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Abstract. In 2020 Feng & Bacchus revisited variants of the all-UIP
learning strategy, which considerably improved performance of their ver-
sion of CaDiCaL submitted to the SAT Competition 2020, particularly
on large planning instances. We improve on their algorithm by tightly
integrating this idea with learned clause minimization. This yields a
clean shrinking algorithm with complexity linear in the size of the impli-
cation graph. It is fast enough to unconditionally shrink learned clauses
until completion. We further define trail redundancy and show that our
version of shrinking removes all redundant literals. Independent experi-
ments with the three SAT solvers CaDiCaL, Kissat, and Satch confirm
the effectiveness of our approach.

1 Introduction

Learned clause minimization [18] is a standard feature in modern SAT solvers. It
allows to learn shorter clauses which not only reduces memory usage but arguably
also helps to prune the search space. However, completeness of minimization
was never formalized nor proven. Using Horn SAT [9] we define trail redundancy
through entailment with respect to the reasons in the trail and show that the
standard minimization algorithm removes all redundant literals (Sect. 2).

Minimization, in its original form [18], only removes literals from the initial
deduced clause during conflict analysis, i.e., the 1st-unique-implication-point
clause [21]. In 2020 Feng & Bacchus [11] revisited the all-UIP heuristics with the
goal to reduce the size of the deduced clause even further by allowing to add new
literals. In this paper we call such advanced minimization techniques shrinking.
In order to avoid spending too much time in such shrinking procedures the authors
of [11] had to limit its effectiveness. They also described and implemented several
variants in the SAT solver CaDiCaL [2]. One variant was winning the planning
track of the SAT Competition 2020. The benchmarks in this track require to
learn clauses with many literals on each decision level.

As Feng & Bacchus [11] consider minimization and all-UIP shrinking sepa-
rately, they apply minimization first, then all-UIP shrinking, and finally again
minimization (depending on the deployed strategy/variant), while we integrate
both techniques into one simple algorithm. In contrast, their variants process
literals of the deduced clause from highest to lowest decision level and eagerly
introduce literals on lower levels. Thus their approach has to be guarded against
actually producing larger clauses and can not be run unconditionally (Sect. 3).
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We integrate minimization and shrinking in one procedure with linear com-
plexity in the size of the implication graph (Sect. 4). Processing literals of the
deduced clause from lowest to highest level allows us to reuse the minimization
cache, without compromising on completeness, thus making it possible to run
the shrinking algorithm unconditionally until completion. On the theoretical
side we prove that our form of shrinking fulfills the trail redundancy criteria.

Experiments with our SAT solvers Kissat, CaDiCaL, and Satch show
the effectiveness of our approach and all-UIP shrinking in general. Shrinking
decreases the number of learned literals, particularly on the recent planning
track. We also study the amount of time used by the different parts of the
transformation from a conflicting clause to the shrunken learned clause (Sect. 5).

Regarding related work we refer to the Handbook of Satisfiability [7], particu-
larly for an introduction to CDCL [17], the main algorithm used by state-of-the-
art SAT solvers. This work is based on the classical minimization algorithm [18],
which Van Gelder [19] improved by making it linear (in the number of literals)
in the implication graph without changing the resulting minimized clause. The
original all-UIP scheme [21] was never considered to be efficient enough to be part
of SAT solvers, until the work by Feng & Bacchus [11]. We refer to their work
for a detailed discussion on all-UIPs. Note that, Feng & Bacchus [11] consider
their algorithm to be independent of minimization, more like a post-processing
step, while we combine shrinking and minimization for improved efficiency. The
technical report with the proofs of all theorems is available [13].

2 Minimization

We first present a formalization of what minimization actually achieves through
the notion of “trail redundancy”. Then the classical deduced clause minimization
algorithm is revisited. It identifies literals that are removable and others literals
called poison that are not. The algorithm uses a syntactic criterion, but removes
exactly the trail redundant literals. We present five existing criteria to detect
(ir)redundancy earlier and prove their correctness.

When a SAT solver identifies a conflicting clause, i.e., a clause in which
all literals are assigned to false, it analyzes the clause and first deduces a 1st-
unique-implication-point clause [17,21]. This deduced clause is the starting point
for minimization and shrinking. The goal is to reduce the size of this clause
by removing as many literals as possible. The following redundancy criterion
specifies if a literal is removable from the deduced clause.

Definition 1 (Semantic Trail Redundancy). Given the formula FM com-
posed only of the reason annotating propagated literals in the trail M and the
conflicting clause D such that M � ¬D. The literal L ∈ ¬M is called redundant
iff FM � ¬L ∨ (D \ {L}).

For this definition we only consider redundancy with respect to the reasons
in the trail (ignoring other clauses in the formula). Note that, most SAT solvers
only use the first clause in the watch lists to propagate, even though “better”
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clauses might trigger the same propagation. For instance PrecoSAT scans
watch lists to find such cases [3]. However, due to potential cyclic dependencies,
deducing the shortest learned clause is difficult [20].

Theorem 2 (Redundant Literals are Removable). If L∨D is the deduced
clause and L is redundant, then D is conflicting and entailed.

Our next theorem states that the order of removal does not impact the out-
come and that it is possible to cache whether a literal is (ir)redundant.

Theorem 3. Literals stay (ir)redundant after removal of redundant literals.

The reason L ∨ C annotates the propagation literal LL∨C in the trail. Mini-
mizing the deduced clause consists in recursively resolving with the reasons: If
the clause becomes smaller, it is used. Duplicate literals are removed from the
clause. Algorithm 1 shows a recursive implementation that resolve away the
literal L without addition of literals. The minimization algorithm applies to
every conflicting clause but is only applied to the deduced clause [21], namely
the deduced clause after the first unique implication point was derived.

The minimization algorithm is standard in SAT solvers with several improve-
ments. First, they use efficient data structures to efficiently check if a literal
is in the deduced clause. Second, they use caching: if a literal was deemed
(un)removable before, the same outcome is used again. Caching successes and
failures [19] make the algorithm linear in the size of the implication graph. Lit-
erals that can not be removed are called poison.

Our definition of trail redundancy is semantic, while the minimization algo-
rithm uses relies on syntactic criteria to determine if a literal is removable or not.
We show that both criteria are equivalent by using a result of Horn satisfiability.

Definition 4 (Transition System by Dowling and Gallier [9]). Consider
the following rewriting system defined for Horn formulas, starting from the start
symbol I

1. For every clause L∨¬L1 ∨ · · · ∨¬Ln, we consider the associated rewrite rule
¬L→ ¬L1 · · · ¬Ln (where n can be zero).

2. For every clause ¬L1∨· · ·∨¬Ln, we consider the rewrite rule I → ¬L1 · · · ¬Ln.

In Definition 4, given our SAT context the step ¬L1 · · · ¬Ln, represents the
entailed clause ¬L1 ∨ · · · ∨ ¬Ln. One rewriting step is a resolution step.

Theorem 5 (Dowling and Gallier [9]). Given a satisfiable Horn formula, a
literal is true iff it can be rewritten to ⊥.

The transition system from Definition 4 is not linear. As far we are aware,
this is the first description of minimization algorithm in terms of Horn SAT.

Theorem 6. Algorithm 1 is the same as the transition system from Definition 4.
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Function IsLiteralRedundant(L, d, C)

Input: Literal L assigned to true, recursion depth d, deduced clause C
Output : Whether L can be removed

if L is a decision then
return false

D ∨ L ←− reason(L);
foreach literal K ∈ D do

if ¬IsLiteralRedundant(¬K, d + 1, C) then
return false

return true

Function MinimizeSlice(B, C)

Input: A clause C (passed by reference) and a subset B of C to minimize
Output : The minimized clause with redundant literals in B removed

foreach K ∈ B do
R ←− ∅
if IsLiteralRedundant(¬K, 0, C) then

R ←− R ∪ {K}
C ←− C\R

Algorithm 1: Basic recursive minimization algorithm similar to [18].

Theorem 7 (Equivalence Syntactic and Semantic Redundancy). Both
notions of redundancy are equivalent. In particular, every redundant literal is
also removable.

In our formalization of learned clause minimization for our verified SAT solver
IsaSAT [12], we use a different definition of redundancy, namely FM � ¬L∨D<ML

where D<ML are all the literals of D that appear before L in the trail M . This
definition is equivalent but it makes more explicit that only literals that appear
before L are relevant. We have not formalized completeness while working on
IsaSAT since we only cared about correctness.

Theorem 8. A literal L is redundant iff FM � ¬L ∨D<ML.

Our implementation relies on the alternative definition: It sorts the literals in the
clause by its position on the trail. Each literal, starting from the lowest position,
is checked. If it is not redundant, it is marked as present in the deduced clause
for efficient checking. This reduces the number of flags (like testing if a literal
is present in the deduced clause) to reset. Instead we could use d: When d = 0,
the condition “L is in the deduced clause” does not apply.

Thanks to caching both successes and failures, the complexity is linear in the
number of literals of the trail. Compared to our simple break conditions, more
advanced criteria are possible.

Theorem 9 (Poison Criteria).

1. If a literal appears on the trail before any other literal of the deduced clause
on a decision level, then it is not redundant.
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Function IsLiteralRedundantEfficient(L, d, C)

Input: Literal L assigned to true, recursion depth d, deduced clause C
Output : Whether L can be removed

if status of L is cached in minimization cache then
return cached value

if any advanced poison criterion from Theorem 9 applies (uses d ) then
return false

if L is root-level assigned (unit) or ¬L ∈ C then
return true

if L is a decision then
return false

D ∨ L ←− reason(L)
foreach K ∈ D do

if ¬IsLiteralRedundantEfficient(¬K, d + 1, C) then

Cache false for L
return false

Cache true for L
return true

Algorithm 2: Advanced minimization algorithm equivalent to Algorithm 1.

2. Literals with a decision level not in the deduced clause are not redundant.
3. Literals that are alone on a given decision level are not redundant (Knuth).

The proof relies on the fact that the SAT solver propagates literals eagerly. This
is not the case globally if the SAT solver uses chronological backtracking [15,16]
but remains correct for the reason clauses. The second and third point are widely
used (e.g., in MiniSAT and Glucose), whereas the first one is a novelty of
CaDiCaL and is not described so far. Root-level assigned false literals can also
appear in deduced clauses and be removed without recursing over their reasons.

Theorem 10. Literals at level 0 are redundant.

Algorithm 2 combines the two ideas that are described here, the caching and
the advanced poison criteria. The ideas 1 and 3 from Theorem 9 require data
structures that are not present in every SAT solver, namely the position τ of
each literal in the trail. Doing so was not necessary until now, but it is required
for shrinking. In our solvers, we also use the depth to limit the number of the
recursive calls and avoid stack overflows. The implementation in MiniSAT [10]
(and all derived solvers like Glucose [1]) uses a non-recursive version, but it
requires two functions, one for depth zero and another for the recursive case.

3 Shrinking

After detecting conflicting clauses, the SAT solver analyzes them and deduces
the first unique-implication point or 1-UIP [7], where only one literal remains
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Function MinAllUIPShrinkSlice(B, C)

Input: Slice B of literals of the deduced clause C on the (slice) level
Output : B unchanged or shrunken if min-alluip is successful

E ←− ∅
while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)
if ∃K ∈ D\C assigned at lower level not already in C then

E ←− E ∪ {L}
else

B ←− B ∪ {K ∈ D | K assigned on slice level}
Replace in deduced clause C original B with B ∪ E

Function MinAllUipShrinking(C)

Input: The deduced clause C (passed by reference)
Output : The shrunken clause using the min-alluip strategy

C′ ←− C
foreach Level i of literals in the deduced clause – highest to lowest do

B ←− {L ∈ C | L assigned at level i}
MinAllUIPShrinkSlice(B, C)

Replace C with saved original deduced clause C′ unless |C| < |C′|

Algorithm 3: Shrinking algorithm min-alluip from Feng&Bacchus [11].

on the current (largest) decision level. This is the first point where the clause is
propagating, fixing the current search direction. The idea of 1-UIP can be applied
on every level in order to produce shorter clauses. We call this process shrinking.
It differs from minimization because it adds new literals to the deduced clause.

If fully applied, shrinking derives a subset of the decision-only clause. There-
fore, it is limited. Feng & Bacchus [11] (abbreviated F&B from now on) have
used various heuristics like not adding literals of low importance, without a clear
winner across all implementations. We focus on their min-alluip variant. It
applies the 1-UIP on every level. For each literal in the clause, the solver resolves
with its reason unless a literals from a new level is added, thus making sure that
the LBD or “glue” [1] is not increased, an important metric, which seems to
relate well to the “quality” of learned clauses. In their implementation, if the
clause becomes longer, the minimized clause would be used instead.

Algorithm 3 shows the implementation of min-alluip. It considers the set of
all literals of the deduced clause on the same level, or slice (same as a block if
no chronological backtracking [15,16] is allowed). Each slice is shrunken starting
from the highest level. It resolves each literal of the slice with its reason or fails
when adding new literals on lower levels. Because SAT solvers propagate eagerly,
|B| ≥ 1 is an invariant of the while loop (and L cannot be a decision literal).

The key difference between shrinking and minimization is that reaching the
UIP is a global property, namely of all literals on a level, and not of a single
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Fig. 1. Conflict example

literal. This means that testing redundancy is a depth-first search algorithm
while shrinking is a breadth-first search algorithm on the implication graph.

Example 11. Consider the implication graph from Figure 1. The algorithm starts
with the highest level, namely with B4 and A4. The level is reduced to A4

introducing the already present B3. On the next level, C3 cannot be removed
because it would import level 2. The resulting clause ¬A5∨¬A4∨¬A3 is smaller
and is used instead of the original clause.

F&B unfortunately do not provide source code nor binaries used in their
experiments. Therefore we focus on their version of CaDiCaL submitted [14]
to the SAT Competition 2020. It implements only one of their strategies, which,
as far we can tell, matches the variant min-alluip [11] described above, while
code for the other variants is incomplete or missing.

4 Minimizing and Shrinking

In contrast to F&B our algorithm minimizes literal slices of the deduced clause
assigned on a certain level starting from the lowest to highest level. This enables
us to remove all redundant literals on-the-fly. After presenting our algorithm
we study its complexity and then discuss its implementation in our SAT solvers
CaDiCaL, Kissat, and Satch.

The main loop of our Algorithm 4 interleaves shrinking and (if shrinking
failed) minimization. For each slice of literals in the deduced clauses assigned
on a certain level we then attempt to reach the 1-UIP, similarly to Algorithm 3.
If this fails, we minimize the slice. This also allows to lift some restriction on
shrinking: only non-redundant literals interrupt the search for the 1-UIP. We
start from the lowest level to keep completeness of minimization.

Example 12. Consider the implication graph from Figure 1. The algorithm starts
with the slice of literals on the lowest decision level, namely with B3 and C3. No
UIP can be found because it would import level 2. Level 1 is shrunken to A4.
The shrunken clause is ¬A5 ∨ ¬A4 ∨ ¬B3 ∨ C3
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Function ShrinkingSlice(B, C)

Input: Slice B of literals of the deduced clause C on a single (slice) level
Output : B unchanged or shrunken to UIP if our new method is successful

while |B| > 1 do

Remove from B last assigned literal ¬L
D ∨ L ←− reason(L)
if ∃K ∈ D\C at lower level and ¬IsLiteralRedundant(¬K, 1, C)

then

return with failure (keep original B in C)
else

B ←− B ∪ {K ∈ D | K on slice level}
Replace in deduced clause C original B with the remaining UIP in B

Function Shrinking(C)

Input: The deduced clause C (passed by reference)
Output :The shrunken and minimized clause using our new strategy

foreach Level i of literals in the deduced clause – lowest to highest do

B ←− {L ∈ C | L assigned at level i}
ShrinkingSlice(B, C)

if shrinking the slice failed then MinimizeSlice(B, C);

Algorithm 4: Our new method for integrated shrinking with minimization.

As mentioned before, for efficiency a cache is maintained during minimization
to know whether a literal is redundant or not.

Theorem 13 (Shrinking and Redundancy). Redundant literals remain re-
dundant during shrinking.

Theorem 13 ignores irredundant literals because new literals are added to the
deduced clause, allowing for more removable literals. This explains why F&B
propose (in one variant of shrinking) to minimize again after shrinking. For the
same reason we do not check if literals are redundant on the current level, since
added literals (e.g., new 1st UIPs) invalidate the literals marked as “poisoned”.
Instead, we check for redundancy of literals on lower levels and on current level
only after shrinking them, when the literals on the slice level are fixed.

Example 14 (Minimization during shrinking). Consider the following trail

A†
1B

B1∨¬A1
1 A†

2B
B2∨¬B1∨¬A2
2 A†

3

where † marks a decision and the deduced clause is ¬A1 ∨¬B2 ∨¬A3. Shrinking
cannot remove B2 because it would introduce the new literal B1 on lower levels,
unless it is determined to actually be redundant (A1 is in the deduced clause).

To keep the complexity linear, when interleaving minimization with shrinking
as shown in Algorithm 4, we maintain a global shared minimization cache, not
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reset between minimizing different slices. A more complicated solution consists
in minimizing up-front (as in the implementation of F&B in [14]), followed by
shrinking, and if shrinking succeeds, reset the poison literals on the current level.

Resetting only literals on the current level is important for reducing the run-
time complexity from quadratic to linear in the size of the implication graph. As
we are shrinking “in order” (from lowest to highest decision level) we can keep
cached poisoned (and removable) literals from previous levels, thus matching the
overall linear complexity of (advanced) minimization.

Our solution also avoids updating the minimization cache more than once
during shrinking. When a slice is successfully reduced to a single literal, all
shrunken literals are marked as redundant in the minimization cache. The
process is complete in the sense that no redundant literals remain.

Theorem 15 (Completeness). All redundant literals are removed.

This result relies on the fact that during the outer loop no literal on a lower
level is added to the deduced clause. If this would be allowed (as in Algorithm 3),
the poisoned flag has to be reset and minimization redone, yielding a quadratic
algorithm. However, the theorem says nothing about minimality of the shrunken
clause if we allow to add new literals, as in the following example.

Example 16 (Smaller Deduced Clause). Consider the trail

A†
1B

B1∨¬A1
1 CC1∨¬B1

1 A†
2B

B2∨¬A2
2 CC2∨¬B2∨¬B1

2 A†
3

and the deduced clause ¬C1∨¬B2∨¬C2∨¬A3. The clause is neither minimized
nor shrunken by our algorithm, but can be shrunken to the smaller ¬B1 ∨¬B2 ∨
¬A3.

In Algorithm 4, on the one hand, shrinking could use a priority queue (im-
plemented as binary heap) to determine the last assigned literal in B. Then for
each slice, we have a complexity of O(nb log nb) for shrinking where nb is the
number of literals at the slice level in the implication graph. On the other hand,
minimization of all slices is linear in the size of the implication graph. Overall
the complexity is O(glue · n log n) where the “glue” is the number of different
slices (and a number that SAT solvers try to reduce heuristically) and n the
maximum of the nb. However, note that, bumping heuristics require sorting of
the involved literals anyhow either implicitly or explicitly [6].

Instead of representing the slice B as a priority queue, implemented as binary
heap, to iterate over its literals, it is also possible to iterate over the trail directly
as it is common in conflict analysis to deduce the 1st-UIP clause. Without
chronological backtracking, the slices on the trail are disjoint and iterating over
the trail is efficient and gives linear complexityO(|glue|×|max trail slice length|),
i.e., linear in the size of the implication graph.

With chronological backtracking slices on the trail are not guaranteed to be
disjoint. Therefore, in the worst case, iterating over a slice along the trail might
require to iterate over the complete trail. In principle, this could give a quadratic
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complexity for chronological backtracking without using a priority queue for B.
In our experiments both variants produced almost identical run-times and thus
we argue that the simpler variant of going over the trail should be preferred.

We have implemented the algorithm from the previous section in our SAT
solvers CaDiCaL [5], Kissat [5], and Satch [4]. The implementation is part
of our latest release in the file shrink.c (shrink.cpp for CaDiCaL).1 Note
that, Satch is a simple implementation of the CDCL loop with restarts and
was written to explain CDCL. It does not feature any in- nor preprocessing yet.

We either traverse the trail directly or use a radix heap [8] as priority queue.
Unlike the implementation by F&B, our priority queue contains only the literals
from the current slice until either shrinking fails or the 1-UIP is found. It allows
for efficient popping and pushing trail positions. Note that, radix heaps require
popped elements to be strictly decreasing, and as the analysis follows reverse trail
order, we first compute the maximum trail position of literals in the considered
slice and then index literals by their offsets on the tail from this maximum trail
position. The literal position in the trail is not cached in every SAT solver, but
was already maintained in Kissat and CaDiCaL.

5 Experiments

We have implemented our algorithm in the SAT solvers CaDiCaL, Kissat
(the winner of the SAT Competition 2020), and Satch and evaluated them on
benchmark instances from the SAT Competition 2020 on an 8-core Intel Xeon
E5-2620 v4 CPUs running at 2.10 GHz (turbo-mode disabled). For both tracks
we used a memory limit of 128 GB (as in the SAT Competition 2020). We tested
3 configurations, shrink (shrinking and minimizing), minimize, and no-minimize
(neither shrinking nor minimizing). Due to space constraint we only give graphs
for some solvers but findings are consistent across all of them.

Tables 1 for Kissat and Satch show that minimization is more important
than shrinking, but the latter still improves performance for Kissat. In the
planning track, running time decreases significantly, whereas the impact on the
main track is smaller. Compared to the main track, the planning problems require
much more memory and memory usage drops substantially with shrinking. For
Satch, we observe a slight performance decrease. Figures 2 and 3 show that
even if shrinking solves only a few more problems, the speedup is significant.

In all our SAT solvers we distinguish between focused mode (many restarts)
and stable mode (few restarts). Note that CaDiCaL uses the number of conflicts
to switch between these modes which is rather imprecise: in stable mode decision
frequency is lower while the conflicts frequency is higher compared to focused
mode and accordingly the fraction of running time spent in conflict analysis and
thus minimization and shrinking increases in stable mode compared to focused
mode. To improve precision both Kissat and Satch measure the time by esti-
mating the number of possible cache misses instead, called “ticks” [5]. By default

1 Source code and log files are available at http://fmv.jku.at/sat_shrinking.

http://fmv.jku.at/sat_shrinking
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Table 1. Results for new solvers on the SAT Competition 2020 benchmarks

Average
Solver Track Configuration Solved PAR-2 clause size

Kissat

Main Track
(400 problems)

shrink 270 1561735 46
minimize 267 1 566 688 110
no-minimize 235 1 891 872 183

Planning Track
(200 problems)

shrink 85 1197799 5 398
minimize 83 1 222 535 13 076
no-minimize 74 1 325 957 16 637

Satch

Main Track
(400 problems)

shrink 196 2 271 119 46
minimize 203 2240351 144
no-minimize 159 2 621 070 370

Planning Track
(200 problems)

shrink 85 1212977 5 043
minimize 80 1 250 861 11 854
no-minimize 72 1 338 592 15 474

CaDiCaL
1.4.0

Main Track
(400 problems)

shrink 240 1 870 484 90
minimize 233 1 939 998 121
no-minimize 194 2 280 897 153

Planning Track
(200 problems)

shrink 73 1 334 718 4 885
minimize 64 1 454 186 7 799
no-minimize 42 1 615 676 11 767

Kissat also counts the number of such ticks during shrinking and minimization.
To avoid the bias introduced by this technique in terms of influencing mode
switching we deactivated this feature in our experiments (only for Kissat).

We analyzed the results on the main track in more details over all instances
(i.e., until timeout or memory out), not only over solved instances. The amount
of time (in percentage of the total) more than doubles when activating shrinking:
it goes from 6.3 % to 14.3 % of the total amount of time (Figure 5). However,
the size of the clauses is reduced with a similar ratio: It drops from 110 to 46
(183 without minimization). On the planning track, it drops from 13 076 to 5 398
literals on average (16 637 without minimization).

To compare our method to the min-alluip implementation, which is based on
CaDiCaL 1.2.1, we backported our shrinking algorithm to CaDiCaL 1.2.1 too.
The results are in Table. 2. The only difference is the shrinking algorithm, hence
there are not differences for the minimize and no-minimize configuration. The
F&B version performs slightly better than our version. An interesting observation
is that CaDiCaL 1.2.1 learns much larger clauses than Kissat and Satch
but also larger than the latest CaDiCaL version. The effect can be partially
explained by the stable mode that is much longer than on the other solvers. We
have also experimented with minimizing separately from shrinking instead of
combining them. As long as the cache is shared there is very little performance
difference. Figure 7 shows the CDF for the main track.
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Fig. 2. Kissat solving time on the planning track.
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Fig. 3. Satch solving time on the planning track.
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Table 2. Results for solvers based on CaDiCaL 1.2.1 on the SAT Competition 2020
benchmarks with a memory limit of 128 GB, following the SAT Competition

Average
Solver Track Configuration Solved PAR-2 clause size

shrinking
(this paper)

Main Track
(400 problems)

shrink 235 1 897 387 92
minimize 230 1 972 949 135
no-minimize 208 2 184 920 187

Planning Track
(200 problems)

shrink 73 1 351 542 5 373
minimize 63 1 454 871 6 433
no-minimize 39 1 643 665 9 874

min-alluip
[11, 14]

Main Track shrink 237 1 904 745 104

Planning Track shrink 81 1 271 930 3 261

Figure 6 shows percentages of removable literals on the planning track. Shrink-
ing removes more literals than the subsequent minimization (and more than
minimization alone).

We have mentioned the complexity difference between using a radix heap
and iterating over the trail. We have implemented both versions in our three
SAT solvers. We compare both version but could not observe any significant
difference. We believe that this is due to the fact that finding the next literal is
actually very efficient: it is in the trail (that is in cache anyways) and we check
a single flag. We attempted to force the worst case by enforcing chronological
backtracking, but performance remained similar.

6 Conclusion

We presented a simple linear algorithm which integrates minimization and shrink-
ing and is guaranteed to remove all redundant literals. In practice it can be run
to completion unconditionally. Our implementation and evaluation with sev-
eral SAT solvers show the benefit of our approach and confirm effectiveness of
shrinking in general.

An open question is how to extend our notion of trail redundancy to capture
that new literals can be added in order to reduce size. This would allow to
formulate completeness of shrinking in the same way as we did for minimization.
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