen strengthens with an implied clause (due to Prop. 4.4.1),
while Drop guarantees logical equivalence due to its side condition.

From that follows that at any point of a derivation within one phase the
combined formula is logically equivalent to the incremental sub-problem:

Corollary 4.4.1. F i ≡ ϕi0 ∧ σi0 ≡ ϕi1 ∧ σi1 ≡ · · · ≡ ϕiki ∧ σ
i
ki

.

Proof. F 0 ≡ ϕ0
0 ∧ ε ≡ · · · ≡ ϕ0

k0
∧ σ0k0 . By an inductive argument and

Prop. 4.4.2: F i+1 = F i ∧ ∆i+1 ≡ ϕiki ∧ σ
i
ki
∧ ∆i+1 = ϕi+1

0 ∧ σi+1
0 ≡ · · · ≡

ϕi+1
ki+1
∧ σi+1

ki+1
.

Moreover, an important practical consequence of Cor. 4.4.1 and Prop. 4.4.1 is
that it is sound to keep the learned clauses of the solver when new clauses are
added:

Corollary 4.4.2. F i+1 |= ρiki.

Before we can prove that we can reconstruct a model for the original in-
cremental problem from a model of the current irredundant clauses using the
reconstruction stack we need the following lemma.

Lemma 4.4.3. For a given truth assignment τ and a sequence of witness labelled
clauses σ · σ′ we have R(τ, σ · σ′) = R(R(τ, σ′), σ).

Proof. By induction over the length of σ′. The base case σ′ = ε is trivial. Now
consider σ′ = σ′′ · (ω : C) and let τ ′ = τ if τ(C) = >, τ ′ = τ ◦ω otherwise. Since
R(τ, σ ·σ′) = R(τ ′, σ ·σ′′) and R(τ, σ′) = R(τ ′, σ′′), R(τ, σ ·σ′) = R(R(τ, σ′), σ)
follows from the induction hypothesis applied to τ ′ and σ · σ′′.

54

4.4 Formal Correctness

Theorem 4.4.4 (Reconstructiveness). In any derivation starting from the ini-
tial state, every state satisfies the reconstruction property of Def. 4.2.4.

Proof. In the initial state the reconstruction stack is empty, and so for any
satisfying assignment τ of F 0, R(τ, ε)(F 0) = >. To simplify notation, we first
consider only a single phase i (with 0 ≤ i ≤ n), and omit the superscript i.
Assume that in a state j (where 0 ≤ j < ki), the reconstruction property holds.
Let τ be a truth assignment with τ(ϕj) = >. Then R(τ, σj)(ϕj∧σj) = > follows
by induction. In case Learn− or Forget was applied to state j, we have
ϕj+1 = ϕj and σj+1 = σj , thus the reconstruction property remains true. Rule
Strengthen moves a clause C from ρj to ϕj+1 and so ϕj+1 = ϕj∧C and σj+1 =
σj . In case τ(ϕj+1) = > we have R(τ, σj+1)(ϕj ∧σj+1) = R(τ, σj)(ϕj ∧σj) = >
by induction. Then Prop. 4.4.1 gives ϕj ∧ σj |= C, thus R(τ, σj+1)(ϕj ∧ C ∧
σj+1) = >. From the side condition of Drop we know that τ(ϕj+1 ∧ C) =
> whenever τ(ϕj+1) = >, and thus R(τ, σj+1)(ϕj+1 ∧ σj+1) = > again by
induction. When Weaken+ is applied, a redundant clause C is removed from ϕj
and pushed to σj+1 (i.e. ϕj = ϕj+1 ∧C) witnessed by ω. Assume τ(ϕj+1) = >.
We apply the induction hypothesis to the truth assignments τ and (τ ◦ ω) to
get:

τ(ϕj+1 ∧ C) = > ⇒ R(τ, σj)(ϕj+1 ∧ C ∧ σj) = > (4.1)

(τ ◦ ω)(ϕj+1 ∧ C) = > ⇒ R((τ ◦ ω), σj)(ϕj+1 ∧ C ∧ σj) = >. (4.2)

If τ(C) = >, thenR(τ, σj ·(ω : C))(ϕj+1∧C∧σj) = > due to (4.1). Furthermore,
assuming the side condition of Weaken+, we know that (ω : C) is redundant
w.r.t. ϕj+1. If τ(C) 6= >, then (τ ◦ ω)(ϕj+1 ∧ C) = > using Prop. 4.2.1. And
with (4.2) we also getR(τ, σj ·(ω : C))(ϕj+1∧C∧σj) = > if τ(C) 6= >. When we
restore a clause C by Restore, we know that if τ(ϕj ∧C) = > then τ(C) = >.
Further, we know from the side condition of Restore that C is clean w.r.t. σ′,
and so with Lemma 4.3.1, we obtain R(τ, σ′)(C) = >. From that and from
Lemma 4.4.3 it follows that R(τ, σ · (ω : C) · σ′) = R(R(τ, σ′), σ · (ω : C)) =
R(R(τ, σ′), σ) = R(τ, σ · σ′), where ϕj ∧ σ ∧C ∧ σ′ evaluates to true due to the
induction hypothesis. When a new phase starts (i.e. 0 ≤ i < n and j = ki) as
∆i+1 is added to ϕiki by AddClauses, each new clause is clean w.r.t. σiki . Thus,
due to Lemma 4.3.1, the reconstruction function does not destroy any satisfying
assignment of ∆i+1.

Theorem 4.4.5 (Correctness). In any derivation starting from the initial state,
for each phase i = 0 . . . n we have F i ≡sat ϕij ∧ ρij for all j with 0 ≤ j ≤ ki.

Proof. From Prop. 4.4.1 and Thm. 4.4.4 it follows, that ϕij is unsatisfiable if

ϕij ∧ ρij is unsatisfiable. In this case also F i is unsatisfiable using Cor. 4.4.1.

Otherwise, if ϕij ∧ ρij is satisfiable, then F i is satisfiable due to Thm. 4.4.4 and
again Cor. 4.4.1.

55

4 Incremental Inprocessing in SAT Solving

RestoreAddClauses (new clauses ∆, reconstruction stack σ)

1 (ω1 : C1) · · · (ωn : Cn) := σ

2 for i from 1 to n

3 if exists ` ∈ ωi where ¬` occurs in ∆ then

4 ∆ := ∆ ∪ Ci , σ := σ \ (ωi : Ci)

5 return 〈∆, σ〉

Figure 4.6: Algorithm RestoreAddClauses to identify and restore all tainted clauses.

To summarize, our calculus fulfills all the desiderata listed at the beginning
of Sect. 4.3: (i) we can reuse the gained information of previous iterations
(including learned clauses), (ii) we can continue with incremental solving in a
satisfiability preserving way, and (iii) the reconstruction property guarantees
that we can get a solution to the original problem in case of satisfiability.

4.5 Implementation

Based on our new approach we added incremental inprocessing to the SAT solver
CaDiCaL [37]. Rule Weaken+ is defined in our calculus based on the most gen-
eral redundancy property and so it allows to employ every clause elimination
procedure implemented in CaDiCaL including variable elimination [86], vivifica-
tion [169,197], equivalent-literal substitution [9,55], hyper-binary resolution [16],
(self-)subsumption [86] and blocked clause elimination [137]. Combining Drop
with Weaken+ allows efficient equivalence literal substitution, since only two
binary clauses have to be stored on the stack for each literal in a strongly
connected component [9, 55] instead of all clauses with that literal. Similarly,
gate-based variable elimination [86] only requires to save gate clauses.

At the heart of our new calculus are the Restore and AddClauses rules.
They allow to reverse problematic simplification steps and add new clauses. In
practice, SAT solvers are used via an interface (e.g. IPASIR [19] in CaDiCaL) to
add new clauses ∆ and then asked to solve the extended formula F ∧∆. Before
solving F ∧ ∆, our approach first performs a sequence of Restore steps in
order to make each clause in ∆ clean w.r.t. the reconstruction stack σ using the
algorithm RestoreAddClauses in Fig. 4.6. Then the new and restored clauses are
added to the irredundant clauses and a new incremental solving phase starts.

The algorithm in Fig. 4.6 presents a simple implementation that identifies
a sufficient set of clauses to restore in order to make ∆ clean. It follows the
idea of “taint-checking”, commonly used to reason about information-flow (see
e.g. [213]). First consider every clause that comes from the user as tainted,
because it potentially leads to problems. Then check whether these tainted
clauses (actually literals of these clauses) trigger any clause on the stack to be
restored. In that case the literals of the restored clause become tainted as well

56

4.6 Experiments

and recursively might trigger further clauses. However, restored clauses only
need to be clean w.r.t. the reconstruction stack after them (see Restore in
Fig. 4.4), while the clauses in ∆ need to be clean w.r.t. the whole reconstruction
stack. Therefore, the need for restoring is checked by traversing the stack from
bottom to top (left to right). If a clause has to be restored, it can only trigger
to restore clauses to its right. Thus, already processed clauses on the left do not
have to be reconsidered.

The method takes the new clauses ∆ and the current stack σ as input and
checks each previous simplification step from left to right (see Line 1-2). When-
ever the witness of a simplification has a literal that occurs negated in ∆, the
simplification is reversed by restoring the eliminated clause from the stack. The
check in Line 3 is actually asking whether there is a clause in ∆ (i.e. in the
set of new or already restored clauses) that is not clean w.r.t. (ωi : Ci). To
implement this check efficiently, we mark literals in ∆ as tainted and in σ as
witness. If the check succeeds, we need to restore the problematic Ci so that
at the end we have a clean stack. In Line 4 the restored clause is added to ∆
and removed from the stack. At the end of the procedure, ∆ contains all the
new and restored clauses, which added to the formula together with the new σ
achieves the same effect as applying a sequence of Restore steps and a final
AddClauses.

4.6 Experiments

We implemented a new bounded model checker called CaMiCaL for AIGER
models [41], as used in the hardware model checking competition (HWMCC)
[44]. Unrolling is simulated symbolically through substitution [142] in combina-
tion with structural hashing [119,152] and local low-level AIG optimizations [59].
As back-end different configurations of our SAT solver CaDiCaL [37] and other
state-of-the-art incremental SAT solvers are used. The model checker was run
on all the 300 models of the single safety property track of HWMCC’17 [44] up
to bound 1000 with a time limit of 3600 seconds (for each model) and memory
limit of 8 GB on our cluster with Intel Xeon E5-2620 v4 @ 2.10GHz CPUs.

Results are presented in a similar way as the well-known cactus plots of the
SAT Competition, except that we do not measure the overall running time of
the model checker, but the time needed for one (incremental) call to the SAT
solver. Figure 4.7 shows the distribution of these solving times. For example,
if the model checker finished proving unsatisfiability for bound 41 after 110
seconds and then proved unsatisfiability for the consecutive bound 42 at 125
seconds then the time difference of 15 seconds is accounted for bound 42 on this
instance. At the end each instance contributes as many solving times as bounds
for it are solved.

As expected, worst performance is observed when the SAT solver is used in
a completely non-incremental way (cadical-non-incremental), even with pre- and

57

4 Incremental Inprocessing in SAT Solving

50000 60000 70000 80000 90000 100000 110000

0
10

00
20

00
30

00

●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●
●●●●●
●●●●
●●●
●●●●●
●●
●●
●●●
●●●●
●●
●
●●
●●●
●●●
●
●
●●

●●

●

●●

●

●

●●

● cadical−restore−tainted−clauses
cryptominisat−5.6.6
glucose−4−sc2017−ipasir
cadical−freeze
cadical−no−inprocessing
riss−7.0.42
cadical−restore−all−clauses
cadical−non−incremental−assume−good−earlier
cadical−non−incremental

Figure 4.7: Experimental results on all the 300 instances of the single safety property
track of HWMCC’17. The x-axis corresponds to all bounds solved over all models sorted
by the time needed for the SAT call for each bound, which is on the y-axis. The dotted
horizontal line at 3600 second shows the time limit for solving all bounds of each model.

inprocessing enabled. It improves, if the model checker is allowed to assume
earlier bounds to be good (cadical-non-incremental-assume-good-earlier). Incre-
mental SAT solving is better as configuration cadical-restore-all-clauses shows,
which employs pre- and inprocessing, but at the beginning of incremental calls
restores all weakened clauses. However, disabling pre- and inprocessing com-
pletely during incremental SAT solving (cadical-no-inprocessing) is even better.

Configuration cadical-freeze can use variables for simplification which are not
frozen. This again improves performance and there is no need to restore clauses.
In bounded model checking (BMC) only variables encoding the next state are
used in future calls and freezing them is sufficient. However, it required sub-
stantial programming effort to identify the set of frozen variables. Further, op-
timizations during CNF encoding, including structural hashing [119,152] across
time frames or local two-level AIG optimizations [59], make it difficult to predict
future use of variables. In other cases freezing might not even be possible [185].

Giving up on freezing makes use of our framework and gave the best solving
times as configuration cadical-restore-tainted-clauses shows. This not only simpli-
fies the way the solver is used through the API (no need to freeze variables) but
also improves solving time. We measured the time spent in RestoreAddClauses
to be less than 1% of the overall running time: 0.14% for our best configuration
cadical-restore-tainted-clauses and 0.33% for cadical-restore-all-clauses. Our best
configuration only restored 17% of the clauses. Restoring all clauses also lead
to 3.4 times more eliminated clauses (applications of Weaken+) in total.

Note that one can not get rid of freezing completely, since assumptions (for

58

4.7 Conclusion

the “bad” state property in BMC) have to be frozen internally. Keeping freezing
in the API might for instance also be useful for CNF simplification [154].

We also have similar results using freezing (as it is necessary for the solver Lin-
geling [36]) versus restoring tainted clauses for CaDiCaL as SAT solver back-end
of our SMT solver Boolector [191]. We solved more benchmarks and decreased
solving time significantly with the consequence that CaDiCaL is likely to replace
Lingeling as incremental SAT solver back-end in the future.

We also considered other highly ranked SAT solvers in incremental tracks of
the SAT Competition [19,21,22]: Glucose 4 [12], CryptoMiniSAT 5.6.6 [22,223]
and Riss 7.0.42 [172]. CryptoMiniSAT performs significantly better than the
other two external solvers. It is the only external solver which performs inpro-
cessing during solving, including distillation [116]. Even though CryptoMiniSAT
implements the same solution as [185] for incremental bounded variable elimina-
tion (BVE), this feature cannot be enabled through the API, and is disabled in
our experiments. According to Mate Soos (private communication) scheduling
BVE efficiently for incremental SAT solving is difficult for CryptoMiniSAT. We
simply schedule BVE in CaDiCaL in the same way as during stand-alone SAT
solving, with a persistent schedule across incremental invocations. Note that
CaDiCaL only tries to eliminate variables and clauses which are newly added
(or restored).

Source code of CaDiCaL and CaMiCaL and experimental data related to
Fig. 4.7 can be found at http://fmv.jku.at/incrinpr including additional
plots.

4.7 Conclusion

This paper presents a calculus that extends the framework of [138] to capture
incremental SAT solving. It uses the most general clause redundancy property
and is able to simulate most simplifications implemented in state-of-the-art SAT
solvers. Our proposed approach is simple, eases the burden of using SAT solvers,
can be implemented efficiently, and also reduces solving time substantially. As
future work we want to support techniques which remove models, such as blocked
clause addition, and techniques for simplifying under assumptions.

Acknowledgments. This research has been supported by the Austrian Science
Fund (FWF) under projects W1255-N23 and S11408-N23. We thank Mathias
Preiner and Aina Niemetz for their help in experimenting with Boolector and
H̊akan Hjort for providing feedback on using an incremental version of CaDiCaL.

59

http://fmv.jku.at/incrinpr

Chapter 5

Duplex Encoding of Staircase
At-Most-One Constraints for the
Antibandwidth Problem

Published

In Proceedings of the 17th International Conference on Integration of Constraint
Programming, Artificial Intelligence, and Operations Research (CPAIOR 2020),
to appear. See [97].

Authors

Katalin Fazekas, Markus Sinnl, Armin Biere and Sophie Parragh

Abstract

Decision and optimization problems can be tackled with different techniques,
such as Mixed Integer Programming, Constraint Programming or SAT solving.
An important ingredient in the success of each of these approaches is the ex-
ploitation of common constraint structures with specialized (re-)formulations,
encodings or other techniques. In this paper we present a new linear SAT encod-
ing using binary decision diagrams over multiple variable orders as intermediate
representation of a special form of constraints denoted as staircase at-most-one
constraints. The use of these constraints is motivated by recent work on the
antibandwidth problem, where an iterative solution procedure using feasibility-
mixed integer programs based on such constraints was most effective. In a
computational study we compare the effectiveness of our new encoding against
traditional SAT-encodings for staircase at-most-one constraints. Additionally
we compare against previous exact solution methods for the antibandwidth
problem, such as a constraint programming approach and the one based on
feasibility-mixed integer programs.

61

5 Duplex Encoding of Staircase At-Most-One Constraints

5.1 Introduction

An important ingredient in the success of computational approaches, such as
Mixed Integer Programming (MIP), Constraint Programming (CP) or proposi-
tional satisfiability solving (SAT), for solving optimization and decision prob-
lems is the exploitation of common constraint structures with specialized en-
codings, (re-)formulations or other techniques (see e.g. [3, 49,230]).

In this paper we present a new and specialized SAT encoding of problems
where an at-most-one constraint slides over a sequence of Boolean variables.
We denote this special case of sliding sequence constraints [29, 33, 57, 229] as
staircase at-most-one constraint (SCAMO) and illustrate the reason for this
name with the following example.

Example 5.1.1. Given a sequence of variables X = 〈x1 x2 · · ·x10〉, the staircase
at-most-one constraint set of width 4 is the following formula:

x1 + x2 + x3 + x4

x2 + x3 + x4 + x5

x3 + x4 + x5 + x6

x4 + x5 + x6 + x7

x5 + x6 + x7 + x8

x6 + x7 + x8 + x9

x7 + x8 + x9 + x10 ≤ 1.

≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧

This research is motivated by recent work [220] of the second author on
the antibandwidth problem (ABP). The ABP is a graph labeling problem (see
e.g. [99] for more on such problems) where the goal is to maximize the smallest
difference between labels of neighbouring nodes. It has various applications,
such as scheduling [158], obnoxious facility location [67], radio frequency assign-
ment [115] and map-coloring [100]. It has been studied from a theoretical point
of view (see e.g. [28, 84, 180, 205, 232, 235]), and several heuristics and meta-
heuristics (e.g. [23,85,168,214]) have been designed for it. In [85], aside from a
metaheuristic, also a MIP approach was presented to solve the ABP exactly.

In [220] new MIP formulations were presented, and based on one of them,
an iterative solution procedure, which repeatedly solved feasbility-MIPs, was
designed. For a given number k, these MIPs encode the question whether there
exists a solution with antibandwidth greater than k. This iterative procedure
actually proved to be the most effective one in the computational study of [220].

Our proposed encoding can be used for more difficult problem structures than
the one given in Example 5.1.1. In the ABP, for example, the difference of labels
of neighbouring nodes is restricted by combining two SCAMO constraints on
two sequences of variables. Aside from the ABP (and other labeling problems),
the SCAMO constraints can potentially be used in many further application
contexts, such as scheduling problems (see e.g. [51, 174, 228]) or in staff roster-

62

5.2 Preliminaries

ing [64, 92] and car sequencing problems [83, 222], when at most one variable is
allowed to take a given value in every sequence of variables.

As at-most-one constraints are ubiquitous in applications of SAT they are
featured prominently in the literature, see e.g. [70,130,147,173,189,203]. They
are forming a special case of cardinality constraints [39,160,221], which in turn
are instances of Pseudo-Boolean constraints [2,90,196,209] and thus 0/1 integer
linear programs. Encoding constraints (for an overview see [189]) instead of
handling them natively (as in [160]) allows to make full use of the power of
SAT solving. For some applications mixed strategies [98] are better though. In
practice, size is the most important criteria to evaluate such encodings, while at
least in theory also propagation strength is considered. See [1] for a discussion
of these trade-offs. In particular, the path based encoding of binary decision
diagrams introduced in [1] has the goal to improve propagation. However, as
the authors point out, it can not be used for encoding shared constraints, which
is the main reason of the efficiency in our encoding. Thus we also provide a new
set of benchmarks for which such sharing occurs naturally.

5.2 Preliminaries

A propositional formula in conjunctive normal form (CNF) consists of a set of
clauses, where each clause C is a disjunction of literals, which are Boolean (also
called 0/1) variables (e.g. x) or their negation (¬x or 1−x). A truth assignment
T maps truth values (0/1 values) to Boolean variables and can be represented
by a set of consistent literals; it satisfies a literal ` (i.e. assigns value 1 to `) if
` ∈ T , and falsifies it (assigns value 0 to `) if ¬` ∈ T , where ¬` = ¬x if ` = x and
¬` = x if ` = ¬x. The satisfiability problem (SAT) for a formula in CNF asks
whether there is a truth assignment such that all clauses contain at least one
satisfied literal. A truth assignment satisfying a formula is also called a model.

An at-most-one (AMO) constraint is an expression of the form
∑n

i=1 xi ≤
1, where x1, x2, . . . , xn are Boolean variables. Similarly, we can formulate at-
most-zero (AMZ) constraints (as

∑n
i=1 xi ≤ 0), which actually states that each

variable must be false (i.e. assigned value 0). Further, an exactly-one (EO)
constraint is an expression of the form

∑n
i=1 xi = 1. Notice that we define and

use these constraints over Boolean variables, but they are trivially extensible to
literals.

A binary decision diagram (BDD, see e.g. [60,61]) is a rooted, directed, acyclic
graph with at most two leafs, labeled with ⊥ (false or 0) and > (true or 1). Every
non-leaf (also called nonterminal) node of a BDD is labeled with a Boolean
variable and has exactly two outgoing edges (called low and high in [60]). In
this paper we use BDDs to represent AMO and AMZ constraints. Figure 5.1a
depicts an example BDD of an AMO constraint over variables x1, x2 and x3.
Each path from the root of the BDD that ends in the true leaf (>) is a model
of x1 + x2 + x3 ≤ 1. Whenever the low or high child (marked with dashed

63

5 Duplex Encoding of Staircase At-Most-One Constraints

resp. solid line in Fig. 5.1) of a node labeled with variable x is taken, it means
that x is assigned to be false (true respectively) on that path. Since all our BDDs
represent AMO or AMZ constraints, we will depict them rather in an expanded
form where each node contains the whole Boolean expression represented by the
sub-graph starting from it, as it can be seen on Fig. 5.1b. To emphasize the
decision variables of the nodes, we mark them explicitly on the edges. Further,
beyond the non-terminal (i.e. non-leaf) nodes we distinguish non-unit nodes
that are representing a constraint over more than one variable. For example,
the BDD of Fig. 5.1b contains two leaf nodes (> and ⊥), two unit nodes (over x3)
and three non-unit non-leaf nodes. The ordering of the variables appearing in
BDDs is fixed (e.g. x1 < x2 < x3 in Fig. 5.1), i.e. we use ordered BDDs (OBDD
in short). Even though we merge isomorphic subtrees in our BDDs, they are not
reduced because nodes with identical children are kept (see e.g. x3 in Fig. 5.1).
Thus we use partially reduced ordered BDDs (ROBDD) over multiple variable
orders.

x1 x2

x2

x3

x3 >

⊥
(a) BDD of (x1 + x2 + x3 ≤ 1)

x1 + x2 + x3 ≤ 1 x2 + x3 ≤ 1

x2 + x3 ≤ 0

x3 ≤ 1

x3 ≤ 0 >

⊥

x1

¬x1

x2

¬x2

x3¬x3¬x2

x2

¬x3

x3

(b) Expanded BDD of (x1 + x2 + x3 ≤ 1)

Figure 5.1: Different BDD representations of AMO constraint (x1 + x2 + x3 ≤ 1).

Given a graph G = (V,E), a feasible solution to the antibandwidth problem
consists of assigning each node v ∈ V a unique label from the range 1, . . . , |V |.
Given such a labeling f , the antibandwidth ABf (v) of a node v is defined as
min{|f(v)− f(v′)| : {v, v′} ∈ E}, and the antibandwidth ABf (G) is defined as
min{ABf (v) : v ∈ V }. The goal of the ABP is to find a labeling f∗, such that
f∗ = arg maxf∈F(G)ABf (G), where F(G) denotes the set of all labelings of G.

We briefly discuss previous work [220] on which our new SAT solution is
based. Let binary variables x`i = 1 if and only if vertex i is assigned label `
(i.e. fi = `). For a given k, the question, whether there exists a solution with
AB(G) ≥ k + 1, can be formulated as MIP as follows. We will denote this
formulation as Fe(k).

max 0∑
i∈V

x`i = 1 ∀` ∈ {1, . . . , |V |} (Labels)∑
`∈{1,...,|V |}

x`i = 1 ∀i ∈ V (Vertices)

∑
λ≤ `≤λ+k

(x`i + x`i′) ≤ 1 ∀{i, i′} ∈ E, 1 ≤ λ ≤ |V | − k (Objk)

x`i ∈ {0, 1} ∀i ∈ V, ∀` ∈ {1, . . . , |V |}

64

5.3 Staircase At-Most-One Constraint Sets

Constraints (Labels) make sure that each label is used only once and con-
straints (Vertices) ensure that each node i ∈ V gets assigned one label. Thus,
the solution encoded by these constraints corresponds to a labeling. Constraints
(Objk) describe that for each edge {i, i′}, the labels fi, fi′ are not allowed to be
within a range of k. Thus, any solution of the above constraints corresponds to
a labeling with antibandwidth at least k + 1. The iterative algorithm of [220]
starts with a value of k obtained by a heuristic, which constructs a feasible
labeling, and then iteratively solves Fe(k) and increases k by one, until either
Fe(k) becomes infeasible (proving optimality of k) or a time limit is reached.

5.3 Staircase At-Most-One Constraint Sets

As a first step we define and illustrate the main concept of our paper, the
so-called staircase AMO constraint set (SCAMO). Following that, in the next
section we demonstrate step-by-step our proposed SAT encoding of these con-
straints.

Definition 5.3.1. Given a sequence of Boolean variables X = 〈x1 x2 · · ·xn〉 and
a width w s.t. 1 < w ≤ n, a staircase constraint set is formulated as follows:

SCAMO(X,w) =

(n−w)∧
i=0

(i+w)∑
j=i+1

xj ≤ 1

 where n = |X|.

Notice that this constraint is a special sub-case of SEQUENCE
constraints (see e.g., [29, 33, 57, 229]) and so could be formulated as
SEQUENCE(0, 1, w,X, {1}).

In Example 5.1.1 we saw, that there is an ordering of the constraints in that
problem such that each constraint differs only slightly from the previous one.
For instance, in Example 5.1.1 the 1st and 2nd constraints both include the
sum of x2, x3 and x4 while the 2nd and 3rd both contain the sub-expression
x3 + x4 + x5. Since addition is associative, the sum of the variables can be
calculated regardless of the grouping of the variables. However, if we would like
to reuse previous calculations, it is more beneficial to evaluate the first AMO
constraint for example as x1 + (x2 + x3 + x4) instead of considering any other
variable grouping (e.g. (x1+x2)+(x3+x4)). Doing so, the second constraint can
just simply consider the result of (x2+x3+x4) together with x5. Continuing the
evaluation with the next constraint, we could reuse (x3+x4) from (x2+x3+x4),
in case we calculated it as x2 + (x3 + x4), to decide x3 + x4 + x5 + x6 ≤ 1 by
combining it with (x5 + x6). In general, each constraint shares a sub-sum over
w−1 variables with the previous and at the same time with the next constraint.

Evaluating the very first constraint in this example in a right associative way
allows us to reuse (at least once) all its sub-expression in the following three
(i.e. w−1) constraints. However, in order to reuse these sub-expressions we need
a left associative grouping of variables in the constraint x5 + x6 + x7 + x8 ≤ 1,

65

5 Duplex Encoding of Staircase At-Most-One Constraints

(x1 + (x2 + (x3 + (x4))))

(x2 + (x3 + (x4))) + (x5)

(x3 + (x4)) + ((x5) + x6)

(x4) + (((x5) + x6) + x7)

((((x5) + x6) + x7) + x8)

(x5 + (x6 + (x7 + (x8))))

(x6 + (x7 + (x8))) + (x9)

(x7 + (x8)) +

(x8)

((x9) + x10) ≤ 1

≤ 1 ∧
≤ 1 ∧

≤ 1 ∧
≤ 1 ∧
≤ 1 ∧
≤ 1 ∧

Figure 5.2: Decomposition of the staircase AMO constraint set of Example 5.1.1.

since in the second constraint we need x5, then (x5 +x6) and then (x5 +x6 +x7)
to complement the reused sub-sums of x1 + x2 + x3 + x4.

All in all, considering only the first w constraints, we see that we need a right
associative evaluation of the first constraint and a left associative grouping of
the (w + 1)’th constraint. Figure 5.2 depicts how these variable groupings can
be “bonded” together to reconstruct the original constraints of Example 5.1.1.
Extending this pattern to the whole set of constraints, we can see that each w
consecutive constraints need to be considered once left associative to combine
with the previous w constraints’ sub-expressions and once right associative, to
combine with the next w constraints. Thus, in Fig. 5.2 the sum over variables
x5, x6, x7 and x8 is actually considered twice, once with a left and once with
a right associative variable ordering. This duplicate view of constraints is the
main concept behind our proposed duplex encoding.

5.4 Duplex Encoding of Staircase Constraint Sets

Our goal is to exploit sharing of sub-expressions between constraints to obtain a
compact encoding. Again, the main idea of our approach can be seen in Fig. 5.2
where we identified common sub-sums. In our concrete encoding we have to
go one step further though and actually have to share sub-constraints. This is
achieved by decomposing longer AMO constraints into two smaller ones using
the following proposition. While the original longer constraints may be used
only once, smaller constraints potentially can be shared and reused multiple
times.

Proposition 5.4.1. A constraint x1 + · · ·+xn ≤ 1 holds iff for all 1 ≤ i < n

(x1+ . . .+xi ≤ 1)∧(xi+1+ . . .+xn ≤ 1)∧(x1+ . . .+xi ≤ 0∨xi+1+ . . .+xn ≤ 0).

5.4.1 Sub-Constraint Construction

As a first step, given a sequence of variables X = 〈x1 · · ·xn〉 and
width w, we partition the variables into M = d nwe consecutive win-

66

5.4 Duplex Encoding of Staircase Constraint Sets

BDD-AMO (consecutive variables 〈xi · · ·xj〉)

1 B := Search-AMO(〈xi · · ·xj〉)
2 if B = ∅ then
3 if |〈xi · · ·xj〉| = 1 then

4 BT ,BF := >,>
5 else

6 BT := BDD-AMZ(〈xi+1 · · ·xj〉)
7 BF := BDD-AMO(〈xi+1 · · ·xj〉)
8 B := if-then-else(xi,BT ,BF)

9 return B

BDD-AMZ (consecutive variables 〈xi · · ·xj〉)

1 B := Search-AMZ(〈xi · · ·xj〉)
2 if B = ∅ then
3 if |〈xi · · ·xj〉| = 1 then

4 BT ,BF := ⊥,>
5 else

6 BT := ⊥
7 BF := BDD-AMZ(〈xi+1 · · ·xj〉)
8 B := if-then-else(xi,BT ,BF)

9 return B

Figure 5.3: Algorithms BDD-AMO and BDD-AMZ to construct binary decision diagrams
for constraints over a given sequence of consecutive Boolean variables.

dows ω1, ω2, . . . , ωM , where ω1 contains variables x1, . . . , xw, ω2 contains
xw+1, . . . , x2w etc. Note that unless (n mod w) = 0, the very last window con-
tains fewer than w variables.

Example 5.4.1. Continuing the previous example, our width w = 4 splits
X into three windows: ω1 = {x1, x2, x3, x4}, ω2 = {x5, x6, x7, x8} and ω3 =
{x9, x10}.

To encode a SCAMO set of constraints as compositions of smaller constraints, we
build two BDDs for each window with two different variable orderings (hence
the name “duplex”). Notice that any SAT encoding technique of AMO con-
straints could be employed instead of BDDs (as long as we do duplex encoding
by considering both directions). However, beyond the smaller AMO constraints,
we further need AMZ constraints in order to connect the parts together (see the
binary clause in Prop. 5.4.1). One benefit of BDDs is that we get these con-
straints automatically already by encoding the AMO constraints. Thus in this
paper we will focus only on this BDD based approach.

Given window ωi over variables Xi = {xi1 , . . . xiw}, we construct two two-
rooted BDDs, both representing the same two constraints xi1 + · · · + xiw ≤ 1
and xi1+· · ·+xiw ≤ 0. The first BDD, which we call forward BDD, considers the
AMO and AMZ constraints with a right associative variable grouping (i.e. with
variable ordering xi1 < xi2 < . . . < xiw). The other BDD, called backward BDD,
represents the same constraints but with a left associative variable grouping
(i.e. with variable ordering xiw < xiw−1 < . . . < xi1).

Ab́ıo et al. in [2] proposed a generalized arc-consistent, polynomial size
ROBDD-based encoding for Pseudo-Boolean constraints. In our setting the
constraints are all AMO or AMZ constraints without coefficients, and thus ap-
plying their approach leads to small and simple BDDs. The recursive algo-
rithms in Fig. 5.3 present the main steps of this building process. In these
procedures 〈xi · · ·xj〉 means an ordered sequence of consecutive variables and
function if-then-else builds a BDD node with the given decision variable and
high and low BDD nodes. Building the forward BDDs of a window ωi simply
means to call BDD-AMO and BDD-AMZ with 〈xi1 · · ·xiw〉 as parameter. To build

67

5 Duplex Encoding of Staircase At-Most-One Constraints

l1 l2 l3 l4

x1 + x2 + x3 + x4 ≤ 1

x1 + x2 + x3 + x4 ≤ 0

x2 + x3 + x4 ≤ 1

x2 + x3 + x4 ≤ 0

x3 + x4 ≤ 1

x3 + x4 ≤ 0

x4 ≤ 1

x4 ≤ 0

>

⊥

b4 b5 b6

b1 b2 b3

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

l1 l2 l3 l4

x5 + x6 + x7 + x8 ≤ 1

x5 + x6 + x7 + x8 ≤ 0

x5 + x6 + x7 ≤ 1

x5 + x6 + x7 ≤ 0

x5 + x6 ≤ 1

x5 + x6 ≤ 0

x5 ≤ 1

x5 ≤ 0

>

⊥

b10 b11 b12

b7 b8 b9

x8

¬x8

x7

¬x7

x6

¬x6

x5

¬x5

x8

¬x8

x7

¬x7

x6

¬x6

x5

¬x5

Figure 5.4: Forward BDD of ω1 with variable ordering x1 < x2 < x3 < x4 and
backward BDD of ω2 with ordering x8 < x7 < x6 < x5. Two-rooted partially reduced
OBDDs to represent constraints x1+x2+x3+x4 ≤ K with right and x5+x6+x7+x8 ≤ K
with left associative variable groupings, where K ∈ {0, 1}.

the backward BDDs, we need to call the methods with 〈xiw · · ·xi1〉 as argument.
The result in both cases (see Ex. 5.4.2) will be a two-rooted BDD with height
of at most (w + 1).

Consider the following layers of these constructed BDDs. A non-leaf layer lj
(where 1 ≤ j ≤ w) of a forward BDD (backward BDD) consists of two nodes,
one capturing the AMO and another node representing the AMZ constraint over
variables 〈xij · · ·xiw〉 (respectively 〈xiw−(j−1)

· · ·xi1〉 for the backward BDD).

Example 5.4.2. The upper part of Fig. 5.4 shows what the forward BDD
of ω1 in Example 5.4.1 looks like. The BDD is the result of calling
BDD-AMO(〈x1 x2 x3 x4〉) and BDD-AMZ(〈x1 x2 x3 x4〉). Notice that due to the search
for already existing BDDs at the beginning of each method (Search-AMO and
Search-AMZ), the two calls result in a single shared structure (i.e. we have a
partially reduced ordered BDD). Further notice that though node x4 ≤ 1 could
be reduced simply to >, we kept this node in the representation. In this BDD
we can distuinguish four layers (l1− l4) that refer to four sub-constraints of the
root expressions.

The lower part of the figure depicts the backward BDD of ω2 in Example 5.4.1,
resulting from calls BDD-AMO(〈x8 x7 x6 x5〉) and BDD-AMZ(〈x8 x7 x6 x5〉). The vari-
able ordering here is x8 < x7 < x6 < x5. Notice that the structure of the two
BDDs are identical, they just talk about different variables in different orders.

68

5.4 Duplex Encoding of Staircase Constraint Sets

5.4.2 CNF Encoding of BDDs

During BDD construction (e.g. after Line 5 in both algorithms of Fig. 5.3), or
later in an independent traversal, we can assign new Boolean variables to each
non-unit non-leaf node. Notice that top nodes of the forward and backward
BDDs over the same variables can use the same Boolean variable.

Now, given a node with auxiliary Boolean variable b, that decides on variable
xi and has a true child node with variable t and a false child node with variable
f , we introduce clauses to encode xi → (b ↔ t) and ¬xi → (b ↔ f). However,
there are several simplification possibilities due to the structure of our BDDs
and our problem. For instance, all AMZ nodes have ⊥ as a true child (see
Fig. 5.4) and all AMO nodes are assumed as unit clauses (due to using them
with Prop. 5.4.1). Nodes of a constraint xi ≤ 1 are simply encoded as >, while
nodes of constraints xi ≤ 0 are encoded as ¬xi in the clausal representation of
the parent nodes.

Example 5.4.3. On Fig. 5.4 the introduced new Boolean variables are repre-
sented together with their nodes. For example, variable b6 belongs to the node of
constraint x3+x4 ≤ 1. The introduced clause regarding this node is (¬x3∨¬x4).

5.4.3 Bonding Stairs

An AMO constraint of a SCAMO set is either a root node of one of our BDDs
or can be described by combining two layers of two BDDs via Prop. 5.4.1. As
last step of encoding a whole SCAMO set of constraints, we traverse the forward
BDD of each window (denoted as ωfi -BDD with i ∈ {1, . . . ,M−1}) and combine
its nodes with those of the backward BDD of the next window (ωbi+1-BDD).

Thus, we combine layer lj of ωfi with layer l(w−j)+2 of ωbi+1 for each j = 2, . . . , w.
At the end, the bonding of two consecutive BDDs yields the following formula:

BOND(ωfi , ω
b
i+1) = ωfi -l1-AMO ∧

w∧
j=2

(
ωfi -lj-AMO ∧ ωbi+1-l(w−j)+2-AMO ∧ (ωfi -lj-AMZ ∨ ωbi+1-l(w−j)+2-AMZ)

)
.

Example 5.4.4. We continue the running example. At this point we have
seen how to construct a BDD for each small stair structure in Fig. 5.2. Next we
combine them using Prop. 5.4.1 to capture all AMO constraints. Fig. 5.5 depicts
how the layers of the constructed BDDs are meant to be paired with each other.
Applying Prop. 5.4.1 on layers of ωf1 -BDD and ωb2-BDD yields the following
formula:

(x1 + x2 + x3 + x4 ≤ 1) ∧
(x2 + x3 + x4 ≤ 1) ∧ (x5 ≤ 1) ∧ (x2 + x3 + x4 ≤ 0 ∨ x5 ≤ 0) ∧

(x3 + x4 ≤ 1) ∧ (x5 + x6 ≤ 1) ∧ ((x3 + x4 ≤ 0) ∨ (x5 + x6 ≤ 0)) ∧
(x4 ≤ 1) ∧ (x5 + x6 + x7 ≤ 1) ∧ ((x4 ≤ 0) ∨ (x5 + x6 + x7 ≤ 0)),

69

5 Duplex Encoding of Staircase At-Most-One Constraints

(x1 + (x2 + (x3 + (x4)))) ≤ 1

(x2 + (x3 + (x4))) ≤ 1 ∧ (x5) ≤ 1

(x3 + (x4)) ≤ 1 ∧ ((x5) + x6) ≤ 1

(x4) ≤ 1 ∧ (((x5) + x6) + x7) ≤ 1

((((x5) + x6) + x7) + x8) ≤ 1

ωf
1 -l1

ωf
1 -l2

ωf
1 -l3

ωf
1 -l4

ωb
2-l1

ωb
2-l2

ωb
2-l3

ωb
2-l4

Forward BDD of ω1

Backward BDD of ω2

Figure 5.5: Combining forward and backward BDDs to encode SCAMO constraints.

that translates to the clauses b4∧b5∧>∧(b2∨¬x5)∧b6∧b12∧(b3∨b9)∧>∧b11∧
(¬x4 ∨ b8). Notice that with this set of clauses, together with the BDD clauses,
we encoded the first four AMO constraints of our SCAMO problem.

5.4.4 Arc Consistency of Duplex Encoding

Notice that AMO, AMZ and SCAMO constraints are all monotonic decreasing
Boolean functions, i.e. setting any of the variables to false does not restrict
any other variables. Thus setting a variable to true affects only those variables
that share at least one AMO constraint with it. Note that decomposing each
AMO constraint of a SCAMO set based on Prop. 5.4.1 results in an equivalent
problem. Although our constructed BDDs for this decomposition share most of
their nodes with each other (due to the chosen variable orders), our method is
still a BDD-based translation of each AMO and AMZ constraint into clauses.
Thus, applying an arc consistent encoding [14,104] on each BDD node (e.g. the
one in Minisat+ [90]) makes our encoding arc consistent as well.

In fact, notice that our bonding clauses contain a unit clause for each AMO
constraint in order to enforce the output of the corresponding (sub-
)BDD to be true. Beyond that, it is not hard to see that setting an input
variable to true falsifies the output variable of each AMZ-BDD containing it.
Thus the binary clauses of the bonding clauses enforce the root-node of each
respective AMZ constraint to be true, and in turn unit propagation, the main
inference rule of SAT solvers, falsifies all the variables in them.

5.5 Comparing Encodings of Staircase Constraints

In this section we discuss commonly used existing SAT encodings of AMO con-
straints and possible SEQUENCE encodings of SCAMO constraints. We com-
pare them to our proposed duplex encoding in the context of SCAMOs.

Let N = (n−w)+1 be the number of AMO constraints in a staircase problem
set over n variables and width w. A naive (also called pair-wise or binomial)

encoding of a w-long AMO constraint is
∧(w−1)
i=1

∧(w)
j=i+1 (¬xi ∨ ¬xj). Although

this approach does not require any additional Boolean variable, the number

70

5.5 Comparing Encodings of Staircase Constraints

of clauses constructed with that encoding over N w-long AMO constraints is
N · ((w − 1) + (w − 2) + . . .+ (w − (w − 1)) = N · (w−1)·w2 .

Using the naive encoding on the SCAMO constraint set would produce more
than once many of the binary clauses. Eliminating duplicated clauses yields the
reduced naive encoding with (w−1)·w

2 + (N − 1) · (w − 1) unique clauses.

Sinz introduced in [221] a sequential counter encoding for Boolean cardinality
constraints. Applying it to an AMO constraint over w variables produces 3 ·
w − 5 binary clauses and introduces w − 2 auxiliary variables. With N AMO
constraints this gives N · (3 · w − 5) clauses and N · (w − 2) new variables.

The BDD-based encoding for Pseudo-Boolean constraints [2, 90] applied to
AMO constraints is comparable to the sequential counter encoding. However,
for a fixed variable order, the BDD built for each w-long AMO constraint of a
SCAMO set, will always either contain a variable that does not occur in any
other constraint or will miss a variable needed in other constraints. Thus for
this approach using a fixed single variable order the amount of sharing of BDD
nodes among constraints is rather restricted. On the other hand the approach
does not require bonding clauses. With a simplified clausal representation of the
BDD nodes, the naive BDD encoding uses at most N ·(3 ·(w−2)+2 ·(w−1)−1)
clauses and introduces N · (2 · w − 3) new variables to encode a SCAMO set.

The so-called 2-product encoding [70] relies on the same decomposition rule
as Prop. 5.4.1. This approach breaks an AMO constraint over w variables into
a product of two AMO constraints over p and q variables, where p ∗ q ≥ w. To
simplify the calculation we use p = d

√
we and q = dw/pe as recommended in [70]

and assume recursive 2-product encoding of the resulting smaller constraints.
Even though this approach can efficiently encode a single AMO constraint, mak-
ing use of shared sub-expressions is not straightforward. Thus, based on the
estimations given in [70], the number of clauses is N · (2 ·w+ 4 ·

√
w+O(4

√
w)).

Further, the number of newly introduced variables is N ·(2 ·
√
w+O(4

√
w)) again

following [70].

Instead of focusing on specialized AMO encodings, it is also possible to encode
a complete SCAMO set with more generic approaches, like the ones in [57]. For
example, encoding SCAMO as a REGULAR constraint yields similar results as
a naive BDD-based approach with a single variable order (i.e. O(n · w) size).

Another encoding (also from [57]) based on cumulative sums or difference
constraints requires an internal representation which is at least quadratic size
in the worst case. Similarly, partial sums (again see [57]) would consider every
possible sub-sums which also yields O(n · w2) constraints.

The size-wise most competitive sequence encoding from [57] is the log-based
approach where a SCAMO set could be represented as O(n · log w) constraints.

5.5.1 Duplex Encoding

For a given constraint set over n variables of width w we construct two BDDs of
the same size (each having 2 · (w+ 1) nodes) for M = d nwe windows. To simplify

71

5 Duplex Encoding of Staircase At-Most-One Constraints

Table 5.1: Comparison of size of SAT encodings of w-long SCAMO sets over n vari-
ables. Columns #NewVars and #Clauses show the number of additional variables
and clauses of each approach, where N = (n− w) + 1 and M = d nw e.

Encoding #NewVars #Clauses WorstCase

Naive 0 N · (w−1)·w2 O(n3)

Reduced 0 (w−1)·w
2 + (N − 1) · (w − 1) O(n2)

Sequential N · (w − 2) N · (3 · (w − 2) + 1) O(n2)
BDD N · (2 · w − 3) N · (3 · (w − 2) + 2 · (w − 1)− 1) O(n2)
2-Product N · (2 ·

√
w +O(4

√
w)) N · (2 · w + 4 ·

√
w +O(4

√
w)) O(n2)

Duplex 4 ·M · (w − 1) 13 ·M · w − 14 ·M − 3 · w + 2 O(n)

the calculation, we will assume that each BDD has the same size (even though
the last window is most of the time way smaller) and that we encode the first
and last windows in both directions. Thus, we provide here just an upper bound
on the actual values. With these assumptions we have 2 ·M BDDs. For each
BDD we construct three clauses for the non-unit non-leaf AMZ nodes and at
most two clauses for the non-unit non-leaf AMO nodes. Beyond these clauses,
we need to bond together each layer of the neighbouring forward and backward
BDDs, resulting in M − 1 bond-clause sets, each consisting of two unit and a
binary clause. All in all, the final number of clauses in the encoding is as follows:

#BDD-clauses ≤ 2 ·M · (3 · (w − 1) + 2 · (w − 1)− 1) = 10 ·M · w − 12 ·M
#BOND-clauses ≤ (M − 1) · (3 · (w − 1) + 1) = 3 ·M · w − 2 ·M − 3 · w + 2

#BDD + #BOND-clauses ≤ 13 ·M · w − 14 ·M − 3 · w + 2

The number of new variables at the very end of the encoding is at most 4 ·M ·
(w − 1) introducing one for each non-leaf non-unit node of our BDDs.

5.5.2 Comparison Summary

Table 5.1 summarizes the sizes of different SAT encodings expressed as functions
over the number n of all variables in a SCAMO constraint set and the width
w of the individual AMO constraints, combined into N = (n − w) + 1 (the
number of AMO constraints) and M = d nwe (the number of windows in duplex
encoding). The columns capture the number of auxiliary variables and number
of clauses of the encodings. Notice that M is significantly smaller than N . The
last column gives the worst case of each approach, assuming w = n/2, where N
is approximately n/2 too. In this scenario existing encodings are quadratic or
even cubic. However, in our duplex encoding we have M = 2 in that case and
thus it remains linear.

Figure 5.6 visualizes the difference between SAT encodings for the fixed num-
ber of variables n = 500. The horizontal axis ranges over all possible widths w.
Note that the naive encoding is only partially shown here, and further, that in
our application n/2 is an upper bound on the width w, and thus only the left
part of Fig. 5.6 is interesting up to the middle w = n/2 = 250.

72

5.6 Experimental Evaluation

0 100 200 300 400 500

w

0

50,000

100,000

150,000

200,000

250,000

300,000

#
C

l
a
u
se

s

n = 500
Naive

Reduced

SEQ

BDD

2-Product

Duplex

Figure 5.6: Comparison of number of clauses for different encodings of a single SCAMO
constraint set on n = 500 variables and width w between 2 and 500.

The asymptotic behavior of the last column of Table 5.1 can be observed in
Fig. 5.6 too. Again, the largest difference between the encodings occurs for
w = n/2. According to Fig. 5.6 the reduced naive encoding turns out to be
the best SAT-based alternative to our approach in terms of number of clauses.
Though Fig. 5.6 focuses only on SAT encodings, note that the smallest sequence-
based alternative (in [57]) would have size O(n · log n) when w = n/2, that is
smaller than most SAT encodings but larger than our proposed linear encoding.

5.6 Experimental Evaluation

Formulating the antibandwidth problem iteratively, as it was proposed in [220]
(see Sect. 5.2), asks whether there exists a labelling for a graph G = (V,E)
s.t. AB(G) ≥ k+ 1. The question has 2 · |V | pieces of |V |-long exactly-one con-
straints (as (Labels) and (Vertices)) and for each edge of the graph (i.e. |E|
times) a (|V | − k) big set of AMO constraints, each over 2 · k variables (as
(Objk)).

An off-the-shelf SAT solution could encode each of the AMO and exactly-one
constraints one-by-one (e.g. as in Sect. 5.5). However, for a given edge between
nodes i, i′ (i.e. {i, i′} ∈ E) constraint (Objk) can be reformulated as

(|V |−k)∧
λ=1

(λ+k)∑
`=λ

x`i + x`i′ ≤ 1

 Prop. 5.4.1
≡

(|V |−k)∧
λ=1

(λ+k)∑
`=λ

x`i ≤ 1 ∧
(λ+k)∑
`=λ

x`i′ ≤ 1 ∧

(λ+k)∑
`=λ

x`i ≤ 0 ∨
(λ+k)∑
`=λ

x`i′ ≤ 0

 .

73

5 Duplex Encoding of Staircase At-Most-One Constraints

In that form we have exactly two SCAMO sets of width k + 1, one over the
variables of node i and another over variables of i′. The third component of the
decomposition takes the disjunction of AMZ constraints that can be constructed
easily by combining our smaller AMZ nodes corresponding to the SCAMO sets.

The staircase structure in (Objk) allows to apply our new duplex encoding by
simply encoding a SCAMO set of width k+1 for each node of the graph (i.e. |V |
times) and combining the corresponding AMZ constraints (with less than 4 ·
(|V |−k) binary clauses for each edge). This encodes all AMO constraints of the
problem. Also note that we can reuse the Boolean variables representing the root
nodes of the constructed AMO BDDs to encode the (Vertices) constraints.

Experimental Results

We implemented a framework to compare off-the-shelf SAT encodings in practice
to our proposed SCAMO based duplex encoding on the antibandwidth problem
(as formulated in Sect. 5.2). Beyond SAT encodings, we also compared our
approach against alternative exact methods to solve the problem, like Constraint
Programming or the iterative method presented in [220] based on feasibility-
MIPs.

The experiments considered 24 matrices of the Harwell-Boeing Sparse Matrix
Collection [208], containing 12 relatively small and 12 rather large graphs (as
in [220]). For each graph lower bounds (by a construction heuristic) and theo-
retical upper bounds of the antibandwidth were provided in [220]. These values
were reused in our experiment as starting and ending points for the iterative
methods and as lower bounds in the CP approaches. All reported results were
experimented on our cluster with Intel Xeon E5-2620 v4 @ 2.10GHz CPUs.

Table 5.2 summarizes our results.1 For each graph it shows the number of
nodes and edges, the starting width or lower bound and last width to check
of the solving methods (columns |V |, |E| and LB,UB). Then for each solving
technique we report the best found solution together with the time (in seconds)
and memory consumption (in MB). Each approach was limited to 1800 seconds
and 120 GB memory. This rather high main memory limit is due to trying to
solve the alternative SAT encodings with a large number of clauses as well, while
the other methods never exceeded 4 GB.

We compare the 2-product [70] and reduced naive AMO encodings to our
proposed duplex SCAMO encoding as the first three techniques in Table 5.2.
All three techniques are implemented in the same framework and follow the
same method: encode (considering LB as width of SCAMO or as k of the AMO
constraints) and solve the SAT representation of the problem with a SAT solver
(we used CaDiCaL 1.2.1 [38]). If it is satisfiable, increase the width and start
again to encode and solve the new problem. If it is unsatisfiable or the width is
UB, it means that the optimal solution of ABP was found and the process ends.

1Source code, data and benchmarks are available at http://fmv.jku.at/duplex/.

74

http://fmv.jku.at/duplex/

5.7 Conclusion and Outlook

At the moment when the 1800 seconds or 120 GB is exceeded, the method stops
(with TO or MO respectively). The reported solutions are the highest widths
with what the formula was still successfully constructed and solved. In case
even the first formula was too hard to solve, it is marked with “-”.

While the 2-product encoding of the largest instance had a memory out dur-
ing solving the first formula (after a successful encoding), the reduced naive
approach required less memory and even solved a few of the larger problems
with more than one width in 1800 seconds. The duplex encoding required sig-
nificantly less memory and was faster in encoding and solving the problems
compared to the other SAT approaches. It performed well also compared to
further techniques.

The next two approaches, Fe(k) and CP-CPLEX, are taken from [220] as is,
and were executed on our cluster for comparison. Note that while CP-CPLEX
knows LB, Fe(k) constructs it internally. The last reported approach is based on
Chuffed [98, 226] via the MiniZinc language [188]. This hybrid solver employs
lazy clause generation and combines the strengths of SAT and finite domain
solving techniques. Note that both CP approaches encode the ABP naively as a
labeling problem to maximize smallest neighbour-distances, using state-of-the-
art solvers off-the-shelf. All in all we can see that the SCAMO based duplex
encoding of the ABP is comparable and most of the time even better than other
approaches.

5.7 Conclusion and Outlook

In this paper we have proposed a new SAT encoding for at-most-one constraints
with a staircase structure, i.e. where consecutive constraints share sequences of
sub-expressions in a structured way. This structure is exploited in an encoding
which relies on binary decision diagrams using two variable orderings. Compared
to alternative encodings for the ABP, our encoding outperforms the existing
ones.

In the future we plan to integrate and interleave the MIP based approach
of [220] and the SAT approach proposed here. Further, we want to apply the
proposed method to other problems featuring at-most-one constraints with a
staircase structure. Another intriguing direction for future work is to explore
how symbolic optimization techniques using decision diagrams [32] can take
advantage of multiple variable orders simultaneously, which is essential to keep
our encoding compact.

Acknowledgments.

This research has been supported by the Austrian Science Fund (FWF) under
projects W1255-N23, S11408-N23 and by the LIT AI Lab funded by the State
of Upper Austria. The authors would like to thank the reviewers for their useful
suggestions and helpful comments.

75

5
D

u
p

lex
E

n
co

d
in

g
o
f

S
taircase

A
t-M

ost-O
n

e
C

on
strain

ts

Table 5.2: Results of different approaches to solve the antibandwidth problem (TO = 1800 seconds and MO = 120 GB).

Instance |V | |E| LB UB
2-Product Reduced Naive Duplex Fe(k) [220] CP-CPLEX [220] CP-MZ-Chuffed

Obj. Time MB Obj. Time MB Obj. Time MB Obj. Time MB Obj. Time MB Obj. Time MB

A-pores 1 30 103 6 8 6 206.85 80 6 166.48 68 6 185.52 52 6 23.71 29 6-8 TO 57 6 5.97 11
B-ibm32 32 90 9 9 9 14.06 51 9 46.03 47 9 1.30 11 9 28.57 29 9 7.35 20 9 17.4 11
C-bcspwr01 39 46 16 17 17 83.12 69 17 56.02 59 17 3.85 13 17 6.64 28 17 18.78 21 17 TO 11
D-bcsstk01 48 176 8 9 9 14.41 139 9 8.59 47 9 0.25 14 9 62.28 36 9 20.15 21 9 6.35 12
E-bcspwr02 49 59 21 22 21 36.17 76 21 53.01 80 21 3.37 13 21 774.02 205 21 22.84 19 21 673.44 11
F-curtis54 54 124 12 13 13 20.89 139 13 1.02 41 13 1.33 18 13 12.56 32 13 34.66 21 13 2.14 11
G-will57 57 127 12 14 13 108.79 164 13 26.8 79 13 0.57 19 13 15.4 33 13 44.75 21 13 2.69 11
H-impcol b 59 281 8 8 8 5.51 173 8 0.47 52 8 0.54 22 8 0.47 24 8-22 TO 63 8 23.3 12
I-ash85 85 219 19 27 21 TO 794 21 TO 658 23 TO 331 20 TO 133 22-31 TO 37 21 TO 12
J-nos4 100 247 32 40 32 TO 1037 32 TO 911 35 585.33 190 - TO 106 34-47 TO 31 - TO 12
K-dwt 234 117 162 46 58 47 TO 924 47 TO 957 49 TO 477 48 TO 264 51-57 TO 33 - TO 11
L-bcspwr03 118 179 39 39 39 22.82 662 39 6.92 436 39 0.99 58 39 0.52 21 39 110.92 22 39 26.42 12

M-bcsstk06 420 3720 28 72 - TO 53392 29 TO 22076 34 TO 1621 33 TO 625 - TO 20 - TO 35
N-bcsstk07 420 3720 28 72 - TO 53392 29 TO 22097 34 TO 1621 33 TO 634 - TO 20 - TO 35
O-impcol d 425 1267 91 173 - TO 30306 92 TO 22285 99 TO 1043 95 TO 691 - TO 18 - TO 24
P-can 445 445 1682 78 120 - TO 41572 - TO 27030 - TO 1581 - TO 644 - TO 18 - TO 24
Q-494 bus 494 586 219 246 - TO 25944 - TO 29640 - TO 1167 220 TO 905 - TO 18 - TO 21
R-dwt 503 503 2762 46 71 - TO 56611 47 TO 35227 62 TO 1680 52 TO 911 - TO 19 - TO 31
S-sherman4 546 1341 256 272 - TO 73031 - TO 59860 - TO 1129 - TO 1033 - TO 19 - TO 24
T-dwt 592 592 2256 103 150 - TO 85816 - TO 62936 - TO 2253 - TO 1068 - TO 20 - TO 37
U-662 bus 662 906 219 220 - TO 63844 - TO 68402 220 319.73 1564 - TO 1320 - TO 19 - TO 28
V-nos6 675 1290 326 337 - TO 101724 - TO 90129 - TO 1571 - TO 1434 - TO 20 - TO 28
W-685 bus 685 1282 136 136 - TO 76110 - TO 72839 136 14.33 1428 136 9.24 37 - TO 20 - TO 29
X-can 715 715 2975 112 142 - 686.23 MO - TO 106462 - TO 3312 - TO 1468 - TO 21 - TO 39

7
6

Chapter 6

Extensions to Published Work

This chapter extends the peer-reviewed and published works presented in Chap-
ter 2-5 with further details and results. Regarding Chapter 2, the extension is
substantial, consisting of a preliminary version of a yet unpublished line of work
(see Section 6.1). Regarding Chapter 3 and 5, the extensions in Section 6.2
and 6.4 are for the sake of completeness, presenting technical proofs and some
experimental results that did not fit into the page limits of the proceedings.
About incremental inprocessing in the context of SAT solving, beyond the pub-
lished work in Chapter 4, some further refinements and theoretical results are
presented in Section 6.3.

6.1 Quantified Boolean Formulas and Theory
Reasoning

The long-term motivation behind our paper in Chapter 2, beyond presenting an
abstract description of search-based QBF solvers, was to pave the path towards
a framework where we can formally introduce theory reasoning into the process
of QBF evaluation. Though this final goal has not been achieved yet, there are
some interesting questions and partial results that did arise along the way and
that are shortly described in the following.

6.1.1 Motivational Example

The following sentence, originating from synthesis problems as we will see later,
illustrates the formulas that we address here. Consider the quantified formula

Q.F := ∃i ∀c ∃o . P (i)⊕ P (f(i)) ∧
(c⇒ o = i) ∧ (¬c⇒ o = f(i)) ∧
P (o)

over the three variables i, o and c. The existentially quantified variables i and
o in the formula prefix Q are representing input and output in this example
and they are from the same arbitrary, finite domain (e.g. small integers or just
uninterpreted). The universally quantified variable c represents control and
it is Boolean. In the formula matrix F predicates and functions (P and f)

77

6 Extensions to Published Work

are applied, but their precise meaning is currently not relevant (i.e. they are
uninterpreted, but for the sake of our example, P could be true for each even
number while f could increase the value of a variable by one). The formula
means that predicate P holds exclusively either on the input i directly, or on
f(i), while based on the truth value of c the output is equal either with i or with
f(i) and predicate P holds on the output. Notice that the formula is false, since
for the same input one of the two possible c values always makes P (o) false.

Although Q.F is an overly simplified toy example, it actually captures the
form of formulas that can occur in synthesis of conditions in loop-free programs
or of control logic signals in hardware design. In microprocessor design and
development, pipelining is a common way to enhance the throughput of the
system. Burch and Dill in [63] described how to formally specify and verify
the correctness of pipeline controllers. The main idea of their approach is to
specify the externally visible behaviour of a non-pipelined reference design and
a pipelined design, and compare the two designs to each other. Hofferek and
Bloem [127,128] showed how to extend and adapt a Burch-Dill style specification
of pipelined circuits to a synthesis setting, using uninterpreted functions. They
introduced Boolean variables to represent the yet unknown control signals of the
system, and with quantifier alternations maintained the dependencies between
the states of the system and those control signals. The general meaning of their
constructed formulas can be summarized with the following sentence: “... for
every possible state of the system, there exist values for the control signals, such
that for all values of auxiliary variables (required to formulate the correctness
criterion), the correctness criterion holds.”(see [127], Section 1.2, p.5). More
formally, their specifications have the form ∀~x .∃~c .∀~x′ .Φ, where the variables
from the first quantifier block (vector of variables noted as ~x) describe the state
and/or inputs of the system, ~c is a vector of propositional variables representing
the control signals that are supposed to be synthesized, and the last quantifier
block contains the auxiliary variables necessary to formulate the correctness cri-
terion. The domain of ~x and ~x′ is uninterpreted, while the variables in ~c are
all Boolean. The matrix of the formula is in quantifier-free first-order logic,
containing equalities over uninterpreted functions and any elements of the ar-
ray property fragment of the theory of arrays (for details on this fragment see
e.g. [53,54]). The generalized version of these formulas even allows an arbitrary
number of quantifier alternations, as long as all the existential quantifiers are
over Boolean variables only. Using that formalization, the synthesis problem
reduces to the challenge of finding witness functions (certificates) that compute
the values of the Boolean variables from the values of the variables in ~x.

Our toy example Q.F captures the shape (i.e. quantifier prefix and variable
domains) of the negation of these simpler specification formulas. To further
simplify the presentation we assume only uninterpreted functions and equalities
in the formula matrix. This simplification is reasonable, since in practice array
properties are usually reduced into that fragment of logic (together with the
element and index theories).

78

6.1 Quantified Boolean Formulas and Theory Reasoning

6.1.2 Existing Solution Approaches

The first question is how to determine automatically the truth value of a formula
like our motivational example. Without claiming to be exhaustive, here we
briefly collect some procedures that could be used for this purpose.

Our formula Q.F is definitely in first-order logic, there are quantifiers, pred-
icate symbols, function symbols and equalities. With minor modifications one
could give it to a first-order theorem prover (e.g. [148,233]). However, theorem
provers are not guaranteed to terminate since first-order logic is in general unde-
cidable [72]. Further, the formula is relatively simple considering the complete
expressiveness of first-order logic and thus probably a more specific approach
could be more beneficial here.

Taking a closer look on the symbols in F one can see that only equalities and
uninterpreted predicates and functions are used. Equalities over uninterpreted
functions is actually an efficiently decidable background theory supported by
most SMT solvers [193]. However, reasoning about quantified formulas in gen-
eral is yet rather challenging for most SMT solvers, though several complete and
incomplete instantiation techniques exist already [24,101,102,206]. A simple way
to overcome this difficulty is to eliminate (i.e. expand) the universally quantified
Boolean variable from the formula by considering both possible instantiations
of it, as in the following transformation:

Q.F ≡ ∃i. (∃o0. P (i)⊕ P (f(i)) ∧ o0 = i ∧ P (o0)) ∧
(∃o1. P (i)⊕ P (f(i)) ∧ o1 = f(i) ∧ P (o1))

≡satP (i)⊕ P (f(i)) ∧ o0 = i ∧ P (o0) ∧ o1 = f(i) ∧ P (o1).

The final formula then can be solved easily with most SMT solvers. Using this
transformation was found to be an efficient solution by Hofferek et al. in [129]
to the synthesis problem presented in the previous section. In their approach,
after expanding the Boolean variables, the negation of the specification formula
was solved by a proof-producing SMT solver. After that, the synthesized control
logic was extracted as Boolean relations [139] based on some form of Craig inter-
polation [77] from the produced refutation of the solver. However, it is not hard
to see that with more universally quantified variables the transformation easily
leads to an exponential growth of the formula size, and thus the applicability of
this approach is limited.

Since the universally quantified variable is Boolean, one could consider it as
a bit-vector with width of one. Reasoning about quantified bit-vectors in SMT
solving is currently a subject of broad interest (see e.g. [140, 190, 234]). But
again, Boolean variables have only two possible instantiations and the rest of the
formula (including uninterpreted functions) does not really require bit-precise
reasoning. Thus, that is not necessarily the best fitting logic to our problem.

79

6 Extensions to Published Work

6.1.3 Eager and Lazy Encodings

A very straightforward but relatively spacious solution method to formula Q.F
was not mentioned in the previous section. Equalities over uninterpreted func-
tions is actually a background theory that has well-known eager translations
into pure propositional logic. The transformation first eliminates every func-
tion application by introducing new Boolean variables for each of them and
by adding explicitly additional constraints to guarantee their functional consis-
tency [4,200]. Then the resulting formula is in equality logic, that can be directly
translated into propositional logic and solved (following e.g. [62, 199] or [179]).
Depending on whether the universally quantified variable is expanded, this eager
encoding of Q.F would result in an equisatisfiable SAT or quantified Boolean
formula that can be solved directly by a SAT or QBF solver. In case the univer-
sally quantified variable is not eliminated, one has to pay attention to introduce
the new abstraction variables into the right blocks of the quantifier prefix. The
abstraction variables are all existentially quantified and each of them belongs to
the quantifier block where the innermost variable on which they depend belongs
to (see an example for that abstraction later in Section 6.1.4).

The previously described eager encoding to QBF was considered by Hofferek
et al. in [129] and in [127] for the control logic synthesis problem. In their
experiments the problems became infeasible due to the large amount of necessary
additional transitivity constraints. Beyond the growth of formula size, this
approach is practical only with background theories that have already well-
known efficient encoding to propositional logic, thus it is not easily generalizable.

The dilemma of eager versus lazy encoding is very well known in the context
of SAT and SMT solvers (see e.g. [114, 202]). One can choose to completely
reduce a problem into propositional logic and then solve it with a single SAT
call. The other option is to encode it only partially (e.g. construct a Boolean
abstraction of the problem) and use a SAT solver as one of many collaborating
decision procedures in a modular system [56, 150]. One justification for the
eager encoding is that SAT solvers are efficient, fine-tuned tools that can handle
millions of variables (of course, depending on the problem), while for some
background theories the current theory solvers are not yet that efficient.

The same dilemma does not exist in the context of QBF solvers. In this con-
text an eagerly encoded problem to solve is more difficult than SAT (assuming
that NP 6= PSPACE) [195,224]. Beyond that, both the underlying theory and
the practical algorithms of QBF are not yet fully developed [165,167]. And thus
the eager encoding of problems into QBF is yet rarely a practical option. But
what about a lazy encoding? Is there a sound way to combine QBF reasoning
with the theory solvers known from SMT systems? In the following sections we
seek an answer for this question.

80

6.1 Quantified Boolean Formulas and Theory Reasoning

6.1.4 Lemmas on Demand for QBF modulo Theories

As a first step we illustrate how a “lazy” interplay between a QBF and a con-
junctive theory solver would look like. After that, we will discuss some further
possibilities to adapt this approach for less lazy solutions.

In the simplest – most lazy – setting we have a black-box certificate producing
QBF solver coupled with an engine that decides the consistency of a set of
theory literals. Though there are several QBF solving approaches with different
underlying proof systems [91, 108, 143, 145, 149], for our demonstration we will
use the extractable winning strategy [34,103] found by the solvers, referring on
them as (counter-)models of (un-)satisfiable formulas.

Let’s take a look again on our toy example Q.F . The Boolean skeleton of the
formula, noted as P.BF , is the following QBF:

P.BF := ∃ bP (i), bP (f(i)) ∀ c ∃ bo=i, bo=f(i), bP (o) . bP (i) ⊕ bP (f(i)) ∧
(c⇒ bo=i) ∧ (¬c⇒ bo=f(i)) ∧
bP (o)

In this abstraction we ignore functional consistency (i.e. we did not use Acker-
mann’s reduction [4]) and simply focus on the shape of the problem. For each
predicate application and equality (i.e. theory atom), we introduce a new exis-
tentially quantified Boolean variable into the prefix of the abstraction (noted as
P). The quantifier block of the new variable depends on the arguments occur-
ring in the encoded atom. For example atoms P (i) and P (f(i)) refer only to
the input variable, thus their abstraction belongs to the most outer quantifier
block. The truth value of o = i depends on c (because the value of o depends
on c), thus bo=i must be part of the inner ∃-block. In CNF the matrix of the
formula is (bP (i)∨bP (f(i)))∧ (¬bP (i)∨¬bP (f(i)))∧ (¬c∨bo=i)∧ (c∨bo=f(i))∧bP (o).

Figure 6.1 depicts a possible tree-model found by a QBF solver to P.BF . Each
path of that tree from root to leaf corresponds to a set of literals over EUF atoms
(just like models found by SAT engines in an SMT solver). Invoking a theory
solver on each of these sets can determine whether it is consistent w.r.t. the
theory axioms (T-satisfiable) or not (T-unsatisfiable). In Figure 6.1 the back-
ground color of each set shows the result of this query (just like in Section 1.1.3).
We can see that when c is assigned to be false, though the Boolean abstraction
of Q.F is satisfiable, the translation of the found assignment is T-unsatisfiable.
The unsatisfiable core of that set of theory literals is {¬P (f(i)), o = f(i), P (o)}
and thus the clause (P (f(i))∨ o 6= f(i)∨¬P (o)) is a tautology. Since the found
tree-model is not theory consistent, a new QBF solving iteration must start.

Learning the Boolean abstraction of that clause blocks the previously found
solution (or at least one branch of it) in the QBF solver. Solving the refined
QBF P.(BF∧(bP (f(i))∨¬bo=f(i)∨¬bP (o))) would again return true, with the tree-
model presented in Figure 6.2. In this iteration the QBF solver flips the truth
value of bP (i) and bP (f(i)) to avoid the previous theory inconsistency. However,

81

6 Extensions to Published Work

P.BF

P.((¬c ∨ bo=i) ∧ (c ∨ bo=f(i)) ∧ bP (o))

P.(bo=f(i) ∧ bP (o))

>
P (i)

¬P (f(i))
o = f(i)
P (o)

bo=f(i) ← >, bP (o) ← >

c← ⊥

P.(bo=i ∧ bP (o))

>
P (i)

¬P (f(i))
o = i
P (o)

bo=i ← >, bP (o) ← >

c← >

bP (i) ← >, bP (f(i)) ← ⊥

Figure 6.1: Tree model of formula P.BF . For each path of the tree the corresponding
set of theory literals is constructed based on the truth value of the abstraction variables.

in this case the other branch, i.e. where c was assigned true, can not hold on
the theory level. Thus, the negated Boolean abstraction of the new unsatisfiable
core has to be learned and the extended QBF formula must be solved again.

After this extension, the new formula P.(BF ∧ (bP (f(i)) ∨ ¬bo=f(i) ∨ ¬bP (o)) ∧
(b(P (i) ∨ ¬bo=i ∨ ¬bP (o))) is proven false by the QBF solver. To check the cor-
rectness of the procedure (and to remind ourself that the original motivation is
to synthesise c), one can extract a Herbrand function [18] (c = P (f(i)) ?> : ⊥)
from the found refutation. Replacing every occurrence of the universally quanti-
fied Boolean variable c in Q.F with the atom P (f(i)) results in a T-unsatisfiable
problem and so makes the negation of the formula valid. Going back to our orig-
inal synthesis problem, if the negation of it is valid, it means that the reference
design and the multipipelined design that uses the Herband function as control
logic, are equivalent. Thus, with this lazy lemmas on demand [82] coupling of a
QBF solver and a theory solver we refuted formula Q.F and even synthesised a
correct implementation for the control variable c.

6.1.5 Simple Refinements

One important benefit of the demonstrated procedure is that the internal be-
haviour of the QBF solver can be completely ignored and so an arbitrary certifi-
cate producing solver can be applied in the proposed workflow. Of course, giving
up on this flexibility and willing to adapt the search engines allows a tighter col-
laboration that can reduce the amount of unnecessary work. In the context of
SMT solvers there are several already established techniques (e.g. on-line SAT
solving, support for propagation by theory solvers, incrementality) [194] that
could improve our system as well.

For example, though in our demonstration always only one clause was learned,

82

6.1 Quantified Boolean Formulas and Theory Reasoning

P.(BF ∧ (bP (f(i)) ∨ ¬bo=f(i) ∨ ¬bP (o)))

P.((¬c ∨ bo=i) ∧ (c ∨ bo=f(i)) ∧ bP (o))

P.(bo=f(i) ∧ bP (o))

>
¬P (i)
P (f(i))
o = f(i)
P (o)

bo=f(i) ← >, bP (o) ← >

c← ⊥

P.(bo=i ∧ bP (o))

>
¬P (i)
P (f(i))
o = i
P (o)

bo=i ← >, bP (o) ← >

c← >

bP (i) ← ⊥, bP (f(i)) ← >

Figure 6.2: Tree-model of formula P.(BF ∧ (bP (f(i))∨¬bo=f(i)∨¬bP (o))) together with
the corresponding theory literals for each branch of it.

it is not hard to see that in each iteration potentially more than one theory
conflict can be found. Due to the tree structure of the found model, the branches
can share many literals with each other and so an incremental theory solver can
be beneficial to enumerate them.

Learning more clauses may reduce the number of necessary iterations, but
does not change the fact that an increasing QBF formula is solved over and
over again. Using an incremental QBF solver [163, 164], where new clauses can
be added to the problem without starting the search from scratch, seems to be
essential for an efficient lazy solver.

An even more efficient solution would be to invoke the theory check already
during the QBF evaluation, i.e. move from a lazy lemmas on demand approach
to a tighter integration. However, the implementation of this solution highly
depends on the internals of the QBF solver. Expansion-based QBF solvers [13,
35, 48, 134, 135, 161] usually call a SAT solver at some point to evaluate the
expanded formula under consideration. Replacing this SAT engine with an SMT
solver opens up several interesting possibilities to gain a QBF modulo Theories
solver. In case of search-based QBF solvers [65, 106, 162, 207, 238] there is no
explicit SAT engine involved and thus another solution has to be looked for. In
these solvers usually there is some form of cube learning (beyond the classical
conflict driven clause learning), in order to prove true formulas [108, 157, 239].
Since our goal is to avoid theory inconsistent models, a possible way towards it
is to guarantee that only theory consistent cubes are learned. In Section 6.1.7
we will show a possible implementation of that approach.

83

6 Extensions to Published Work

6.1.6 Incomplete Problem Solving

Although on our toy example a lemmas on demand approach worked, it does
not mean that this is in general a solution method to our original problem. We
had several implicit assumptions behind our approach inherited from classical
SMT solution methods. For example, we assumed that it is sufficient to find a
tree-model for the quantified Boolean abstraction of a problem such that every
branch in that model is theory consistent in order to gain a model to the original
quantified SMT problem. However, the following example demonstrates that
this assumption actually does not hold. Consider the following simple formula

R.G := ∃ t1, t2 ∀ c ∃ t3 . (c ∨ t2 = t3) ∧ (¬c ∨ t2 6= t3) ∧ (t1 = t3)

where t1, t2 and t3 are arbitrary terms, while c is a universally quantified Boolean
variable. The Boolean skeleton of that formula, constructed as in the previous
section, is the following QBF:

S.BG := ∀ c ∃ bt2=t3 , bt1=t3 . (c ∨ bt2=t3) ∧ (¬c ∨ ¬bt2=t3) ∧ (bt1=t3).

A QBF solver would immediately return a tree-model like on Figure 6.3 for
this formula. And so our QBF modulo Theories method would report that the
formula is true. However, taking a closer look onR.G shows that, considering the

S.BG

S. (bt2=t3 ∧ bt1=t3)

>
t1 = t3
t2 = t3

bt2=t3 ← >, bt1=t3 ← >

c← ⊥

S. (¬bt2=t3 ∧ bt1=t3)

>
t1 = t3
t2 6= t3

bt2=t3 ← ⊥, bt1=t3 ← >

c← >

Figure 6.3: Tree-model constructed for formula S.BG where both branches are found
theory consistent.

axioms of equivalence, this formula is actually false. Expanding the universally
quantified variable leads to the following simple problem in equality logic:

R.G ≡ ∃ t1 t2. (∃t3. t2 6= t3 ∧ t1 = t3) ∧ (∃t′3. t2 = t′3 ∧ t1 = t′3)

≡sat t2 = t′3 ∧ t′3 = t1 ∧ t1 = t3 ∧ t2 6= t3.

The conjunction of the two possible instantiations of c actually builds an implicit
transitivity chain between variables t2 and t3 (via t1) and so contradicts t2 6= t3.

84

6.1 Quantified Boolean Formulas and Theory Reasoning

This example proved that our problem abstraction, even after complete refine-
ment by our method, does not imply our original problem. Thus, our method
is at least incomplete. And from that follows that when our solver proves a for-
mula true, the more proper answer regarding the truth of the original problem
would be “unknown”.

But what about when our simplistic solving method returns unsat? Are
these answers correct? To show that the presented procedure does not claim
unsatisfiability of true formulas, we need to take a closer look on that scenario. In
case the original problem is true, we can always consider the equivalent formula
where every universally quantified Boolean variable is explicitly instantiated and
all the inner variables are accordingly renamed. From any satisfying assignment
of that formulation, a set of ordered truth assignments can be extracted such
that they together define a tree-model to our abstraction (after mapping back
the renamed variables to branches of that tree). And so, assuming that a correct
QBF solver is used, the existence of this winning strategy implies that the solver
must answer true to the first Boolean abstraction. Since every learned clause is
valid w.r.t. the theory axioms, and the original formula has a theory consistent
solution, these clauses might change the model but not the satisfiability of the
abstract QBF. Thus in this scenario our lemmas on demand method can not
derive false.

6.1.7 QBeq: A Prototype QBF modulo Theories Solver

To gain a proof of concept and to learn the potentials and limitations of an
incomplete QBF modulo Theories solver, we developed a prototype engine called
QBeq that can take as an input Quantified Boolean formulas with EQualities over
uninterpreted functions. The solver combines through their APIs the search-
based QBF solver depQBF [162] (version 5.0) with MathSAT5 [73] (version 5.6)
that is responsible for the theory reasoning.

The main idea behind the implementation is to intercept the QBF solver
every time when it finds a satisfying truth assignment (also called a cover set)
for the matrix of the abstraction formula. Since these cover sets are the base
of cube learning in the solver, guaranteeing their theory consistency implies
that every learned and derived cube will be theory consistent as well. And so,
whenever the QBF solver finds a solution, we invoke a theory solver to check
the theory consistency of it. In case the solution is T-satisfiable, the QBF solver
can proceed as usual (e.g. learn a ∃-reduced cube from it). When the found
cover set is T-unsatisfiable, the QBF solver is not allowed to consider it as a
solution. Thus, in that case instead of learning a cube, it must learn a theory
lemma (i.e. the negation of the abstraction of the T-unsatisfiable core) as a
new clause. Since this new clause will be falsified by the current assignment,
the QBF solver is forced to search for another solution. Florian Lonsing, the
developer of depQBF, proposed and developed for us a callback function based
solution in depQBF 5.0 to achieve our desired timely interception and cover set

85

6 Extensions to Published Work

inspection. Thanks to his modifications in depQBF, implementing a tighter QBF
modulo Theories solver became significantly easier.

Our prototype solver exploits these modifications of depQBF by implementing
and registering the functions that are meant to be called when depQBF finds
a cover set. QBeq first parses the input SMT2 [26] file containing a quantified
Boolean formula with equalities. As a next step, it constructs the QBF skeleton
of the problem and initializes the formula in depQBF based on it. At the same
time, in the SMT solver an empty formula is initialized where the signature of
every term of the problem is declared. The remaining part of the solver simply
invokes the SMT solver with a set of theory literals (in form of a conjunct of
assumptions) whenever the QBF solver finds a cover set. In case the SMT solver
finds it satisfiable, depQBF is informed and continues as nothing would have hap-
pened. If the set of theory literals were unsatisfiable, the Boolean abstractions
of the literals in the unsatisfiable core are collected by QBeq and forwarded to
depQBF as a theory lemma. Since this lemma invalidates the current solution
of depQBF, it backtracks and continues the search for another assignment or
returns in case a refutation of the formula was found.

6.1.8 Preliminary Experiments

The main practical motivation behind our work is the control logic synthesis
problem described in Section 6.1.1. We believe that our proposed QBF modulo
Theories approach is a step towards it, but several milestones to address these
problems (e.g. certificates or preprocessing) are still missing. Thus, first we pick
a small and manageable part of that problem to focus on. To evaluate our pro-
totype solver and to estimate the performance of alternative solution methods,
we generated a set of similar but much simpler problems. Since our targets
are problems where potentially many universally quantified Boolean variables
are combined with relatively simple theory atoms, we started our problem gen-
eration from already existing QBF formulas. We considered two families of
QBF problem instances from the formula library called QBFLIB [107] of the
annual QBF evaluations [204] as starting points, both containing problems only
with ∃-∀-∃ quantifier prefix structure. The benchmark family ToiletC contains
85 problems from the domain of planning [68], while the 303 formulas of the
Abduction family are originating from SAT problem instances. All the experi-
ments were performed with time limit of 300 seconds and memory limit of 7 GB
on our cluster with Intel Xeon E5-2620 v4 @ 2.10GHz CPUs.

As a first step we measured the performance of depQBF on these pure QBF
problems, to get a base line to our further experiments. Since QBeq uses depQBF
5.0 with a specific set of options (the list of options is --dep-man=simple

--incremental-use --no-qbce-dynamic --traditional-qcdcl and
--no-pure-literals --no-qpup-sdcl) we compared this version to the most
recent version (depQBF 6.03) under default settings. Table 6.1 summarizes the
results. As we can see, the ToiletC problems are mostly really easy to solve

86

6.1 Quantified Boolean Formulas and Theory Reasoning

Table 6.1: Results of different versions of depQBF on the QBF problem families
Abduction and ToiletC.

Solver
Abduction (303) ToiletC (85)

Solved SAT UNSAT Time Solved SAT UNSAT Time

depQBF 5.0 287 152 135 1081.1 82 29 53 202.6

depQBF 6.03 288 153 135 4961.9 82 29 53 202.0

to both versions and the proportion of SAT and UNSAT instances is roughly
1:2. The Abduction problems are more time consuming to solve, but all in all
the numbers of solved instances by the two versions are similar (though depQBF

6.03 required more time to solve them).

As a next step we simply transformed each of the QBF problems into the input
format of SMT solvers (see the specification of the SMT2 language in [26]), with-
out any change to the formulas. Each of the resulting SMT problems consists
of a single assertion with an explicit quantifier prefix containing only Boolean
variables and the clauses of the source QBF matrix. These formulas (denoted as
Abduction-SMT and ToiletC-SMT) are then heavily quantified SMT problems,
but without any underlying background theory to consider. We tried different
state-of-the-art solvers to evaluate the alternative solution methods described in
Section 6.1.2. Our main goal here was not to show the good or bad performance
of the solvers, but rather to draw attention on how different they can be. As
theorem prover we used Vampire [148] (version 4.4) and as SMT solver we exper-
imented with CVC4 [25] (version 1.7) and z3 [81] (version 4.8.7), because they
both support quantified formulas. In case of Vampire we used the portfolio
solver setting (--input syntax smtlib2 --mode portfolio -p off -t 300

--schedule casc 2019), while z3 was invoked without any special options. In
case of CVC4 we tried different options based on their SMT competition configu-
rations. In this first experiment the effect of the used options of CVC4 was minor,
nevertheless the best results (that are presented here) were achieved with the op-
tions --decision=internal --simplification=none --no-inst-no-entail

--no-quant-cf --full-saturate-quant. This experiment already includes
our tool QBeq as well. Table 6.2 shows the number of solved instances for each
solver. In the case of the problems in ToiletC-SMT there is no significant differ-

Table 6.2: Results of different solvers on the QBF problems Abduction and ToiletC

reformulated as SMT problems.

Solver
Abduction-SMT (303) ToiletC-SMT (85)

Solved SAT UNSAT Time Solved SAT UNSAT Time

z3 4.8.7 1 1 0 0.7 83 29 54 256.3

CVC4 1.7 239 112 127 8300.5 80 28 52 361.6

Vampire 4.4 0 0 0 0.0 81 25 56 661.5

QBeq 284 155 129 2239.9 82 29 53 213.9

ence between the solvers. For the formulas of Abduction-SMT the solvers react
differently. On these problems both z3 and Vampire chose a wrong strategy and
run out of time. On the other hand, here CVC4 performs really well compared to

87

6 Extensions to Published Work

the other solvers. The last row in Table 6.2 shows the number of solved instances
by our tool QBeq. Since the problems do not have background theories (and so
there are no theory induced conflicts), the Boolean abstraction of each problem
is the exact same QBF problem that we started with. And so the performance
of the tool is expected to be close to depQBF 5.0 (in Table 6.1). In the case of
ToiletC-SMT instances the increase in running time is negligible, while in case of
Abduction-SMT an overhead produced by the trivial SMT queries is observable.

The comparison in Table 6.2 is rather unfair since we try to solve QBF prob-
lems with SMT solvers and theorem provers. So as a next step we introduced
theory atoms into our problems to get closer to the meant domain of the solvers.
We generated from each QBF problem a brand new random SMT problem con-
taining universally quantified Boolean variables and equalities between existen-
tially quantified variables. In each QBF problem we replaced in the formula
prefix every existentially quantified Boolean variable with two new existentially
quantified (uninterpreted) variables. The universally quantified Boolean vari-
ables neither in the prefix nor in the formula matrix were changed. In the
formula matrix we replaced every existentially quantified Boolean variable with
a random equality between two different uninterpreted variables. One of these
two variables is always from the quantifier block of the replaced Boolean vari-
able, while the other variable is either from the same or from the outer block
(in case the replaced Boolean variable was in the inner block).

The intention was to gain quantified SMT formulas with similar QBF ab-
stractions as our original QBF formulas were. As a consequence, many of the
resulting problems are likely to be refutable already on the Boolean layer (since
was constructed based on a false QBF formula) without considering any theory
reasoning. This benefits our tool in a comparison, thus the more interesting to
see here is how the other solvers attempt to solve these problems.

Table 6.3 presents the found results. First of all, we observed that Vampire

in that experiment produced spurious results (e.g. refuted each problem in
ToiletC, though 20 of them is true). Since the problems are formulated in
the language of SMT solvers, which is not the primal input format of Vampire,
we suspect that the parsing is not perfect yet. Thus, here we do not present the
results produced by this theorem prover. Considering the SMT solvers, CVC4

Table 6.3: Results of different solvers on the quantified equality problems generated
randomly from the QBF benchmark families Abduction and ToiletC.

Solver
Abduction-EQ (303) ToiletC-EQ (85)

Solved SAT UNSAT Time Solved SAT UNSAT Time

z3 4.8.7 22 0 22 1701.1 85 20 65 69.1

CVC4 1.7 33 0 33 137.0 66 1 65 367.5

QBeq 283 125 158 2065.6 82 29 53 264.7

handled the Abduction-EQ problems better than z3, by solving 33 unsatisfiable
formulas from the 303. On the other hand, z3 performed exceptionally well on
the ToiletC-EQ problem instances. It solved every formula and showed that 20

88

6.1 Quantified Boolean Formulas and Theory Reasoning

instances are true, while 65 are refutable. On these problems the setting used
by CVC4 was not as successful (solved 13 unsatisfiable and 1 satisfiable instances
from the 85). In Table 6.3 we report for the ToiletC-EQ problems the results
of CVC4 with the options --pre-skolem-quant --full-saturate-quant, that
produced better results. Our tool needed more time (but similar to the pure
QBF instances) to address these problems, and actually 3 instances remained
unsolved by it (just like in the QBF case). What is more interesting is that
QBeq found 29 SAT instances, and based on the results of z3, we know that 9
of them must be false but the weak abstraction was not sufficient to show it.
Thus, considering only the ToiletC-EQ problems, z3 seems to provide a quick
and exact solution method. However, in case of the Abduction-EQ problem set
the SMT solvers were not really successful, while QBeq successfully identified
158 false formulas and could not solve only 20 instances. At the 125 instances
where QBeq returned true, we do not know what is actually the correct answer.
Nevertheless, all in all we can draw the conclusion that QBeq can be an efficient
asset in the case of the unsatisfiable problems.

In the last experiment we transformed further our generated quantified equal-
ity problem instances. Replacing every sort in the problems with bit-vectors
yields a set of quantified bit-vector problems (containing only equality opera-
tions over bit-vectors). For each problem we estimated an upper bound on the
number of necessary bits from the number of existentially quantified variables.
Then, we generated a new problem for each possible bit-width (the universally
quantified Boolean variables always remained 1 wide). With lower widths the
problems are more likely unsatisfiable, but hopefully easier to solve [141]. The
result was 3127 Abduction based problems (noted as Abduction-EQ-BV) and
688 ToiletC based problems (called ToiletC-EQ-BV). Since QBeq and Vampire

do not support bit-vectors, they did not participate in that experiment. The
performance of the SMT solvers on these problems are presented in Table 6.4.
Since here the problems contain quantified bit-vectors, the used setting of CVC4

Table 6.4: Results of SMT solvers on the quantified equality problems generated ran-
domly from the QBF benchmark families Abduction and ToiletC, encoded as quantified
bit-vector SMT problems.

Solver
Abduction-EQ-BV (3127) ToiletC-EQ-BV (688)

Solved SAT UNSAT Time Solved SAT UNSAT Time

z3 4.8.7 199 0 199 15674.2 688 159 529 7235.1

CVC4 1.7 228 9 219 7915.3 247 46 201 4767.1

was changed accordingly. The presented results were produced with the op-
tions --full-saturate-quant --no-cbqi-innermost. Considering first the
problems in Abduction-EQ-BV, CVC4 identified 9 different instances as satisfi-
able (each of them with width 1), while refuted 219 formulas (over 60 different
problem instances). The solver z3 solved a slightly less 199 formulas over 42
different instances (approximately in twice as much time as CVC4) and found all
unsatisfiable. Regarding the problems of ToiletC-EQ-BV, CVC4 solved 247 from

89

6 Extensions to Published Work

them, finding 46 satisfiable formulas (over 7 different instances) and 201 unsat-
isfiable formulas (over 42 different instances). On the other hand, z3 was again
really fast with the ToiletC based problems and solved all of them. All the 159
satisfiable instances belong to the 20 satisfiable problems found in Table 6.3.

So while the problems of ToiletC-EQ could be tackled efficiently with SMT
solvers (either as is or as quantified bit-vectors), in case of the formulas of
Abduction-EQ the current off-the-shelf solution approaches were not sufficient.
All in all we can draw the conclusion that our logical fragment of interest can
be addressed in several different ways, but in many cases they represent a chal-
lenging subset of problems. And because of that, it is reasonable to look for
alternative solutions (like our proposed QBF modulo Theories approach) even
if they are only refutationally complete, as long as they are sufficiently efficient.

6.1.9 Future Work and Open Questions

In this section we presented an idea to combine theory reasoning with QBF
solving, motivated by a synthesis problem. Though the idea is simple, it raises
several interesting theoretical and practical questions that must be considered.
The proper way to do it would be to develop an abstract framework where one
can formally reason about QBF solving. This framework would allow us to
analyse and understand the currently implicit details. Starting from there, just
as it was done in the case of SMT technology, one could extend the framework
to abstract QBF modulo Theories and investigate correctness and termination
criteria. Unfortunately, the diversity of orthogonal QBF solution methods and
the yet rather immature level of experience with these systems make this first
step very challenging. To simplify this step, our focus was first only on search-
based QBF solvers. Even for these systems a realistic abstract formalization is
rather challenging to find. An obvious future work is to continue this abstraction
attempt and even extend it to alternative solving principles.

Focusing on the problems rather than on the solvers, an interesting question is
how hard are our formulas really. Although here we considered only the simplest
possible background theory, the goal would be to support more general, theory-
rich problems. Nevertheless, the proper definition of the logic fragment and the
complexity analysis of it remains future work.

A rather practical aspect of the problem that was not addressed here is the
question of pre- and inprocessing. Formula simplifications are a mandatory
element of most solving tool chains and thus we have to investigate which of
these steps are allowed in the presence of theory atoms. But for that, again, we
need to understand the solving principles and the problems.

Bearing in mind that at the end of the day we would like to synthesise com-
ponents with our system, the question of certificate production is inescapable.
Future work must take a closer look on what are the possibilities regarding that.

During the illustration of our proposed solution method we saw that the
current way of problem abstraction is too weak (see Section 6.1.6). It is a natural

90

6.1 Quantified Boolean Formulas and Theory Reasoning

question whether there are better ways to construct the Boolean skeleton of the
problem, such that we can capture more its real semantics. For example, one
could introduce more than one Boolean variable into different prefix blocks to
describe the same relational atom. Forcing them to be equivalent in the Boolean
layer, the produced models may trigger more theory conflicts. Investigating
further the difference between lazy and eager encodings in our context may
reveal some new approaches.

If we consider our approach to capture only some of the unsatisfiable prob-
lems, the question is in what tool chain it could be beneficial. Considering our
method as a first step in a layered or CEGAR approach seems to be reasonable.
Complementing our method with explicit bit-blasting with smaller widths could
be an efficient way to identify the easily provable and refutable problems and
so invoke more expensive, complete methods only on the harder problems.

An important task for future work is to find further application domains
where a QBF modulo Theories solver could be employed. Our hope is that as
QBF solvers will become faster and faster, our line of research will become more
relevant and applicable as well.

91

6 Extensions to Published Work

6.2 Maximum Satisfiability and Theory Reasoning

In Chapter 3, as a component of our combined MaxSMT solver, we introduced an
abstract framework to describe the internal behaviour of such SAT (and SMT)
solvers that can evaluate formulas under assumptions. An important feature
of these solvers is that for unsatisfiabile formulas they can return a subset of
the assumptions that were needed for the refutation. In our paper we claimed
soundness and termination of the proposed framework, but omitted proofs for
these claims, due to limitations in space. This section will focus on these proofs.

6.2.1 Correctness of A-Sat

Our framework extends assumption based SAT solvers with theory reasoning
similar to how SAT solvers are combined with theory solvers in [194]. Conse-
quently, the reasoning about the correctness of the framework is also similar.
The main difference is that the set of decision literals is extended with the cur-
rent set of assumptions in every state of the derivation. Further, we introduced
two new rules to capture explicitly the states when the derivation terminates
(i.e. when either a solution or a refutation is found). Although these differ-
ences are rather technical, for the sake of completeness we present the necessary
lemmas and theorems to show the soundness of this calculus.

Lemma 6.2.1. If A | ∅ | F
A-Sat
=⇒∗ A |M | G, then the following hold.

P-1. All atoms in A, in M and in G are atoms of F .

P-2. AM contains no literal more than once and is indeed an assignment, that
is, it contains no pair of literals of the form ` and ¬`.

P-3. G is logically equivalent to F .

P-4. If M is of the form M0l1M1 . . . lnMn, where l1, . . . , ln are all the decision
literals of M , then F,A, l1, . . . , li |= Mi for all i in 0 . . . n.

Proof. In an initial state A | ∅ | F all properties hold, since A is an assignment
over atoms(F). To show that all A-Sat rules preserve these properties, consider

A |M ′ | F ′ A-Sat
=⇒ A |M ′′ | F ′′ as a step, where all properties hold in A |M ′ | F ′.

The first two properties trivially hold, because A can not be changed during
any derivation and any new atoms of M ′′ or F ′′ are the ones in F ′ or M ′, all
of which belong to F . Third property could be violated only by the Learn
or Forget rules, but they can only add or remove logical consequences of F ′

preserving the logical equivalence of F ′ and F ′′.

For the fourth property, let M ′ be in the form of M ′0l
d
1M
′
1 . . . l

d
nM

′
n, where

ld1, . . . , l
d
n are all the decision literals. Rules Decide, Learn and Forget triv-

ially maintain the property, since in case of Decide there is nothing to prove,
while Learn and Forget do not change AM ′ and ensure that F ′ and F ′′ are

92

6.2 Maximum Satisfiability and Theory Reasoning

logically equivalent. If the applied rule is UnitProp, we have that F ′ is un-
changed so F ′′ = F ′ while M ′′ is M ′` = M ′0l

d
1M
′
1 . . . l

d
nM

′
n`, where F ′, and so

F ′′, contains a clause (C ∨ `) and AM ′0l
d
1M
′
1 . . . l

d
nM

′
n |= ¬C. By our inductive

assumption, F ′′, A, ld1, . . . , l
d
i |= M ′i for i ≤ n since F ′′ = F ′. M ′n has been ex-

tended to become M ′n`, but F ′′, A, ld1, . . . , l
d
n |= M ′1 . . .M

′
n, F ′′ |= (C ∨ `) and

A,M ′0l
d
1,M

′
1, . . . , l

d
n,M

′
n |= ¬C implies that F ′′, A, ld1, . . . , l

d
n |= M ′n, `. Hence,

UnitProp preserves property 4.

Finally, if the applied rule is Backjump, AM ′ must have the form
AM ′0l

d
1M
′
1 . . . l

d
i−1M

′
i−1l

d
iN and there is a clause C ∈ F ′ that is falsified by AM ′,

i.e. AM ′0l
d
1M
′
1 . . . l

d
i−1M

′
i−1l

d
iN |= ¬C. From the side condition of the rule we

know that there is a clause (C ′∨`′) s.t. F ′ |= C ′∨`′ and AM ′0l
d
1M
′
1 . . . l

d
i−1M

′
i−1 |=

¬C ′. M ′′ is of the form M ′0l
d
1M
′
1 . . . l

d
i−1M

′
i−1`

′ where ld1, . . . , l
d
i−1 are all the deci-

sion literals of M ′′. As in UnitProp F ′′ = F ′ and thereby F ′′, A, ld1, . . . l
d
j |= M ′j

for j ≤ i−1 since F ′′ = F ′. M ′i−1 has been extended to become Mi−1`
′, but since

F ′′, A, ld1, . . . l
d
i−1 |= M ′1 . . .M

′
i−1, F

′′ |= (C ′ ∨ `′), and AM ′0l
d
1M
′
1 . . . l

d
i−1M

′
i−1 |=

¬C ′, we also have F ′′, A, ld1, . . . l
d
j |= M ′j`

′. Hence, Backjump preserves P-4.

Lemma 6.2.2. Assume that A | ∅ | F
A-Sat
=⇒∗ A | M | F ′ and that there is a

clause D in F ′ s.t. AM |= ¬D. Then either Unsat or Backjump applies to
A |M | F ′.

Proof. If M contains no decision literals, then we have that F,A |= M and thus
F,A |= ¬D by P-4. of Lemma 6.2.1. Since F ′ is equivalent to F (due to P-3. in
Lemma 6.2.1) and D ∈ F ′ we can conclude that F ∧ A is unsatisfiable and so
F |= ¬A. So there must exist some clause C ⊆ ¬A s.t. F |= C and A |= ¬C (e.g.,
we can resolve away the forced literals in D until we obtain only literals of ¬A).
Hence, in this case Unsat applies. If M contains the decision literals ld1, . . . , l

d
n

we can construct a backjumping clause C ′ ∨ `′ by using standard 1-UIP clause
learning techniques starting with the conflict clause D. P-4. in Lemma 6.2.1
shows that AM has only decision literals and literals forced by prior decisions.
Hence, the 1-UIP learning technique can be applied by resolving away all but one
forced literal, `′, at the deepest level. This necessarily yields a new clause (C ′∨`′)
satisfying the conditions of Backjump, and thus Backjump applies.

Lemma 6.2.3. If A | ∅ | F
A-Sat
=⇒∗ S and S is final with respect to A-Sat, then

S is either conflict(F ′, C) or SAT (AM,F ′).

Proof. Assume S is a final state with respect to A-Sat, but it is neither
conflict(F ′, C) nor SAT (AM,F ′). Then S has to have the form A |M | F ′. We
know that there is no clause C in F ′ s.t. AM |= ¬C, otherwise either Unsat or
Backjump would be applicable (Lemma 6.2.2). We also know that all literals
of F ′ are defined by AM , otherwise Decide would be applicable. Thus, AM
has to be a model of F ′. But then Sat-Model is applicable, which contradicts
the assumption that S is final.

93

6 Extensions to Published Work

Theorem 6.2.4 (Soundness of A-Sat). For any derivation A | ∅ | F =⇒
· · · =⇒ S in A-Sat, where S is final with respect to A-Sat, we have that

1. S = conflict(F ′, C) with F ′ |= C, A |= ¬C iff F ∧A is unsatisfiable.

2. If S = SAT (AM,F ′) then AM is a model of F .

Proof. From Lemma 6.2.3, we know that there are two possible final states of a
derivation in A-Sat. First consider the case when S is conflict(F ′, C). Then due
to the side condition of Unsat, AM |= ¬D for a clause D ∈ F ′ and M contains
no decision literals. Further, F |= D (P-3. of Lemma 6.2.1) and F,A |= ¬D (P-
4. of Lemma 6.2.1), i.e. F ∧A is unsatisfiable. For the other direction, if F ∧A
is unsatisfiable, we have that A |= ¬F and so there is no possible extension of
A (i.e. possible M) s.t. AM |= F holds.

If S is the state SAT (AM,F ′), the condition of rule Sat-Model and P-3. in
Lemma 6.2.1 lead to the conclusion that AM is a model of F .

Theorem 6.2.5 (Termination of A-Sat). Any sequence of transitions in A-
Sat starting from state A | ∅ | F that contains no infinite subsequence consisting
only of rules from the set {Learn,Forget} is finite.

Proof. See proof of Theorem 2.10 in [194]. Extending the introduced strict
partial ordering of the states to our new additional states (SAT(AM,F ′) and
conflict(F ′, C)) by considering them as minimal elements closes the proof.

6.2.2 Correctness of A-Smt

Notice that our proposed A-Smt calculus is minimalist in a sense that it does
not contain a rule to restart or to propagate via theory lemmas. Thus, after
establishing that our A-Sat calculus is correct, the soundness and termination
of A-Smt is relatively straightforward to prove.

Lemma 6.2.6. If A | ∅ | F
A-Smt
=⇒∗ A |M | G, then the following hold.

P-1. All atoms in A, in M and in G are atoms of F .

P-2. AM contains no literal more than once and is indeed an assignment, that
is, it contains no pair of literals of the form ` and ¬`.

P-3. G is T-equivalent to F .

P-4. If M is of the form M0l1M1 . . . lnMn, where l1, . . . , ln are all the decision
literals of M , then F,A, l1, . . . , li |=T Mi for all i in 0 . . . n.

Proof. As for Lemma 6.2.1 for the A-Sat calculus.

Lemma 6.2.7. If A | ∅ | F
A-Smt
=⇒∗ A | M | F ′ and AM is T-inconsistent, then

either there is a conflicting clause in F ′ or else T-Learn applies to A |M | F ′,
generating a conflicting clause.

94

6.2 Maximum Satisfiability and Theory Reasoning

Proof. If AM is T-inconsistent, then there exists a subset {l1, . . . , ln} of AM
s.t. ∅ |=T ¬l1 ∨ · · · ∨ ¬ln. This clause is either already in F ′ or can be learned
by one T-Learn step. Note, that in case {l1, . . . , ln} ⊆ A and M still has
decision literals, our current calculus does not allow to apply Unsat, but only
T-Backjump. However, in that case learning ¬l1 ∨ . . .¬ln ensures that any
decision will lead to a conflict, and so it is guaranteed that a state without
decision literals in M will be reached.

Lemma 6.2.8. Assume that A | ∅ | F
A-Smt
=⇒∗ A | M | F ′ and AM |= ¬D for

some clause D in F ′. Then after finitely many T-Learn steps, either Unsat
or T-Backjump applies to A |M | F ′.

Proof. In case there are still decision literals in M , the proof is just as in
Lemma 6.2.2 and so without an explicit T-Learn step, rule T-Backjump is
applicable. If M contains no decision literals, we have that F,A |=T ¬D due to
P-4. of Lemma 6.2.6. Since F ′ is T-equivalent to F (P-3. in Lemma 6.2.6) and
D ∈ F ′ we can conclude that F ∧ A is T-unsatisfiable and so F |=T ¬A. Then
some subset of ¬A is either already in F ′ (and so Unsat is directly applicable
as in Lemma 6.2.2), or can be learned by one T-Learn step resulting in a state
where Unsat is applicable.

Theorem 6.2.9 (Soundness of A-Smt). For any derivation A | ∅ | F =⇒
· · · =⇒ S in A-Smt where S is final with respect to A-Smt we have that

1. S = conflict(F ′, C) with F ′ |= C, A |= ¬C iff F ∧A is T -unsatisfiable.

2. If S = T -SAT (AM,F ′) then AM is a T -model of F .

Proof. As for Theorem 6.2.4 for the A-Sat calculus, building on the above
introduced A-Smt lemmas.

Theorem 6.2.10 (Termination of A-Smt). Any sequence of transitions A | ∅ |
F =⇒ · · · in A-Smt that contains no infinite subsequence consisting only of
rules from the set {T-Learn,T-Forget} is finite.

Proof. As in Theorem 6.2.5 for A-Sat.

95

6 Extensions to Published Work

6.3 Incremental SAT Solving and Inprocessing

In this section we discuss further details and present some theoretical exten-
sions of the formal framework that was published in [94] and was presented in
Chapter 4. However, regarding the formalization of the reconstruction function
there is an important difference in the current presentation compared to [94].
In the upcoming sections we will consider and use the following non-recursive
definition of reconstruction function, which was proposed by Christoph Scholl
during working on [94].

Definition 6.3.1 (Reconstruction Function). Given a truth assignment τ and
a witness labelled clause (ω : C) the reconstruction function is defined as

R(ω:C)(τ) =

{
τ if τ(C) = >
τ ◦ ω otherwise.

The reconstruction function for a sequence of witness labelled clauses σ is defined
as Rε = id and Rσ = R(ω1:C1)·...·(ωn:Cn) = R(ω1:C1) ◦ . . . ◦ R(ωn:Cn).

One of the benefits of that simplified formalization is that it directly builds on
function composition, which is an associative operator, thus for a given truth
assignment τ and a sequence of witness labelled clauses σ·σ′ we have immediately
that Rσ·σ′(τ) = Rσ(Rσ′(τ)), while in [94] we needed Lemma 4.4.3 to show that
property. The new formalization does not change the meaning or the properties
of the function, but highly simplifies the presentation, thus we will use it here.

6.3.1 Refined Reconstruction Property

Another point where our formalization could be refined is regarding the recon-
structive property defined in Definition 4.2.4 in [94]. In our paper this prop-
erty was defined such that every satisfying truth assignment of the irredundant
clauses must after solution reconstruction satisfy all the irredundant clauses
conjoined with the clauses on the reconstruction stack. This is a convenient
definition, since most of our theorems are considering the combined formula
ϕ ∧ σ during inprocessing. But in practice what we actually care about is the
satisfaction of our original input formula, independently from the current state
of the derivation. In our incremental inprocessing calculus the input formula F i

of each iteration i is logically equivalent with ϕi ∧σi in every step of the deriva-
tion (see Cor. 4.4.1 in Chapter 4). However, this property might change if we
for example extend the framework with non-model-preserving clause learning.
Therefore here we introduce a refined definition of reconstruction property that
is easier to use in a context where this formula equivalence is not maintained.

96

6.3 Incremental SAT Solving and Inprocessing

Definition 6.3.2 (Reconstruction Property). An abstract state ϕ [ρ] σ satis-
fies the reconstruction property w.r.t. a formula F iff for all truth assignments
τ satisfying ϕ, the result of the reconstruction function Rσ(τ) is a satisfying
assignment of F .

Now we show that this refined reconstruction property is also maintained
in our incremental inprocessing calculus. The proof is very similar to the one
presented in [94], but requires less helping propositions or lemmas along the
way, especially when we reason about strengthening a formula.

Theorem 6.3.1 (Incremental Reconstructiveness). In any derivation starting
from the initial state in the incremental calculus of Fig. 4.5, the reconstruction
property w.r.t. F i holds in each phase i = 0 . . . n and in that for each state j
with 0 ≤ j ≤ ki.

Proof. In the initial state i, j = 0, ϕ0
0 = F 0, σ00 = ε, and so for any satisfying

assignment τ of F 0, Rε(τ)(F 0) = >. Assume that in a state j of a phase i
(where 0 ≤ j < ki and 0 ≤ i ≤ n), the reconstruction property (i.e. ∀τ.(τ(ϕij) =

> ⇒ Rσi
j
(τ)(F i) = >)) holds. Notice that F i is not changed by any of the

rules except AddClauses (when we increase i and start a new phase as well).
If the applied rule is Learn− or Forget, neither ϕij , nor σij changes and so
the property is trivially maintained. Rule Drop removes an entailed clause of
ϕij , while σij is unchanged and so the property remains. Same holds when rule

Strengthen is applied, since in that case any satisfying assignment of ϕij+1 =

ϕij ∧ C satisfies ϕij as well, while the reconstruction stack remains the same as
before. In case of rule Weaken+, consider an arbitrary truth assignment τ ′ such
that it satisfies ϕij+1 = ϕij \C. If there is no such assignment, the reconstruction
property trivially holds. Otherwise, we need to consider two possibilities. If
τ ′(C) = >, then τ ′(ϕij) = >, thus Rσi

j
(τ ′)(F i) = > by induction. Further,

due to the definition of the reconstruction function (see Def. 6.3.1), Rσi
j+1

(τ ′) =

Rσi
j ·(ω:C)(τ

′) = Rσi
j
(τ ′) because τ ′(C) = > and thus Rσi

j+1
(τ ′)(F i) = >. The

other possible case is that τ ′(C) 6= >. In that case from the side condition
of Weaken+ and from Prop. 4.2.1 together it follows that (τ ′ ◦ ω)(ϕij) = >
and so by induction Rσi

j
(τ ′ ◦ ω)(F i) = >, where Rσi

j
(τ ′ ◦ ω) = Rσi

j ·(ω:C)(τ
′)

since τ ′(C) 6= >, and so Rσi
j ·(ω:C)(τ

′)(F i) = Rσi
j+1

(τ ′)(F i) = >. In case rule

Restore was applied, assuming that σij had the shape σ · (ω : C) · σ′, we

know that C ∈ ϕij+1, thus every satisfying assignment τ ′ of ϕij+1 satisfies C.
Further, we know from the precondition of Restore that C is clean w.r.t. σ′,
and so by Lemma 4.3.1, we know that Rσ′(τ ′)(C) = >. Putting these together,
Rσi

j+1
(τ ′) = Rσ·σ′(τ ′) = Rσ(Rσ′(τ ′)) = Rσ·(ω:C)(Rσ′(τ ′)) = Rσ·(ω:C)·σ′(τ

′),

where we know that F i evaluates to true by induction. Starting a new phase with
AddClauses when 0 ≤ i < n and j = ki simply means that we extend ϕiki with

a set of clauses ∆i+1. In that case we need to show that Rσi+1
0

(τ ′)(F i+1) = >

97

6 Extensions to Published Work

holds for all τ ′ s.t. τ ′(ϕiki ∧∆i+1) = τ ′(ϕi+1
0) = >, where Rσi+1

0
(τ ′) = Rσi

ki

(τ ′)

since the rule does not change the reconstruction stack. By the ind. hyp. we
know that Rσi

ki

(τ ′)(F i) = >. Further, F i+1 = F i ∧∆i+1, where each clause in

∆i+1 is clean w.r.t. σiki due to the side condition of AddClauses. Thus, due
to Lemma 4.3.1, Rσi

ki

(τ ′)(∆i+1) = Rσi+1
0

(τ ′)(∆i+1) = >.

6.3.2 Non-Monotonicity of Solution Reconstruction

In an incremental SAT problem it often happens that some of the new clauses
make a previously redundant clause implied. In case this redundant clause was
not removed previously, we can simply apply Drop on it when the new clauses
are added to the formula. However, if the clause was previously removed via
Weaken+, it is stored on the reconstruction stack when the new clauses are
added. One could apply Restore and then Drop in order to get rid of it
permanently, but this solution might restore more clauses from the stack and
thus potentially would increase more than necessary the size of the irredundant
clause set. In Figure 6.4 we introduce a new rule, called Flush, that drops
implied clauses directly from the reconstruction stack without restoring them.

ϕ [ρ] σ · (ω : C) · σ′

ϕ [ρ] σ · σ′
ξ

Flush

where ξ is ϕ |= C

Figure 6.4: Rule to remove implied clauses from the reconstruction stack.

Although this rule intuitively seems trivial, the sad truth is that in our current
incremental inprocessing calculus it is not correct to use. The following example
demonstrates what could happen if we introduce Flush as it is to our calculus.

Example 6.3.1. Consider formula F = (¬a∨ b)∧ (¬a∨¬b)∧ (a∨ b). Starting
the inprocessing from state (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ b) [∅] ε, clause (a∨ b) is
implied by (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ b) and therefore can be learned, reaching
state (¬a ∨ b) ∧ (¬a ∨ ¬b) ∧ (a ∨ b) [(a ∨ b)] ε. Since b is blocked in clause (a ∨
b), it can also be eliminated from the irredundant clause set via Weaken+

leading to state (¬a ∨ b) ∧ (¬a ∨ ¬b) [(a ∨ b)] (b : (a ∨ b)). Then the remaining
irredundant clauses are blocked by ¬a, so removing them via Weaken+ yields
the state ∅ [(a ∨ b)] (b : (a ∨ b)) · (¬a : (¬a ∨ b)) · (¬a : (¬a ∨ ¬b)). Moving the
learned clause (a ∨ b) into the irredundant set with Strengthen leads to the
state (a ∨ b) [∅] (b : (a ∨ b)) · (¬a : (¬a ∨ b)) · (¬a : (¬a ∨ ¬b)), where notice that
the first clause of σ is implied by ϕ.

Consider the assignment τ = {a = >, b = ⊥} that satisfies ϕ. Applying
the reconstruction function on it we get R(b:(a∨b))·(¬a:(¬a∨b))·(¬a:(¬a∨¬b))(τ) =

98

6.3 Incremental SAT Solving and Inprocessing

R(b:(a∨b))·(¬a:(¬a∨b))(τ) = R(b:(a∨b))(τ ◦ ¬a) = R(b:(a∨b))({a = ⊥, b = ⊥}) =
{a = ⊥, b = >}. However, removing (b : (a∨ b)) from σ by Flush we would get
τ ◦ ¬a = {a = ⊥, b = ⊥} as result of the reconstruction function, which actually
falsifies (a ∨ b).

One possible way to adapt our framework to this new rule is to maintain a
stronger form of the reconstruction property. In Def. 6.3.2 we focused on guar-
anteeing that F is satisfied after the complete application of the reconstruction
function. And so implicitly it is allowed that the internal steps of solution re-
construction temporarily falsify any clauses in ϕ or in σ, even if it was already
satisfied by previous steps. This implicit possibility is allowed by our published
reconstruction property in [94] as well. Below we demonstrate with an example
such an internal falsification during solution reconstruction.

Example 6.3.2. Consider formula F = (b ∨ c) ∧ (a ∨ b). Starting the evalu-
ation from state (b ∨ c), (a ∨ b) [∅] ε, we can simply just learn the clause (a ∨
b). Since (a ∨ b) is blocked on a in ϕ, it can be removed via Weaken+, re-
sulting in the state (b ∨ c) [(a ∨ b)] (a : (a ∨ b)). The last irredundant clause
(b ∨ c) is blocked as well so Weaken+ is applicable again. However, the side
condition of Weaken+ is quite permissive regarding the witnesses of elimi-
nation steps, since it must be compatible with a very general notion of re-
dundancy. For example ω = {c,¬a} is a valid witness in that simplification
step because ω(b ∨ c) = > and ϕ|¬b,¬c = ∅ |= ϕ|ω = ∅. In the resulting
state ∅ [(a ∨ b)] (a : (a ∨ b)) · (c,¬a : (b ∨ c)) rule Strengthen can be applied
to reach state (a ∨ b) [∅] (a : (a ∨ b)) · (c,¬a : (b ∨ c)).

Consider the satisfying truth assignment τ = {a = >, b = ⊥} of (a ∨ b).
Applying the reconstruction function on it with (a : (a ∨ b)) · (c,¬a : (b ∨ c))
is R(a:(a∨b))·(c,¬a:(b∨c))(τ). Since τ(b ∨ c) 6= >, τ is in the first step updated,
resulting in τ ′ = {a = ⊥, b = ⊥, c = >}. However, τ ′(ϕ) = τ ′(a ∨ b) 6= >.

Though in this example we artificially constructed a witness that will trigger
the expected problem, based on the definition of our redundancy property and
witnesses, in theory nothing forbids steps like this. So either we need to con-
strain the concept of witnesses and redundant clauses (that would reduce the
generality of our calculus), or we have to consider these possibilities. Based on
this observation, the following definition further refines our reconstruction prop-
erty in order to explicitly prohibit this internal falsification of clauses in ϕ and
in already processed parts of σ, without actually changing the used redundancy
property of our framework.

Definition 6.3.3 (Monotone Reconstruction Property). A state ϕ [ρ] σ sat-
isfies the monotone reconstruction property w.r.t. a formula F iff for all truth
assignments τ satisfying ϕ, the result of the reconstruction function R on τ and
any suffix σ′ of σ is a satisfying assignment for ϕ∧σ′ and Rσ(τ) is a satisfying
assignment of F .

99

6 Extensions to Published Work

The intuition behind this definition is that what once was already satisfied,
we do not want to ruin during solution reconstruction, i.e., we want the set
of satisfied clauses in ϕ ∧ σ to increase monotonically. With the help of this
refined reconstruction property we can now construct a provably correct set of
inprocessing rules that includes also Flush. However, the price to maintain this
property is that we are not allowed to use rule Strengthen (i.e. for Flush
we must give up rule Strengthen). The following theorem shows that the
resulting calculus satisfies the monotone reconstruction property.

Theorem 6.3.2. In any derivation starting from the initial state in a calcu-
lus consisting of rules Learn−, Forget, Weaken+, Drop, Restore, Add-
Clauses and Flush, the monotone reconstruction property ∀τ.(τ(ϕij) = > ⇒
(∀σ′. suffix(σij , σ

′) ⇒ Rσ′(τ)(ϕij ∧ σ′) = >) ∧ Rσi
j
(τ)(F i) = >) holds for each

phase i = 0 . . . n and j with 0 ≤ j ≤ ki.

Proof. It is not hard to see that both Prop. 4.4.1 and 4.4.2 of [94] holds in
case Flush is added to and Strengthen is removed from our incremental
inprocessing calculus defined by Fig. 4.5 in Chapter 4. Thus, we have that
ϕij ∧σij ≡ F i and it is enough to show that the reconstruction function on every

suffix σ′ of the reconstruction stack (including the complete suffix σij) satisfies

ϕij∧σ′. In the initial state the reconstruction stack is empty thus there is only one

possible suffix (ε), and so for any satisfying assignment τ of F 0, Rε(τ)(F 0) = >.
Assume that in a state j of a phase i (where 0 ≤ j < ki and 0 ≤ i ≤ n), the
property holds. In case of rules Learn−, Forget and Drop the reasoning is
exactly as in proof of Theorem 6.3.1 and the rule AddClauses does not change
the reconstruction stack, thus the previous proof is easily adaptable here.

Our induction hypothesis is that ∀τ.(τ(ϕij) = > ⇒ (∀σ′. suffix(σij , σ
′) ⇒

Rσ′(τ)(ϕij∧σ′) = >)) holds in the current state. If the applied rule is Weaken+,

consider an arbitrary truth assignment τ ′ such that it satisfies ϕij+1 = ϕij \ C.
If there is no such assignment, the property is trivially maintained. Other-
wise, we know that any possible suffix θ of σij+1 = σij · (ω : C) is either ε

or has the form σ′ · (ω : C), where σ′ is a suffix of σij . In case θ is ε, by

Def. 6.3.1 Rε(τ ′)(ϕij+1 ∧ θ) = τ ′(ϕij+1) = >. Otherwise Rθ(τ ′) = Rσ′·(ω:C)(τ
′).

Trivially, if τ ′(C) = >, then Rσ′·(ω:C)(τ
′) = Rσ′(τ ′) and then by induction

Rσ′(τ)(ϕij+1 ∧ θ) = Rσ′(τ ′)(ϕij ∧ σ′) = >. If τ ′(C) 6= >, then Rσ′·(ω:C)(τ
′) =

Rσ′(τ ′◦ω). From the side condition of Weaken+ and from Prop. 4.2.1 together
follows (τ ′◦ω)(ϕij+1∧C) = > and so by induction Rσ′(τ ′◦ω)(ϕij+1∧C∧σ′) = >,

so Rθ(τ ′)(ϕij+1 ∧ θ) = >.
In case rule Restore is the next step, assume an arbitrary truth assignment

τ ′ s.t. τ ′(ϕij+1) = τ ′(ϕij ∧C) = >. Then by induction we know that Rθ(τ ′)(ϕij ∧
θ) = > holds for all possible suffix θ of σij = σ · (ω : C) · σ′. Further, due
to Lemma 4.3.1, for any suffix θ′ of σ′ we have that Rθ′(τ ′)(C) = > since
τ ′(C) = > and C is clean w.r.t. θ′. Every suffix of σij+1 = σ ·σ′ is either a suffix
of σ′ and thus by induction satisfies the property, or has the form θ · σ′ where θ

100

6.3 Incremental SAT Solving and Inprocessing

is a suffix of σ. In that case Rθ·σ′(τ ′) = Rθ(Rσ′(τ ′)) = Rθ·(ω:C)(Rσ′(τ ′)) since
Rσ′(τ ′)(C) = >. By induction we know that Rθ·(ω:C)(Rσ′(τ ′)) = Rθ·(ω:C)·σ′(τ

′)
satisfies ϕij ∧ θ ∧ C ∧ σ′, thus Rθ·σ′(τ ′)(ϕij+1 ∧ θ ∧ σ′) = > must hold as well.

When rule Flush is employed, the form of σij+1 is similar to the case of rule
Restore, and thus a similar reasoning is applicable. The only difference that
in that case C is not part of ϕij+1, but ϕij+1 = ϕij |= C due to ξ and since by

induction Rθ′(τ)(ϕij+1∧ θ′) = > for any suffix θ′ of σ′, we have here as well that
Rσ′(τ)(C) = >.

Note however that most of the currently known and used pre- and inprocess-
ing techniques rely on rule Strengthen and thus it is questionable whether the
benefits of Flush outweighs the loss of that rule. Future work should investigate
other means to achieve an inprocessing calculus that has monotone reconstruc-
tion property and can capture meaningful practical techniques at the same time
or whether there are other ways to include rule Flush into our current calculus.
The above indicates that the consequences of a stronger reconstruction property
could lead to several interesting improvements both in theory and in practice.

6.3.3 Non-Model-Preserving Clause Learning

The current form of rule Learn− in our incremental calculus is rather strict.
The main reason to forbid the learning of non-implied clauses is to somehow
guarantee that all the learned clauses can be kept while preserving satisfiability,
even when new clauses are added to the formula (see Cor. 4.4.2). The challenging

aspect of the general redundancy property that was used as] in the non-
incremental calculus, is that this property is not monotone, i.e. if a clause C
found to be redundant w.r.t. a formula F , it is not guaranteed that C will be
redundant w.r.t. F ∧G as well, where G is a set of arbitrary new clauses.

The simplest way to overcome this difficulty is to employ a monotone redun-
dancy property, just as we did by changing] to . in Learn− in [94]. Another
way would be to adopt and adapt the handling of the clause elimination steps
to clause learning. Assume we can identify and store the reason (i.e. witness)
of each and every learned clause including the order of them. Then in new iter-
ations we could simply retract those clauses (and those that were derived with
the help of them) that are not justified any more. For that approach we need
to show what kind of information is sufficient to store in order to guarantee
soundness and how can we reduce the overhead of this bookkeeping in prac-
tice. Further, this approach requires also to consider what is happening when
clause learning and elimination are intermixed. Learned clauses can be reasons
of eliminations, and so the two techniques must consider each other.

Another possibility to support non-model-preserving clause learning is to
somehow guarantee that the redundant, learned clause C does not interfere
with any future set of clauses added to the formula. Based on that observation,
it is possible to have a special form of non-implied clause learning, for example

101

6 Extensions to Published Work

as we introduced LearnD in Fig. 6.5. This rule allows to learn so called defini-

ϕ [ρ] σ

ϕ ∧ CNF(υ∗ ≡ l1 ∨ l2) [ρ] σ

LearnD

where υ∗ 6∈ V ar(ϕ ∧ ρ ∧ σ) and CNF(υ∗ ≡ l1 ∨ l2) is clean w.r.t. σ

Figure 6.5: Rule to add definition lemma

tion clauses that can potentially lead to shorter derivations. What is important
is to guarantee that we always define a brand new variable (υ∗ in LearnD).
Notice however that l1 and l2 are arbritary literals, i.e. it can refer even to other
definition variables. Beyond that, we have to guarantee that the definition vari-
ables do not interfere with any newly added clauses. For that, we mark these
variables with ∗, noting that if a new clause contains υ∗, every occurrence of it
in ϕ, ρ and σ needs to be renamed to another fresh variable.

Rule LearnD allows to simulate extended resolution during incremental in-
processing (see e.g. [10, 123]). However, introducing that rule into our abstract
framework would modify most of our invariants and would complicate several
otherwise simple concepts. Thus, instead of explicitly introducing it to our cal-
culus, we just point out that these definition clauses can always be added to our
problem (more precisely to ϕ) via AddClauses (assuming that the uniqueness
of the definition variables is guaranteed in advance for each iteration). Do-
ing so, the formula to solve in a new phase becomes F i+1 = F i ∧ ∆i+1 ∧ E
in each iteration, where E contains only extension definition clauses, and so
F i ∧∆i+1 ≡sat F i ∧∆i+1 ∧ E holds.

6.3.4 One-Pass Solution Reconstruction

Rule AddClauses requires to restore a set of clauses from σ and each of these
restored clauses may trigger further clauses to be restored, that can trigger
again further clauses to restore and so on. Although Restore has this recursive
manner, it is still sufficient to traverse the reconstruction stack only once, as
long as it is done from the proper direction. In our paper we did not have the
space to elaborate on why it is so, thus here we give more details.

Rule AddClauses requires that each new clause C ∈ ∆ is clean w.r.t. the
whole reconstruction stack, i.e. every (ωi : Ci) of the stack has to be checked
and restored in case ωi ∩ ¬C 6= ∅. Notice that the order of these checks does
not matter. On the other hand, whenever a witness labelled clause (ωi : Ci) of

the reconstruction stack needs to be restored, due to ∂ we know that every
(ωj : Cj) ∈ σ where j > i has to be checked and restored in case ωj ∩ ¬Ci 6= ∅.
In principle we are looking for the smallest set A of (C, i) clause-index pairs
where C ∈ (∆ ∪ σ) is a clause to be added to the formula of the next iteration
and i ∈ N0 is a position in σ until C does not need to be checked whether

102

6.3 Incremental SAT Solving and Inprocessing

triggers clauses to restore, s.t. (i) ∀C ∈ ∆ : (C, 0) ∈ A (ii) If (C, i) ∈ A, then
∀(ωj : Cj) ∈ σ : (j > i ∧ ωj ∩ ¬C 6= ∅)⇒ (Cj , j) ∈ A. And so initiating A with
the clauses of ∆ (with index 0, since every clause of σ has to be checked), then
checking each clause of σ, against the potentially increasing A, starting from
(ω1 : C1) to (ωn : Cn) we can identify all those clauses that need to be restored
and added to ϕ of the next phase. Those labelled clauses (ωi : Ci) that fail the
check against the current A are not just added to A, but also removed from σ.

6.3.5 Scheduling Incremental Inprocessing

An other interesting question that we did not have the space in [94] to address
is how to schedule inprocessing when the solver is solving incremental problems.
Inprocessing SAT solvers usually have their own rhythm to invoke inprocessing
during search (e.g. after certain number of restarts done, conflicts found etc.)
and it is limited how much time is allowed to spend on it. In case it is invoked
too often or too long, the spent resources outweigh the benefits of simplifications.
Thus, usually a schedule of inprocessing has a decreasing frequency of invocation
defined by increasing thresholds. However, in an incremental problem sequence
using that schedule can lead to extreme cases. When each problem of the
sequence is just too simple to reach the first threshold of inprocessing invocation,
the formula is never simplified. Another extreme is that the subproblems are
really hard and so inprocessing is invoked really frequently at the beginning of
each phase. A solution to avoid these extremities in CaDiCaL was to consider the
whole incremental problem in the sense of inprocessing scheduling as a stand-
alone run. It simply means that in our presented results in [94] none of the
relevant inprocessing counters were reset in between phases.

6.3.6 Certificates with Incremental Inprocessing

Here we shortly discuss how proof generation of unsatisfiable formulas is affected
by incremental inprocessing. The question is how to handle restored clauses in
the produced proofs. Because of the side condition of rule Weaken+, we can be
sure that every clause on the reconstruction stack is semantically implied by the
original set of clauses (i.e. by F i). In the current implementation, whenever a
clause is restored via Restore, in the proof it is (re-)introduced as an original
clause that is part of ∆i+1. In the trivial case it was indeed an input clause
that got weakened. However, in case the clause was first learned with Learn−

and then rule Strengthen was applied before it was moved to the stack with
Weaken+, the clause is not original. Nevertheless, in that case the clause
must be implied (due to the side condition of rule Learn−) and so instead
of Weaken+, at some point Drop could have been applied on it. Thus, an
inprocessing strategy where rule Drop is preferred over rule Weaken+ in cases
when both is applicable avoids these potentially problematic situations.

103

6 Extensions to Published Work

6.3.7 Reconstructed Solutions after Incremental Inprocessing

The idea behind solution reconstruction at the end of inprocessing is to allow
non-model-preserving formula simplifications and at the same time guarantee
that a solution for the original, unprocessed formula is provided. However, an
implicit side effect of that process is that we lose some of the possible models
of the original formula. The reconstructed solution of an inprocessed formula is
partially determined by the witnesses of the employed clause elimination steps.
Finding different solutions for the simplified formula may result in different
reconstructed solutions. Nevertheless, the enumeration of all solutions of the
original formula is in most cases impossible if inprocessing was applied.

In the current inprocessing framework we consider always a single witness for
every clause elimination step (i.e. when we apply rule Weaken+). It would
not be hard to redefine (and reimplement) the reconstruction stack such that
we can assign more than one witness for an eliminated clause. Of course in
that case each of these witnesses should satisfy the side condition of Weaken+.
Though finding all reasons of redundancy is not necessarily possible, in some
cases it might be relatively cheap to identify more than one witnesses (e.g. when
more than one literal is blocked in a clause). It could provide benefits not
just regarding the number of reconstructible solutions. In case of incremental
inprocessing the number of restored clauses depends on how many redundancy
reasons are changed due to the new clauses. Having more possible witnesses
for an eliminated clause would allow to consider one (or more) of them that is
clean w.r.t. the new clauses. Thus in that case instead of restoring the clause,
we just need to remove the invalidated witnesses of it. Of course this extension
would be beneficial only if the overhead to identify the additional witnesses is
negligible or less than the resources consumed by restoring the clauses between
iterations. Nevertheless, it is an interesting possibility that might be worth
further investigations in the future.

104

6.4 Duplex Encoding of Staircase At-Most-One Constraint Sets

6.4 Duplex Encoding of Staircase At-Most-One
Constraint Sets

In this section we present some unpublished details regarding our proposed
duplex encoding of at-most-one sequence constraints.

6.4.1 CNF Encoding of BDD Nodes

Given a BDD node with auxiliary Boolean variable b, that decides on variable xi
and has a true child node with variable t and a false child node with variable f ,
we have several options to represent this node in conjunctive normal form. In [90]
an encoding was proposed, where each node of a constructed BDD is encoded
simply as an if-then-else node. This encoding (will be referred as Minisat+)
yields the following four clauses for each node of a BDD:

Minisat+ :

(a) x ∧ t→ b (b) ¬x ∧ f → b

(c) x ∧ ¬t→ ¬b (d) ¬x ∧ ¬f → ¬b.

To achieve arc-consistency in the general case, the encoding is extended with
the following two clauses in [90] (will be denoted as GAC-Minisat+):

GAC-Minisat+ : (a)− (d) ∧
(e) t ∧ f → b (f) ¬t ∧ ¬f → ¬b.

Notice that in our SCAMO constraints these plus clauses are not necessary in
order to achieve arc consistency. In each BDD each node is either an AMO or
an AMZ node. When an AMO node is encoded, we know that the node output
has to be true (i.e. b is a unit clause) and also that the false child has to be
true (because it is also an AMO node, i.e. f is a unit clause as well). Thus in
that case clauses (e) and (f) are root-satisfied. In case of AMZ nodes, clause
(e) is root-satisfied since t is always ⊥ and due to the same reason the other
clause can be simplified by removing t. Regarding clause (f), it is easy to see
that each decision variable xi belongs not just to the current AMZ node, but
to an AMO node as well, in a clause ¬xi ∨ t where t is actually the false child
of the current AMZ node. Thus when ¬f holds, the AMO node can propagate
¬xi, and so ¬f ∧ ¬xi together propagate ¬b via clause (d). So even though in
a longer way, but the propagation strength of Minisat+ and GAC-Minisat+ is
the same in our context, due to the structure of the BDDs and the existence of
the bonding clauses.

Another possible translation of pseudo-Boolean constraints to clausal form
via BDDs was proposed in [2] (we will denote this encoding simply as BDD-1).
In this work the monotonicity of the pseudo-Boolean constraints is exploited

105

6 Extensions to Published Work

during encoding, resulting in only the following two clauses:

BDD-1 :

(g) ¬f → ¬b (h) x ∧ ¬t→ ¬b.

Since our problem consists of AMO and AMZ constraints that are both mono-
tonically decreasing, BDD-1 as arc consistent encoding is applicable. Notice that
clause (c) of Minisat+ occurs as clause (h) in BDD-1. Further, in case of AMZ
nodes, clauses (f) and (g) become identical.

In our experiments, presented in Chapter 5, we combined the Minisat+ and
the BDD-1 encodings (will denote this encoding as CPAIOR). More precisely, we
encoded the AMO nodes with BDD-1, but most importantly we did not simplify
this encoding, i.e. we kept all the root satisfied clauses and falsified literals. In
case of AMOs over less than three variables the second clause was omitted. For
AMZ nodes we employed Minisat+ with simplifications.

Table 6.5 summarizes the presented encodings of each BDD node in case of
SCAMO constraints by the resulting clauses. To emphasize the similarities be-
tween the encodings, the clauses are sorted in each column following the same
order. Notice that each encoding has an equivalent CNF for AMO nodes (al-
though CPAIOR is kept without simplifications) while they are noticeably differ-
ent for the AMZ nodes.

Table 6.5: Different clausal representations of AMO and AMZ nodes.

CPAIOR Minisat+ GAC-Minisat+ BDD-1

AMO
(¬b ∨ ¬x ∨ t) (¬x ∨ t) (¬x ∨ t) (¬x ∨ t)

(¬b ∨ f) – – –

AMZ

(¬b ∨ ¬x) (¬b ∨ ¬x) (¬b ∨ ¬x) (¬b ∨ ¬x)
(¬b ∨ x ∨ f) (¬b ∨ x ∨ f) (¬b ∨ x ∨ f) –
(b ∨ x ∨ ¬f) (b ∨ x ∨ ¬f) (b ∨ x ∨ ¬f) –

– – (¬b ∨ f) (¬b ∨ f)

Though each of these encodings is arc consistent in case the node variables
of the corresponding constraints are forced to be true with unit clauses (see [2,
90] and our previous reasoning), they perform differently, as Table 6.6 shows.
Considering the same 24 antibandwidth problems as in [97], the table reports
the number of solved queries and the required time and memory consumption
for it in case of each BDD node encoding.

Although CPAIOR and Minisat+ are logically identical, having root-satisfied
clauses and root-falsified literals somehow made CPAIOR slightly better on small
instances (upper table). However, on larger problems (lower table) Minisat+

can solve more formulas. A possible explanation of this difference is simply the
order of clauses and variables in the two encodings (see e.g. [42] on possible
consequences of formula scrambling).

106

6
.4

D
u

p
lex

E
n

co
d

in
g

of
S
taircase

A
t-M

ost-O
n

e
C

on
strain

t
S

ets

Table 6.6: Results of different node encodings to solve the antibandwidth problem (TO = 1800 seconds and MO = 7 GB).

INSTANCE A B C D E F G H I J K L

|V | 30 32 39 48 49 54 57 59 85 100 117 118
|E| 103 90 46 176 59 124 127 281 219 247 162 179
LB 6 9 16 8 21 12 12 8 19 32 46 39
UB 8 9 17 9 22 13 14 8 27 40 58 39

CPAIOR

6 9 17 9 21 13 13 8 23 35 49 39
188.69 s 1.37 s 3.92 s 0.35 s 3.38 s 1.35 s 0.55 s 0.48 s TO 592.57 s TO 1.02 s
44 MB 11 MB 14 MB 14 MB 13 MB 19 MB 17 MB 21 MB 299 MB 203 MB 488 MB 53 MB

Minisat+

6 9 17 9 21 13 13 8 22 35 49 39
85.1 s 1.38 s 23.87 s 0.27 s 8.91 s 0.68 s 0.81 s 0.29 s TO TO TO 0.5 s
38 MB 11 MB 36 MB 14 MB 23 MB 16 MB 21 MB 21 MB 710 MB 461 MB 461 MB 49 MB

GAC-Minisat+

6 9 17 9 21 13 13 8 22 35 48 39
132.77 s 0.45 s 9.67 s 0.44 s 3.14 s 0.36 s 1.95 s 0.23 s TO 645.47 s TO 0.97 s
46 MB 9 MB 20 MB 14 MB 13 MB 14 MB 21 MB 24 MB 383 MB 154 MB 400 MB 54 MB

BDD-1

6 9 17 8 21 12 12 - - - - 39
179.45 s 34.64 s 32.25 s TO TO TO TO TO TO TO TO 1793.49 s
56 MB 38 MB 42 MB 290 MB 323 MB 357 MB 433 MB 536 MB 573 MB 764 MB 823 MB 949 MB

INSTANCE M N O P Q R S T U V W X

|V | 420 420 425 445 494 503 546 592 662 675 685 715
|E| 3720 3720 1267 1682 586 2762 1341 2256 906 1290 1282 2975
LB 28 28 91 78 219 46 256 103 219 326 136 112
UB 72 72 173 120 246 71 272 150 220 337 136 142

CPAIOR

34 34 99 - - 62 - - 220 - 136 -
TO TO TO TO TO TO TO TO 328.84 s TO 14.35 s TO

1558 MB 1558 MB 1048 MB 1581 MB 1033 MB 1685 MB 1120 MB 2252 MB 1584 MB 1508 MB 1418 MB 3400 MB

Minisat+

34 34 100 78 - 62 - - 220 - 136 -
TO TO TO TO TO TO TO TO 35.24 s TO 14.03 s TO

1491 MB 1491 MB 943 MB 1582 MB 1023 MB 1571 MB 1103 MB 1992 MB 1459 MB 1540 MB 1349 MB 2691 MB

GAC-Minisat+

34 34 97 - - 60 - - 220 - 136 112
TO TO TO TO TO TO TO TO 185.06 s TO 22.16 s TO

1486 MB 1486 MB 1212 MB 1662 MB 1035 MB 1683 MB 1150 MB 2596 MB 1551 MB 1511 MB 1838 MB 2803 MB

BDD-1

- - - - - - - - - - - -
TO TO TO TO TO TO TO TO TO TO TO TO

3094 MB 3094 MB 2834 MB 2036 MB 3021 MB 2304 MB 2337 MB 3013 MB 3119 MB 3481 MB 2616 MB 3257 MB

107

6 Extensions to Published Work

There is no large difference between the two encodings proposed in [90] in
our context. All in all, although GAC-Minisat+ can solve two formulas where
Minisat+ fails (in instances J and X), in general Minisat+ seems to be the
slightly better choice. Though encoding BDDs via BDD-1 leads to the smallest
amount of clauses, the memory consumption of the problem solving was here
the largest. All in all the performance of that approach was relatively poor in
our application since it failed on several smaller instances already, where the
other encodings led immediately to an answer (see e.g. the instances D-G).

6.4.2 Arc consistency of Duplex Encoding

As it was pointed out in [97], the arc consistency of our proposed duplex encoding
completely depends on the arc consistency of the employed CNF encoding of
each constructed BDDs.

Consider an AMO constraint x1 + · · · + xn ≤ 1 and a BDD built for it via
the method BDD-AMO(〈x1 · · ·xn〉). Let B contain the clauses of each node of that
BDD (considering e.g. the clauses of the second column in Table 6.5). Then we
know that the formula B ∧ b1, where b1 is the auxiliary Boolean variable that
was introduced for the root node of this AMO BDD, restores generalized arc
consistency through unit propagation. Thus, unit propagation on B∧ b1∧xi for
any 1 ≤ i ≤ n would assign false to every other variable xj of that constraint.
Similarly, given an AMZ constraint x1 + · · · + xn ≤ 0 and the encoding of the
related BDD as clauses in B, we can assume that unit propagation on B ∧ b0,
where b0 is the root of that BDD, propagates every variable xi (1 ≤ i ≤ n) to
be false. From that it also follows that unit propagation on B ∧ xi forces b0 to
be false.

Now we can more formally reason about the arc consistency of our duplex
encoding. Consider a set of variables X = 〈x1 x2 · · ·xn〉 and a staircase at-most-
one constraint set C with width w s.t. 2 < w ≤ n, i.e. C = SCAMO(X,w).

Theorem 6.4.1. Assuming an arc consistent encoding for each node of the
constructed BDDs, our proposed duplex encoding of C restores generalized arc
consistency through unit propagation.

Proof. Let D be the set of clauses resulting from the duplex encoding of C,
consisting of the clauses of each AMO and AMZ BDDs together with the bonding
clauses. We show that given a partial truth assignment to the variables in X,
if assigning a variable xi to true would violate C, unit propagation assigns false
to xi through the clauses in D.

Assigning a variable xi to true can violate C if and only if there is already a
variable xj assigned to true such that |i − j| < w. Then, there are two possi-
bilities: either xi and xj belong to the same window ωk, or to two consecutive
windows ωk, ωk+1 during duplex encoding.

The first case is trivial, since in that case we have a forward BDD for the AMO
constraint over the variables in ωk and an arc consistent encoding of each node

108

6.4 Duplex Encoding of Staircase At-Most-One Constraint Sets

of it in D. Beyond that, in the bonding clauses we have a unit clause ωfk -l1-AMO
that enforces the root of that BDD to be true. Thus, unit propagation on D∧xj
enforces every other variable in ωk (including xi) to be false. In case xi and xj
belong to two consecutive windows ωk, ωk+1, we need to take a closer look on
the AMZ constraints. W.l.o.g. assume that j < i, i.e. xj belongs to the window
ωk, while xi is in ωk+1. Then, since xj is true, the variable representing the root
node of the AMZ constraint over the variables 〈xj · · ·xkω〉 must be false. Thus,

¬ωfk -lt-AMZ holds, where lt is the layer of xj in window ωk (i.e. xj is the tth

element in ωk). Then the binary clause (ωfk -lt-AMZ∨ωbk+1-l(w−t)+2-AMZ) of the

bonding clauses will propagate ωbk+1-l(w−t)+2-AMZ, that forces every variable in
the t− 1 long prefix of window ωk+1 to be false. Since i− j < w, we know that
it includes xi as well.

6.4.3 Size of Duplex Encoding

In our submitted paper we provided a very generous upper bound on the number
of necessary clauses to encode a complete SCAMO constraint set over n variables
with width w. The presented upper bound was calculated with an encoding
where the AMO nodes may have up to two clauses, the last window is assumed
to have width w as well and we assumed that both the first and the last windows
are encoded in both directions.

In reality, assuming that the BDD nodes are encoded for example as in
Minisat+ (see Section 6.4.1), a more realistic approximation of the number
of clauses would be as follows:

#BDD-clauses ≈ ((2 · (M − 1)− 1) · 4 · (w − 1)) + 4 · (w′ − 1)

= 4 · (2M · (w − 1)− 3 · w + w′ + 2)

#BOND-clauses ≈ (M − 2) · (3 · (w − 1)− 2) + 3 · w′ − 2 + 2 · (M − 1)

= 3 ·M · w +M − 6 · w + 3 · w′ − 2

#BDD + #BOND-clauses ≈ 11 ·M · w − 7 ·M − 18 · w + 7 · w′ + 6

where w′ ∈ {1, . . . , w} is the width of the last window. We call it approximation,
since to keep the implementation simpler, some of the unit clauses might be
added more than once. Further, it is a design choice to use the same variables
or introduce equivalences between root-nodes of the constructed forward and
backward BDDs. In our implementation we added 4 · (M − 2) binary clauses to
express this equivalence. Figure 6.6 depicts how large is actually the difference
between our provided upper bound in [97] (increased with 4 · (M − 2)) and the
more accurate number of clauses presented here, in the case of n = 500.

109

6 Extensions to Published Work

Figure 6.6: Comparison of number of clauses for encoding a single SCAMO constraint
set on n = 500 variables and width w between 2 and 500.

6.4.4 Strategies to Solve the Antibandwidth Problem

Our approach to solve the antibandwidth problem in Chapter 5 was an iter-
ative method. In each iteration we asked a SAT solver whether it is possible
to assign unique labels to each node of the given graph, such that the smallest
difference between labels of neighbours is at least w, where w then was used as
a width in the SCAMO encoding. If the constructed formula was satisfiable, w
was increased with one and a new formula was built to solve. In case the for-
mula was unsatisfiable, it proved that the previous w was the maximal possible
minimum difference, i.e. the antibandwidth of that graph. From previous work
and theoretical results, for each graph we had a lower and an upper bound for
the possible antibandwidth values.

This search method in principle follows the pattern of iterative MaxSAT
solvers (see e.g. [182]), where a linear search is performed to identify the max-
imal number of satisfiable clauses. Sticking with that parallel drawn between
iterative MaxSAT solving algorithms and our antibandwidth search, it is not
hard to see that our iteration could have started from the upper bound of the
antibandwidth value or a binary search between the bounds would have been
possible as well. CaDiCaL, the SAT solver we used in our experiments, was the
best performing solver on the satisfiable instances of the SAT race in 2019 [122].
Thus, it is not surprising that the best results were found with the presented
increasing search, where all formulas given to the SAT solver, but the last one,
must be satisfiable (referred as ”Sat-Unsat” search in MaxSAT context). For
the sake of completeness, and to see if there were consequences of this choice, we
implemented and repeated the experiments with the other two strategies and
present the results in Table 6.7.

110

6
.4

D
u

p
lex

E
n

co
d

in
g

of
S
taircase

A
t-M

ost-O
n

e
C

on
strain

t
S

ets

Table 6.7: Results of different strategies to solve the antibandwidth problem (TO = 1800 seconds and MO = 120 GB).

Instance |V | |E| LB UB
Duplex – W-Increasing Duplex – W-Decreasing Duplex – Binary Search

Obj. Time MB Obj. Time MB Obj. Time MB

A-pores 1 30 103 6 8 6 185.52 52 6 189.8 47 6 192.68 47
B-ibm32 32 90 9 9 9 1.3 11 9 1.31 11 9 1.3 11
C-bcspwr01 39 46 16 17 17 3.85 13 17 3.7 14 17 3.96 13
D-bcsstk01 48 176 8 9 9 0.25 14 9 0.16 13 9 0.27 14
E-bcspwr02 49 59 21 22 21 3.37 13 21 3.55 13 21 3.49 13
F-curtis54 54 124 12 13 13 1.33 18 13 1.35 18 13 1.4 18
G-will57 57 127 12 14 13 0.57 19 13 0.23 17 13 0.24 15
H-impcol b 59 281 8 8 8 0.54 22 8 0.66 22 8 0.46 22
I-ash85 85 219 19 27 23 ≤ TO 331 < 26 TO 137 23 ≤ TO 125
J-nos4 100 247 32 40 35 585.33 190 35 588.04 163 35 610.62 179
K-dwt 234 117 162 46 58 49 ≤ TO 477 < 56 TO 152 - TO 250
L-bcspwr03 118 179 39 39 39 0.99 58 39 1.15 54 39 1.19 54

M-bcsstk06 420 3720 28 72 34 ≤ TO 1621 < 46 TO 1481 < 50 TO 1500
N-bcsstk07 420 3720 28 72 34 ≤ TO 1621 < 45 TO 1480 < 50 TO 1500
O-impcol d 425 1267 91 173 99 ≤ TO 1043 < 139 TO 827 - TO 1022
P-can 445 445 1682 78 120 - TO 1581 < 111 TO 1057 - TO 1199
Q-494 bus 494 586 219 246 - TO 1167 < 244 TO 959 - TO 949
R-dwt 503 503 2762 46 71 62 ≤ TO 1680 - TO 1561 58 ≤ TO 1634
S-sherman4 546 1341 256 272 - TO 1129 < 271 TO 1131 - TO 1093
T-dwt 592 592 2256 103 150 - TO 2253 < 148 TO 1755 - TO 2170
U-662 bus 662 906 219 220 220 319.73 1564 220 251.07 1565 220 340.25 1542
V-nos6 675 1290 326 337 - TO 1571 < 336 TO 1624 - TO 1559
W-685 bus 685 1282 136 136 136 14.33 1428 136 16.45 1453 136 15.51 1418
X-can 715 715 2975 112 142 - TO 3312 - TO 2529 - TO 2748

111

6 Extensions to Published Work

First of all, we can see that all three strategies could solve optimally exactly
the same set of instances. For most of the unsolved problem instances the
”Unsat-Sat” direction of search (noted as W-Decreasing in Table 6.7) success-
fully refined the upper bounds several times. In contrast to that, the binary
search either found the optimal value or could not refine any of the bounds sig-
nificantly. If we would construct a virtual best solver result, where we consider
the tightest lower and upper bounds found by any of the methods, the binary
search would not contribute on any of the unsolved instances. On the instances
where we found the antibandwidth, we observed that the SAT queries became
harder as the width got closer to the optimal value. This observation might
explain why binary search is not an efficient approach for this problem.

6.4.5 Benchmark Submission to the SAT Competition

Our experimental results in Chapter 5 showed that although our duplex encoding
yields smaller formulas than alternative SAT encodings, the resulting problem
instances are still rather challenging for current solvers. Another tendency that
we observed during the experiments is that for each graph the closer the width
of the SCAMO constraint to the optimal antibandwidth was, the longer it took
to solve the resulting SAT formula. Further, for each graph we know that a
SAT formula of a SCAMO constraint with a width that is smaller or equal than
the antibandwidth, must be satisfiable, while formulas with widths higher are
unsatisfiable. Thus, all in all, each larger graph in our experiment is actually a
perfect source to generate a sequence of interesting SAT formulas where both
the “difficulty” and the satisfiability of the formula can be influenced.

In the annual competition of SAT solvers (see e.g. [121, 122]) a formula is
considered “interesting” if it requires more than a minute to be solved with
MiniSAT [88], but takes less than an hour to solve with a current SAT solver. We
generated for each graph a sequence of interesting SAT formulas based on that
definition. More precisely, for each graph we considered every consecutive widths
in a wide range around the antibandwidth, or around the width (LB + UB)/2
in case the antibandwidth was not known, and generated our duplex encoding
of the feasibility query with each of these widths. Then we tried to solve each
of the generated formulas with MiniSAT in less than a minute. After that, we
dropped all those formulas where MiniSAT was successful and invoked CaDiCaL

on the remaining ones, allowing one hour solving time. In the end, we identified
121 interesting problems (91 satisfiable and 30 unsatisfiable).

Figure 6.7 shows the performance on a cactus plot of CaDiCaL (version 0v8)
on these instances. Due to the initial filtering with Minisat, the required solving
times of the resulting set of problem instances range between few seconds and
one hour with a very balanced distribution. On the figure the color of the
markers indicate whether the answer was SAT (green) or UNSAT (dark red)
and the letter of the marker indicates which graph was the base of the problem.
We can see that the unsatisfiable problems were relatively easier to solve and

112

6.4 Duplex Encoding of Staircase At-Most-One Constraint Sets

Figure 6.7: Required solving times of problem instances generated from duplex en-
coding of the antibandwidth problem (CaDiCaL version 0v8).

the hardest solved instances came from the two larger graphs marked with “T”
and “S”. We submitted these 121 instances together with some further unsolved
problems as a benchmark set to the SAT competition 2020.

113

Chapter 7

Conclusion

In this thesis we presented several SAT-based solution methods for computa-
tional problems that are beyond SAT. Each presented method either extends
and adapts existing SAT solving techniques, or simply exploits the strengths of
these solvers in a combined procedure. This chapter summarizes our findings,
focusing on our main contributions and raising some still unanswered questions.

7.1 Thesis Contributions

The main contributions of this thesis can be organized around the computational
problems that they are concerned with.

• Regarding quantified Boolean formulas, we introduced a new abstract cal-
culus that precisely captures the behaviour of duality-aware search-based
QBF solvers and allows to reason about these systems. We showed poten-
tial benefits of a symmetric problem formulation where the DNF represen-
tation is complete (e.g. searching for pure literals in cubes). Further, we
shortly presented how to adapt our calculus to reason about search-based
QBF solvers without the duality property. Beyond that, we informally
introduced a new procedure where search-based QBF solving is combined
with theory reasoning. In some preliminary experiments we showed how
this procedure can be employed as an incomplete solution method to prob-
lems with quantified Boolean variables and equalities.

• In the context of maximum satisfiability w.r.t. background theories, we in-
troduced an abstract solver to capture the behaviour of an implicit hitting
set based MaxSMT solver. The IHS approach is one of the most successful
approaches to tackle MaxSAT problems. To the best of our knowledge, our
system is the first attempt to lift this technique to the context of MaxSMT.
The main benefit of our proposed solution method is the clear separation
of theory reasoning, optimization and Boolean reasoning; thereby allowing
to exploit more specialized procedures for each component. As a further
contribution, we provided an abstract formalization for assumption based
SAT solving in our calculus. From the practical perspective, the exper-
iments with our implementation showed the potential of the introduced
flexible framework.

115

7 Conclusion

• Incremental SAT solving is essential in many application domains where
these solvers are employed. Inprocessing is another technique that sig-
nificantly contributes to the success of these tools. Though in the past
there were attempts to efficiently combine these techniques, our presented
solution is so-far the most general approach. We introduced a simple, el-
egant abstraction of incremental inprocessing, by altering and extending
existing work on non-incremental inprocessing. While previous work on
incremental inprocessing focused on specific simplification techniques one-
by-one, our framework is based on a general redundancy property that
embraces every currently used inprocessing technique. Although the re-
sulting system introduces some limitations regarding learned clauses, it
still allows most of the practical formula simplifications to be combined
with incremental solving. Another important innovation of our technique
is that it completely automates inprocessing of incremental problems. Our
method eliminates the error-prone burden for the user to identify parts of
the problems that might change in later iterations. Further, our proposed
algorithm is very simple to implement in any inprocessing SAT solver,
thus it can be employed easily in other systems. All in all, we believe that
our introduced solution method significantly contributed to the state-of-
the-art in incremental SAT solving.

• In our last work we proposed a combined solution procedure for the an-
tibandwidth optimization problem. Exploiting SAT solvers in solving
problems that are usually tackled with constraint or integer programming
approaches is a very interesting research direction that potentially leads
to efficient hybrid solution methods in the long run. Our main contri-
bution in that work was a BDD-based encoding of at-most-one sequence
constraints. Sequence constraints are common building blocks of problems
in constraint programming. One novelty of our proposed encoding is that
we construct multiple BDDs with different variable orderings for each de-
composed constraint. While any previous off-the-shelf SAT encoding of
these constraints is at least quadratic, our proposed solution leads to an
efficient structure sharing and thereby provides a problem representation
with linear size w.r.t. the number of variables. Our experiments on the
antibandwidth problem showed the benefits of this compact encoding.

7.2 Author Contributions

All the papers presented in Chapters 2-5 are results of a collaborative effort.
The works could not have happened by individual attempts and the influence of
co-authors makes it hard to attribute any contributions solely to a single author.
Nevertheless, here we try to isolate contributions made solely by the author of
this thesis, as it is required. Note however that most of these contributions were
discussed and refined in collaboration, thus in all cases the final results are the

116

7.2 Author Contributions

improved outcomes of a joint work.

Chapter 2 [96] Combining theory reasoning with QBF solving in order to
address synthesis problems was proposed by the present author. The main
motivation for the paper presented in Chapter 2 was to provide a first step
towards a formalization where this is possible. The present author constructed
the very first (not yet correct) draft of the proposed calculus and worked out
examples to demonstrate possible derivations.

Chapter 3 [93] Solving MaxSAT with the IHS approach was introduced in
a previous work [79] co-authored by Fahiem Bacchus. The incentive to involve
theory reasoning in IHS based MaxSAT solving to address MaxSMT was given
by the present author. Further, the present author implemented two different
instantiations of the introduced abstract MaxSMT solver, provided the opera-
tional description of possible instantiations in the paper, generated the scalable
problem benchmarks and conducted the experiments.

Chapter 4 [94] This work closes an important gap in the theory of pre-
viously introduced work [138] co-authored by Armin Biere, by adapting and
extending the inprocessing framework such that it is now applicable to incre-
mental problems. The present author constructed the main proofs regarding
the correctness of the introduced incremental calculus, described the inference
rules, constructed the examples used in the paper, and proposed the algorithm
for the implementation.

Chapter 5 [97] This work exploits and adapts the iterative MIP formalization
of the antibandwidth problem that was introduced by Markus Sinnl in [220]. The
present author proposed to consider each constraint twice, once in a right and
once in a left associative way. Further, the present author implemented and
provided the description of the encoding in the paper, analysed the size and arc
consistency of the new representation, developed the encoding tool to solve the
antibandwidth problem and conducted the experiments.

Chapter 6 The extensions and experiments presented in Chapter 6 were writ-
ten and conducted by the present author based on previously found or discussed
joint results. The algorithm of QBeq was proposed by the present author, while
it was implemented in a collaboration with Florian Lonsing.

A further paper where the present author was a collaborating co-author is [95].
In that paper we showed how Skolem-function reconstruction from partial cer-
tificates of preprocessed QBFs can be achieved. Though subject-wise this work
is related to our discussions here, the present author was not a main contributor,
thus it is not included in that thesis.

117

7 Conclusion

7.3 Future Work

Most of the computational problems discussed in this thesis are studied since
several years and will most likely remain studied for a while still. There are
some natural continuations of our presented work that we describe here shortly.

For instance, combining theory reasoning with QBF evaluation is yet com-
pletely in its infancy. Several open questions were raised in Section 6.1.9 that
must be answered in order to see whether it is an interesting decision procedure.

Regarding the combination of theory reasoning with maximum satisfiability,
a formal framework to describe core-guided and iterative solution approaches is
still missing. The goal would be to gain a calculus where all different approaches
are captured in a unified way. Such a system could help to understand the
strengths and limits of the different approaches.

As we saw in Chapter 4 and in Section 6.3, our proposed solution for incre-
mental inprocessing prohibits some inprocessing techniques that are important
from the practical perspective (e.g. blocked clause addition or symmetry break-
ing). Allowing these techniques could further improve incremental SAT solvers.
Another important question in incremental inprocessing that was not addressed
in our calculus is the role of assumptions. Handling them as root-level decisions
forbids to consider them during inprocessing. Exploiting their presence in a gen-
eral, efficient and sound way would lead to smaller formulas during inprocessing
and thus it is definitely something that is worth further investigation.

Adapting our antibandwidth solution method to the bandwidth problem is rel-
atively straightforward, but remains future work. Our proposed BDD-based en-
coding at several points exploits the fact that we consider only at-most-one con-
straints. It would be interesting to see whether our encoding could be adapted
to gain a compact representation of at-most-k sequence constraints. Another
potential direction of further research concerns combining multiple variable or-
ders in decision diagrams. Decision diagrams are frequently used in symbolic
optimization. In most cases the diagrams are either relaxed, so that they can
provide bounds, or restricted so that they can provide a heuristic. In our work
we saw that constructing several BDDs simultaneously over the same problem
with different variable orderings led to a compact problem representation. The
question is whether there is a potential benefit of that idea in the context of the
decision diagrams in symbolic optimization.

There are many practical and theoretically challenging computational prob-
lems that are related to SAT, either by extending or by exploiting it. In this
thesis we had a glance only on a very few of them, while many more remain
intriguing subjects of future research.

118

Bibliography

[1] Ignasi Ab́ıo, Graeme Gange, Valentin Mayer-Eichberger, and Peter J.
Stuckey. On CNF encodings of decision diagrams. In 13th International
Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming (CPAIOR), volume 9676 of LNCS, pages 1–17. Springer, 2016.

[2] Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, Enric Rodŕıguez-
Carbonell, and Valentin Mayer-Eichberger. A new look at BDDs for
pseudo-Boolean constraints. J. Artif. Intell. Res., 45:443–480, 2012.

[3] Tobias Achterberg. SCIP: solving constraint integer programs. Math.
Program. Comput., 1(1):1–41, 2009.

[4] Wilhelm Ackermann. Solvable cases of the Decision Problem. Studies in
Logic and the Foundations of Mathematics, North-Holland, Amsterdam,,
1954.

[5] Carlos Ansótegui, Fahiem Bacchus, Matti Järvisalo, and Ruben Martins.
MaxSAT Evaluation 2017, 2017. http://mse17.cs.helsinki.fi/.

[6] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based
MaxSAT algorithms. Artif. Intell., 196:77–105, 2013.

[7] Carlos Ansótegui, Joel Gabàs, and Jordi Levy. Exploiting subproblem
optimization in SAT-based MaxSAT algorithms. J. Heuristics, 22(1):1–
53, 2016.

[8] Josep Argelich, Daniel Le Berre, Inês Lynce, João Marques-Silva, and
Pascal Rapicault. Solving linux upgradeability problems using Boolean
optimization. In 1st International Workshop on Logics for Component
Configuration, (LoCoCo), volume 29 of EPTCS, pages 11–22, 2010.

[9] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified Boolean formulas.
Information Processing Letters, 8(3):121–123, 1979.

[10] Gilles Audemard, George Katsirelos, and Laurent Simon. A restriction of
extended resolution for clause learning SAT solvers. In 24th Conference
on Artificial Intelligence (AAAI). AAAI Press, 2010.

119

http://mse17.cs.helsinki.fi/

Bibliography

[11] Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon. Improving
Glucose for incremental SAT solving with assumptions: Application to
MUS extraction. In 16th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT), volume 7962 of LNCS, pages
309–317. Springer, 2013.

[12] Gilles Audemard and Laurent Simon. Glucose and Syrup in the SAT’17.
In Tomáš Balyo, Marijn J. H. Heule, and Matti Järvisalo, editors, Proc. of
SAT Competition 2017 – Solver and Benchmark Descriptions, volume B-
2017-1 of Department of Computer Science Series of Publications B, pages
16–17. University of Helsinki, 2017.

[13] Abdelwaheb Ayari and David A. Basin. QUBOS: deciding quantified
Boolean logic using propositional satisfiability solvers. In 4th Interna-
tional Conference on Formal Methods in Computer-Aided Design (FM-
CAD), volume 2517 of LNCS, pages 187–201. Springer, 2002.

[14] Fahiem Bacchus. GAC via unit propagation. In 13th International Confer-
ence on Principles and Practice of Constraint Programming (CP), volume
4741 of LNCS, pages 133–147. Springer, 2007.

[15] Fahiem Bacchus and Matti Järvisalo. Algorithms for maximum satis-
fiability with applications to AI. AAAI-16 Tutoral https://www.cs.

helsinki.fi/group/coreo/aaai16-tutorial/.

[16] Fahiem Bacchus and Jonathan Winter. Effective preprocessing with hyper-
resolution and equality reduction. In Selected Revised Papers of the 6th In-
ternational Conference on Theory and Applications of Satisfiability Test-
ing (SAT), volume 2919 of LNCS, pages 341–355. Springer, 2003.

[17] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew
Gacek, Kasper Søe Luckow, Neha Rungta, Oksana Tkachuk, and Carsten
Varming. Semantic-based automated reasoning for AWS access policies
using SMT. In 18th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pages 1–9. IEEE, 2018.

[18] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and
its applications. Formal Methods in System Design, 41(1):45–65, 2012.

[19] Tomáš Balyo, Armin Biere, Markus Iser, and Carsten Sinz. SAT Race
2015. Artificial Intelligence, 241:45–65, 2016.

[20] Tomáš Balyo, Andreas Fröhlich, Marijn J. H. Heule, and Armin Biere. Ev-
erything you always wanted to know about blocked sets (but were afraid to
ask). In 17th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), volume 8561 of LNCS, pages 317–332. Springer,
2014.

120

https://www.cs.helsinki.fi/group/coreo/aaai16-tutorial/
https://www.cs.helsinki.fi/group/coreo/aaai16-tutorial/

Bibliography

[21] Tomáš Balyo, Marijn J. H. Heule, and Matti Järvisalo, editors. Proc. of
SAT Competition 2016 – Solver and Benchmark Descriptions, volume B-
2016-1 of Department of Computer Science Series of Publications B. Uni-
versity of Helsinki, 2016.

[22] Tomáš Balyo, Marijn J. H. Heule, and Matti Järvisalo, editors. Proc. of
SAT Competition 2017 – Solver and Benchmark Descriptions, volume B-
2017-1 of Department of Computer Science Series of Publications B. Uni-
versity of Helsinki, 2017.

[23] Richa Bansal and Kamal Srivastava. Memetic algorithm for the antiband-
width maximization problem. J. Heuristics, 17(1):39–60, 2011.

[24] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence clo-
sure with free variables. In 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), vol-
ume 10206 of LNCS, pages 214–230, 2017.

[25] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare
Tinelli. CVC4. In 23rd International Conference on Computer Aided Ver-
ification (CAV), volume 6806 of LNCS, pages 171–177. Springer, 2011.

[26] Clark W. Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB
Standard: Version 2.6. Technical report, Department of Computer Sci-
ence, The University of Iowa, 2017. Available at www.SMT-LIB.org.

[27] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule,
Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, pages
825–885. IOS Press, 2009.

[28] Michael A. Bekos, Michael Kaufmann, Stephen G. Kobourov, and Sankar
Veeramoni. A note on maximum differential coloring of planar graphs. J.
Discrete Algorithms, 29:1–7, 2014.

[29] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints
in CHIP. Mathematical and Computer Modelling, 20:97–123, 03 1996.

[30] Marco Benedetti and Hratch Mangassarian. QBF-Based Formal Verifica-
tion: Experience and Perspectives. JSAT, 2008.

[31] Jeremias Berg, Matti Järvisalo, and Brandon Malone. Learning optimal
bounded treewidth bayesian networks via maximum satisfiability. In 17th
International Conference on Artificial Intelligence and Statistics (AIS-
TATS), pages 86–95, 2014.

121

Bibliography

[32] David Bergman, André A. Ciré, Willem-Jan van Hoeve, and John N.
Hooker. Decision Diagrams for Optimization. Artificial Intelligence: Foun-
dations, Theory, and Algorithms. Springer, 2016.

[33] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan,
and Toby Walsh. SLIDE: A useful special case of the CARDPATH con-
straint. In 18th European Conference on Artificial Intelligence (ECAI),
volume 178 of Frontiers in Artificial Intelligence and Applications, pages
475–479. IOS Press, 2008.

[34] Olaf Beyersdorff, Joshua Blinkhorn, and Meena Mahajan. Building strate-
gies into QBF proofs. In 36th International Symposium on Theoretical As-
pects of Computer Science, (STACS), volume 126 of LIPIcs, pages 14:1–
14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[35] Armin Biere. Resolve and expand. In Selected Revised Papers of 7th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT), volume 3542 of Lecture Notes in Computer Science, pages 59–70.
Springer, 2004.

[36] Armin Biere. Yet another local search solver and Lingeling and friends
entering the SAT competition 2014. In Adrian Balint, Anton Belov, Marijn
J. H. Heule, and Matti Järvisalo, editors, Proc. of SAT Competition 2014
– Solver and Benchmark Descriptions, Department of Computer Science
Series of Publications B, pages 39–40. University of Helsinki, 2014.

[37] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT
Entering the SAT Competition 2018. In Marijn J. H. Heule, Matti
Järvisalo, and Martin Suda, editors, Proc. of SAT Competition 2018 –
Solver and Benchmark Descriptions, volume B-2018-1 of Department of
Computer Science Series of Publications B, pages 13–14. University of
Helsinki, 2018.

[38] Armin Biere. CaDiCaL at the SAT Race 2019. In Marijn J. H. Heule, Matti
Järvisalo, and Martin Suda, editors, Proc. of SAT Race 2019 – Solver and
Benchmark Descriptions, volume B-2019-1 of Department of Computer
Science Series of Publications B, pages 8–9. University of Helsinki, 2019.

[39] Armin Biere, Daniel Le Berre, Emmanuel Lonca, and Norbert Manthey.
Detecting cardinality constraints in CNF. In 17th International Confer-
ence on Theory and Applications of Satisfiability Testing (SAT), volume
8561 of LNCS, pages 285–301. Springer, 2014.

[40] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. In 5th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), volume 1579 of LNCS, pages 193–207. Springer, 1999.

122

Bibliography

[41] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond.
Technical report, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr. 69, 4040 Linz, Austria, 2011.

[42] Armin Biere and Marijn J. H. Heule. The effect of scrambling CNFs.
In Daniel Le Berre and Matti Järvisalo, editors, Pragmatics of SAT, vol-
ume 59 of EPiC Series in Computing, pages 111–126. EasyChair, 2018.

[43] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

[44] Armin Biere, Tom van Dijk, and Keijo Heljanko. Hardware model checking
competition 2017. In 17th International Conference on Formal Methods
in Computer-Aided Design (FMCAD), page 9. IEEE, 2017.

[45] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νZ - an optimiz-
ing SMT solver. In 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 9035 of
LNCS, pages 194–199. Springer, 2015.

[46] Jasmin Christian Blanchette, Mathias Fleury, Peter Lammich, and
Christoph Weidenbach. A verified SAT solver framework with learn, for-
get, restart, and incrementality. J. Autom. Reasoning, 61(1-4):333–365,
2018.

[47] Jasmin Christian Blanchette, Mathias Fleury, and Christoph Weidenbach.
A verified SAT solver framework with learn, forget, restart, and incre-
mentality. In 8th International Joint Conference on Automated Reasoning
(IJCAR), volume 9706 of LNCS, pages 25–44. Springer, 2016.

[48] Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadžić, Uwe Egly, Florian
Lonsing, and Martina Seidl. Expansion-based QBF solving without recur-
sion. In 18th International Conference on Formal Methods in Computer-
Aided Design (FMCAD), pages 1–10. IEEE, 2018.

[49] Miquel Bofill, Jordi Coll, Josep Suy, and Mateu Villaret. SAT encodings
of pseudo-Boolean constraints with at-most-one relations. In 16th Inter-
national Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (CPAIOR), volume 11494 of LNCS,
pages 112–128. Springer, 2019.

[50] Miquel Bofill, Vı́ctor Muñoz, and Javier Murillo. Solving the wastewater
treatment plant problem with SMT. CoRR, abs/1609.05367, 2016.

[51] Natashia Boland, Thomas Kalinowski, Hamish Waterer, and Lanbo
Zheng. Mixed integer programming based maintenance scheduling for
the hunter valley coal chain. J. Scheduling, 16(6):649–659, 2013.

123

Bibliography

[52] Aaron R. Bradley. SAT-based model checking without unrolling. In 12th
International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), volume 6538 of LNCS, pages 70–87. Springer,
2011.

[53] Aaron R. Bradley and Zohar Manna. The calculus of computation - deci-
sion procedures with applications to verification. Springer, 2007.

[54] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In 7th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), volume 3855 of LNCS,
pages 427–442. Springer, 2006.

[55] Ronen I. Brafman. A simplifier for propositional formulas with many
binary clauses. In Bernhard Nebel, editor, 17th International Joint Con-
ference on Artificial Intelligence, (IJCAI), pages 515–522. Morgan Kauf-
mann, 2001.

[56] Martin Brain, Vijay D’Silva, Leopold Haller, Alberto Griggio, and Daniel
Kroening. An abstract interpretation of DPLL(T). In 14th International
Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 7737 of LNCS, pages 455–475. Springer, 2013.

[57] Sebastian Brand, Nina Narodytska, Claude-Guy Quimper, Peter J.
Stuckey, and Toby Walsh. Encodings of the SEQUENCE constraint. In
13th International Conference on Principles and Practice of Constraint
Programming (CP), volume 4741 of LNCS, pages 210–224. Springer, 2007.

[58] Rémi Brochenin and Marco Maratea. Abstract solvers for quantified
Boolean formulas and their applications. In 14th International Confer-
ence of the Italian Association for Artificial Intelligence (AI*IA), volume
9336 of LNCS, pages 205–217. Springer, 2015.

[59] Robert Brummayer and Armin Biere. Local two-level And-Inverter graph
minimization without blowup. In 2nd Doctoral Workshop on Mathematical
and Engineering Methods in Computer Science (MEMICS), 2006.

[60] Randal E. Bryant. Graph-based algorithms for Boolean function manip-
ulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[61] Randal E. Bryant. Binary decision diagrams. In Edmund M. Clarke,
Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Hand-
book of Model Checking, pages 191–217. Springer, 2018.

[62] Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with tran-
sitivity constraints. ACM Trans. Comput. Log., 3(4):604–627, 2002.

124

Bibliography

[63] Jerry R. Burch and David L. Dill. Automatic verification of pipelined mi-
croprocessor control. In 6th International Conference on Computer Aided
Verification (CAV), volume 818 of LNCS, pages 68–80. Springer, 1994.

[64] Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and
Hendrik Van Landeghem. The state of the art of nurse rostering. J.
Scheduling, 7(6):441–499, 2004.

[65] Marco Cadoli, Marco Schaerf, Andrea Giovanardi, and Massimo Giova-
nardi. An algorithm to evaluate quantified Boolean formulae and its ex-
perimental evaluation. J. Autom. Reasoning, 28(2):101–142, 2002.

[66] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi,
Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstanti-
nou, Jim Purbrick, and Dulma Rodriguez. Moving fast with software
verification. In 7th International Symposium on NASA Formal Methods
(NFM), volume 9058 of LNCS, pages 3–11. Springer, 2015.

[67] Paola Cappanera. A survey on obnoxious facility location problems, 1999.

[68] Claudio Castellini, Enrico Giunchiglia, and Armando Tacchella. SAT-
based planning in complex domains: Concurrency, constraints and non-
determinism. Artif. Intell., 147(1-2):85–117, 2003.

[69] Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno-Centeno,
and Santosh S. Vempala. Algorithms for implicit hitting set problems. In
22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 614–629. SIAM, 2011.

[70] Jingchao Chen. A new SAT encoding of the at-most-one constraint. Proc.
Constraint Modelling and Reformulation, 2010.

[71] Yibin Chen, Sean Safarpour, João Marques-Silva, and Andreas G. Veneris.
Automated design debugging with maximum satisfiability. IEEE Trans.
on CAD of Integrated Circuits and Systems, 29(11):1804–1817, 2010.

[72] Alonzo Church. A note on the entscheidungsproblem. J. Symb. Log.,
1(1):40–41, 1936.

[73] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In 19th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 7795 of LNCS, pages 93–107. Springer, 2013.

[74] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. A modular approach to MaxSAT modulo theories.
In SAT, volume 7962 of LNCS. Springer, 2013.

125

Bibliography

[75] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[76] Stephen A. Cook. The complexity of theorem-proving procedures. In 3rd
Annual ACM Symposium on Theory of Computing, pages 151–158. ACM,
1971.

[77] William Craig. Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. J. Symb. Log., 22(3):269–285, 1957.

[78] Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E.
Kavraki. An incremental constraint-based framework for task and motion
planning. I. J. Robotics Res., 37(10), 2018.

[79] Jessica Davies and Fahiem Bacchus. Solving MaxSAT by solving a se-
quence of simpler SAT instances. In 17th International Conference on
Principles and Practice of Constraint Programming (CP), volume 6876 of
LNCS, pages 225–239. Springer, 2011.

[80] Jessica Davies and Fahiem Bacchus. Postponing optimization to speed
up MAXSAT solving. In 19th International Conference on Principles and
Practice of Constraint Programming (CP), pages 247–262, 2013.

[81] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 4963 of LNCS,
pages 337–340. Springer, 2008.

[82] Leonardo Mendonça de Moura, Harald Rueß, and Maria Sorea. Lem-
mas on demand for satisfiability solvers. 5th International Conference on
Theory and Applications of Satisfiability Testing (SAT), 2:244–251, 2002.

[83] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solv-
ing the car-sequencing problem in constraint logic programming. In 8th
European Conference on Artificial Intelligence (ECAI), pages 290–295.
Pitmann Publishing, London, 1988.

[84] Stefan Dobrev, Rastislav Královic, Dana Pardubská, L’ubomı́r Török,
and Imrich Vrt’o. Antibandwidth and cyclic antibandwidth of hamming
graphs. Discret. Appl. Math., 161(10-11):1402–1408, 2013.

[85] Abraham Duarte, Rafael Mart́ı, Mauricio G. C. Resende, and Ricardo
M. A. Silva. GRASP with path relinking heuristics for the antibandwidth
problem. Networks, 58(3):171–189, 2011.

[86] Niklas Eén and Armin Biere. Effective preprocessing in SAT through vari-
able and clause elimination. In Fahiem Bacchus and Toby Walsh, editors,

126

Bibliography

8th International Conference on Theory and Applications of Satisfiability
Testing (SAT), volume 3569 of LNCS, pages 61–75. Springer, 2005.

[87] Niklas Eén, Alan Mishchenko, and Nina Amla. A single-instance incre-
mental SAT formulation of proof- and counterexample-based abstraction.
In 10th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pages 181–188. IEEE, 2010.

[88] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In 6th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT), volume 2919 of LNCS, pages 502–518. Springer, 2003.

[89] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electr. Notes Theor. Comput. Sci., 89(4):543–560, 2003.

[90] Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints
into SAT. JSAT, 2(1-4):1–26, 2006.

[91] Uwe Egly. On sequent systems and resolution for QBFs. In 15th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT), volume 7317 of LNCS, pages 100–113. Springer, 2012.

[92] Andreas T. Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David
Sier. Staff scheduling and rostering: A review of applications, methods
and models. European Journal of Operational Research, 153(1):3–27, 2004.

[93] Katalin Fazekas, Fahiem Bacchus, and Armin Biere. Implicit Hitting
Set Algorithms for Maximum Satisfiability Modulo Theories. In Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, 9th Interna-
tional Joint Conference on Automated Reasoning (IJCAR), volume 10900
of LNCS, pages 134–151. Springer, 2018.

[94] Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental In-
processing in SAT Solving. In Mikoláš Janota and Inês Lynce, editors,
22nd International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT), volume 11628 of LNCS, pages 136–154. Springer, 2019.

[95] Katalin Fazekas, Marijn J. H. Heule, Martina Seidl, and Armin Biere.
Skolem Function Continuation for Quantified Boolean Formulas. In Se-
bastian Gabmeyer and Einar Broch Johnsen, editors, 11th International
Conference on Tests and Proofs (TAP), volume 10375 of Lecture Notes in
Computer Science, pages 129–138. Springer, 2017.

[96] Katalin Fazekas, Martina Seidl, and Armin Biere. A Duality-Aware Cal-
culus for Quantified Boolean Formulas. In James H. Davenport, Viorel
Negru, Tetsuo Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt, and
Daniela Zaharie, editors, 18th International Symposium on Symbolic and

127

Bibliography

Numeric Algorithms for Scientific Computing, (SYNASC), pages 181–186.
IEEE, 2016.

[97] Katalin Fazekas, Markus Sinnl, Armin Biere, and Sophie Parragh. Du-
plex Encoding of Staircase At-Most-One Constraints for the Antiband-
width Problem. In Emmanuel Hebrard and Nysret Musliu, editors, 17th
International Conference on Integration of Constraint Programming, Ar-
tificial Intelligence, and Operations Research (CPAIOR), To be published.
Springer, 2020.

[98] Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered.
In 15th International Conference on Principles and Practice of Constraint
Programming (CP), volume 5732 of LNCS, pages 352–366. Springer, 2009.

[99] J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal
of Combinatorics, 16(6):1–219, 2009.

[100] Emden R. Gansner, Yifan Hu, and Stephen G. Kobourov. Gmap: Vi-
sualizing graphs and clusters as maps. In IEEE Pacific Visualization
Symposium PacificVis, pages 201–208. IEEE Computer Society, 2010.

[101] Yeting Ge, Clark W. Barrett, and Cesare Tinelli. Solving quantified veri-
fication conditions using satisfiability modulo theories. Ann. Math. Artif.
Intell., 55(1-2):101–122, 2009.

[102] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation for
quantified formulas in satisfiabiliby modulo theories. In 21st International
Conference on Computer Aided Verification (CAV), volume 5643 of LNCS,
pages 306–320. Springer, 2009.

[103] Allen Van Gelder. Contributions to the theory of practical quantified
Boolean formula solving. In 18th International Conference on Principles
and Practice of Constraint Programming (CP), volume 7514 of LNCS,
pages 647–663. Springer, 2012.

[104] Ian P. Gent. Arc consistency in SAT. In 15th Eureopean Conference on
Artificial Intelligence, (ECAI), pages 121–125. IOS Press, 2002.

[105] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Reasoning with
quantified Boolean formulas. In Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, pages 761–780.
IOS Press, 2009.

[106] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. QuBE 7.0. J.
Satisf. Boolean Model. Comput., 7(2-3):83–88, 2010.

128

Bibliography

[107] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Quantified Boolean formulas satisfiability library (qbflib). Website:
http://www.qbflib.org, 2001.

[108] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella.
Clause/Term resolution and learning in the evaluation of quantified
Boolean formulas. J. Artif. Intell. Res., 26:371–416, 2006.

[109] Stephan Gocht and Tomáš Balyo. Accelerating SAT based planning with
incremental SAT solving. In 27th International Conference on Automated
Planning and Scheduling (ICAPS), pages 135–139. AAAI Press, 2017.

[110] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. SAGE: white-
box fuzzing for security testing. Commun. ACM, 55(3):40–44, 2012.

[111] Alexandra Goultiaeva and Fahiem Bacchus. Off the Trail: Re-examining
the CDCL Algorithm. In SAT, 2012.

[112] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform
approach for generating proofs and strategies for both true and false QBF
formulas. In 22nd International Joint Conference on Artificial Intelligence
(IJCAI), pages 546–553. IJCAI/AAAI, 2011.

[113] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. Bridging the
gap between dual propagation and CNF-based QBF solving. In Design,
Automation and Test in Europe (DATE), pages 811–814. EDA Consortium
San Jose, CA, USA / ACM DL, 2013.

[114] Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark W. Barrett, and
Cesare Tinelli. A tale of two solvers: Eager and lazy approaches to bit-
vectors. In 26th International Conference on Computer Aided Verification
(CAV), volume 8559 of LNCS, pages 680–695. Springer, 2014.

[115] William K. Hale. Frequency assignment: Theory and applications. Pro-
ceedings of the IEEE, 68(12):1497–1514, 1980.

[116] Hyojung Han and Fabio Somenzi. Alembic: An efficient algorithm for
CNF preprocessing. In 44th Design Automation Conference (DAC), pages
582–587. IEEE, 2007.

[117] Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller.
MaxSMT-Based type inference for Python 3. In 30th International Con-
ference on Computer Aided Verification (CAV), volume 10982 of LNCS,
pages 12–19. Springer, 2018.

[118] Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Efficient CNF
simplification based on binary implication graphs. In 14th International
Conference on Theory and Applications of Satisfiability Testing (SAT),
volume 6695 of LNCS, pages 201–215. Springer, 2011.

129

Bibliography

[119] Marijn J. H. Heule, Matti Järvisalo, and Armin Biere. Revisiting hy-
per binary resolution. In 10th International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR), volume 7874 of LNCS, pages 77–93.
Springer, 2013.

[120] Marijn J. H. Heule, Matti Järvisalo, Florian Lonsing, Martina Seidl, and
Armin Biere. Clause elimination for SAT and QSAT. JAIR, 2015.

[121] Marijn J. H. Heule, Matti Järvisalo, and Martin Suda, editors. Proc. of
SAT Competition 2018 – Solver and Benchmark Descriptions, volume B-
2018-1 of Department of Computer Science Series of Publications B. Uni-
versity of Helsinki, 2018.

[122] Marijn J. H. Heule, Matti Järvisalo, and Martin Suda, editors. Proc. of
SAT Race 2019 – Solver and Benchmark Descriptions, volume B-2019-1
of Department of Computer Science Series. University of Helsinki, 2019.

[123] Marijn J. H. Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying
refutations with extended resolution. In 24th International Conference
on Automated Deduction (CADE), volume 7898 of LNCS, pages 345–359.
Springer, 2013.

[124] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Short proofs with-
out new variables. In 26th International Conference on Automated De-
duction (CADE), volume 10395 of LNCS, pages 130–147. Springer, 2017.

[125] Marijn J. H. Heule, Benjamin Kiesl, and Armin Biere. Strong extension-
free proof systems. J. Autom. Reasoning, 64(3):533–554, 2020.

[126] Randy Hickey and Fahiem Bacchus. Speeding up assumption-based SAT.
In 22nd International Conference on Theory and Applications of Satisfi-
ability Testing (SAT), volume 11628 of LNCS, pages 164–182. Springer,
2019.

[127] Georg Hofferek. Controller Synthesis with Uninterpreted Functions. PhD
thesis, Graz University of Technology, 2014.

[128] Georg Hofferek and Roderick Bloem. Controller synthesis for pipelined
circuits using uninterpreted functions. In 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign (MEMOCODE),
pages 31–42. IEEE, 2011.

[129] Georg Hofferek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong Roland
Jiang, and Roderick Bloem. Synthesizing multiple Boolean functions using
interpolation on a single proof. In 13th International Conference on For-
mal Methods in Computer-Aided Design (FMCAD), pages 77–84. IEEE,
2013.

130

Bibliography

[130] Steffen Hölldobler and Van-Hau Nguyen. On SAT-Encodings of the at-
most-one constraint. In George Katsirelos and Claude-Guy Quimper, edi-
tors, 12th International Workshop on Constraint Modelling and Reformu-
lation, pages 1–17, 2013.

[131] John N. Hooker. Solving the incremental satisfiability problem. J. Log.
Program., 15(1&2):177–186, 1993.

[132] Mikoláš Janota. SAT Solving in Interactive Configuration. PhD thesis,
University College Dublin, November 2010.

[133] Mikoláš Janota. On Q-resolution and CDCL QBF solving. In 19th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT), volume 9710 of LNCS, pages 402–418. Springer, 2016.

[134] Mikoláš Janota, William Klieber, João Marques-Silva, and Edmund M.
Clarke. Solving QBF with counterexample guided refinement. Artif. In-
tell., 2016.

[135] Mikoláš Janota and João Marques-Silva. Expansion-based QBF solving
versus Q-resolution. Theor. Comput. Sci., 577, 2015.

[136] Matti Järvisalo and Armin Biere. Reconstructing solutions after blocked
clause elimination. In 13th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT), volume 6175 of LNCS, pages
340–345. Springer, 2010.

[137] Matti Järvisalo, Armin Biere, and Marijn J. H. Heule. Blocked clause
elimination. In 16th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume 6015 of
LNCS, pages 129–144. Springer, 2010.

[138] Matti Järvisalo, Marijn J. H. Heule, and Armin Biere. Inprocessing rules.
In 6th International Joint Conference on Automated Reasoning (IJCAR),
volume 7364 of LNCS, pages 355–370. Springer, 2012.

[139] Jie-Hong Roland Jiang, Hsuan-Po Lin, and Wei-Lun Hung. Interpolating
functions from large Boolean relations. In International Conference on
Computer-Aided Design (ICCAD), pages 779–784, 2009.

[140] Martin Jonáš and Jan Strejček. Solving quantified bit-vector formulas us-
ing binary decision diagrams. In 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 9710 of LNCS,
pages 267–283. Springer, 2016.

[141] Martin Jonáš and Jan Strejček. Is satisfiability of quantified bit-vector
formulas stable under bit-width changes? (experimental paper). In 22nd
International Conference on Logic for Programming, Artificial Intelligence

131

Bibliography

and Reasoning (LPAR), volume 57 of EPiC Series in Computing, pages
488–497. EasyChair, 2018.

[142] Toni Jussila and Armin Biere. Compressing BMC encodings with QBF.
Electron. Notes Theor. Comput. Sci., 174(3):45–56, 2007.

[143] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and
Christoph M. Wintersteiger. A first step towards a unified proof checker for
QBF. In 10th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), volume 4501 of LNCS, pages 201–214. Springer,
2007.

[144] Henry A. Kautz and Bart Selman. Planning as satisfiability. In 10th
European Conference on Artificial Intelligence (ECAI), pages 359–363.
John Wiley and Sons, 1992.

[145] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution
for quantified Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

[146] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. A non-
prenex, non-clausal QBF solver with game-state learning. In 13th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT), volume 6175 of LNCS, pages 128–142. Springer, 2010.

[147] Donald E. Knuth. The Art of Computer Programming, Volume 4B, Fas-
cicle 6: Satisfiability. Addison-Wesley, 2015.

[148] Laura Kovács and Andrei Voronkov. First-order theorem proving and
vampire. In 25th International Conference on Computer Aided Verification
(CAV), volume 8044 of LNCS, pages 1–35. Springer, 2013.

[149] Jan Kraj́ıček and Pavel Pudlák. Quantified propositional calculi and frag-
ments of bounded arithmetic. Math. Log. Q., 36(1):29–46, 1990.

[150] Daniel Kroening and Ofer Strichman. A framework for satisfiability mod-
ulo theories. Formal Asp. Comput., 21(5):485–494, 2009.

[151] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algo-
rithmic Point of View, Second Edition. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2016.

[152] Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and Malay K.
Ganai. Robust Boolean reasoning for equivalence checking and functional
property verification. IEEE Trans. on CAD of Integrated Circuits and
Systems, 21(12):1377–1394, 2002.

[153] Oliver Kullmann. On a generalization of extended resolution. Discrete
Applied Mathematics, 96-97:149–176, 1999.

132

Bibliography

[154] Stefan Kupferschmid, Matthew D. T. Lewis, Tobias Schubert, and Bernd
Becker. Incremental preprocessing methods for use in BMC. Formal Meth-
ods in System Design, 39(2):185–204, 2011.

[155] Jean-Marie Lagniez and Armin Biere. Factoring out assumptions to speed
up MUS extraction. In 16th International Conference on Theory and
Applications of Satisfiability Testing (SAT), volume 7962 of LNCS, pages
276–292. Springer, 2013.

[156] Tracy Larrabee. Test pattern generation using Boolean satisfiability. IEEE
Trans. on CAD of Integrated Circuits and Systems, 11(1):4–15, 1992.

[157] Reinhold Letz. Lemma and model caching in decision procedures for quan-
tified Boolean formulas. In International Conference on Automated Rea-
soning with Analytic Tableaux and Related Methods (TABLEAUX), vol-
ume 2381 of LNCS, pages 160–175. Springer, 2002.

[158] Joseph Y.-T. Leung, Oliver Vornberger, and James D. Witthoff. On
some variants of the bandwidth minimization problem. SIAM J. Com-
put., 13(3):650–667, 1984.

[159] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha
Chechik. Symbolic optimization with SMT solvers. In POPL, pages 607–
618. ACM, 2014.

[160] Mark H. Liffiton and Jordyn C. Maglalang. A cardinality solver: More
expressive constraints for free - (poster presentation). In 15th International
Conference on Theory and Applications of Satisfiability Testing (SAT),
volume 7317 of LNCS, pages 485–486. Springer, 2012.

[161] Florian Lonsing and Armin Biere. Nenofex: Expanding NNF for QBF solv-
ing. In 11th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), volume 4996 of LNCS, pages 196–210. Springer,
2008.

[162] Florian Lonsing and Armin Biere. DepQBF: A Dependency-Aware QBF
Solver. JSAT, 7, 2010.

[163] Florian Lonsing and Uwe Egly. Incremental QBF solving. In 20th Interna-
tional Conference on Principles and Practice of Constraint Programming
(CP), volume 8656 of LNCS, pages 514–530. Springer, 2014.

[164] Florian Lonsing and Uwe Egly. Incremental QBF solving by DepQBF.
In 4th International Congress on Mathematical Software (ICMS), volume
8592 of LNCS, pages 307–314. Springer, 2014.

[165] Florian Lonsing and Uwe Egly. Evaluating QBF solvers: Quantifier al-
ternations matter. In 24th International Conference on Principles and

133

Bibliography

Practice of Constraint Programming (CP), volume 11008 of LNCS, pages
276–294. Springer, 2018.

[166] Florian Lonsing, Uwe Egly, and Martina Seidl. Q-Resolution with Gener-
alized Axioms. In 19th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), volume 9710 of LNCS, pages 435–452.
Springer, 2016.

[167] Florian Lonsing, Martina Seidl, and Allen Van Gelder. The QBF gallery:
Behind the scenes. Artif. Intell., 237:92–114, 2016.

[168] Manuel Lozano, Abraham Duarte, Francisco Gortázar, and Rafael Mart́ı.
Variable neighborhood search with ejection chains for the antibandwidth
problem. J. Heuristics, 18(6):919–938, 2012.

[169] Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effec-
tive learnt clause minimization approach for CDCL SAT solvers. In 26th
International Joint Conference on Artificial Intelligence (IJCAI), pages
703–711. ijcai.org, 2017.

[170] Sharad Malik and Lintao Zhang. Boolean satisfiability from theoretical
hardness to practical success. Commun. ACM, 52(8):76–82, 2009.

[171] Panagiotis Manolios, Jorge Pais, and Vasilis Papavasileiou. The Inez math-
ematical programming modulo theories framework. In 27th International
Conference on Computer Aided Verification (CAV), pages 53–69, 2015.

[172] Norbert Manthey. Riss 7. In Tomáš Balyo, Marijn J. H. Heule, and Matti
Järvisalo, editors, Proc. of SAT Competition 2017 – Solver and Benchmark
Descriptions, volume B-2017-1 of Department of Computer Science Series
of Publications B, page 29. University of Helsinki, 2017.

[173] Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated reen-
coding of Boolean formulas. In Revised Selected Papers of the 8th Interna-
tional Haifa Verification Conference on Hardware and Software: Verifica-
tion and Testing (HVC), volume 7857 of LNCS, pages 102–117. Springer,
2012.

[174] Christos T. Maravelias. On the combinatorial structure of discrete-time
MIP formulations for chemical production scheduling. Computers &
Chemical Engineering, 38:204–212, 2012.

[175] João Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce. Boolean
lexicographic optimization: algorithms & applications. Ann. Math. AI,
62(3-4):317–343, 2011.

[176] João Marques-Silva, Inês Lynce, and Sharad Malik. Conflict-driven clause
learning SAT solvers. In Armin Biere, Marijn J. H. Heule, Hans van

134

Bibliography

Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications, pages 131–153. IOS
Press, 2009.

[177] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce.
Incremental cardinality constraints for MaxSAT. In 20th International
Conference on Principles and Practice of Constraint Programming (CP),
volume 8656 of LNCS, pages 531–548. Springer, 2014.

[178] Ruben Martins, Saurabh Joshi, Vasco M. Manquinho, and Inês Lynce.
On using incremental encodings in unsatisfiability-based MaxSAT solving.
JSAT, 9:59–81, 2014.

[179] Orly Meir and Ofer Strichman. Yet another decision procedure for equality
logic. In 17th International Conference on Computer Aided Verification
(CAV), volume 3576 of LNCS, pages 307–320. Springer, 2005.

[180] Zevi Miller and Dan Pritikin. On the separation number of a graph.
Networks, 19(6):651–666, 1989.

[181] Erick Moreno-Centeno and Richard M. Karp. The implicit hitting set ap-
proach to solve combinatorial optimization problems with an application
to multigenome alignment. Oper. Res., 61(2):453–468, 2013.

[182] António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and
João Marques-Silva. Iterative and core-guided MaxSAT solving: A survey
and assessment. Constraints, 18(4):478–534, 2013.

[183] Alexander Nadel. Boosting minimal unsatisfiable core extraction. In 10th
International Conference on Formal Methods in Computer-Aided Design
(FMCAD), pages 221–229. IEEE, 2010.

[184] Alexander Nadel and Vadim Ryvchin. Efficient SAT solving under assump-
tions. In 15th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT), volume 7317 of LNCS, pages 242–255. Springer,
2012.

[185] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Preprocessing
in incremental SAT. In 15th International Conference on Theory and
Applications of Satisfiability Testing (SAT), volume 7317 of LNCS, pages
256–269. Springer, 2012.

[186] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Ultimately in-
cremental SAT. In 17th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), volume 8561 of LNCS, pages 206–218.
Springer, 2014.

135

Bibliography

[187] Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-
guided MaxSAT resolution. In 28th AAAI Conference on Artificial Intel-
ligence (AAAI), pages 2717–2723. AAAI Press, 2014.

[188] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. MiniZinc: Towards a standard CP
modelling language. In Christian Bessiere, editor, 13th International Con-
ference on Principles and Practice of Constraint Programming (CP), vol-
ume 4741 of LNCS, pages 529–543. Springer, 2007.

[189] Van-Hau Nguyen. SAT encodings of finite-CSP domains: A survey. In 8th
International Symposium on Information and Communication Technology
(SOICT), pages 84–91. ACM, 2017.

[190] Aina Niemetz, Mathias Preiner, Andrew Reynolds, Clark W. Barrett, and
Cesare Tinelli. Solving quantified bit-vectors using invertibility conditions.
In 30th International Conference on Computer Aided Verification (CAV),
volume 10982 of LNCS, pages 236–255. Springer, 2018.

[191] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. Btor2,
BtorMC and Boolector 3.0. In 30th International Conference on Com-
puter Aided Verification (CAV), volume 10981 of LNCS, pages 587–595.
Springer, 2018.

[192] Robert Nieuwenhuis and Albert Oliveras. On SAT modulo theories and
optimization problems. In 9th International Conference on Theory and
Applications of Satisfiability Testing (SAT), volume 4121 of LNCS, pages
156–169. Springer, 2006.

[193] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and
extensions. Inf. Comput., 205(4):557–580, 2007.

[194] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T). J. ACM, 53(6):937–977, 2006.

[195] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[196] Tobias Philipp and Peter Steinke. PBLib - A library for encoding pseudo-
Boolean constraints into CNF. In 18th International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 9340 of LNCS,
pages 9–16. Springer, 2015.

[197] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying propositional
clausal formulae. In 18th European Conference on Artificial Intelligence,
(ECAI), volume 178 of Frontiers in Artificial Intelligence and Applica-
tions, pages 525–529. IOS Press, 2008.

136

Bibliography

[198] David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. J. Symb. Comput., 2(3):293–304, 1986.

[199] Amir Pnueli, Yoav Rodeh, Ofer Strichman, and Michael Siegel. Deciding
equality formulas by small domains instantiations. In 11th International
Conference on Computer Aided Verification (CAV), volume 1633 of LNCS,
pages 455–469. Springer, 1999.

[200] Amir Pnueli and Ofer Strichman. Reduced functional consistency of un-
interpreted functions. Electron. Notes Theor. Comput. Sci., 144(2):53–65,
2006.

[201] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent
advances in SAT-based formal verification. Int. J. Softw. Tools Technol.
Transf., 7(2):156–173, 2005.

[202] Mathias Preiner, Aina Niemetz, and Armin Biere. Better lemmas with
lambda extraction. In 15th International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pages 128–135. IEEE, 2015.

[203] Steven David Prestwich. CNF encodings. In Armin Biere, Marijn J. H.
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 75–97. IOS Press, 2009.

[204] Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers eval-
uations (QBFEVAL’16 and QBFEVAL’17). Artif. Intell., 274:224–248,
2019.

[205] André Raspaud, Heiko Schröder, Ondrej Sýkora, L’ubomı́r Török, and
Imrich Vrt’o. Antibandwidth and cyclic antibandwidth of meshes and
hypercubes. Discret. Math., 309(11):3541–3552, 2009.

[206] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enu-
merative instantiation. In 24th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), vol-
ume 10806 of LNCS, pages 112–131. Springer, 2018.

[207] Jussi Rintanen. Improvements to the evaluation of quantified Boolean
formulae. In Thomas Dean, editor, 16th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1192–1197. Morgan Kaufmann,
1999.

[208] Eduardo Rodriguez-Tello, Hillel Romero-Monsivais, José Ramı́rez-
Torres, and Frédéric Lardeux. Harwell-Boeing graphs for the CB
problem. https://www.researchgate.net/publication/272022702 Harwell-
Boeing graphs for the CB problem, 2015.

137

Bibliography

[209] Olivier Roussel and Vasco M. Manquinho. Pseudo-Boolean and cardinality
constraints. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, pages 695–733. IOS Press, 2009.

[210] Ashish Sabharwal, Carlos Ansótegui, Carla P. Gomes, Justin W. Hart, and
Bart Selman. QBF modeling: Exploiting player symmetry for simplicity
and efficiency. In 9th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), volume 4121 of LNCS, pages 382–395.
Springer, 2006.

[211] Paul Saikko. Implicit Hitting Set Algorithms for Constraint Optimization.
PhD thesis, University of Helsinki, Helsinki, Finland, 2019.

[212] Paul Saikko, Johannes Peter Wallner, and Matti Järvisalo. Implicit hitting
set algorithms for reasoning beyond NP. In 15th International Conference
on Principles of Knowledge Representation and Reasoning (KR), pages
104–113. AAAI Press, 2016.

[213] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you
ever wanted to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask). In 31st IEEE Symposium
on Security and Privacy (S&P), pages 317–331. IEEE Computer Society,
2010.

[214] Jennifer A. Scott and Yifan Hu. Level-based heuristics and hill climbing
for the antibandwidth maximization problem. Numerical Lin. Alg. with
Applic., 21(1):51–67, 2014.

[215] Roberto Sebastiani. Lazy satisability modulo theories. J. Satisf. Boolean
Model. Comput., 3(3-4):141–224, 2007.

[216] Roberto Sebastiani and Silvia Tomasi. Optimization modulo theories with
linear rational costs. ACM Trans. Comput. Log., 16(2):12:1–12:43, 2015.

[217] Roberto Sebastiani and Patrick Trentin. OptiMathSAT: A tool for opti-
mization modulo theories. In 27th International Conference on Computer
Aided Verification (CAV), pages 447–454, 2015.

[218] Roberto Sebastiani and Patrick Trentin. On optimization modulo theories,
MaxSMT and sorting networks. In 23rd International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 10206 of LNCS, pages 231–248, 2017.

[219] Ankit Shukla, Armin Biere, Luca Pulina, and Martina Seidl. A survey on
applications of quantified Boolean formulas. In 31st IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), pages 78–84.
IEEE, 2019.

138

Bibliography

[220] Markus Sinnl. A note on computational approaches for the antibandwidth
problem. CoRR, abs/1910.03367, 2019.

[221] Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality
constraints. In 11th International Conference on Principles and Practice
of Constraint Programming (CP), volume 3709 of LNCS, pages 827–831.
Springer, 2005.

[222] Christine Solnon, Van-Dat Cung, Alain Nguyen, and Christian Artigues.
The car sequencing problem: Overview of state-of-the-art methods and
industrial case-study of the ROADEF’2005 challenge problem. European
Journal of Operational Research, 191(3):912–927, 2008.

[223] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers
to cryptographic problems. In 12th International Conference on Theory
and Applications of Satisfiability Testing (SAT), volume 5584 of LNCS,
pages 244–257. Springer, 2009.

[224] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring ex-
ponential time: Preliminary report. In 5th Annual ACM Symposium on
Theory of Computing, pages 1–9, 1973.

[225] Ofer Strichman. Pruning techniques for the SAT-based bounded model
checking problem. In Correct Hardware Design and Verification Methods,
11th IFIP WG 10.5 Advanced Research Working Conference (CHARME),
volume 2144 of LNCS, pages 58–70. Springer, 2001.

[226] Peter J. Stuckey. Lazy clause generation: Combining the power of SAT
and CP (and MIP?) solving. In 7th International Conference on Integra-
tion of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR), volume 6140 of LNCS, pages 5–9.
Springer, 2010.

[227] G. S. Tseitin. On the complexity of derivation in the propositional calculus.
In A. O. Slisenko, editor, Studies in Constr. Math. and Math. Logic, Part
II. , 1968.

[228] J. M. van den Akker. LP-based solution methods for single-machine
scheduling problems. PhD thesis, Technische Universiteit Eindhoven - De-
partment of Mathematics and Computer Science, 1994.

[229] Willem Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish
Sabharwal. Revisiting the sequence constraint. In 12th International Con-
ference on Principles and Practice of Constraint Programming (CP), vol-
ume 4204 of LNCS, pages 620–634. Springer, 2006.

[230] Juan Pablo Vielma. Mixed integer linear programming formulation tech-
niques. Siam Review, 57(1):3–57, 2015.

139

Bibliography

[231] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfia-
bility solvers and their applications in model checking. Proceedings of the
IEEE, 103(11):2021–2035, 2015.

[232] Xiaohan Wang, Xiaolin Wu, and Sorina Dumitrescu. On explicit formulas
for bandwidth and antibandwidth of hypercubes. Discret. Appl. Math.,
157(8):1947–1952, 2009.

[233] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. SPASS version 3.5. In 22nd
International Conference on Automated Deduction (CADE), volume 5663
of LNCS, pages 140–145. Springer, 2009.

[234] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça
de Moura. Efficiently solving quantified bit-vector formulas. Formal Meth-
ods in System Design, 42(1):3–23, 2013.

[235] Lin Yixun and Yuan JinJiang. The dual bandwidth problem for graphs.
Journal of Zhengzhou University, 35(1), 2003.

[236] Lei Zhang and Fahiem Bacchus. MaxSAT heuristics for cost optimal plan-
ning. In 26th AAAI Conference on Artificial Intelligence (AAAI), 2012.

[237] Lintao Zhang. Solving QBF by combining conjunctive and disjunctive nor-
mal forms. In 21st National Conference on Artificial Intelligence and the
18th Innovative Applications of Artificial Intelligence Conference, pages
143–150. AAAI Press, 2006.

[238] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified
Boolean satisfiability solver. In IEEE/ACM International Conference on
Computer-aided Design (ICCAD), pages 442–449. ACM / IEEE Computer
Society, 2002.

[239] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of sat-
isfaction and conflicts in quantified Boolean formula evaluation. In 8th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP), volume 2470 of LNCS, pages 200–215. Springer, 2002.

140

	Introduction
	Background
	Outline

	A Duality-Aware Calculus for Quantified Boolean Formulas
	Introduction
	Preliminaries
	Abstract QCDCL Solving
	Extensions
	Conclusion and Future Work
	Acknowledgment
	Appendix

	Implicit Hitting Set Algorithms for Maximum Satisfiability Modulo Theories
	Introduction
	Preliminaries
	Abstract Hitting Set based MaxSMT Solving
	Generic Hitting Set based MaxSMT
	Related Work
	Experimental Evaluation
	Conclusion

	Incremental Inprocessing in SAT Solving
	Introduction
	Preliminaries
	Inprocessing Rules for Incremental Solving
	Formal Correctness
	Implementation
	Experiments
	Conclusion

	Duplex Encoding of Staircase At-Most-One Constraintsfor the Antibandwidth Problem
	Introduction
	Preliminaries
	Staircase At-Most-One Constraint Sets
	Duplex Encoding of Staircase Constraint Sets
	Comparing Encodings of Staircase Constraints
	Experimental Evaluation
	Conclusion and Outlook

	Extensions to Published Work
	Quantified Boolean Formulas and Theory Reasoning
	Maximum Satisfiability and Theory Reasoning
	Incremental SAT Solving and Inprocessing
	Duplex Encoding of Staircase At-Most-One Constraint Sets

	Conclusion
	Thesis Contributions
	Author Contributions
	Future Work

	Bibliography

