
Duplex Encoding of Antibandwidth Feasibility
Formulas Submitted to the SAT Competition 2020

Katalin Fazekas 1 Markus Sinnl 2 Armin Biere 1 Sophie Parragh 2

1 Institute for Formal Models and Verification 2 Institute of Production and Logistics Management
Johannes Kepler University Linz, Austria

I. THE ANTIBANDWIDTH PROBLEM

This benchmark set is originating in our recent work on the
antibandwidth problem (in short ABP) presented in [1]. The
ABP is a max-min optimization problem where, for a given
graph G = (V,E), the goal is to assign a unique label from the
range [1, . . . , |V |] to each vertex v ∈ V , such that the smallest
difference between labels of neighbouring nodes is maximal.
Applications of the ABP include for example scheduling,
obnoxious facility location, radio frequency assignment.

To solve the ABP, in [2] an iterative solution method was
proposed, where each iteration asked whether there exists a
labelling to the graph, s.t. the smallest difference between
labels of neighbours is greater than k. Finding the highest
k where the answer is still affirmative determines the optimal
solution of the ABP. In [1] we slightly refined the proposed
formalization of [2] s.t. the question of each iteration can be
stated as combinations of at-most-one constraints sliding over
k-long sequences of binary variables. All in all, a feasibility
query for a given k consists of the following constraints:

∀` ∈ {1, . . . , |V |} :
∑
i∈V

x`i =1 (LABELS)

∀i ∈ V :
∑

`∈{1,...,|V |}

x`i =1 (VERTICES)

∀{i, i′} ∈ E, 1 ≤ λ ≤ |V | − k : (OBJk)
(λ+k)∑
`=λ

x`i ≤ 1 ∧
(λ+k)∑
`=λ

x`i′ ≤ 1 ∧(λ+k)∑
`=λ

x`i ≤ 0 ∨
(λ+k)∑
`=λ

x`i′ ≤ 0

 ,

where binary variables x`i = 1 (i ∈ V , ` ∈ {1, . . . , |V |}) if
and only if vertex i is assigned label `. Constraints (LABELS)
make sure that each label is used only once and constraints
(VERTICES) ensure that each node i ∈ V gets assigned one
label. Constraints (OBJk) forbid for each neighbouring node
to assign two labels from any k-wide range of labels.

II. SAT ENCODING

In [1] we defined a so-called staircase at-most-one con-
straint set (SCAMO) over a sequence of Boolean variables

Supported by the Austrian Science Fund (FWF) under projects W1255-N23,
S11408-N23 and by the LIT AI Lab funded by the State of Upper Austria.

X = 〈x1 x2 · · ·xn〉 for a given width k (where 1 < k ≤ n) as

SCAMO(X, k) =

(n−k)∧
i=0

 (i+k)∑
j=i+1

xj ≤ 1

 .

Then we proposed a linear size SAT encoding of this constraint
set. The main idea of the encoding is to slice up the n-long
sequence of Boolean variables into M k-long sequences and
build up the complete SCAMO constraint set as a combination
of smaller at-most-one and at-most-zero constraints, such that
these smaller constraints can be efficiently shared and reused.
Each smaller at-most-one and at-most-zero constraint is trans-
lated to SAT with standard BDD-based methods (see [3], [4]).
However, each of these constraints is encoded twice, first
considering a variable order xi+1 < xi+2 < . . . < xi+k in the
BDD construction, then the reverse of that order. The result is
an arc-consistent encoding of a SCAMO(X, k) constraint set
with approximately 11 ·M · k clauses, where M = dnk e.

Consider a feasibility query with value k of the ABP over a
graph G, as it was formalized in the previous section. We first
encode for each vertex v ∈ V a SCAMO(X, k) set, where X
is a |V |-long sequence of Boolean variables 〈x`1v x`2v · · ·x

`|V |
v 〉

representing all possible labels of v. Then, we simply add
the disjunction of the corresponding at-most-zero constraints
belonging to neighbouring nodes to encode all the constraints
of (OBJk). The exactly-one constraints of (VERTICES) are
encoded as conjunctions of the constructed smaller at-most-
one constraints and negations of at-most-zero constraints. The
other set of exactly-one constraints in (LABELS) is encoded
as conjunction of at-least-one constraints and the product
encoding of at-most-one constraints introduced in [5].

The resulting formula consists mostly of unit, binary and
ternary clauses from the SCAMO constraints. The larger
clauses are either |V |-long clauses from the at-least-one part
of the exactly-one constraints in (LABELS), or M -long clauses
from the at-least-one part of constraints (VERTICES).

III. GENERATED INSTANCES

To evaluate in [1] our proposed SAT-based solution
method for the ABP, we implemented a C++ tool called
DuplexEncoder. It takes as input a graph and a lower (LB)
and an upper bound (UB) of the antibandwidth. For each value
k starting from LB, it encodes the ABP as we presented in
the previous section and invokes a SAT solver on it to decide

feasibility. If the formula is SAT, it moves to the next k, if it
is UNSAT, the previous value was optimal and stops.

We experimented in [1] on the 24 graphs of the Harwell-
Boeing Sparse Matrix Collection [6]. Our benchmark set was
generated with DuplexEncoder from 12 graphs of [6],
mostly where we could not solve the ABP in 1800 seconds
in [1]. For each of these graphs first we considered every
consecutive k values in a very wide range around the value
of (LB + UB)/2 (see [1] for each value of LB and UB) and
generated the corresponding SAT formula of the ABP for each.

From the resulting formulas we identified the “interesting”
problems based on the description of the expected benchmarks
on the homepage of the SAT competition. First we dropped
all those formulas that Minisat [7] with default settings could
solve in less than a minute. The remaining 539 formulas were
tried to be solved in less than an hour with CaDiCaL [8],
[9] on our cluster with Intel Xeon E5-2620 v4 @ 2.10GHz
CPUs. CaDiCaL solved all in all 121 problems (91 SAT and 30
UNSAT) successfully and the required solving times of these
instances ranged between few seconds and one hour with a
very balanced distribution.

Due to our source AB problem, we know that whenever
a formula with a specific k-value is satisfiable, all the other
formulas with smaller k from the same graph must be SAT as
well. Further, an unsatisfiable k means that every formula with
larger k of the same graph is UNSAT as well. Based on these
observations, we identified another 44 problem instances that
must be satisfiable, but CaDiCaL could not solve. Since most
of the unsatisfiable formulas were immediately solved with
Minisat, we could not find further ones with this approach.

Further, for most of the graphs we collected two more yet
unsolved instances that are hopefully not too far in difficulty
from the solved ones. More precisely, for each graph where
it was possible, we considered the highest k-value where the
answer was SAT and picked the next formula (i.e. k + 1).
Similarly, we considered the lowest formula where the answer
was UNSAT and picked the next one (i.e. k − 1). For the
resulting 22 formulas we do not know whether they are
satisfiable or not, but hope that sooner or later they will be
solved.

All in all, we included in our submission the 121 “inter-
esting” problems together with the 44 unsolved satisfiable
formulas (having at the end 135 SAT and 30 UNSAT prob-
lems) and the 22 unsolved, completely unknown problems.
The result is a benchmark set of 187 problem instances,
where approximately 12% is unknown whether satisfiable
or not, 72% is SAT, the remaining 16% is UNSAT and
CaDiCaL can solve approximately 65% of the problems in one
hour. The file name of each submitted problem follows the
abw-[source-graph].w[k of query].cnf pattern.
The source code of the DuplexEncoder tool from [1] and
the script that was used to generate the benchmarks are both
available at http://fmv.jku.at/duplex/.

REFERENCES

[1] K. Fazekas, M. Sinnl, A. Biere, and S. Parragh, “Duplex encoding
of staircase at-most-one constraints for the antibandwidth problem,” in
CPAIOR, ser. LNCS. Springer, 2020, to appear.

[2] M. Sinnl, “A note on computational approaches for the antibandwidth
problem,” CoRR, vol. abs/1910.03367, 2019. [Online]. Available:
http://arxiv.org/abs/1910.03367

[3] I. Abı́o, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
V. Mayer-Eichberger, “A new look at BDDs for pseudo-boolean
constraints,” J. Artif. Intell. Res., vol. 45, pp. 443–480, 2012. [Online].
Available: https://doi.org/10.1613/jair.3653

[4] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” JSAT, vol. 2, no. 1-4, pp. 1–26, 2006. [Online]. Available:
https://satassociation.org/jsat/index.php/jsat/article/view/18

[5] J. Chen, “A new sat encoding of the at-most-one constraint,” Proc.
Constraint Modelling and Reformulation, 2010.

[6] E. Rodriguez-Tello, H. Romero-Monsivais, J. Ramrez-Torres,
and F. Lardeux, “Harwell-boeing graphs for the CB problem,”
https://www.researchgate.net/publication/272022702 Harwell-
Boeing graphs for the CB problem, 2015.

[7] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing, 6th International Conference, SAT
2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, ser. Lecture Notes in Computer Science, E. Giunchiglia and
A. Tacchella, Eds., vol. 2919. Springer, 2003, pp. 502–518. [Online].
Available: https://doi.org/10.1007/978-3-540-24605-3 37

[8] A. Biere, “CaDiCaL at the SAT Race 2019,” in Proc. of SAT Race
2019 – Solver and Benchmark Descriptions, ser. Department of Computer
Science Series of Publications B, M. Heule, M. Järvisalo, and M. Suda,
Eds., vol. B-2019-1. University of Helsinki, 2019, pp. 8–9.

[9] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, M. Heule, M. Järvisalo, M. Suda, M. Iser, and T. Balyo,
Eds., 2020.

http://fmv.jku.at/duplex/
http://arxiv.org/abs/1910.03367
https://doi.org/10.1613/jair.3653
https://satassociation.org/jsat/index.php/jsat/article/view/18
https://doi.org/10.1007/978-3-540-24605-3_37

