Optimizing a Verified SAT Solver

Mathias Fleury!-?

! Max-Planck-Institut fiir Informatik, Saarland Informatics Campus, Saarbriicken,
Germany
mathias.fleury@mpi-inf.mpg.de
2 Saarbriicken Graduate School of Computer Science, Saarland Informatics Campus,
Saarbriicken, Germany

Abstract. In previous work, I verified a SAT solver with dedicated im-
perative data structures, including the two-watched-literal scheme. In
this paper, I extend this formalization with four additional optimizations.
The approach is still based on refining an abstract calculus to a deter-
ministic program. In turn, an imperative version is synthesized from the
latter, which is then exported to Standard ML. The first optimization
is the extension with blocking literals. Then, the memory management
is improved in order to implement the heuristics necessary to implement
search restart and forget, which were subsequently implemented. This
required changes to the abstract calculus. Finally, the solver uses ma-
chine words until they overflow before switching to unbounded integers.
Performance has improved and is now closer to MiniSAT without prepro-
cessing.

1 Introduction

SAT solvers are highly optimized programs full of tricks. This makes them an
interesting case study for verification, both for the calculi and the data structures
involved. Since SAT solvers are a prototypical example of highly optimized
programs, it is interesting to see to what extent verification is feasible.

A common approach to increasing the trustworthiness of SAT solvers is to
make them return independently verifiable proofs that certify the correctness
of their answers. Such proofs were successfully produced by tools that solved
long-standing open problems such as the Pythagorean Triples Problem [20] or
Schur Number Five [19]. However, the production of proofs does not provide
total correctness guarantees: Although a correct proof guarantees that a solver
produced a correct result, it is not guaranteed that the solver will be able to
produce a proof in the first place. Moreover, proof checkers and SAT solvers
share similar techniques and data structures. They, thus, face similar efficiency
challenges, and the techniques presented here are applicable to checkers too.

In previous work with Blanchette, Lammich, and Weidenbach, I developed
a SAT solver, called IsaSAT [9], which I verified in Isabelle [34]. The first func-
tional implementation, IsaSAT-0, could not solve any problem on a collection of
problems from the SAT competitions. To improve performance, I extended Isa-
SAT with watched literals [15]. The resulting version, IsaSAT-17, could solve 390

problems. Watched literals are a well-known optimization [24] but there is more
to a modern SAT solver. In this article, I present four additional optimizations.

IsaSAT is specified using stepwise refinement, starting from a non-determi-
nistic transition system [9] that is refined [15] in several steps using the Isabelle
Refinement Framework [27-29]. Each layer refines and restricts the possible be-
havior until the program is fully deterministic. After that, Sepref [28] synthesizes
an imperative version of the functions which can be exported to Haskell, OCaml,
Scala, or Standard ML by Isabelle’s code generator. Each layer also inherits
properties from previous layers; for example, termination of the executable solver
is derived from the termination of the initial transition system (Section 3).

Because some idioms made the proofs hard to maintain and slow to process,
I first refactored the Isabelle formalization (Section 4). The first optimization
is the use of blocking literals [12] to improve Boolean constraint propagation
(Section 5). The idea is to cache a literal for each clause—if the literal is true in
the current partial model of the solver, the clause can be ignored (saving a likely
cache miss by not accessing the clause).

To avoid focusing on hard parts of the search space, the search of a SAT
solver is heuristically restarted and the search direction changed. Clauses that
are deemed useless are also forgotten. However, the standard heuristics rely on
the presence of meta-information in clauses that can be efficiently accessed. To
make this possible, I redesigned the clause representation, which also allowed me
to implement the position saving [16] heuristic (Section 6). Extending the SAT
solver with restart and forget required the extension of the calculus with watched
literals: Both behaviors were already present in my abstract calculus but were
not implemented in the next refinement step. Heuristics are critical and easy to
verify, but hard to implement in a way that improves performance (Section 7).

Using machine integers instead of unbounded integers is another useful opti-
mization. The new IsaSAT thus uses machine integers until the numbers don’t
fit in them anymore, in which case unbounded integers are used to maintain
completeness (theoretically, IsaSAT could have to learn more than 254 clauses
before reaching the conclusion, which would overflow clause counters). The code
is duplicated in the solver but specified only once (Section 8).

I analyze the importance of the different features and compare IsaSAT with
state-of-the-art solvers (Section 9). Even though the new features improve IsaSAT
significantly, much more work is required to match the best unverified solvers.
The formalization is available online® and is part of the Isabelle Formalization
of Logic (IsaFoL)) effort [3]. The results presented here were briefly mentioned in
Blanchette’s invited talk at CPP 2019 [7, Section 3].

2 The Isabelle Refinement Framework

The Isabelle Refinement Framework is at the center of my approach. Several
refinement layers are used and each layer inherits properties from previous steps.
Each step can change data structures and restrict the behavior of the program.

3 https://bitbucket.org/isafol/isafol/src/master/Weidenbach_Book/

https://bitbucket.org/isafol/isafol/src/master/Weidenbach_Book/

The framework allows me to express programs in a non-determinism monad.
A program can either fail if any execution fails (FAIL); otherwise it returns a
set of all possible results (RES X where any element of X is a possible outcome).
RETURN z is a special case that returns the single value z; i.e., RES{z}. The
bind function bind m f applies f to every outcome of m and is most of the time
written with the Haskell-style ‘do’ notation do {a +— m; fa}. Then higher-level
constructs are defined such as ‘while’ loops.

The framework provides a way to express refinement relations between two
programs. First, a program can restrict the behavior of another program. The
framework provides a partial order < such that RES X < RESY if and only if
X C Y and FAIL is the top element (for all programs r, » < FAIL). Second,
data structures can also be refined. Given a relation R, g < | f means that
every outcome of g is also an outcome of f up to conversion by R. To reason
on program refinement, the framework provides tactics that heuristically map
or align one instruction of the refined program to one instruction of the refining
one; for example, they can align RETURN z and RES X, yielding the goal z € X.

Finally, the framework provides the Sepref tool [28], which can synthesize a
deterministic program with imperative data structures in Imperative HOL [10]
from a non-deterministic program. For example, it can refine lists to arrays if all
accesses are proven valid. Once synthesized, Isabelle’s code generator [18] can
be used to export the code to Haskell, OCaml, Scala, and Standard ML.

Code generation in Isabelle is built around a mapping from Imperative HOL
operations to concrete code in the target language. This mapping is composed
of code equations translating code and the correctness of the mapping cannot be
verified in Isabelle. For example, accessing the n-th element of an Imperative
HOL array is mapped to accessing the n-th elements of the target language (e.g.,
Array.sub in Standard ML). These equations are the trusted code base.

3 IsaSAT

The IsaSAT solver, which this work extends, is organized in several refinement
layers. Each one restricts the behavior or refines the data structures.

The most abstract layer [9], called CDCL, describes a conflict-driven clause
learning (CDCL) transition system with dedicated transitions for restarts and
forget. CDCL builds a candidate model, called the trail or M. Each time a
clause is not satisfied by the trail, CDCL analyzes the clause to adapt the trail.

The second layer is a non-determinism transition system, called TWL, for two
watched literals, and is expressed using an inductive predicate. It is connected
to the previous calculus but restricts the behavior by forbidding restarts and
forgets. Each clause has two literals called watched; the others are unwatched.
The calculus operates on states (M, N, U, D, NP, UP, WS, @), where M is the
trail; N and U are the set of clauses of length greater than one; D is the conflict
that is analyzed or T; NP and UP are sets of clauses of length one; WS is a
multiset of pairs (L, C') in the clause C € N 4 U such that L is a literal watched;
Q is a multiset of literals. The SAT solver must visit each clause once after one

of its watched literal has been set, i.e. the clause C in (L,C) of WS. Each
visit results in either a change of one watched literal in order to maintain the
two-watched-literal invariant or no change. The Ignore rule describes the latter:

lgnore (M, N,U, T, NP, UP,{(L,C)} & WS,Q) =>twi (M,N,U,T,NP,UP,
WS, Q) if L' € watched C and L' € M.

Informally, if the other watched literal L’ is true, then no change of the watched
literals of the clause C' is required.

The third layer, called Algo, is expressed using the non-determinism monad
of the Refinement Framework. Compared with TWL,, the non-deterministic
program fixes the order of rules, restricting its behavior.

In the first three layers, clauses are represented by multisets. In the fourth
layer, called List, clauses become lists that are accessed by indices. This layer
mostly features invariants stating that accesses using indices are in bounds. In
the fifth layer, called WList, watch lists are added. They keep a mapping from
a literal to all the clauses that are watching it. This mapping is critical for
performance (recalculating them when required is too costly), but it is easier to
introduce watch lists separately. In previous refinement steps, the mapping was
recalculated when required. In a sixth layer, we add some additional invariants.

All heuristics are defined in the seventh and last layer, called Heur, leading to
fully deterministic functions. Sepref is used to synthesize an imperative version
of the code. Following the DIMACS format used in the SAT Competition, the
generated code uses 32-bit machine words for the literals. Finally, Isabelle’s code
generator is used to export code in Standard ML, where it is combined with a
trusted parser to get an executable program. IsaSAT is correct:

Theorem 1 (End-to-End Correctness) If the literals in the input clauses fit
in 32-bits and the input clauses do mo contain duplicate literals, then IsaSAT
returns a model if its input is satisfiable, or none if it is unsatisfiable.

4 Refactoring IsaSAT

The optimizations require changes in the proofs and in the code. My first step
is a refactoring to simplify maintenance and writing of proofs.

Proof Style. The original and most low-level proof style is the apply script: It is
a forward style and each tactic creates subgoals. It is ideal for proof exploration
and simple proofs. It is, however, hard to maintain. A more readable style
states explicit statements of properties in Isar [42]. The styles can be combined:
each intermediate step can be recursively justified by apply scripts or Isar. For
robustness, I use Isar where possible.

The tactics aligning goals are inherently apply style, but I prefer Isar. I will
show the difference on the example of the refinement of PCUlpig (Figure la)
by PCUl s (Figure 1b). Assume the arguments of the function are related by

definition PCUlpjg, where definition PCUly ;s where

PCU|A|gO LC S = dO { PCU||_i5t LC S = dO {
let (L,C) = LC; let (L,C) = LC;
L' < RES (watched C — {L}); L' < RES (watched C — {L});
if L' € trailiiet S then if L' € trailit S then

RETURN S RETURN S

else ... else ...

} }

(a) Ignore rule after refactoring (b) Ignore rule after refactoring

Fig. 1. Comparison of the code of Ignore rule in Algo before and after refactoring

the relation ((LC,S),(LC',S")) € Rstate- The first two goals stemming from
aligning PCUlajge with PCUIs: are

VL' L CC". (LC,S),(LC",8") € Ryate A LC = (L,C) A LC' = (L', C") —
(LCv LC/) S Rwatched (1)

VL' LC C'. (LC,S),(LC", ")) € Ryate A LC = (L,C) A LC' = (L', C")
N (LC, LCI) € Ryatched —
RES (Watched C - {L}) S‘U' Rother watched (RES (WatChed C/ - {L/})) (2>

where equation (1) relates the two lets, equation (2) the two RES, and the
relations Ryatched and Rother watched are two schematic variables that have to be
instantiated during the proof (e.g., by the identity). Although I strive to use
sensible variable names, they are lost when aligning the programs, making the
goals harder to understand.

A slightly modified version of Haftmann’s explore tool [17] transforms the
goals into Isar statements. The workflow to use it is the following. First, use
Sepref’s tactic to align two programs. Then, explore prints the structured
statements. Finally, those statements can be inserted in the theory, before the
goal. Figure 2a shows the output: equations (1) and (2) corresponds to the
two have statements, where have Rz if Pz and Qx for x stands for the
unstructured goal Vz. (P z A Q2 — Rx). Each goal can be named and used to
solve one proof obligations arising from the alignment of the two programs.

explore does not change the goals and hence, variables and assumptions
are not shared between proof steps, leading to duplication across goals. I later
expanded the explore to preprocess the goals before printing them: It uses
contexts (Figure 2b) that introduces blocks sharing variables and assumptions.
These proofs are now faster to check and write and minor changes are easier to
do. There is no formal link between the statements and the goal obligations: If
the goal obligations changes, the Isar statements have to be updated by hand.
After big changes in the refined functions, it can be easier to regenerate the
new statements, re-add them to the theory, and reprove them than to adapt the

have (LC, LC’) € Ryatched
if LC = (L,C) and LC' = (L',C")
and ((LC,S),(LC",S")) € Rstate
for L' LCC'
sorry
have RES (watched C — {L})
Sll Rother watched
(RES (watched C" — {L'})
if (LC,LC") € Ryatchea and
LC =(L,C)and LC' = (L',C")
and ((LC,S),(LS’,S")) € Rstate

context
fixesl' LCC' CC
assumes ((LC,S),(LC’,S")) € Rstate
and LC = (L,C) and

Lc' = (I/,C")
begin
lemma (LC, LC") € Ryatched
sorry

lemma RES (watched C' — {L})

Sl} Rother watched
(RES (watched C" — {L'}))

for L' LCC' CC’ sorry
sorry end

(a) Proof as generated by explore: no (b) Proof with contexts as generated

sharing of assumptions and variables explore_context, with sharing.

Fig. 2. Different ways of writing the proof that PCUILs from Figure 1a refines PCUlajgo

old one. Thanksfully, this only happens a few times, usually when significantly
changing the function anyway, which also significantly changes the proof.

Heuristics and Data Structures. At first, the implementation of heuristics
and optimized data structures was carried out in three steps:

1. use specification and abstract data structure in Heur (e.g., the conflict clause
is an optional multiset);

2. map the operations on abstract to concrete functions (e.g., the function con-
verting a clause to a conflict clause is refined to a specific function converting
a clause to a lookup table);

3. discharge the preconditions from step 2 with Sepref (e.g., no duplicate literal).

In principle, if step 2 is changed, Sepref can synthesize a new version of the code
without other changes, making it easy to generate several versions to compare
heuristics and data structures. However, in practice, this never happens because
optimizing code further always requires stronger invariants, requiring to change
the proofs for step 3. Moreover, Sepref’s failures to discharge preconditions are
tedious to debug. To address this, I switched to a different approach:

1’. introduce the heuristics and data structures in Heur (e.g., the conflict is a
lookup table);
2'. add assertions for preconditions on code generation to Heur.

The theorems used to prove steps 2 are now used during the refinement to Heur.
Sepref is also faster since the proofs of 2’ are now trivial. In one extreme case,
Sepref took 24 minutes before failing with the old approach. After identifying the
error, the solution was to add another theorem, recall Sepref, and wait. Thanks
to this simpler approach and the entire-state based refinement, Sepref now takes
only 16 to synthesize the code (or fail).

5 Adding Blocking Literals

Blocking literals [12] are an extension of the two-watched-literal scheme and are
composed of two parts: a relaxed invariant and the caching of a literal. Most
SAT solvers implement both aspects. Blocking literals reduce the number of
memory accesses (and, therefore, of cache misses).

Invariant. IsaSAT-17’s version of the two-watched-literal scheme is inspired by
MiniSAT 1.13. The key invariant is the following [15]:

A watched literal can be false only if the other watched literal is true or all
the unwatched literals are false.

I now relax the condition by replacing “the other watched literal” by “any other
literal”. This weaker version means that there are fewer changes to the watched
literals to do: If there is a true literal, no change is required. Accordingly, the
side conditions of the Ignore rule of TWL can be relaxed from L’ € watched C' to
L' € C. Adapting the proof of correctness was relatively easy. The proofs are
easy to fix (after adding some key lemmas) thanks to Sledgehammer [8], a tool
that uses automatic theorem provers to find proofs.

The generalized Ignore rule is refined to the non-determinism monad (Fig-
ure 3a). Since the calculus has only been generalized, no change in the refinement
would have been necessary. In the code, the rule can be applied in three different
ways: Either L', the other watched literal L”, or another literal from the clause is
true (the last case is not shown in Figure 3). Any literal (even the false watched
literal L) can be chosen for L'.

definition PCUlaj,, where definition PCUlwLisx where
PCUIlaig LC S = do { PCUlwiist Li S = do {
let (L,C) = LC; let (L', C) = watch_list_at S L i;
L' « RES{L'| L' € C}; let L' = L';
if L’ € trail S then if L’ € trail S then
RETURN S RETURN S
else do { else do {
L" <+ RES (watched C' — {L}); L" <+ RES (watched C' — {L});
if L' € trail S then if L' € trail S then
RETURN S RETURN S
else ... else ...
} }
} }

(a) Ignore part of the PCUlajq in Algo with (b) Ignore in WList with watch lists and
blocking literals blocking literals

Fig. 3. Refinement of the rule Ignore with blocking literals from Algo to WList

Caching of a literal. Most SAT solvers contain an second part: When visiting
a clause, it is often sufficient to visit a single literal [37]. Therefore, to avoid
a likely cache miss, a literal per clause, called blocking literal, is cached in the
watch lists. If it is true, no additional work is required; otherwise, the clause is
visited: If a true literal is found, this literal is elected as new blocking literal,
requiring no update of the watch lists.

In the refinement step WList, the choice is fixed to the cached literal from
the watch list (Figure 3b). The identity “let L' = L’;” helps the tactics of the
Refinement Framework to recognize L’ as the choice for RES {L' | L’ € C1}, i.e.
yielding the goal obligation L' € RES{L’' | L' € C}.

IsaSAT’s invariant on the blocking literal forces the blocking literal to be
different from the associated watch literal (corresponding to the condition L # L'
in Figure 3). This is not necessary for correctness but offers better performance
(since L is always false) and enables special handling of binary clauses: No
memory access is necessary to know the content of the clause. IsaSAT’s watched
lists contain an additional Boolean indicating whether the clause is binary.

6 Improving Memory Management

The representation of clauses and their metadata used for heuristics is crucial
for the performance of SAT solvers. Most solvers use two ideas: First, they keep
the metadata and clauses together. For example, MiniSAT puts the metadata
before the clause. The second idea is that memory allocation puts clauses one
after the other in memory to improve locality.

However, none of these two tricks can be directly obtained by refinement and
Isabelle offers no control over the memory allocator. Therefore, I implemented
both optimizations at once, similarly to the implementation in CaDiCaL [4]. The
implementation uses a large array, the arena, to allocate each clause one after
the other, with the metadata before the clauses (Figure 4): The lengths (here 4
and 5) precede the clause. Whereas the specifications allow the representation
to contain holes between clauses, the concrete implementation avoids it.

In IsaSAT-17, the clauses were a list of clauses, each one being a list of
literals (both list being refined to arrays). This representation could not be
refined to an arena. Moreover, it was not compatible with removing clauses
without shifting the positions. For example, if the first clause was removed from
the list [AV BV C; =AV —BV CV D], then the position of the second clause
changed. This was a problem as the indices are used in the trail. Therefore, I first
changed the representation from a list of lists to a mapping from natural numbers

init 3 A B C |learn| 4 -A | =B C D

Fig. 4. Example of arena module with two clauses AV BV C (initial clause, ‘init’) and
AV =BV CV D (learned clause, ‘learn’)

to clauses. Then, every element of the domain was mapped to a clause in the
arena with the same index (for example, in Figure 4, the clause 2 is AV BV C}
7is =AV =BV CV D; there are no other clauses).

Introducing arenas requires some subtle changes to the existing code base.
First, the arena contains natural numbers (clause length) and literals (clause
content). Therefore, I use a datatype (as a tagged union) that contains either a
literal or a natural number. Both types are refined to the same type, a 32-bits
word and the datatype is removed when synthesizing code. An invariant on
the whole arena describes its content. Moreover, because literals are refined to
32-bit machine words, the length has to fit in 32 bits. However, as the input
problems can contain at most 2'6 different atoms and duplicate-free tautologies,
the maximum length of a clause is 232. To make it possible to represent all clauses
including those of size 232, the arena actually keeps the number of unwatched
literals (i.e., the length minus 2), unlike Figure 4.

While introducing the arena, I also optimized parts of the formalization. I
replaced loops on a clause starting at position C' in the arena (i.e., iterations on
C +1i for i in [0, length C]) by loops on the arena fragment (i.e., iteration on ¢ for
i in [C, C +length C]). This makes it impossible to compare IsaSAT-30 with and
without the memory module without changes in the formalization. The impact
of the arena was small (improvement of 2%, and a few more problems could be
solved), but arenas make it possible to add metadata for heuristics.

Position Saving. I implemented a heuristic called position saving [16], which
requires an additional metadata. It considers a clause as a circular buffer: When
looking for a new literal, the search starts from the last searched position instead
of starting from the first non-watched literal of the clause. The position is saved
as a metadata of the clause. Similarly to CaDiCaL [4], the heuristic is only used
for long clauses (length larger than four). Otherwise, the position field is not
allocated in the arena (i.e., the size of the metadata depends on the clause size).
Incorporating the heuristic was easy thanks to non-determinism. For example,
to apply the Ignore rule, finding a true literal is sufficient, how it is found is not
specified. This makes it easy to verify a different search algorithm.

Although there exist some benchmarks showing that this technique improve
the performance of solvers [5], only CaDiCaL and Lingeling [4] implement it
and I did not know if it would improve IsaSAT: The generated code is hardly
readable and hard to change in order to test such techniques. However, it was
easy to add and it improves performance on most problems (see Section 9).

7 Implementing Restarts and Forgets

CDCL-based SAT solvers have a tendency to get stuck in a fruitless area of the
search space and to clutter their memory with too many learned clauses. Most
modern SAT solvers offer two countermeasures. Restarts try to avoid focusing
on a hard part of the search space. Forgets limit the number of clauses because
too many of them slow down the solver.

Completeness is not guaranteed anymore if restart and forget are applied
too often. To keep completeness, I delay them more and more. TWL does
not propagate clauses of length 1, because they do not fit in the two-watched-
literal scheme. These clauses are propagated during the initialization are cannot
be removed from the trail. However, such clauses will always be repropagated
by CDCL. Therefore, a TWL restart corresponds to a CDCL restart and some
propagations. If decisions are also kept, then IsaSAT can reuse parts of the
trail [36]. This technique avoids redoing some work after a restart. The trail could
even be entirely reused if the decision heuristics would do the same decisions.

When forgetting several clauses at once, called one reduction step, IsaSAT
uses the LBD [1] (least block distance) to sort the clauses by importance, and
then keeps only linearly many (linear in the number restarts). All other learned
clauses are deleted. I have not yet implemented garbage collection for the arena,
so deleted clauses currently remain in memory forever.

After clauses have been marked as deleted, the watch lists are not garbage
collected. Instead, before accessing a clause, IsaSAT tests if the clause has been
deleted or not. However, this is an implementation-specific detail I don’t want
to mirror in Algo. To address this, I changed Algo in a less intrusive way. Before
Algo was iterating over WS. After the change, a finite number of no-ops is added
to the while loop (Figure 5). When aligning the two programs, an iteration
over a deleted clause is mapped to a no-op. More precisely, there are two tests:
whether the blocking literal is true and whether the clause is marked as deleted.
If the blocking literal is true, the state does not change (whether the clause is
deleted or not). Otherwise, the clause has to be accessed. If the clause is deleted,
it is removed from the watch list.

IsaSAT uses the EMA-14 heuristic [6], which is based on two exponential
moving averages of scores, implemented using fixed-points numbers: a “slow”
average measuring the long-term tendency of the scores and a “fast” one for the
local tendency. If the fast average is worse than the slow one, the heuristic is
triggered. Then, depending on the number of clauses, either restart or reduce is
triggered. The heuristic follows the unpublished implementation of CaDiCaL [4],
with fixed-point calculations. This is easier to implement than Glucose’s queue
for scores. Due to programming errors, it took several iterations to get EMA-14

to_skip < RES {n. True};
WHILE(A(to _skip,,S). (there is a clause to update or to_ skip > 0)))
(AM(to__skip,i,S).do{
skip _element <~ RES {b | b — to_skip > 0}
if skip _element then RETURN(to__skip — 1,1, 5) (* do nothing *)
else do{
LC < (some literal and clause to update);
PCUlago LC S }

)

Fig. 5. Skipping deleted clauses during iteration over the watch list

10

right: The first version never restarted while the second did as soon as possible.
Although both versions were complete, the last version performed better.

8 Using Machine Integers

When I started to work on IsaSAT, it was natural to use unbounded integers
to index clauses in the arena (refined from Isabelle’s natural numbers). First,
they are the only way to write lists accesses in Isabelle (further refined to array
accesses). Second, they are also required for completeness to index the clauses and
there was also no code-generation setup for array accesses with machine words.
Finally, the Standard ML compiler I use, MLton [41], efficiently implements
numbers first as machine words and then as unbounded GMP integers. However,
profiling showed that subtractions and additions took among them around 10%
of the time.

I decided to switch to machine words. Instead of failing upon overflow or
restarting the search from scratch with unbounded integers, IsaSAT switches in
the middle of the search:

while — done A = overflow do
(invoke the 64-bit version of the solver’s body);

if —~done then
(convert the state from 64-bit to unbounded integers);
while — done do
(invoke the unbounded version of the solver’s body)

The switch is done pessimistically. When the length of the arena is longer
than 264 — 216 — 5 (maximum size of a non-tautological clause without duplicate
literals is 2'¢ and 5 is the maximal number of header fields), the solver switches
to unbounded integers, regardless of the size of the next clause. This bound is
large enough to make a switch unlikely in practice. In Isabelle, the two versions
of the solver’s body are just two instances of the same function where Sepref has
refined Isabelle’s natural numbers differently during the synthesis. To synthesize
machine words, Sepref must prove that numbers cannot overflow. For example, if
1 is refined to the 64-bit machine word w, then the machine-word addition w + 1
refines i + 1 if the addition does not overflow, i.e., i + 1 < 264, The code for
data structures like resizable arrays (used for watch lists) has not been changed
and, therefore, still uses unbounded integers. However, some code was changed
to limit manipulation on the length of resizable arrays.

IsaSAT uses 64-bit machine words instead of 32-bit machine words. They
are used in the trail but mostly in the watch lists. Using 32-bits words would be
more cache friendlier for the trail. However, this would not make any difference
for watch lists. Each element in a watch list contains a clause index, a 32-bit
literal, and a Boolean. Due to padding, there is not size difference for 32 and
64-bit words. Moreover, the SAT Competition contains problems that require
more memory than fits in 32 bits: After hitting the limit, IsaSAT would switch
to the slower unbounded version of the solver, whereas no switch is necessary for
64-bit indices.

11

9 Evaluation

I evaluated IsaSAT-30 on preprocessed problems from the SAT Competitions 2009
to 2017 and from the SAT Race 2015 using a timeout of 1800 s. The hardware was
an Intel Xeon E5620, 2.40 GHz, 4 cores, 8 threads. Each instance was limited
to 10GB of RAM. The problems were preprocessed by CryptoMiniSat [3§].
The motivation behind this is that preprocessing can significantly simplify the
problem. Detailed results can be found on the companion web page?.

State-of-the-art solvers solve more problems than IsaSAT with the default
options (Figure 6). Since the instances have already been preprocessed, the
difference comes from a combination of simplifications (pre- and inprocessing),
better heuristics, and a better implementation. To assess the difference, I have
also benchmarked the solvers without simplification (third column of Figure 6).
Heule’s MicroSAT [21] aims at being very short (240 lines of code including
comments). Compared with IsaSAT, it has neither position saving nor blocking
literals but is highly optimized and its heuristics work well together. The version
without the four presented optimizations differs from IsaSAT-17 by various minor
optimizations. IsaSAT performs better than the only other verified SAT solver
with efficient data structures I know of, versat.

I compared the impact of reduction, restart, position saving, and machine
words (Figure 7). Since Standard ML is garbage-collected, the peak memory
usage depends on the system’s available memory. The results show that restarts
and machine words have a significant impact on the number of solved problems.
The results are less clear for the other features. Position saving mostly has a
positive impact. The negative influence of reduction hints at a bad heuristic: 1
later tuned the heuristic by keeping clauses involved in the conflict analysis and
the results improved from 749 to 801 problems. The fact that garbage collection
of the arena is not implemented could also have an impact, as memory is wasted.

4 https://people.mpi-inf.mpg.de/ mfleury/paper/results-NFM/results.html

Default options No simplification

SAT solver Solved Average Solved Average
time (s) time (s)

CryptoMiniSat 1774 349 1637 349

Glucose 1703 320 1696 303

CaDiCaL 1677 361 1602 346

MiniSAT 1388 326 1373 317

MicroSAT 1018 310 N/A

IsaSAT-30 fixed heuristic =~ 801 359 N/A

IsaSAT-30 without the 433 301 N/A

four optimizations

IsaSAT-17 393 220 N/A

versat [35] 368 224 N/A

Fig. 6. Performance of some SAT solvers (N/A if no simplification is done by default)

12

https://people.mpi-inf.mpg.de/~mfleury/paper/results-NFM/results.html

Reduction Restarts Position Machine Solved Average

saving words time memory
(s) (GB)

520 294 2.1
v 551 291 2.3
v 526 281 2.1
v v 547 289 2.3
N 666 292 2.2
v v 713 312 2.5
v v 712 294 2.4
v v V4 753 306 2.7
Vv 433 213 1.6
v v 448 207 1.7
v Vs 446 212 1.6
v v v 456 204 1.7
v Vv 677 336 2.8
v v v 738 339 3.1
v v v 705 324 2.9
v v v v 749 338 3.2

Fig. 7. Benchmarks of variants of IsaSAT-30 before fixing the forget heuristic

10 Discussion and Related Work

Extracting Efficient Code. When refining the code, it is generally not clear
which invariants will be needed later. However, I noticed that improvements on
data structures also require stronger properties. Therefore, proving them early
can help further refinement but also makes the proofs more complicated. Another
issue is that the generated code is not readable, which makes it extremely hard
to change in order to test if a data structure or a heuristic improves speed.
Profiling is crucial to obtain good performance. First, it shows if there are
some obvious gains. However, profiling Standard ML code is not easy. MLton
has a profiler which only gives the total amount of time spent in the function
(not including the function calls in its body) and not the time per path in the
call graph. So performance bugs in functions that don’t dominate run time
are impossible to identify. One striking example was the insertion sort used
to sort the clauses during reduction. It was the comparison function that was
dominating the run time, not the sort itself, which I changed to quicksort.
Continuous testing also turned out to be important. It can catch performance
regression before any change in the search behavior is done, allowing me to
debug them. One extreme example was the special handling of binary clauses:
A Boolean was added to every element of the watch list, changing the type from
word64 * word32 to word64 * (word32 * bool). This change in the critical
spot of any SAT solver caused a performance loss of around 20% due to 3.5
times as many cache misses. Since the search behavior had not changed, I took
a single problem and tried to understand where the regression came from. First,
word64 * (word32 * bool) is less efficient than word64 * word32 * bool as

13

it requires a pointer for word32 * bool. This can be alleviated by using a single
constructor datatype (the code generator generates the later version and the
single constructor is optimized away). However, there is a second issue: The
tuple uses three 64-bit words, whereas only two would be used in the equivalent
C structure. I added code equations to merge the word32 * bool into a single
word64 (with 31 unused bits), solving the regression. Developers of non-verified
SAT solvers face similar issues® but they are more tools for C and C++.

While working on the SAT solver, I added several code equations to the trusted
code base. The additional code equations are either trying to avoid conversions
to unbounded integers (IntInf) and back (as would happen by default when
accessing arrays) or related to printing statistics during the execution. Whether or
not the equations are safe is not always obvious. For example, the code equations
to access arrays without converting the numbers to unbounded integers and back®
are safe as long as the array bounds are checked.

However, IsaSAT is compiled with an option that deactivates array-access
bound checks. When accessing elements outside of an array, the behavior is
undefined. As long as I am using Sepref and the assumptions of Theorem 1 hold,
validity of the memory accesses is proved. Without the custom code equations
and with bound checks, only 536 problems are solved, instead of 749.

Equivalent C code would be more efficient. First, as already mentioned,
there are differences in the memory guarantees. Standard ML does not provide
information on the alignment. A second issue are spurious reallocations. A sim-
ple example is the function fun (propa, s) => (propa + 1, s). This simple
function (counting the number of propagations) is responsible for 1.7% of all
allocations although I would expect no extra allocation. A third issue is that
the generated code is written in a functional style with many unit arguments
fun () => ... to ensure that side effects are done in the right order. Not every
compiler supports optimizing these additional constructs away.

All the optimizations have an impact on the length of the formalization. The
whole formalization is around 31 000 lines of proof for refinement from TWL to
the last layer Heur, 35000 lines (Heur and code generation), and 9000 lines for
libraries. The entiree generated Standard ML code is 8100 lines long.

Related Work. This work is related to other verification attempts of fast code,
like Lammich’s GRAT toolchain [26,30]. One of the differences is that he uses a
C++ program to preprocess the certificates in order to be able to check them
more efficiently later. However, like a SAT solver, a checker uses many arrays
and therefore would likely benefit from machine words.

Unlike the top-down approach used here, the verification of the sel.4 micro-
kernel [25] relies on abstracting the program to verify. An abstract specification
in Isabelle is refined to an Haskell program. Then, a C program is abstracted
and connected to the Haskell program. Unbounded integers are not supported
in C and therefore achieving completeness of a SAT solver would not be possible.

% e.g., https://www.msoos.org/2016/03/memory-layout-of-clauses-in-minisat/
6 although the Standard ML specification encourages compilers to optimize such code

14

https://www.msoos.org/2016/03/memory-layout-of-clauses-in-minisat/

Other techniques to abstract programs exist, like Chargueraud’s characteristic
formulas [11]. Another option is Why3 [14] or a similar verification condition gen-
erator like Dafny [31]. Some meta-arguments in Why3 (for example, incrementing
a 64-bit machine integer initialized with 0 will not overflow in a reasonable amount
of time; therefore, machine integers are safe [13]) would simplify the generation
of efficient code. In any case, refinement helps to verify a large program.

Isabelle’s code generator does not formally connect the generated code to the
original function. On the one hand, Hupel’s verified compiler [23] from Isabelle
to the semantics of the verified Standard ML compiler CakeML could bridge the
gap. However, code export from Imperative HOL is not yet supported. On the
other hand, HOL4 in conjunction with CakeML makes it possible to bridge this
gap and also to reason about input and output like parsing the input file and
printing the answer [22]. There is, however, no way to eliminate the array-access
checks. Moreover, CakeML uses boxed machine words unlike MLton, which
probably leads to a significant slowdown.

Mari¢ has developed another verified SAT solver [33] in Isabelle without
refinement, making his formalization impossible to extend. Moreover, a different
version of watched literals, no efficient data structures (only lists), nor heuristics
are used. Oe et al. use a different verification approach without refinement for
versat. The Guru proof assistant [39] is used to generate C code. Termination
or correctness of the generated model is not proven. Similarly to IsaSAT, versat
uses machine words—it relies on int to be 32 bits, which is not guaranteed in C—
but cannot solve larger instances. The SAT competition includes such problems
which usually can be solved easily if the decision heuristic initially makes literals
false. There is no bound checking for arrays. versat features a different flavor
of watched literals but neither blocking literals nor restart or forget.

Among SAT solvers, there are two main lines of research: Solvers derived from
MiniSAT, like Glucose [2] and MapleSAT [32], focus on improving CDCL (and
especially the heuristics) whereas solvers like CaDiCal [4], CryptoMiniSat [38]
and Lingeling [4] also feature inprocessing.

11 Conclusion

I have extended a verified SAT solver, IsaSAT, with four additional optimiza-
tions to improve performance and I have verified those extensions. Even if the
refinement approach is helpful, adding these optimizations is a significant effort.
Lammich is currently working on generating LLVM code which could give more
control on the generated code (e.g., the tuples representation is more efficient).

I now plan to extend my calculus to be able to represent CDCL(T), the
calculus behind SMT solvers. The theory of linear arithmetic has already been
implemented by Thiemann [40].

Acknowledgment. Jasmin Blanchette discussed several earlier drafts with me. This
work would not have been possible without Christoph Weidenbach and Peter Lammich.
Marijn Heule, Benjamin Kiesl, Peter Lammich, Hans-Jorg Schurr, Petar Vukmirovi¢,
and the anonymous reviewers suggested many textual improvements.

15

References

(1

2]

3l

4]

(5]

(6]

7]

(8]

9

[10]

[11]

(12]

[13]

[14]

[15]

Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009. pp. 399-404. Morgan Kaufmann Publishers
Inc. (2009), http://ijcai.org/Proceedings/09/Papers/074.pdf

Audemard, G., Simon, L.: Glucose 2.1: Aggressive—but reactive—clause database
management, dynamic restarts. In: Workshop on the Pragmatics of SAT 2012
(2012)

Becker, H., Bentkamp, A., Blanchette, J.C., Fleury, M., From, A.H., Jensen,
A.B., Lammich, P., Larsen, J.B., Michaelis, J., Nipkow, T., Peltier, N., Popescu,
A., Robillard, S., Schlichtkrull, A., Tourret, S., Traytel, D., Villadsen, J., Petar,
V.: IsaFoL: Isabelle Formalization of Logic, https://bitbucket.org/isafol/
isafol/

Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT entering the
SAT Competition 2017. In: Balyo, T., Heule, M., Jarvisalo, M. (eds.) SAT
Competition 2017: Solver and Benchmark Descriptions, pp. 14—15. University of
Helsinki (2017)

Biere, A.: Deep bound hardware model checking instances, quadratic propagations
benchmarks and reencoded factorization problems. In: Balyo, T., Heule, M.,
Jarvisalo, M. (eds.) SAT Competition 2017: Solver and Benchmark Descriptions,
pp. 37-38. University of Helsinki (2017)

Biere, A., Frohlich, A.: Evaluating CDCL restart schemes. In: Proceedings POS-
15. Sixth Pragmatics of SAT workshop (2015)

Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
CPP 2019. pp. 1-13. ACM (2019), https://doi.org/10.1145/3293880.3294087
Blanchette, J.C., Bohme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible isar proofs from machine-generated proofs. J. Autom. Reasoning 56(2),
155-200 (2016), https://doi.org/10.1007/s10817-015-9335-3

Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework
with learn, forget, restart, and incrementality. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS, vol. 9706, pp. 25-44. Springer (2016), https://doi.org/
10.1007/978-3-319-40229-1_4

Bulwahn, L., Krauss, A., Haftmann, F., Erkok, L., Matthews, J.: Imperative
functional programming with Isabelle/HOL. In: Mohamed, O.A., Munoz, C.A.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134-149. Springer (2008),
https://doi.org/10.1007/978-3-540-71067-7_14

Charguéraud, A.: Characteristic formulae for the verification of imperative pro-
grams. In: ICFP. pp. 418-430. ACM (2011), https://doi.org/10.1145/
2034773.2034828

Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for Boolean
satisfiability solvers. JSAT 6(1-3), 99-120 (2009)

Clochard, M., Filliatre, J., Paskevich, A.: How to avoid proving the absence of
integer overflows. In: VSTTE. LLNCS, vol. 9593, pp. 94-109. Springer (2015),
https://doi.org/10.1007/978-3-319-29613-5_6

Filliatre, J., Paskevich, A.: Why3—where programs meet provers. In: ESOP.
LLNCS, vol. 7792, pp. 125-128. Springer (2013), https://doi.org/10.1007/
978-3-642-37036-6_8

Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched
literals using Imperative HOL. In: CPP. pp. 158-171. ACM (2018), https:
//doi.org/10.1145/3167080

16

http://ijcai.org/Proceedings/09/Papers/074.pdf
https://bitbucket.org/isafol/isafol/
https://bitbucket.org/isafol/isafol/
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1007/s10817-015-9335-3
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-319-40229-1_4
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1145/2034773.2034828
https://doi.org/10.1007/978-3-319-29613-5_6
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/3167080
https://doi.org/10.1145/3167080

[16]

[17]

[18]

[19]

20]

[21]
[22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32]

Gent, [.P.: Optimal implementation of watched literals and more general tech-
niques. J. Artif. Intell. Res. 48, 231-251 (2013), https://doi.org/10.1613/
jair.4016

Haftmann, F.: Draft toy for proof exploration (August 2013), www.mail-archive.
com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103-117. Springer (2010), https://doi.org/10.1007/978-3-642-12251-4_9
Heule, M.J.H.: Schur number five. In: Mcllraith, S.A., Weinberger, K.Q. (eds.)
Proceedings of AAAT 18. pp. 6598-6606. AAAI Press (2018), https://www.aaai.
org/ocs/index.php/AAAT/AAAT18/paper/view/16952

Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Creignou, N., Berre,
D.L. (eds.) SAT 2016. LNCS, vol. 9710, pp. 228-245. Springer (2016), https:
//doi.org/10.1007/978-3-319-40970-2_15

Heule, M.: microsat (2014), https://github.com/marijnheule/microsat

Ho, S., Abrahamsson, O., Kumar, R., Myreen, M.O., Tan, Y.K., Norrish, M.:
Proof-producing synthesis of CakeML with 1/O and local state from monadic
HOL functions. In: IJCAR. LNCS, vol. 10900, pp. 646-662. Springer (2018),
https://doi.org/10.1007/978-3-319-94205-6_42

Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:
ESOP. LNCS, vol. 10801, pp. 999-1026. Springer (2018), https://doi.org/10.
1007/978-3-319-89884-1_35

Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy
of modern SAT solvers. In: SAT 2011. LNCS, vol. 6695, pp. 343-356. Springer
(2011), https://doi.org/10.1007/978-3-642-21581-0_27

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: selL4: formal verification of an operating-system kernel. Commun. ACM
53(6), 107-115 (2010), https://doi.org/10.1145/1743546.1743574

Lammich, P.: GRAT—Efficient formally verified SAT solver certification toolchain,
http://www2l.in.tum.de/"lammich/grat/

Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84-99. Springer (2013),
https://doi.org/10.1007/978-3-642-39634-2_9

Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.)
ITP 2015. LNCS, vol. 9236, pp. 253-269. Springer (2015), https://doi.org/10.
1007/978-3-319-22102-1_17

Lammich, P.: Refinement based verification of imperative data structures. In:
Avigad, J., Chlipala, A. (eds.) CPP 2016. pp. 27-36. ACM (2016), https:
//doi.org/10.1145/2854065.2854067

Lammich, P.: Efficient verified (UN)SAT certificate checking. In: CADE. LNCS,
vol. 10395, pp. 237-254. Springer (2017), https://doi.org/10.1007/978-3-
319-63046-5_15

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: LPAR (Dakar). LLNCS, vol. 6355, pp. 348-370. Springer (2010), https:
//doi.org/10.1007/978-3-642-17511-4_20

Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching
heuristic for SAT solvers. In: Creignou, N., Le Berre, D. (eds.) SAT 2016.
pp. 123-140. LNCS, Springer International Publishing, Cham (2016), https:
//doi.org/10.1007/978-3-319-40970-2_9

17

https://doi.org/10.1613/jair.4016
https://doi.org/10.1613/jair.4016
www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
www.mail-archive.com/isabelle-dev@mailbroy.informatik.tu-muenchen.de/msg04443.html
https://doi.org/10.1007/978-3-642-12251-4_9
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://github.com/marijnheule/microsat
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-319-89884-1_35
https://doi.org/10.1007/978-3-642-21581-0_27
https://doi.org/10.1145/1743546.1743574
http://www21.in.tum.de/~lammich/grat/
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1007/978-3-319-40970-2_9

(33]

34]

35]

(36]

37]

[38]

[39]

[40]

[41]

[42]

Mari¢, F.: Formal verification of a modern SAT solver by shallow embedding
into Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333-4356 (2010), https:
//doi.org/10.1016/j.tcs.2010.09.014

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver.
In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012, LNCS, vol. 7148, pp.
363-378. Springer (2012), https://doi.org/10.1007/978-3-642-27940-9_24
Ramos, A., van der Tak, P., Heule, M.: Between restarts and backjumps. In:
Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 216-229.
Springer (2011), https://doi.org/10.1007/978-3-642-21581-0_18

Ryan, L.: Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University (2004)

Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic
problems. In: Kullmann, O. (ed.) SAT 2009, LNCS, vol. 5584, pp. 244-257.
Springer (2009), https://doi.org/10.1007/978-3-642-02777-2_24

Stump, A., Deters, M., Petcher, A., Schiller, T., Simpson, T.W.: Verified pro-
gramming in Guru. In: Altenkirch, T., Millstein, T.D. (eds.) PLPV 2009. pp.
49-58. ACM (2009), https://doi.org/10.1145/1481848.1481856

Thiemann, R.: Extending a verified simplex algorithm. In: Barthe, G., Korovin,
K., Schulz, S., Suda, M., Sutcliffe, G., Veanes, M. (eds.) LPAR-22 Workshop and
Short Paper Proceedings. Kalpa Publications in Computing, vol. 9, pp. 37-48.
EasyChair (2018), https://easychair.org/publications/paper/6JF3

Weeks, S.: Whole-program compilation in MLton. In: ML. p. 1. ACM (2006),
https://doi.org/10.1145/1159876.1159877

Wenzel, M.: Isabelle/Isar—A generic framework for human-readable proof docu-
ments. In: Matuszewski, R., Zalewska, A. (eds.) From Insight to Proof: Festschrift
in Honour of Andrzej Trybulec, Studies in Logic, Grammar, and Rhetoric, vol.
10(23). University of Bialystok (2007)

18

https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1016/j.tcs.2010.09.014
https://doi.org/10.1007/978-3-642-27940-9_24
https://doi.org/10.1007/978-3-642-21581-0_18
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1145/1481848.1481856
https://easychair.org/publications/paper/6JF3
https://doi.org/10.1145/1159876.1159877

	Optimizing a Verified SAT Solver
	1 Introduction
	2 The Isabelle Refinement Framework
	3 IsaSAT
	4 Refactoring IsaSAT
	5 Adding Blocking Literals
	6 Improving Memory Management
	7 Implementing Restarts and Forgets
	8 Using Machine Integers
	9 Evaluation
	10 Discussion and Related Work
	11 Conclusion

