
Eingereicht von
Dipl.-Inf.
Andreas Fröhlich

Angefertigt am
Institut für Formale Mo-
delle und Verifikation

Erstbeurteiler
Univ.-Prof. Dr.
Armin Biere

Zweitbeurteiler
Univ.-Prof. Dr.
Christoph Scholl

März 2016

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Theoretical and Practi-
cal Aspects of Bit-Vector
Reasoning

Dissertation

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

im Doktoratsstudium der

Technischen Wissenschaften

ii

Abstract

Satisfiability Modulo Theories (SMT) is a broad field of research and an important
topic for many practical applications. In this thesis, we focus on theories of bit-
vectors as used, e.g., in hardware and software verification, but also in many other
areas. In particular, we discuss satisfiability of bit-vector logics and related prob-
lems. The satisfiability problem of propositional formulas (SAT) is a well-known
NP-complete problem. In the past, satisfiability for quantifier-free bit-vector log-
ics was often assumed to be NP-complete as well. We show that several earlier
complexity results for bit-vector logics only hold if a unary encoding for scalars
is used. Instead, complexity for many decision problems grows significantly, if
a more succinct logarithmic encoding is used for representation. As one of our
central results, we prove that satisfiability of quantifier-free bit-vector formulas
turns out to be NEXPTIME-complete. We also show that similar results can be ob-
tained for satisfiability of quantified bit-vector logics with uninterpreted functions
(2-NEXPTIME-complete), and can even be extended to multi-logarithmic encod-
ings. For the latter case, we give a very general ν-NEXPTIME-completeness result,
when considering bit-vector logics with ν-logarithmic scalar encodings. We fur-
ther analyze how the choice of operators affects the expressiveness of certain bit-
vector logics and can lead to specific fragments of quantifier-free bit-vector logics
that are PSPACE-complete or NP-complete. On the practical side, this implies that
the bit-blasting followed by the use of a CDCL (conflict driven clause learning)
SAT solver, which is the common approach in state-of-the-art bit-vector solvers,
can be exponential. Our complexity results directly point to several possibilities for
new solving approaches, proposing reductions to model checking (for the PSPACE-
complete fragment), to EPR (for the general, NEXPTIME-complete class), or by
applying SLS (stochastic local search) directly on the theory level. We also develop
two algorithms for solving Dependency Quantified Boolean Formulas (DQBF), a
further NEXPTIME-complete problem, either using a DPLL based algorithm or an
instantiation based approach, similar to the one applied in EPR solving.

iii

iv

Zusammenfassung

Erfüllbarkeit Modulo einer Theorie (SMT) ist ein breites Forschungsgebiet mit
vielen praktische Anwendungen. Diese Dissertation setzt ihren Fokus auf Theo-
rien über Bitvektoren, wie sie zum Beispiel in der Hardware und Software Verfika-
tion - aber auch in vielen anderen Bereichen - Verwendung finden. Insbesondere
diskutieren wir die Erfüllbarkeit von Bitvektor-Logiken und verwandte Probleme.
Das Erfüllbarkeitsproblem der Aussagenlogik (SAT) ist ein sehr bekanntes NP-
vollständiges Problem. Bisher wurde oft angenommen, dass das Erfüllbarkeits-
problem für quantorenfreie Bitvektor-Logiken ebenfalls NP-vollständig sei. Wir
zeigen, dass viele frühere Komplexitäts-Resultate für Bitvektor-Logiken nur dann
gelten, wenn enthaltene Skalare unär kodiert werden. Im Gegensatz dazu steigt
die Komplexität vieler Entscheidungsprobleme drastisch, wenn eine kompaktere
logarithmische Kodierung zur Darstellung verwendet wird. Unter anderem be-
weisen wir, dass das Erfüllbarkeitsproblem für quantorenfreie Bitvektor Formeln
NEXPTIME-vollständig ist. Des Weiteren zeigen wir, dass vergleichbare Resul-
tate auch für das Erfüllbarkeitsproblem von quantifizierten Bitvektor-Logiken mit
uninterpretierten Funktionen (2-NEXPTIME-vollständig), sowie für Logiken mit
multi-logarithmisch kodierten Skalaren gelten. Für den zweiten Fall zeigen wir
ν-NEXPTIME-Vollständigkeit, wenn eine ν-logarithmische Kodierung für Skalare
verwendet wird. Wir analysieren zudem, wie sich die Wahl der Operatoren auf
die Komplexität von verschiedenen Bitvektor-Logiken auswirkt und wie sie dazu
führen kann, dass bestimmte Fragmente von quantorenfreien Bitvektor-Logiken
PSPACE-vollständig oder NP-vollständig werden. Für die Praxis bedeuten unsere
Resultate, dass der übliche Ansatz von Bitvektor Algorithmen, der “bit-blasting”
mit der Verwendung von CDCL (konfliktgesteuerte Klauseln lernende) SAT Al-
gorithmen kombiniert, exponentiell sein kann. Unsere Resultate eröffnen direkt
mehrere neue Ansätze, z.B. durch Modellprüfung (für das PSPACE-vollständige
Fragment), Übersetzung nach EPR (für die allgemeine, NEXPTIME-vollständige
Klasse), oder Anwendung eines SLS (stochastische lokale Suche) Algorithmus di-
rekt auf der Theorie-Repräsentation. Wir entwickeln zudem zwei Algorithmen um
DQBF zu lösen, ein weiteres NEXPTIME-vollständiges Problem; entweder mit
einem DPLL-basierten Algorithmus, oder durch einen auf Instanziierung basieren-
den Ansatz, ähnlich dem für EPR.

v

vi

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel
nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche
kenntlich gemacht habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

vii

viii

Acknowledgements

I would like to thank my parents, Roswitha and Wolfgang, for being supportive
with me throughout my whole life—thanks for everything. This thesis is dedicated
to them. I am also very thankful to my partner, Kathrin, for bearing with me when
I decided to move to Linz, and for encouraging me to take the chance of working
at Microsoft Research in Cambridge. Further thanks go to all my colleagues and
co-authors—it was a joy working with you. Finally, I would like to thank Armin,
for being the best supervisor any student could possibly hope for.

ix

x

“In individuals, insanity is rare—but in groups,
parties, nations and epochs, it is the rule.”

- Friedrich Wilhelm Nietzsche,
Beyond Good and Evil, 1886

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Propositional Satisfiability 2
1.1.2 SAT Algorithms . 3
1.1.3 Quantification and Dependencies 6
1.1.4 Satisfiability Modulo Theories 7

1.2 Outline . 8
1.3 Bugs . 12

2 On the Complexity of Fixed-Size Bit-Vector Logics with Binary En-
coded Bit-Width 13
2.1 Introduction . 13
2.2 Preliminaries . 15
2.3 Complexity . 15

2.3.1 QF_BV2 is NEXPTIME-hard 17
2.3.2 UFBV2 is 2-NExpTime-hard 20

2.4 Problems Bounded in Bit-Width 22
2.4.1 Benchmark Problems . 23

2.5 Conclusion . 24
2.6 Appendix . 24

2.6.1 Example: A Reduction of DQBF to QF_BV2 24
2.6.2 Table: Completeness Results for Bit-Vector Logics 26

3 More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Log-
ics with Binary Encoding 27
3.1 Introduction . 27
3.2 Motivation . 29
3.3 Definitions . 29
3.4 Complexity Results . 31
3.5 Discussion . 36
3.6 Conclusion . 37
3.7 Appendix . 38

xi

xii CONTENTS

3.7.1 Table: Completeness Results for Fixed-Size and Non-Fixed-
Size Logics . 38

3.7.2 Example: A Reduction of QBF to QF_BV2!1 39

4 Complexity of Fixed-Size Bit-Vector Logics 43
4.1 Introduction . 43
4.2 Motivation . 45
4.3 Preliminaries . 46

4.3.1 SAT, QBF, and DQBF 46
4.3.2 Circuits . 47
4.3.3 Fixed-Size Bit-Vector Logics 48

4.4 Logics With Unary Encoding . 57
4.5 Scalar-Bounded Problems . 58
4.6 Quantifier-Free Logics with Binary Encoding 59
4.7 Extensions and Alternative Characterizations 69

4.7.1 Notation . 70
4.7.2 QF_BV2bw . 71
4.7.3 QF_BV2!1 . 73
4.7.4 QF_BV2!c . 76

4.8 Logics with Quantifiers and Binary Encoding 80
4.8.1 General Quantification 80
4.8.2 Restricting the Bit-Width of Universal Variables 84
4.8.3 Non-Recursive Macros 85

4.9 Practical Considerations . 87
4.9.1 Alternative Approaches 87
4.9.2 Benchmark Problems . 88

4.10 Conclusion . 89
4.11 Appendix . 90

4.11.1 Example: Reduction from DQBF to QF_BV2!c 90
4.11.2 Example: Reduction from QBF to QF_BV2!1 92
4.11.3 Example: Bit-Width Reduction in QF_BV2bw 93
4.11.4 Example: Half-Shuffle and Expand 94
4.11.5 Example: Multiplication 95

5 A DPLL Algorithm for Solving DQBF 97
5.1 Introduction . 97
5.2 Definitions . 98
5.3 DQDPLL Architecture . 100
5.4 Conversion of Concepts from SAT/QBF 104
5.5 Preliminary Results . 108
5.6 Future Work . 109
5.7 Conclusion . 110

CONTENTS xiii

6 Bv2epr: A Tool for Polynomially Translating Quantifier-free Bit-Vector
Formulas into EPR 111
6.1 Introduction . 111
6.2 Preliminaries . 112

6.2.1 Existing Translations . 112
6.3 The Tool . 113

6.3.1 The Translator . 114
6.4 Benchmarks and Experiments 116
6.5 Conclusion . 117

7 IDQ: Instantiation-Based DQBF Solving 119
7.1 Introduction . 119
7.2 Preliminaries . 121
7.3 Related Work . 123
7.4 IDQ architecture . 124
7.5 Implementation . 127
7.6 Experimental Results . 130
7.7 Conclusion . 132

8 Efficiently Solving Bit-Vector Problems Using Model Checkers 135
8.1 Introduction . 135
8.2 QF_BV!1 to SMV . 137
8.3 Experiments . 139
8.4 Conclusion . 143

9 Quantifier-Free Bit-Vector Formulas with Binary Encoding: Bench-
mark Description 147
9.1 Introduction . 147
9.2 Benchmarks . 148

9.2.1 Translating Bit-Vector Operations 148
9.2.2 Bit-Vector Properties in PSPACE 148

9.3 SMT2 and CNF generation . 149
9.4 Practical Considerations . 149

10 Stochastic Local Search for Satisfiability Modulo Theories 151
10.1 Introduction . 151
10.2 Preliminaries . 153
10.3 Architecture . 154
10.4 Implementation . 155
10.5 Experimental Results . 159
10.6 Discussion . 162
10.7 Related Work . 163
10.8 Conclusion . 163

xiv CONTENTS

11 Contributions 165

12 Beyond Previous Work 169
12.1 Complexity of Quantified Bit-Vector Formulas 169
12.2 Bit-Vector Problems in Practice 171
12.3 Progress and Issues in DQBF Solving 172
12.4 Improvements and Applications for SLS in SMT 175
12.5 Word-level Model Checking . 177

12.5.1 Word-level Model Checking with all Common Operators . 177
12.5.2 Word-level Model Checking for QF_BV!1 178

12.6 Upgrading Satisfiability . 180
12.6.1 Satisfiability of BV!ν . 181
12.6.2 Encoding of Turing Machines 182
12.6.3 Encoding of Domino Tiling Problems 186
12.6.4 Remarks on the Expressiveness of !c and ! 188
12.6.5 Satisfiability of BV�1

1 189
12.6.6 Satisfiability of BVbwν , BV�1

ν and BV!1
ν 192

12.6.7 Quantified BVΩ
ν with Uninterpreted Functions 193

13 Conclusion 195

Bibliography 197

Appendix 221
Brief Biography . 221

Chapter 1

Introduction

This thesis is about bit-vectors in the widest sense. We will mainly deal with satis-
fiability of bit-vector formulas, which is a special case of SMT and an extension of
SAT. We will discuss the importance of bit-vectors as well as approaches of finding
solutions to bit-vector formulas and related problems, such as SAT, QBF, DQBF,
and EPR. We will also deal with questions related to computational complexity
of these problem classes. Looking at both, the theoretical side as well as practical
applicability, we will, furthermore, show the connection between theoretical com-
plexity and practical solving approaches. In this introduction, we first provide an
informal overview as well as background information on the specific topics that
will be discussed in the later chapters. The first part of this chapter, therefore, is
mainly for the reader who is not familiar with the topics presented in this thesis.
The second part then provides an outline of the remaining part of this work, giving
a brief summary of the content of each chapter, as well as the main thread con-
necting each of the individual contributions. The reader with a deeper interest in
the topic should feel referred to the Handbook of Satisfiability [31], which con-
tains the probably most complete overview on the topic of satisfiability and related
problems.

A further extensive discussion of satisfiability can also be found as a section in
Volume 4B of Donald Knuth’s “The Art of Computer Programming” [146]. In a
preface to the corresponding section, Knuth states the following:

Wow—Section 7.2.2.2 has turned out to be the longest section, by far,
in The Art of Computer Programming. The SAT problem is evidently
a killer app because it is key to the solution of so many other problems.

In the following, we will present our contributions to this topic.

1.1 Background

The question of satisfiability is one of the most essential problems in computer
science. The satisfiability problem can be roughly characterized by the following

1

2 CHAPTER 1. INTRODUCTION

informal description: Given a (syntactically valid) formula over a well-defined
logic, the answer to the satisfiability problem consists of deciding whether there
exist values for the variables in that formula, so that the semantic statement of
the formula is true. If such values for the variables exist, the formula is called
satisfiable, otherwise it is said to be unsatisfiable.

Obviously, a formal description requires a definition of all components, such
as “formula”, “variable”, and “true statements”. This is done at multiple occasions
for several logics in later chapters of this thesis, e.g., in Chapter 3, Chapter 5, or,
most detailed, in Chapter 4. Thus, for the moment, we will stick to the more ab-
stract level given by the informal definition, and extend it by giving some concrete
examples. A detailed formal introduction is also given in [31].

1.1.1 Propositional Satisfiability

The most elementary version of satisfiability is given by the satisfiability problem
of propositional logic, usually referred to as the “SAT problem” or just “SAT”.
Synonymously to propositional logic, also the term Boolean logic is used. In a
propositional (or Boolean) formula, all variables and all composite expressions
correspond to truth values. A truth value can either be true or false. Alternative
symbols for true and false are also 1 and 0, or J and K, respectively.

Compound expressions are defined by using Boolean connectives, such as log-
ical and (^, also called conjunction), logical or (_, also called disjunction), or
negation (). Additional connectives exist, but can always be replaced by the
previous ones (e.g., see [31]). While this is already true for only ^ and (e.g.,
using an and-inverter graph representation [159]), all three operators are used for
the common conjunctive normal form (CNF) representation of a SAT formula. A
formula is said to be in CNF, if it is a conjunction of clauses, with a clause being de-
fined as a disjunction of literals, and a literal being defined as a variable or its nega-
tion. If all clauses in a formula are further restricted to contain exactly k literals,
it is also said to be in k-CNF, and the corresponding decision problem is referred
to as k-SAT. Using the well-known Tseitin-transformation, an arbitrary SAT for-
mula can be translated into an equisatisfiable formula in CNF (even into a formula
in k-CNF, for k ¥ 3), with only polynomial growth in formula size [221]. More
sophisticated approaches exist, e.g., the Plaisted-Greenbaum transformation [193].
Aside from several other advantages, CNF representations allow to apply resolu-
tion: Whenever clauses px _ l1,1 _ � � � _ lk1,1q and p x _ l1,2, � � � _ lk2,2q are
part of a formula, adding a new clause pl1,1 _ � � � _ lk1,1 _ l1,2 _ � � � _ lk2,2q, the
so-called resolvent, results in an equivalent formula [80]. For propositional logic,
iteratively applying the resolution rule is even guaranteed to refute every unsatis-
fiable formula [80]. Resolution is a key ingredient of most modern SAT solvers
(e.g., [26, 184, 3, 5, 27]) and is also discussed for certain quantified formulas in
Chapter 5.

Although the underlying logic is very simple, deciding SAT is already very dif-
ficult, regarding computational complexity. In particular, SAT was the first prob-

1.1. BACKGROUND 3

lem that was shown to be NP-complete [73]. The concept of NP-completeness is
an essential one in complexity theory, defining sets of problems that have a cer-
tain “difficulty” regarding the computational effort required to solve them. For
example, the complexity class NP is defined as the set of problems that allow the
verification of a solution in polynomial time. Alternatively, the concept of Tur-
ing machines [222] can be used for the characterization of NP. In particular, NP
corresponds to the set of problems that can be decided in polynomial time by a non-
deterministic Turing machine. On the other hand, a problem is said to be NP-hard,
if all other problems in NP can be polynomially reduced to that problem [142].
The set of NP-complete problems is exactly the set of problems that are contained
in NP and that are NP-hard at the same time.

In 1971, Cook proved that any computational problem which can be solved by
a non-deterministic Turing machine in polynomial time (i.e., any problem in NP)
can also be encoded into a polynomial-sized SAT problem [73]. He showed this by
giving a SAT encoding for any Turing machine instance. This implies NP-hardness
of SAT and, with NP-inclusion being trivial to show (non-deterministically guess
the truth values for all variables and check whether the formula evaluates to true),
SAT was known to be NP-complete [73]. A similar result was also obtained in-
dependently by Levin, roughly at the same time, therefore, leading to the name
Cook-Levin theorem. We will revisit the proof by Cook in Chapter 12, where a
similar result for the more complex logics of multi-logarithmic encoded bit-vector
formulas is shown.

NP-completeness of SAT is of huge importance when trying to practically
solve it. In contrast to the hypothetical device of a Turing machine, actual com-
puter architectures are strictly deterministic (leaving aside the concept of quantum
computers1). Similarly to NP, the class P is said to be the set of problems that can
be solved by a deterministic Turing machine in polynomial time. At the present
moment, it is not known whether P � NP and the answer to that question is one of
the biggest unsolved problems in theoretical computer science. Nevertheless, the
common belief among most experts is that P � NP [107].

1.1.2 SAT Algorithms

Assuming P � NP, it is implied that SAT, in the general case, cannot be solved in
polynomial time by a program running on an actual computer, but instead needs su-
perpolynomial time. For example, the naive approach of enumerating all possible
combinations of truth values for the variables would require evaluating 2n differ-
ent combinations, with n being the number of variables in a given formula. While
there are algorithms with smaller bounds on complexity, all those approaches still
have exponential upper bounds. It is not clear whether SAT algorithms with subex-
ponential worst case runtime exist. Actually, the exponential time hypothesis sug-
gests that this is not the case, and that every algorithm to solve SAT requires an

1The relation between BQP (bounded error quantum polynomial time) and NP is unknown.

4 CHAPTER 1. INTRODUCTION

1 // input: formula F in CNF and a partial assignment beta

2 procedure DPLL(F, β)

3 if (F pβq = 1) // all clauses evaluate to true

4 return 1;

5 if (F pβq = 0) // at least one clause evaluates to false

6 return 0;

7 if (F contains a unit clause l) // unit propagation

8 return DPLL(F, β Y lÐ 1);

9 x = pickVar() // select a variable to branch

10 return DPLL(F, β Y xÐ 1) _ DPLL(F, β Y xÐ 0);

Figure 1.1: Pseudo-code for a basic DPLL procedure. Evaluation of formulas, unit
propagation, and the notion of partial assignments are discussed, e.g., in Chapter 5.

exponential runtime in the worst case [133].
At first, this might seem very demotivating for SAT research. Indeed, it is easy

to see that the naive approach of enumerating all possible values will fail already for
very small formulas, e.g., with 50 variables. Theoretical algorithms with smaller
upper bounds can solve slightly larger formulas, but will also quickly reach their
limits due to the exponential complexity. Furthermore, this would not even change
with growing computational power. As a consequence, practically solving SAT
formulas was widely believed to be computationally intractable, for a long time.
However, this belief turned out to be too pessimistic. Instead, modern SAT solvers,
meanwhile, are very efficient in dealing with practical problems, solving formulas
with up to 107 variables. So, actually, SAT solvers should not work in theory; but
they do work in practice [224].

Those modern solvers usually are heuristic solvers. No upper bounds on the
runtime can be given and, for complexity reasons, they obviously are not able to
solve all formulas. Nevertheless, it turns out that practical instances, coming from
structured formulas and corresponding to industrial problems, or certain combina-
torial benchmarks, can often be solved efficiently. The same is true for particular
classes of random benchmarks, generated by using specific distributions regarding
clauses and literals. It seems that those kind of benchmarks which actually show
up in practice correspond to “easy” formulas and not to those that produce worst
case results. Understanding why this is the case is still ongoing research as well
as part of many discussions within the SAT community [224]. Improving the per-
formance of actual SAT solvers, in the light of those circumstances, becomes even
more challenging and more intriguing at the same time.

Most algorithms require the input formula to be in CNF. Until the last decade,
people usually distinguished between two main kinds of approaches of SAT solv-
ing: DPLL based approaches and SLS ones. DPLL is short for Davis, Putnam,
Logemann, and Loveland, the inventors of the original procedure [78], as an ex-

1.1. BACKGROUND 5

1 // input: formula F

2 procedure SLS(F)

3 α = init(); // generate an initial assignment

4 while (F pαq = 0) // if F is not satisfied yet

5 x = pickVar(); // select a variable ...

6 αpxq � αpxq; //... and change its value

7 return α

Figure 1.2: Pseudo-code for a typical SLS algorithm. Details and examples of a
concrete implementation are given, e.g., in Chapter 10.

tension to the previous (resolution-based) DP algorithm [80]. The key idea behind
the DPLL procedure is splitting the search space by branching on the two possi-
ble values of a variable and applying a simple deterministic inference rule called
unit propagation. The pseudo-code for DPLL is given in Figure 1.1. An extension
of the traditional DPLL procedure to certain quantified formulas, which we call
DQDPLL, is defined in Chapter 5.

A new paradigm, introduced in the context of the solver Grasp [170], was the
concept of conflict-driven clause learning (CDCL). Originally, this was considered
to represent an extension of DPLL, by learning from conflicting variable assign-
ments that occur during search. With emerging of more frequent and more sophis-
ticated restart techniques over the last decade (e.g., [25, 223, 129, 196, 4, 30]),
however, it is now often argued that modern CDCL solvers are meanwhile closer
to some guided resolution approach than to the original DPLL one [4, 30]. In gen-
eral, CDCL solvers are considered to be the state-of-the-art for SAT solving, in
particular for the important case of application instances. Aside from clause learn-
ing and restart techniques, this is usually also attributed to sophisticated variable
selection strategies [175, 25, 29]. Note that the application track of SAT compe-
titions [12, 20] is dominated by CDCL solvers (e.g., [26, 184, 3, 5, 27]). CDCL
solvers for SAT are not directly addressed in this thesis, but are found at the core
of most state-of-the-art bit-vector solvers, such as used in Chapter 6, Chapter 8,
and Chapter 10. They are further found in bounded model checkers, which are
addressed in Chapter 8 as well. A direct extension for CDCL, in the context of
our DQDPLL architecture, is presented in Chapter 5. Similarly, in Chapter 7, we
use a CDCL solver as the core of an instantiation-based solver, for the same class
of quantified formulas. The same kind of procedure is also applied in IPROVER,
which is used for experiments in Chapter 6. We also mention related contributions
to improving CDCL for SAT, in Chapter 11.

SLS is short for stochastic local search. This approach assigns values to all
variables in a formula, i.e., samples the search space, and then modifies the current
state by trying to find some local improvement in the sense of (hopefully) get-
ting closer to a solution. This is usually done by using some probabilistic heuristic,

6 CHAPTER 1. INTRODUCTION

hence leading to the term stochastic. In contrast to DPLL (and CDCL) based meth-
ods, this kind of SLS algorithms are inherently incomplete, i.e., they cannot prove
unsatisfiability of a formula. The pseudo-code for a basic SLS procedure is given in
Figure 1.2. Classical SLS algorithms for SAT (e.g., [162, 15, 14, 163]) turned out
to be particularly efficient for random benchmarks and combinatorial benchmarks,
but usually perform bad on application benchmarks. This is often attributed to the
fact that, due to their local nature, they are not able to make use of the particular
structure inherent in industrial instances. In Chapter 10, we present an extension of
the classical SLS approach for SAT to the more complex case of bit-vector logics,
which turns out to be efficient on application instances as well. The state-of-the-art
of SLS for SMT and possible directions for future work are further discussed in
Chapter 12. We also mention related contributions to improving SLS for SAT in
Chapter 11.

1.1.3 Quantification and Dependencies

A natural extension of propositional satisfiability is given by the introduction of
quantifiers for variables. This leads to Quantified Boolean Formulas (QBF) or
Dependency Quantified Boolean Formulas (DQBF). We distinguish between exis-
tential quantification and universal quantification, denoted by the symbols D and
@, respectively. When talking about SAT in the context of quantification, it is
implicitly assumed that all variables in a propositional formula are existentially
quantified. Note that, according to our original definition, a propositional formula
is said to be satisfiable if and only if there exist values for all variables, so that the
formula evaluates to true.

The actual extension, therefore, is found in the introduction of universal quan-
tification. Universal quantification over a variable means that a certain statement,
i.e., a specific subformula, should be true for both values that the particular variable
can take. Whether certain other variables are allowed to take distinct values in the
two subformulas depends on the dependency constraints of the formula. A formal
definition using the concept of assignment trees is given, e.g., in Chapter 5. Depen-
dency constraints can be defined implicitly by quantification order, as in the case of
QBF, or explicitly using a functional representation, as done in DQBF. Both, QBF
and DQBF, will play a role in several chapters, such as Chapters 2-5 and Chapter 7.
Again, a more formal definition will be given in the specific chapters, e.g., most
detailed in Chapter 5 and Chapter 7.

Note that, similar to SAT, its quantified extensions are considered to be pro-
totypical problems for certain complexity classes. In particular, QBF is PSPACE-
complete [185] and DQBF is NEXPTIME-complete [187, 188]. This will be im-
portant for several new complexity results presented in Chapters 2-4.

Practical solvers for QBF exist, e.g., [164, 24, 22, 165, 118, 135], all based
on different kinds of approaches. For the even more complex case of DQBF, the
situation is different. Our approach presented in Chapter 5 was the very first imple-
mentation of a DQBF solver, and our implementation of the algorithm in Chapter 7

1.1. BACKGROUND 7

is still the only publicly available solver at the time of this writing. However, sev-
eral non-publicly available solvers now exist [111, 94].

A further extension of SAT, which will appear at several places throughout this
thesis, is the class of Effectively Propositional Logic (EPR) formulas, also known
as the Bernays-Schönfinkel class [23, 161]. Aside from quantification, EPR also
allows arbitrary domains for the range of variables and the use of predicates, i.e.,
functions that map from the specific variable domain to the set of Boolean val-
ues. Quantification in EPR, however, is restricted in the sense that all variables are
universally quantified and all predicates are implicitly assumed to be existentially
quantified. EPR is a decidable fragment of first-order logic and it is NEXPTIME-
complete [161]. Formally, EPR is usually not defined bottom-up (as an extension
of SAT), but top-down (as a restriction of first-order logic), as a set of first-order
formulas that have an D�@� quantifier prefix and do not contain any function sym-
bols (e.g. [161]). EPR will play a role in Chapter 6 and Chapter 7.

1.1.4 Satisfiability Modulo Theories

An even more general direction of extending propositional satisfiability is the one
of Satisfiability Modulo Theories (SMT) [17]. The field of SMT considers the topic
of propositional satisfiability in combination with some underlying background
theory. Atomic elements of the propositional structure of a formula are no longer
restricted to be Boolean variables, but can itself be compound subformulas over
some background logic, mapping input variables from the specific theory to a truth
value. SMT is more general than quantification, in the sense that quantification
may also be part of a background theory. There are many different SMT logics
in literature [17, 82] or, e.g., in the SMT-LIB [18]. Examples are the theory of
arrays (with or without extensionality), lists, bit-vectors of fixed or non-fixed size,
linear or non-linear arithmetic over floating point numbers, integer numbers, real
numbers, and many more. Variations and combinations thereof are possible as
well—quantified versions and quantifier-free ones. The SMT-LIB alone lists a set
of 29 different logics [18], but possible logics are not restricted to this enumeration.

The most important logics, in the context of this thesis, concern theories of
fixed size bit-vector formulas. Bit-vector representations play an important role
in many practical applications of computer science, most prominently in hard-
and software verification, but increasingly also in other scientific areas. While
we discuss quantified bit-vector formulas at several occasions, e.g., in Chapter 2
and Chapter 4, the focus will be on quantifier-free ones.

Note that, compared to other theories, bit-vector logics are also closest to
propositional logic, in the sense that bit-vector expressions can always be directly
translated into a Boolean formula by using the circuit representation of a certain bit-
vector operation, as realized in computer hardware. This is also the approach that
is used by most state-of-the-art bit-vector solvers: The bit-vector formula is first
encoded into a propositional formula (also called bit-blasting), and then handed
over to a SAT solver. Due to this strong connection, improving SAT solvers and

8 CHAPTER 1. INTRODUCTION

bit-vector solvers often goes hand in hand and it is natural to also consider SAT
solvers, when trying to improve bit-vector solving.

We explicitly deal with bit-vector logics from two different perspectives: An-
alyzing theoretical complexity, and efficiently solving formulas in practice. For
example, in Chapters 2-4, we will provide new complexity results. Note that even
quantifier-free bit-vector logics turn out to be NEXPTIME-complete, in the gen-
eral case. In Chapter 12, we further extend those results, showing that bit-vector
logics also provide prototypical representations for a whole hierarchy of complex-
ity classes. Approaches to practically solve quantifier-free bit-vector formulas can
then be found in Chapter 6, Chapter 8, and Chapter 10.

1.2 Outline

In this thesis, we approach the topic of bit-vectors from several directions, pro-
viding various theoretical results as well as practical solving approaches. The first
part of this work is about theoretical properties of bit-vector logics. To really un-
derstand a computational problem and the difficulties that might arise with it, it is
essential to know its complexity. Aside from being of interest on its own, know-
ing the complexity of a problem class, then again, can often help to find practical
solving approaches. The second part of this work is more related to the practical
aspects of solving bit-vector formulas. This, however, does not necessarily imply
directly solving bit-vector formulas. Actually, the larger part of this work deals
with algorithms for other problems, e.g., the development of DQBF solvers, or re-
encoding of bit-vector formulas into SMV or EPR. Practically, solving bit-vector
formulas, in the first place, comes down to providing a decision procedure. This,
however, is a very general concept. For example, we can either give a decision
procedure that is directly operating on a bit-vector representation, or we can trans-
late the decision problem for a bit-vector formula into a different kind of problem
for which we already have an efficient decision procedure. The latter approach is
what usually happens in practice, since state-of-the-art bit-vector solvers mainly
rely on bit-blasting (i.e., translating the bit-vector formula to a SAT formula) and
then calling a SAT solver (e.g., see [47, 50, 104, 81, 87]). This already shows why
improving state-of-the-art SAT solvers can and often will directly affect bit-vector
solvers as well. Apart from this, our previous complexity results help us identify
other possible target logics.

The main contributions of this work are given in Chapters 2–10, each repre-
senting a paper which contains novel research and has been published. Apart from
Chapter 9, which is a benchmark description, all papers were peer-reviewed dur-
ing the publication process. Publication status of the individual papers, co-authors,
publisher, and related conference or workshop are given at the beginning of each
chapter as well as in the bibliography at the end of this thesis.

Note that all chapters might contain small modifications compared to the orig-
inal publication, mainly of aesthetic nature. Those modifications include, e.g.,

1.2. OUTLINE 9

fixing of typos, changes in layout due to differences in stylesheets, and renumber-
ing citations due to the shared bibliography at the end of this work. Moreover,
all occurrences of “in this paper” have been replaced by “in this chapter”, as was
also done for similar terms. However, note that none of those changes affects the
content. Some small bugs are addressed in the next section, after the outline, and
before the main part of this work. We will now provide a short motivation for
each topic of research in the individual papers represented by Chapters 2–10 and
describe its main contribution in a few words. After this, a brief summary of the
remainder of this work will be given.

Chapter 2 [151]. In the past, the decision problem for quantifier-free bit-vector
formulas has often been assumed to be NP-complete. In Chapter 2, we show that
this assumption does not hold in general and that the problem actually becomes
NEXPTIME-complete, as soon as we allow logarithmic encoding of bit-widths.
This is shown by giving a reduction from DQBF to QF_BV. On the practical side,
this implies that bit-blasting can result in an exponentially larger SAT representa-
tion. We also give several other complexity results for related problems, discussing
in detail the difference between unary and binary encodings. For example, UFBV,
the quantified case with uninterpreted functions, is shown to be 2-NEXPTIME-
complete.

Chapter 3 [101]. The work from Chapter 2 is extended in Chapter 3 by restricting
the usage of certain operators in bit-vector logics. We end up with three very sim-
plistic classes of bit-vector formulas, showing that each of it is a prototypical char-
acterization of a decision problem which is complete for a certain class. In particu-
lar, it is sufficient to consider bit-vector formulas with bitwise operations, equality,
and different restrictions on the shift operator. Depending on whether shifts by ar-
bitrary constants are allowed, shifts by only the constant 1 are allowed, or no shifts
are allowed, the resulting logic turns out to be complete for NEXPTIME, PSPACE,
or NP, respectively.

Chapter 4 [153]. We then continue to analyze the expressiveness of individual
operators in Chapter 4, as well as the influence of certain other extensions or re-
strictions to bit-vector formulas. This chapter corresponds to a journal paper, re-
structuring the previous results from Chapter 2 and Chapter 3, together with more
elegant proofs. Additionally, the chapter also contains new complexity results for
several modifications of the earlier logics, and proofs for the equal expressiveness
of certain operators. Altogether, this part of our work provides the currently most
complete overview on the complexity of common bit-vector logics. Chapter 4 com-
prises the final part of our earlier work that is dealing with theoretical properties of
bit-vectors. Some new results will be presented in Chapter 12.

Chapter 5 [99]. As one of the results from Chapter 2, we know that the decision
problem for quantifier-free bit-vector formulas is NEXPTIME-complete. Complex-
ity theory, therefore, tells us that bit-blasting is exponential, in the general case.

10 CHAPTER 1. INTRODUCTION

However, we also know that polynomial translations to other NEXPTIME-hard
problems exist. With DQBF being a prototypical NEXPTIME-complete problem,
efficiently solving DQBF instances is an interesting topic on its own but, at the
same time, might be useful to solve quantifier-free bit-vector formulas. In Chap-
ter 5, we therefore present a so-called DQDPLL algorithm for DQBF, extending
the successful DPLL [78] and QDPLL [61] architectures for SAT and QBF, re-
spectively. At the point of writing the corresponding paper, no other DQBF solver
existed and, therefore, our approach was also the first DQBF solver developed.

Chapter 6 [150]. Effectively Propositional Logic (EPR) is another well-known
NEXPTIME-complete problem. In contrast to DQBF, efficient solvers for EPR
already exist, with IPROVER [147] being the most notable one. While our results
from Chapter 2 imply that a polynomial translation from quantifier-free bit-vector
formulas to EPR has to exist, giving this kind of reduction is far from being triv-
ial. In Chapter 6, we propose a possible translation and present its concrete im-
plementation in our tool Bv2epr. Furthermore, we evaluate the performance of
IPROVER on the resulting formulas. As expected, our results show that the expo-
nential growth that comes with bit-blasting causes difficulties for state-of-the-art
SMT solvers in connection with larger bit-widths. This confirms the relevance of
the theoretical results from the previous chapters. While still being exponential
in the general case, this effect is less dramatic when using IPROVER on the corre-
sponding EPR representation, due to its lazy instantiation only considering relevant
parts of a formula.

Chapter 7 [102]. We again address the challenge from Chapter 5, aiming to con-
struct an efficient DQBF solver. Inspired by the efficiency of IPROVER on our
benchmarks in Chapter 6 and also on certain QBF instances [202], we analyze
the theoretical behaviour of IPROVER on the class of DQBF in Chapter 7. We
use those insights to develop an instantion-based DQBF solver IDQ, explicitly tai-
lored towards the structure of DQBF, which is more restricted compared to that of
EPR. We also include an experimental evaluation, confirming the benefit of our
techniques on DQBF instances, but sometimes even outperforming more special-
ized QBF solvers on QBF benchmarks. Aside from being efficient on practical
benchmarks, IDQ also represents the first publicly available DQBF solver.

Chapter 8 [100]. While bit-blasting can be exponential, encoding a bit-vector
formula into another NEXPTIME-complete logic cannot necessarily prevent the
exponential blow-up that is inherent in that complexity class. Practically, we also
witnessed this in Chapter 6. However, using our previous complexity results from
Chapter 3, we know that certain restricted sets of bit-vector formulas actually are
PSPACE-complete. While bit-blasting might still cause an exponential growth in
formula size, we know that more efficient solving approaches must exist. For ex-
ample, encoding a bit-vector formula into a model checking problem could yield
this kind of algorithm. In Chapter 8, we present a direct translation from a PSPACE-
complete class of bit-vector formulas to the SMV format [172]. We then run an

1.2. OUTLINE 11

experimental evaluation, showing that model checkers on the SMV representation
can outperform state-of-the-art SMT solvers on the original bit-vector representa-
tion by orders of magnitude on this kind of benchmarks.

Chapter 9 [152]. Generating challenging benchmarks is essential for improving
any solver. As discussed in the beginning, the probably most straightforward way
on improving bit-vector solvers is by improving the underlying SAT solvers. The
SAT competition [12, 20] offers a possibility for state-of-the-art SAT solvers com-
peting with each other on a huge variety of different benchmarks. In Chapter 9,
we describe two sets of benchmarks which we obtained by bit-blasting certain
bit-vector formulas. The first set of benchmarks was generated in order to verify
the correctness of various reductions between different bit-vector operators, as de-
scribed in Chapter 4. Due to the expressiveness of the given operators, this directly
implies bit-blasting of the SMT formulas to be exponential, thus, generating arbi-
trary large and challenging benchmarks for SAT solvers. The second set of bench-
marks are those from the restricted class of bit-vector formulas used in Chapter 8,
being guaranteed to be in the PSPACE fragment but still producing exponentially
large SAT formulas when bit-blasted. This allows SAT solvers to check for op-
portunities to leverage the inherent structure in this kind of benchmarks, possibly
improving also on other benchmarks that require similar techniques.2

Chapter 10 [98]. With SLS being a very general concept, it cannot only be applied
to SAT formulas, but also to more general problems. While SLS solvers for SAT
usually perform very well on random and combinatorial formulas, their perfor-
mance on applicational instances tends to be rather bad. This is often attributed to
the fact that SLS solvers cannot make use of the structure that is contained in appli-
cational instances. In Chapter 10, we therefore propose to use SLS directly on the
theory level of bit-vector formulas, presenting the very first true SLS algorithm for
SMT. We give a large experimental evaluation, showing that our approach outper-
forms SLS solvers for SAT by several orders of magnitude and, at the same time,
represents an efficient approach of solving bit-vector formulas without bit-blasting
or re-encoding.

Remaining Part. Starting with Chapter 11, the remainder of this work consists
of three more chapters. Since all referenced papers were the result of joint work
with other researchers, Chapter 11 will give details on the author’s individual con-
tribution to each publication. Furthermore, some of the previous results will be
revisited in Chapter 12. In this context, we will also discuss additional related
work, which did not exist at the time of publication of the individual papers, or
which actually extended our research. We also propose different possibilities for
future work for several topics that have been discussed in this work. Aside from
this, Chapter 12 also contains very general new results, extending the complexity

2As a side effect, our benchmarks also revealed a bug in at least one of the solvers participating
in the SAT competition 2013.

12 CHAPTER 1. INTRODUCTION

results from Chapters 2–4. Finally, a conclusion is given in Chapter 13.

1.3 Bugs

As in every other area of research, there is no bulletproof way to avoid bugs. A
peer reviewed process, as formed the basis for all publications being part of this
work, usually provides a high level of confidence in the correctness of the overall
results—still, some less crucial details might sometimes be overlooked. All of the
following chapters have been reworked in minor ways, compared to the original
publication. Apart from formatting issues due to different LATEX templates, this
includes typos or grammatical mistakes, whenever realized by the author. Not
affecting the content, none of those changes will be explicitly mentioned.

There were, however, two occasions where a bug actually affected minor parts
of the content. Those bugs have been fixed in this work and will explicitly be
addressed in the following. Note that all overall results still remain correct.

Chapter 8 [100]. When preparing a camera-ready version of [100], an off-by-one
error occurred in the compile script, for reading some of the columns from the
experimental results. This was due to adding another solver to the data base in
the meantime. The bug was actually fixed before the corresponding workshop but,
unfortunately, the wrong version can still be found on the web in addition to the
correct one. Naturally, the correct plots were used in Chapter 8. Note that, as stated
in [100], the complete results were also available on our webpage at all times [60].

Chapter 10 [98]. In the published version of [98], there was a bug in the exam-
ple which we used to illustrate the behaviour of our algorithm. When evaluating
possible moves in the constraint x � 1 � y � 1, we checked the neighbourhood
of the evaluated terms x � 1 and y � 1. What our SLS algorithm would actually
do, is checking the neighbourhood of x and y, leading to a different search path
in order to find the solution. Since the resulting path would, however, be less il-
lustrative, a different example is used for this thesis, in Chapter 10. Note that this
does not affect the correctness of the proposed algorithm. Apart from this, a sign
error occurred in [98], when specifying the score function for bit-vector expres-
sions containing ¤. Instead of t2|α � t1|α, the score function of inequalities now
correctly states t1|α � t2|α, in Chapter 10 of this thesis.

Aside from this, we are not aware of any other bugs in our existing work. Even
though we hope that this is not the case, the reader should feel encouraged to let us
know if one encountered further issues.

Chapter 2

On the Complexity of Fixed-Size
Bit-Vector Logics with Binary
Encoded Bit-Width

Published. In Proceedings 10th International Workshop on Satisfiability Modulo
Theories (SMT 2012), Affiliated to IJCAR 2012, EPiC Series, volume 20, pages
44–56, EasyChair 2013 [151].

Authors. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere.

Abstract. Bit-precise reasoning is important for many practical applications of
Satisfiability Modulo Theories (SMT). In recent years, efficient approaches for
solving fixed-size bit-vector formulas have been developed. From the theoretical
point of view, only few results on the complexity of fixed-size bit-vector logics
have been published. In this chapter, we show that some of these results only hold
if unary encoding on the bit-width of bit-vectors is used. We then consider fixed-
size bit-vector logics with binary encoded bit-width and establish new complexity
results. Our proofs show that binary encoding adds more expressiveness to bit-
vector logics, e.g., it makes fixed-size bit-vector logic even without uninterpreted
functions nor quantification NEXPTIME-complete. We also show that, under cer-
tain restrictions, the increase of complexity when using binary encoding can be
avoided.

2.1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical ap-
plications of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Syntax and semantics of fixed-size bit-vector logics do not
differ much in the literature [74, 19, 35, 96, 51]. Concrete formats for specifying
bit-vector problems also exist, like the SMT-LIB format or the BTOR format [48].

13

14 CHAPTER 2. SMT 2012

Working with non-fixed-size bit-vectors has been considered, for instance, in [35, 6]
and more recently in [208], but will not be further discussed in this chapter. Most
industrial applications (and examples in the SMT-LIB) have fixed bit-width. We
investigate the complexity of solving fixed-size bit-vector formulas. Some papers
propose such complexity results, e.g., in [19], the authors consider quantifier-free
bit-vector logic, and give an argument for NP-hardness of its satisfiability problem.
In [51], a sublogic of the previous one is claimed to be NP-complete. In [234, 233],
the quantified case is addressed, and the satisfiability of this logic with uninter-
preted functions is proven to be NEXPTIME-complete. The proof holds only if we
assume that the bit-widths of the bit-vectors in the input formula are written/en-
coded in unary form. We are not aware of any work that investigates how the
particular encoding of the bit-widths in the input affects complexity (as an excep-
tion, see [71, Page 239, Footnote 3]). In practice, a more natural and exponentially
more succinct logarithmic encoding is used, such as in the SMT-LIB, the BTOR,
and the Z3 format. We investigate how complexity varies if we consider either a
unary or a logarithmic, w.l.o.g., binary encoding.

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting.
The latter is defined as the process of translating a bit-vector (or word-level) de-
scription into a bit-level circuit, as in hardware synthesis. The result can then be
checked by a (propositional) SAT solver. We give an example, why bit-blasting
is not polynomial in general. Consider checking commutativity of bit-vector addi-
tion for two bit-vectors of size one million. Written to a file this formula in SMT2
syntax can be encoded with 138 bytes:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(assert (distinct (bvadd x y) (bvadd y x)))

Using Boolector [48] with rewriting optimizations switched off (except for
structural hashing), bit-blasting produces a circuit of size 103 MB in AIGER for-
mat. Tseitin transformation results in a CNF in DIMACS format of size 1 GB. A
bit-width of 10 million can be represented by two more bytes in the SMT2 input,
but could not be bit-blasted anymore with our tool-flow (due to integer overflow).
As this example shows, checking bit-vector logics through bit-blasting cannot be
considered to be a polynomial reduction, which also disqualifies bit-blasting as a
sound way to prove that the decision problem for (quantifier-free) bit-vector log-
ics is in NP. We show that deciding bit-vector logics, even without quantifiers, is
much harder: it is NEXPTIME-complete.

Informally speaking, we show that moving from unary to binary encoding for
bit-widths increases complexity exponentially, and that binary encoding has at least
as much expressive power as quantification. However, we give a sufficient condi-
tion for bit-vector problems to remain in the “lower” complexity class, when mov-
ing from unary to binary encoding. We call them bit-width bounded problems. For
such problems, it does not matter whether bit-width is encoded unary or binary.
We also discuss some concrete examples from SMT-LIB.

2.2. PRELIMINARIES 15

2.2 Preliminaries

We assume the common syntax for (fixed-size) bit-vector formulas, cf. SMT-LIB
and [74, 19, 35, 96, 51, 48]. Every bit-vector possesses a bit-width n, either explicit
or implicit, where n is a natural number, n ¥ 1. We denote a bit-vector constant
with crns, where c is a natural number, 0 ¤ c 2n. A variable is denoted with xrns,
where x is an identifier. Let us note that no explicit bit-width belongs to bit-vector
operators, and, therefore, the bit-width of a compound term is implicit, i.e., can be
calculated. Let trns denote the fact that the bit-vector term t is of bit-width n. We
even omit an explicit bit-width if it can be deduced from the context.

In our proofs, we use the following bit-vector operators: indexing (trnsris,
0 ¤ i n), bitwise negation (� trns), bitwise and (t1rns&t2rns), bitwise or
(t1rns | t2rns), shift left (t1rns ! t2

rns), logical shift right (t1rns "u t2
rns), addition

(t1rns � t2
rns), multiplication (t1rns � t2rns), unsigned division (t1rns {u t2rns), and

equality (t1rns � t2
rns). Including other common operations (e.g., slicing, concate-

nation, extensions, arithmetic right shift, signed arithmetic and relational operators,
rotations, etc.) does not destroy the validity of our subsequent propositions, since
they all can be bit-blasted polynomially in the bit-width of their operands. Unin-
terpreted functions will also be considered. They have an explicit bit-width for the
result type. The application of such a function is written as f rnspt1, . . . , tmq, where
f is an identifier, and t1rn1s, . . . , tm

rnms are terms.
Let QF_BV1 and QF_BV2 denote the logics of quantifier-free bit-vectors with

unary and binary encoded bit-width, respectively (both without uninterpreted func-
tions). As mentioned before, we prove that the complexity of deciding QF_BV2
is exponentially higher than deciding QF_BV1. This fact is, of course, due to the
more succinct encoding. The logics we get by adding uninterpreted functions to
these logics are denoted by QF_UFBV1 and QF_UFBV2. Uninterpreted func-
tions are powerful tools for abstraction and, e.g., can be used to formalize reads
on arrays. When quantification is introduced, we get the logics BV1 and BV2,
if uninterpreted functions are prohibited. If they are allowed, we get UFBV1 and
UFBV2. These latter logics are expressive enough, for instance, to formalize reads
and writes on arrays with quantified indices.1

2.3 Complexity

In this section, we discuss the complexity of deciding the bit-vector logics defined
so far. We first summarize our results and then give more detailed proofs for the
new non-trivial ones. The results are also summarized in a tabular form in Ap-
pendix 2.6.2.

First, consider unary encoding of bit-widths. Without uninterpreted functions
nor quantification, i.e., for QF_BV1, the following complexity result can be shown

1Let us emphasize again that among all these logics the ones with binary encoding correspond
to the logics QF_BV, QF_UFBV, BV, and UFBV used by the SMT community, e.g., in SMT-LIB.

16 CHAPTER 2. SMT 2012

(for partial results and related work see also [19] and [51]):

Proposition 2.1. QF_BV1 is NP-complete2

Proof. By bit-blasting, QF_BV1 can be polynomially reduced to Boolean formu-
las, for which the satisfiability problem (SAT) is NP-complete. The other direction
follows from the fact that Boolean formulas are actually QF_BV1 formulas with
terms of bit-width 1.

Adding uninterpreted functions to QF_BV1 does not increase complexity:

Proposition 2.2. QF_UFBV1 is NP-complete.

Proof. In a formula, uninterpreted functions can be eliminated by replacing each
occurrence with a new bit-vector variable and adding (at most quadratic many)
Ackermann constraints (e.g., [158, Chapter 3.3.1]). Therefore, QF_UFBV1 can be
polynomially translated to QF_BV1. The other direction directly follows from the
fact that QF_BV1 � QF_UFBV1.

Adding quantifiers to QF_BV1 yields the following complexity (see also [71]):

Proposition 2.3. BV1 is PSPACE-complete.

Proof. By bit-blasting, BV1 can be polynomially reduced to Quantified Boolean
Formulas (QBF), which is PSPACE-complete. The other direction directly follows
from the fact that QBF � BV1 (following the same argument as in Prop. 2.1).

Adding quantifiers to QF_UFBV1 increases complexity exponentially:

Proposition 2.4 (see [233]). UFBV1 is NEXPTIME-complete.

Proof. Effectively Propositional Logic (EPR), being NEXPTIME-complete, can
be polynomially reduced to UFBV1 [233, Theorem 7]. For completing the other
direction, apply the reduction in [233, Theorem 7] combined with the bit-blasting
of the bit-vector operations.

Our main contribution is to give complexity results for the more common loga-
rithmic, w.l.o.g., binary encoding. Even without uninterpreted functions nor quan-
tification, i.e., for QF_BV2, we obtain the same complexity as for UFBV1.

Proposition 2.5. QF_BV2 is NEXPTIME-complete.

Proof. It is obvious that QF_BV2 P NEXPTIME, since a QF_BV2 formula can
be translated exponentially to QF_BV1 P NP (Prop. 2.1), by a simple unary re-
encoding of all bit-widths. The proof that QF_BV2 is NEXPTIME-hard is more
complex and is given in Section 2.3.1.

Adding uninterpreted functions to QF_BV2 does not increase complexity, again
2This kind of result is often called unary NP-completeness [105].

2.3. COMPLEXITY 17

using Ackermann constraints, as in the proof for Prop. 2.2:

Proposition 2.6. QF_UFBV2 is NEXPTIME-complete.

However, adding quantifiers to QF_UFBV2 increases complexity exponentially:

Proposition 2.7. UFBV2 is 2-NExpTime-complete.

Proof. Similar to the proof of Prop. 2.5, a UFBV2 formula can be exponentially
translated to UFBV1 P NEXPTIME (Prop. 2.4), simply by re-encoding all the bit-
widths to unary. It is more difficult to prove that UFBV2 is 2-NExpTime-hard,
which we show in Section 2.3.2.

Note that deciding QF_BV2 has the same complexity as UFBV1. Thus, start-
ing with QF_BV1, re-encoding bit-widths to binary gives the same expressive
power, in a precise complexity theoretical sense, as introducing both, uninterpreted
functions and quantification. Thus, it is important to differentiate between unary
and binary encoding of bit-widths in bit-vector logics. Our results show that binary
encoding is at least as expressive as quantification, while only the latter has been
considered in [234, 233].

2.3.1 QF_BV2 is NEXPTIME-hard

In order to prove that QF_BV2 is NEXPTIME-hard, we pick a NEXPTIME-hard
problem and, then, we reduce it to QF_BV2. Let us choose the satisfiability prob-
lem of Dependency Quantified Boolean Formulas (DQBF), which has been shown
to be NEXPTIME-complete [7].

In DQBF, quantifiers are not forced to be totally ordered. Instead, a partial
order is explicitly expressed in the form epu1, . . . , umq, stating that an existential
variable e depends on the universal variables u1, . . . , um, where m ¥ 0. Given an
existential variable e, we will use Depspeq to denote the set of universal variables
that e depends on. A more formal definition can be found in [7]. W.l.o.g., we can
assume that a DQBF instance is in conjunctive normal form.

In the proof, we are going to apply bitmasks of the form

2nhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
0 . . . 0loomoon

2i

1 . . . 1loomoon
2i

. . . 0 . . . 0loomoon
2i

1 . . . 1loomoon
2i

Given n ¥ 1 and i, with 0 ¤ i n, we denote such a bitmask with Mn
i . Note that

these bitmasks correspond to the binary magic numbers [97] (see also [231, Chap-
ter 7]), and, thus, can be arithmetically calculated in the following way (actually as
sum of a geometric series):

Mn
i :�

2p2
nq � 1

2p2iq � 1

18 CHAPTER 2. SMT 2012

In order to reformulate this definition in terms of bit-vectors, the numerator can
be written as � 0r2

ns, and 2p2
iq as 1 ! p1 ! iq, which results in the following

bit-vector expression:

Mn
i :� �0r2

ns {u
�
p1 ! p1 ! iqq � 1

�
(2.1)

Theorem 2.8. DQBF can be (polynomially) reduced to QF_BV2.

Proof. The basic idea is to use bit-vector logic to encode function tables in an
exponentially more succinct way, which then allows to characterize independence
of an existential variable from a particular universal variable polynomially.

More precisely, we will use binary magic numbers, as constructed in Equa-
tion (2.1), to create a certain set of fully-specified exponential-size bit-vectors by
using a polynomial expression, due to binary encoding. We will then formally point
out the well-known fact that those bit-vectors correspond exactly to the set of all
assignments. We can then use a polynomial-size bit-vector formula for cofactoring
Skolem-functions in order to express independency constraints.

First, we describe the reduction (cf. an example in Appendix 2.6.1), then show
that the reduction is polynomial, and, finally, that it is correct.

The reduction. Let φ :� Q.m be a DQBF, consisting of a quantifier prefix Q
and a Boolean CNF formula m called the matrix of φ. Let u0, . . . , uk�1 denote
all the universal variables that occur in φ. Translate φ to a QF_BV2 formula Φ by
eliminating the quantifier prefix and translating the matrix as follows:

Step 1. Replace Boolean constants 0 and 1 with 0r2
ks and�0r2

ks, respectively, and
replace logical connectives with corresponding bitwise bit-vector operators
(_, ^, , with |, &, �, respectively). Let Φ1 denote the formula generated
so far. Extend it to the formula

�
Φ1 � �0r2

ks
	

.

Step 2. For each ui,

1. translate (all the occurrences of) ui to a new bit-vector variable Uir2
ks;

2. in order to assign the appropriate bitmask of Equation (2.1) to Ui, add
the following equation (i.e., conjunct it with the current formula):

Ui � Mk
i (2.2)

For an optimization, see Remark 2.9 further down.

Step 3. For each existential variable e depending on universal variables Depspeq,
with Depspeq � tu0, . . . , uk�1u,

1. translate (all the occurrences of) e to a new bit-vector variable Er2ks;

2. for each ui R Depspeq, add the following equation:

pE&Uiq �
��
E "u p1 ! iq

�
&Ui

	
(2.3)

2.3. COMPLEXITY 19

As it is going to be detailed in the rest of the proof, the latter equations en-
force the corresponding bits of Er2ks to satisfy the dependency scheme of φ.
More precisely, Equation (2.3) makes sure that the positive and negative co-
factors of the Skolem-function, representing ewith respect to an independent
variable ui, have the same value.

Polynomiality. Let us recall that all the bit-widths are encoded binary in the
formula Φ. Thus, exponential bit-widths (2k) are encoded into linear many (k)
bits. We now show that each reduction step results in polynomial growth of the
formula size.

Step 1 may introduce additional bit-vector constants to the formula. Their bit-
width is 2k, therefore, the resulting formula is bounded quadratically in the input
size. Step 2 adds k variables U r2ks

i for the original universal variables, as well
as k equations as restrictions. The bit-widths of added variables and constants is
2k. Thus, the size of the added constraints is bounded quadratically in the input
size. Step 3 adds one bit-vector variable Er2ks and at most k constraints for each
existential variable. Thus, the size is bounded cubically in the input size.

Correctness. We show that the original formula φ and the result Φ of the trans-
lation are equisatisfiable. Consider one bit-vector variable Ui introduced in Step
2. In the following, we formalize the well-known fact that all the Uis correspond
exactly to all assignments. By construction, all bits of Ui are fixed to some con-
stant value. Additionally, for every bit-vector index bm P r0, 2k � 1s there exists a
bit-vector index bn P r0, 2k � 1s such that

Uirbms � Uirbns and (2.4a)

Ujrbms � Ujrbns, @j � i. (2.4b)

Actually, let us define bn in the following way (considering the 0th bit the least sig-
nificant):

bn :�

"
bm � 2i if Uirbms � 0
bm � 2i if Uirbms � 1

By defining bn this way, Equation (2.4a) and (2.4b) both hold, which can be
seen as follows. Let Rpc, lq be the bit-vector of length l with each bit set to the
Boolean constant c. Equation (2.4a) holds, since, due to construction,Ui consists of
2k�1�i concatenated bit-vector fragments 0 . . . 01 . . . 1 � Rp0, 2iqRp1, 2iq (with
both 2i zeros and 2i ones). Therefore, it is easy to see that Uirbms � Uirbm � 2is
holds if Uirbms � 0, and Uirbms � Uirbm � 2is holds if Uirbms � 1. With a
similar argument, we can show that Equation (2.4b) holds: Ujrbms � Ujrbm � 2is
(Ujrbms � Ujrbm � 2is) if Ujrbms � 0 (Ujrbms � 1), since bm � 2i (bm �
2i) is located either still in the same half or already in a concatenated copy of a
Rp0, 2jqRp1, 2jq fragment, if j � i.

20 CHAPTER 2. SMT 2012

Now consider all possible assignments to the universal variables of our original
DQBF-formula φ. For a given assignment α P t0, 1uk, the existence of such a
previously defined bn for every Ui and bm allows us to iteratively find a bα such
that pU0rbαs, . . . , Uk�1rbαsq � α. Thus, we have a bijective mapping of every
universal assignment α in φ to a bit-vector index bα in Φ.

In Step 3, we first replace each existential variable e with a new bit-vector
variable E, which can take 2p2

kq different values. The value of each individual bit
Erbαs corresponds to the value e takes under a given assignment α P t0, 1uk to the
universal variables. Note that, with no further restrictions, there is no connection
between the different bits in E and, therefore, the vector represents an arbitrary
Skolem-function for an existential variable e. It may have different values for all
universal assignments and thus would allow e to depend on all universal variables.

If, however, e does not depend on a universal variable ui, we add the constraint
of Equation (2.3). In DQBF, independence can be formalized in the following
way: e does not depend on ui if e has to take the same value in the case of all pairs
of universal assignments α, β P t0, 1uk where αrjs � βrjs for all j � i. Exactly
this is enforced by our constraint. We have already shown that for α we have a
corresponding bit-vector index bα, and we have defined how we can construct a
bit-vector index bβ for β. Our constraint for independence ensures that Erbαs �
Erbβs.

Step 1 ensures that all logical connectives and all Boolean constants are con-
sistent for each bit-vector index, i.e., for each universal assignment, and that the
matrix of φ evaluates to 1 for each universal assignment.

Remark 2.9. Using Equation (2.1) as part of Equation (2.2) seems to require
the use of division, which, however, can easily be eliminated by rewriting Equa-
tion (2.2) to �

Ui �
�
p1 ! p1 ! iqq � 1

�	
� �0r2

ks

Multiplication in this equation can then be eliminated by rewriting it as follows:�
pUi ! p1 ! iqq � Ui

	
� �0r2

ks

2.3.2 UFBV2 is 2-NExpTime-hard

In order to prove that UFBV2 is 2-NExpTime-hard, we pick a 2-NExpTime-hard
problem and then, we reduce it to UFBV2. We can find such a problem among the
so-called domino tiling problems [65]. Let us first define what a domino system is,
and then we specify a 2-NExpTime-hard problem on such systems.

Definition 2.10 (Domino System). A domino system is a tuple xT,H, V, ny, where

• T is a finite set of tile types, in our case, T � r0, k � 1s, where k ¥ 1;

• H,V � T � T are the horizontal and vertical matching conditions, respec-
tively;

2.3. COMPLEXITY 21

• n ¥ 1, encoded unary.

Let us note that the above definition differs (but not substantially) from the
classical one in [65], in the sense that we use sub-sequential natural numbers for
identifying tiles, as it is common in recent papers. Similar to [171] and [183], the
size factor n, encoded unary, is part of the input. However, while a start tile α and
a terminal tile ω are usually used, in our case, w.l.o.g., the starting tile is denoted
by 0 and the terminal tile by k � 1.

There are different domino tiling problems examined in the literature. In [65],
a classical tiling problem is introduced, namely the square tiling problem, which
can be defined as follows.

Definition 2.11 (Square Tiling). Given a domino system xT,H, V, ny, an fpnq-
square tiling is a mapping λ : r0, fpnq � 1s � r0, fpnq � 1s ÞÑ T , such that

• the first row starts with the start tile: λp0, 0q � 0

• the last row ends with the terminal tile: λpfpnq � 1, fpnq � 1q � k � 1

• all horizontal matching conditions hold:�
λpi, jq, λpi, j � 1q

�
P H, @i, j . 0 ¤ i fpnq, 0 ¤ j fpnq � 1

• all vertical matching conditions hold:�
λpi, jq, λpi� 1, jq

�
P V, @i, j . 0 ¤ i fpnq � 1, 0 ¤ j fpnq

In [65], a general theorem on the complexity of domino tiling problems is
proved:

Theorem 2.12 (from [65]). The fpnq-square tiling problem is NTIME pfpnqq-
complete.

Since, for completing our proof on UFBV2, we need a 2-NExpTime-hard prob-
lem, let us emphasize the following easy corollary:

Corollary 2.13. The 2p2
nq-square tiling problem is 2-NExpTime-complete.

Theorem 2.14. The 2p2
nq-square tiling problem can be (polynomially) reduced to

UFBV2.

Proof. Given a domino system xT � r0, k � 1s, H, V, ny, let us introduce the
following notations which we intend to use in the resulting UFBV2 formula.

• Represent each tile in T with the corresponding bit-vector of bit-width l,
with l :� rlog ks.

• Represent the horizontal and vertical matching conditions with the unin-
terpreted functions (predicates) hr1spt1rls, t2rlsq and vr1spt1rls, t2rlsq, respec-
tively.

22 CHAPTER 2. SMT 2012

• Represent the tiling with an uninterpreted function λrlspir2
ns, jr2

nsq. Intu-
itively, λ represents the type of the tile in the cell at the row index i and
column index j. Note that the bit-width of i and j is exponential in the size
of the domino system, but due to binary encoding it can represented polyno-
mially.

The resulting UFBV2 formula is the following:

λp0, 0q � 0 ^ λ
�

2p2
nq � 1, 2p2

nq � 1
	
� k � 1

^
©

pt1,t2qPH

hpt1, t2q ^
©

pt1,t2qPV

vpt1, t2q

^ @i, j

����
�
j 2p2

nq � 1 ñ h
�
λpi, jq, λpi, j � 1q

� 	
^�

i 2p2
nq � 1 ñ v

�
λpi, jq, λpi� 1, jq

� 	
���

This formula contains four kinds of constants. Three can be encoded directly (0r2
ns,

0rls, and pk � 1qrls). However, the constant 2p2
nq � 1 has to be treated in a special

way, in order to avoid double exponential size. Instead, it is written in the following
form: �0r2

ns. The size of the resulting formula, due to binary encoding of the bit-
width, is polynomial in the size of the domino system.

2.4 Problems Bounded in Bit-Width

We are going to introduce a sufficient condition for bit-vector problems to remain
in the “lower” complexity class, when re-encoding bit-width from unary to binary.
This condition tries to capture the bounded nature of bit-width in certain bit-vector
problems.

In any bit-vector formula, there has to be at least one term with explicit specifi-
cation of its bit-width. In the logics we are dealing with, only a variable, a constant,
or an uninterpreted function can have explicit bit-width. Given a bit-vector formula
Φ, let us denote the maximal explicit bit-width in Φ with maxbw pΦq. Furthermore,
let cntbw pΦq denote the number of terms with explicit bit-width in Φ.

Definition 2.15 (Bit-Width Bounded Formula Set). An infinite set S of bit-vector
formulas is (polynomially) bit-width bounded, if there exists a polynomial function
p : N ÞÑ N such that @Φ P S. maxbw pΦq ¤ ppcntbw pΦqq.

Proposition 2.16. Given a bit-width bounded set S of formulas with binary en-
coded bit-width, any Φ P S grows polynomially when re-encoding the bit-widths
to unary.

Proof. Let Φ1 denote the formula obtained through re-encoding bit-widths in Φ to
unary. For the size of Φ1 the following upper bound can be shown:

|Φ1| ¤ cntbw pΦq � maxbw pΦq � c.

2.4. PROBLEMS BOUNDED IN BIT-WIDTH 23

Note that cntbw pΦq � maxbw pΦq is an upper bound on the sum over the sizes of all
the terms with explicit bit-width in Φ1. The constant c represents the size of the rest
of the formula. Since S is bit-width bounded, it holds that

|Φ1| ¤ cntbw pΦq �maxbw pΦq� c ¤ cntbw pΦq �ppcntbw pΦqq� c ¤ |Φ| �pp|Φ|q� c,

where p is a polynomial function. Therefore, the size of Φ1 is polynomial in the
size of Φ.

By applying this proposition to the logics of Section 2.2 we get:

Corollary 2.17. Let us assume a bit-width bounded set S of bit-vector formulas.
If S � QF_UFBV2 (and even if S � QF_BV2), then S P NP. If S � BV2, then
S P PSPACE. If S � UFBV2, then S P NEXPTIME.

2.4.1 Benchmark Problems

In this section, we discuss concrete SMT-LIB benchmark problems, and whether
they are bit-width bounded. Since in SMT-LIB bit-widths are encoded logarith-
mically and quantification on bit-vectors is not (yet) addressed, we have picked
benchmarks from QF_BV, which can be considered as QF_BV2 formulas.

Consider the benchmark set QF_BV/brummayerbiere2/umulov2bwb,
representing instances of an unsigned multiplication overflow detection equiva-
lence checking problem, that are parameterized by the bit-width of unsigned mul-
tiplicands (b). We show that the set of these benchmarks, with b P N, is bit-width
bounded, and therefore is in NP. This problem checks that a certain (unsigned)
overflow detection unit, defined in [201], gives the same result as the following
condition: if the b{2 most significant bits of the multiplicands are zero, then no
overflow occurs. It requires 2 � pb� 2q variables and a fixed number of constants to
formalize the overflow detection unit, as detailed in [201]. The rest of the formula
contains only a fixed number of variables and constants. The maximal bit-width in
the formula is b. Therefore, the (maximal explicit) bit-width is linearly bounded in
the number of variables and constants.

The benchmark class QF_BV/brummayerbiere3/mulhsb represents in-
stances of computing the high-order half of product problem, parameterized by the
bit-width of unsigned multiplicands (b). In this problem, the high-order b{2 bits of
the product are computed, following an algorithm detailed in [231, Page 132]. The
maximal bit-width is b and the number of variables and constants to formalize this
problem is fixed, i.e., independent of b. Therefore, the (maximal explicit) bit-width
is not bounded in the number of variables and constants.

The family QF_BV/bruttomesso/lfsr/lfsrt_b_n formalizes the be-
haviour of a linear feedback shift register [51]. Since, by construction, the bit-
width (b) and the number (n) of registers do not correlate, and only n variables are
used, this benchmark problem is not bit-width bounded.

24 CHAPTER 2. SMT 2012

2.5 Conclusion

We discussed complexity of deciding various quantified and quantifier-free fixed-
size bit-vector logics. In contrast to existing literature, where usually it is not
distinguished between unary or binary encoding of the bit-width, we argued that
it is important to make this distinction. Our new results apply to the much more
natural binary encoding, as it is also used in standard formats, e.g. in the SMT-
LIB format. We proved that deciding QF_BV2 is NEXPTIME-complete, which
is the same complexity as for deciding UFBV1. This shows that binary encoding
for bit-widths has at least as much expressive power as quantification does. We
also proved that UFBV2 is 2-NExpTime-complete. The complexity of deciding
BV2 remains unclear. While it is easy to show EXPSPACE-inclusion for BV2 by
bit-blasting to an exponential-size QBF, and NEXPTIME-hardness follows directly
from QF_BV2 � BV2, it is not clear whether BV2 is complete for any of these
classes. We also showed that, under certain conditions on bit-width, the increase
of complexity that comes with a binary encoding can be avoided. Finally, we gave
examples of benchmark problems that do or do not fulfill this condition. As future
work, it might be interesting to consider our results in the context of parametrized
complexity [85]. Our theoretical results give an argument for using more powerful
solving techniques. Currently, the most common approach used in state-of-the-art
SMT solvers for bit-vectors is based on simple rewriting, bit-blasting, and SAT
solving. We have shown this can possibly produce exponentially larger formulas
when a logarithmic encoding is used as an input. Possible candidates are tech-
niques used in EPR and/or (D)QBF solvers (see e.g. [99, 147]).

2.6 Appendix

2.6.1 Example: A Reduction of DQBF to QF_BV2

Consider the following DQBF:

@u0, u1, u2Dxpu0q, ypu1, u2q . px_ y _ u0 _ u1q ^

px_ y _ u0 _ u1 _ u2q ^

px_ y _ u0 _ u1 _ u2q ^

p x_ y _ u0 _ u2q ^

p x_ y _ u0 _ u1 _ u2q

This DQBF is unsatisfiable. Let us note that by adding one more dependency for
y, or even by making x and y dependent on all uis, the resulting QBF becomes
satisfiable.

Using the reduction in Section 2.3.1, this formula is translated to the following

25

QF_BV2 formula:�
pX | Y |�U0 |�U1q&pX |�Y | U0 |�U1 |�U2q&pX |�Y |�U0 |�U1 | U2q

&p�X | Y |�U0 |�U2q&p�X |�Y | U0 | U1 |�U2q
	
��0r8s ^©

iPt0,1,2u

��
pUi ! p1 ! iqq � Ui

�
� �0r8s

	
^

pX&U1q �
�
pX "u p1 ! 1qq&U1

�
^

pX&U2q �
�
pX "u p1 ! 2qq&U2

�
^

pY&U0q �
�
pY "u p1 ! 0qq&U0

�
(2.5)

Note that M3
0 � 5516

r8s � 010101012
r8s, M3

1 � 3316
r8s � 001100112

r8s, and
M3

2 � 0F16
r8s � 000011112

r8s, where “�16” and “�2” denotes hexadecimal and
binary encoding of the binary magic numbers, respectively.

In the following, let us show that the formula (2.5) is also unsatisfiable. First,
we show how the bits of X get restricted by the constraints introduced above. Let
us denote the originally unrestricted bits of X with x7, x6, . . . , x0. Since the bit-
vectors

pX&U1q �
�
0, 0, Xr5s, Xr4s, 0, 0, Xr1s, Xr0s

�
and �

pX "u p1 ! 1qq&U1

�
�

�
0, 0, Xr7s, Xr6s, 0, 0, Xr3s, Xr2s

�
are forced to be equal, some bits of X should coincide, as follows:

X :�
�
x5, x4, x5, x4, x1, x0, x1, x0

�
Furthermore, considering also the equation of

pX&U2q �
�
0, 0, 0, 0, Xr3s, Xr2s, Xr1s, Xr0s

�
and �

pX "u p1 ! 2qq&U2

�
�

�
0, 0, 0, 0, Xr7s, Xr6s, Xr5s, Xr4s

�
results in

X :�
�
x1, x0, x1, x0, x1, x0, x1, x0

�
In a similar fashion, the bits of Y are constrained as follows:

Y :�
�
y6, y6, y4, y4, y2, y2, y0, y0

�
In order to show that the formula (2.5) is unsatisfiable, let us evaluate the “clauses”
in the formula:

pX | Y |�U0 |�U1q �
�

1 , 1 , 1 , x0 _ y4 , 1 , 1 , 1 , x0 _ y0

�
pX |�Y | U0 |�U1 |�U2q �

�
1 , 1 , 1 , 1 , 1 , 1 , x1 _ y0 , 1

�
pX |�Y |�U0 |�U1 | U2q �

�
1 , 1 , 1 , x0 _ y4 , 1 , 1 , 1 , 1

�
p�X | Y |�U0 |�U2q �

�
1 , 1 , 1 , 1 , 1 , x0 _ y2 , 1 , x0 _ y0

�
p�X |�Y | U0 | U1 |�U2q �

�
1 , 1 , 1 , 1 , x1 _ y2 , 1 , 1 , 1

�

26 CHAPTER 2. SMT 2012

By applying bitwise and to them, we get the bit-vector represented by the for-
mula (2.5): ������������

1
1
1

px0 _ y4q ^ px0 _ y4q
 x1 _ y2

 x0 _ y2

x1 _ y0

px0 _ y0q ^ p x0 _ y0q

�����������
�

������������

1
1
1
x0

 x1 _ y2

 x0 _ y2

x1 _ y0

y0

�����������
In order to check if every bits of this bit-vector can evaluate to 1, it is sufficient to
try to satisfy the set of the above (propositional) clauses. It is easy to see that this
clause set is unsatisfiable, since by unit propagation x1 and y2 must be 1, which
contradicts with the clause x1 _ y2.

2.6.2 Table: Completeness Results for Bit-Vector Logics

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding
unary NP NP PSPACE NEXPTIME

binary NEXPTIME NEXPTIME ? 2-NEXPTIME

Chapter 3

More on the Complexity of
Quantifier-Free Fixed-Size
Bit-Vector Logics with Binary
Encoding

Published. In Proceedings 8th International Computer Science Symposium in
Russia (CSR 2013), Lecture Notes in Computer Science (LNCS) volume 7913,
pages 378–390, Springer 2013 [101].

Authors. Andreas Fröhlich, Gergely Kovásznai, and Armin Biere.

Abstract. Bit-precise reasoning is important for many practical applications of
Satisfiability Modulo Theories (SMT). In recent years, efficient approaches for
solving fixed-size bit-vector formulas have been developed. From the theoretical
point of view, only few results on the complexity of fixed-size bit-vector logics have
been published. Most of these results only hold if unary encoding on the bit-width
of bit-vectors is used. In previous work [151], we showed that binary encoding
adds more expressiveness to bit-vector logics, e.g. it makes fixed-size bit-vector
logic without uninterpreted functions nor quantification NEXPTIME-complete. In
this chapter, we look at the quantifier-free case again and propose two new results.
While it is enough to consider logics with bitwise operations, equality, and shift
by constant to derive NEXPTIME-completeness, we show that the logic becomes
PSPACE-complete if, instead of shift by constant, only shift by 1 is permitted, and
even NP-complete if no shifts are allowed at all.

3.1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical ap-
plications of Satisfiability Modulo Theories (SMT), particularly for hardware and

27

28 CHAPTER 3. CSR 2013

software verification. Examples of state-of-the-art SMT solvers with support for
bit-precise reasoning are Boolector, MathSAT, STP, Z3, and Yices.

Syntax and semantics of fixed-size bit-vector logics do not differ much in the
literature [74, 19, 35, 51, 96]. Concrete formats for specifying bit-vector problems
also exist, e.g., the SMT-LIB format [18] or the BTOR format [48]. Working with
non-fixed-size bit-vectors has been considered, for instance, in [35, 6], and more
recently in [209], but is not the focus of this chapter. Most industrial applications
(and examples in the SMT-LIB) have fixed bit-width.

We investigate the complexity of solving fixed-size bit-vector formulas. Some
papers propose such complexity results. For example, in [19], the authors con-
sider quantifier-free bit-vector logic and give an argument for the NP-hardness of
its satisfiability problem. In [51], a sublogic of the previous one is claimed to
be NP-complete. Interestingly, in [52], there is a claim about the full quantifier-
free bit-vector logic without uninterpreted functions (QF_BV) being NP-complete,
however, the proposed decision procedure confirms this claim only if the bit-widths
of the bit-vectors in the input formula are written/encoded in unary form. In [234,
233], the quantified case is addressed, and the satisfiability problem of this logic
with uninterpreted functions (UFBV) is proved to be NEXPTIME-complete. Again,
the proof only holds if we assume unary encoded bit-widths. In practice, a more
natural and exponentially more succinct logarithmic encoding is used, such as in
the SMT-LIB, the BTOR, and the Z3 format.

In previous work [151], we already investigated how complexity varies if we
consider either a unary or a logarithmic, w.l.o.g., binary encoding. Apart from
this, we are not aware of any work that investigates how the particular encoding of
the bit-widths in the input affects complexity (as an exception, see [71, Page 239,
Footnote 3]). Table 3.1 summarizes the completeness results we obtained in [151].

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding
unary NP NP PSPACE NEXPTIME

binary NEXPTIME NEXPTIME ? 2-NEXPTIME

Table 3.1: Completeness results for various bit-vector logics and encodings [151].

In this chapter, we revisit QF_BV2, the quantifier-free case with binary en-
coding and without uninterpreted functions. We then put certain restrictions on
the operations we use (in particular on the shift operation). As a result, we obtain
two new sublogics, QF_BV2!1 and QF_BV2bw, which we show to be PSPACE-
complete and NP-complete, respectively.

3.2. MOTIVATION 29

3.2 Motivation

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting.
The latter is defined as the process of translating a bit-vector (or word-level) de-
scription into a bit-level circuit, as in hardware synthesis. The result can then be
checked by a (propositional) SAT solver. In [151], we gave the following exam-
ple (in SMT2 syntax) to point out that bit-blasting is not polynomial in general. It
checks commutativity of adding two bit-vectors of bit-width 1000000:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(assert (distinct (bvadd x y) (bvadd y x)))

Bit-blasting such formulas generates huge circuits, which shows that check-
ing bit-vector logics through bit-blasting cannot be considered to be a polynomial
reduction. This also disqualifies bit-blasting as a sound way to argue that the de-
cision problem for (quantifier-free) bit-vector logics is in NP. We actually proved
in [151], that deciding bit-vector logics, even without quantifiers, is much harder.
It turned out to be NEXPTIME-complete in the general case.

However, in [151] we then also defined a class of bit-width bounded problems
and showed that under certain restrictions on the bit-widths this growth in com-
plexity can be avoided and the problem remains in NP.

In this chapter, we give a more detailed classification of quantifier-free fixed-
size bit-vector logics by investigating how complexity varies when we restrict the
operations that can be used in a bit-vector formula. We establish two new complex-
ity results for restricted bit-vector logics and bring together our previous results
in [151] with work on linear arithmetic on non-fixed-size bit-vectors [209, 208]
and work on the reduction of bit-widths [140, 141]. The formula in the given ex-
ample only contains bitwise operations, equality, and addition. Solving this kind
of formulas turns out to be PSPACE-complete.

3.3 Definitions

We assume the usual syntax for (quantifier-free) bit-vector logics, with a restricted
set of bit-vector operations: bitwise operations, equality, and (left) shift by con-
stant.

Definition 3.1 (Term). A bit-vector term t of bit-width n (n P N, n ¥ 1) is denoted
by trns. A term is defined inductively as follows:

term condition bit-width

bit-vector constant: crns c P N, 0 ¤ c 2n n

bit-vector variable: xrns x is an identifier n

30 CHAPTER 3. CSR 2013

bitwise negation: � trns trns is a term n

bitwise and/or/xor: �
t1
rns t2

rns
�

t1
rns and t2rns are terms n

 P t&, |,`u

equality:
�
t1
rns � t2

rns
�
t1
rns and t2rns are terms 1

shift by constant:
�
trns ! crns

� trns is a term,
crns is a constant

n

We also define how to measure the size of bit-vector expressions:

Definition 3.2 (Size). The size of a bit-vector term trns is denoted by |trns| and is
defined inductively as follows:

term size

natural number: encpnq rlog2 pn� 1qs� 1

bit-vector constant: |crns| encpcq � encpnq

bit-vector variable: |xrns| 1� encpnq

bitwise negation: | � trns| 1� |trns|

binary operations:
|
�
t1
rns t2

rns
�
| 1� |t1

rns| � |t2
rns|

 P t&, |,`,�,!u

A bit-vector term tr1s is also called a bit-vector formula. We say that a bit-
vector formula is in flat form if it does not contain nested equalities. It is easy to see
that any bit-vector formula can be translated to this form with only linear growth
in the number of variables. In the rest of the chapter, we may omit parentheses in a
formula for the sake of readability.

Let Φ be a bit-vector formula and α an assignment to the variables in Φ. We
use the notation αpΦq to denote the evaluation of Φ under α, with αpΦq P t0, 1u.
α satisfies Φ if and only if αpΦq � 1. We define three different bit-vector logics:

• QF_BV2!c:
bitwise operations, equality, and shift by any constant are allowed

• QF_BV2!1:
bitwise operations, equality, and shift by only c � 1 are allowed

• QF_BV2bw:
only bitwise operations and equality are allowed

Obviously, QF_BV2bw � QF_BV2!1 � QF_BV2!c. In Section 3.4, we
investigate the complexity of the satisfiability problem for these logics:

• QF_BV2!c is NEXPTIME-complete.

3.4. COMPLEXITY RESULTS 31

• QF_BV2!1 is PSPACE-complete.

• QF_BV2bw is NP-complete.

Adding uninterpreted functions does not change expressiveness of these logics,
since in the quantifier-free case, uninterpreted functions can always be replaced by
new variables. To guarantee functional consistency, Ackermann constraints have
to be added to the formula. However, even in the worst case, the number of Ack-
ermann constraints is only quadratic in the number of function instances. W.l.o.g.,
we therefore do not explicitly deal with uninterpreted functions.

3.4 Complexity Results

Theorem 3.3. QF_BV2!c is NEXPTIME-complete.

Proof. The theorem directly follows from our previous work in [151]. We infor-
mally defined QF_BV2 as the quantifier-free bit-vector logic that uses the common
bit-vector operations as defined for example in SMT-LIB, including bitwise opera-
tions, equality, shifts, addition, multiplication, concatenation, slicing, etc., and then
showed that QF_BV2 is NEXPTIME-complete.

Obviously, QF_BV2!c � QF_BV2 and therefore, QF_BV2!c P NEXPTIME.
To show the NEXPTIME-hardness of QF_BV2, we gave a (polynomial) reduction
from DQBF (which is NEXPTIME-complete [187]) to QF_BV2. Since we only
used bitwise operations, equality, and shift1 by constant in our reduction, we also
immediately get the NEXPTIME-hardness of QF_BV2!c. l

Theorem 3.4. QF_BV2!1 is PSPACE-complete.

Proof. In Lemma 3.5, we give a (polynomial) reduction from QBF (which is
PSPACE-complete) to QF_BV2!1. This shows PSPACE-hardness of QF_BV2!1.
In Lemma 3.6, we then prove that QF_BV2!1 P PSPACE by giving a translation
from QF_BV2!1 to (polynomial sized) sequential circuits. As pointed out, e.g.,
in [194], the symbolic reachability problem is PSPACE-complete as well. l

Lemma 3.5. QBF can be (polynomially) reduced to QF_BV2!1.

Proof. To show the PSPACE-hardness of QF_BV2!1, we give a polynomial re-
duction from QBF similar to the one from DQBF to QF_BV2 that we proposed
in [151]. For our reduction, we again use the so-called binary magic numbers (or
magic masks in [145, page 141]). Appendix 3.7.2 demonstrates how the reduction
works.

Given m,n P N with 0 ¤ m n, a binary magic number can be written in the
1Note, logical right shifts were used in the proof in [151]. However, by applying negated bit

masks throughout the proof, all right shifts can be rewritten as left shifts.

32 CHAPTER 3. CSR 2013

following form:

binmagic p2m, 2nq �

2nhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
0 . . . 0loomoon

2m

1 . . . 1loomoon
2m

. . . 0 . . . 0loomoon
2m

1 . . . 1loomoon
2m

Note that in [151], we used shift by constant to construct the binary magic num-
bers, as done in the literature [145]. This is not permitted in QF_BV2!1. There-
fore, we give an alternative construction using only bitwise operations, equality,
and shift by 1:

Given n ¡ 0, for allm, 0 ¤ m n, add the following equation to the formula:

b1m
r2ns

�

� ©
0¤i m

bi
r2ns

�
` bm

r2ns

Consider all the bit-vector variables b0r2
ns, . . . , bn�1

r2ns as column vectors in
a matrix Br2n�ns and all the bit-vector variables b10

r2ns, . . . , b1n�1
r2ns as column

vectors in a matrix B1r2n�ns. If each row of B is interpreted as a number c in
binary representation, with 0 ¤ c 2n, the corresponding row of B1 is equal to
c� 1.

Now, again for all m, 0 ¤ m n, add another constraint:

b1m
r2ns

� bm
r2ns ! 1r2

ns

Together with the previous n equations, those n constraints force the rows of
B to represent an enumeration of all binary numbers 0 ¤ c 2n. Therefore, the
columns of B, i.e., the individual bit-vectors b0r2

ns, . . . , bn�1
r2ns, exactly define

the binary magic numbers: binmagic p2m, 2nq :� bm
r2ns.

Obviously, all b1m, for 0 ¤ m n, can be eliminated and the two sets of
constraints can be replaced by a single set of constraints:� ©

0¤i m

bi
r2ns

�
` bm

r2ns � bm
r2ns ! 1r2

ns

Now let φ :� Q.M denote a QBF with quantifier prefixQ and matrixM . Since
φ is a QBF (in contrast to DQBF in [151]), we know that Q defines a total order
on the universal variables. We now assume the universal variables u0, . . . , un�1

of φ are ordered according to their appearance in Q, with u0 and un�1 being the
innermost and outermost variable, respectively.

Translate φ to a QF_BV2!1 formula Φ by eliminating the quantifier prefix and
translating the matrix as follows:

Step 1. Replace Boolean constants 0 and 1 with 0r2
ns and � 0r2

ns, respectively,
and replace logical connectives with corresponding bitwise bit-vector operations
(e.g., ^ with &). Let Φ1 denote the formula generated so far. Extend it to the
formula

�
Φ1 � �0r2

ks
	

.

3.4. COMPLEXITY RESULTS 33

Step 2. For each universal variable um P tu0, . . . , un�1u,

1. translate (all the occurrences of) um to a new bit-vector variable Umr2ns;

2. in order to assign a binary magic number to Umr2ns, add the following equa-
tion (i.e., conjunct it with the current formula):

Um
r2ns � binmagic p2m, 2nq

Step 3. For an existential variable e, depending on Depspeq � tum, . . . , un�1u,
with um being the innermost universal variable that e depends on,

1. translate (all the occurrences of) e to a new bit-vector variable Er2ns;

2. if Depspeq � H add the following equation:

pE& �1q � pE ! 1q (3.1)

otherwise, if m � 0 add the two equations:

U 1
m � �

�
pUm ! 1q ` Um

�
(3.2)

pE&U 1
mq �

�
pE ! 1q&U 1

m

�
(3.3)

Note that we omitted the bit-widths in the last equations to improve readability.
Each bit position of Φ corresponds to the evaluation of φ under a specific assign-
ment to the universal variables u0, . . . , un�1, and, by construction of the corre-
sponding vectors U0

r2ns, . . . , Un�1
r2ns, all possible assignments are considered.

Equation (3.2) creates a bit-vector U 1
m
r2ns for which each bit equals to 1 if and

only if the corresponding universal variable changes its value from one universal
assignment to the next.

Of course, Equation (3.2) does not have to be added multiple times, if several
existential variables depend on the same universal variable. Equation (3.3) (or
Equation (3.1)) ensures that the corresponding bits of Er2ns satisfy the dependency
scheme of φ by only allowing the value of e to change if an outer universal variable
takes a different value. If m � 0, i.e., if e depends on all universal variables,
Equation (3.2) evaluates to U 1

0
r2ns � 0, and, as a consequence, Equation (3.3)

simplifies to true. Due to this, no constraints need to be added for m � 0. A
similar approach used for translating QBF to Symbolic Model Verification (SMV)
can be found in [84]. See also [194] for a translation from QBF to sequential
circuits. l

Lemma 3.6. QF_BV2!1 can be (polynomially) reduced to sequential circuits.

Proof. In [209, 208], the authors give a translation from quantifier-free Presburger
arithmetic with bitwise operations (QFPAbit) to sequential circuits. We can adopt

34 CHAPTER 3. CSR 2013

their approach in order to construct a translation for QF_BV2!1. The main differ-
ence between QFPAbit and QF_BV2!1 is the fact that bit-vectors of arbitrary, non-
fixed, size are allowed in QFPAbit while all bit-vectors contained in QF_BV2!1

have a fixed bit-width.
Given Φ P QF_BV2!1 in flat form. Let xrns, yrns denote bit-vector variables,

crns a bit-vector constant, and t1rns, t2rns bit-vector terms only containing bit-vector
variables and bitwise operations. Following [209, 208], we additionally assume,
w.l.o.g., that Φ only consists of three types of expressions: t1rns � t2

rns, xrns �
crns, and xrns � yrns ! 1rns, since any QF_BV2!1 formula can be written like this
with only a linear growth in the number of original variables.

We encode each equality in Φ separately into an atomic sequential circuit.
Compared to [209, 208], two modifications are needed. First, we need to give a
translation for x � y ! 1 to sequential circuits. This can be done, for example, by
using the sequential circuit for x � 2 � y in QFPAbit. However, a direct translation
can also easily be constructed.

The second modification relates to dealing with fixed-size bit-vectors. Let n
be the bit-width of all bit-vectors in a given equality. We extend each atomic se-
quential circuit to include a counter (circuit). The counter initially is set to 0 and is
incremented by 1 in each clock cycle up to a value of n.

When the counter reaches a value of n, it does not change anymore and the
output of the atomic sequential circuit is set to the same value as the output in the
previous cycle. A counter like this can be realized with rlog2pnqs gates, i.e. poly-
nomially in the size of Φ. In contrast to the implementation described in [208], we
assume that the input streams for all variables start with the least significant bit.
However, as already pointed out by the authors in [208], their choice was arbitrary
and it is no more complicated to construct the circuits the other way round.

Finally, after constructing atomic circuits, their outputs are combined by logical
gates following the Boolean structure of Φ, in the same way as for unbounded bit-
width in [209, 208]. Due to adding counters, we ensure that for every input stream
xi, only the first ni bits of xi influence the result of the whole circuit. l

For the proof of Theorem 3.9, we need the following definition and a corresponding
lemma from [151]:

Definition 3.7 (Bit-Width Bounded Formula Set [151]). Given a formula Φ, we
denote the maximal bit-width in Φ with maxbw pΦq. An infinite set S of bit-vector
formulas is (polynomially) bit-width bounded, if there exists a polynomial function
p : N ÞÑ N such that @Φ P S. maxbw pΦq ¤ pp|Φ|q.

Lemma 3.8 ([151]). S P NP for any bit-width bounded formula set S � QF_BV2.

Theorem 3.9. QF_BV2bw is NP-complete.

Proof. Since Boolean Formulas are a subset of QF_BV2bw, NP-hardness follows
directly. To show that QF_BV2bw P NP, we give a reduction from QF_BV2bw to
a bit-width bounded set of formulas. The claim then follows from Lemma 3.8.

3.4. COMPLEXITY RESULTS 35

Given a formula Φ P QF_BV2bw in flat form. If Φ contains any constants
crns � 0rns, we remove those constants in a (polynomial) preprocessing step. Let
cmax

rns � bk�1 . . . b1b0 be the largest constant in Φ, denoted in binary representa-
tion with bk�1 � 1 and arbitrary bits bk�2, . . . , b0. We now replace each equality
t1
rms � t2

rms in Φ with

pt1,k1�1
r1s � t2,k1�1

r1sq& . . .&pt1,0
r1s � t2,0

r1sq

where k1 � mintm, ku, and, if m ¡ k, we additionally add

&pt1,hi
rm�ks � t2,hi

rm�ksq

For 0 ¤ i k, we use pt1,ir1s � t2,i
r1sq to express the ith row of the original

equality. All occurrences of a variable xrms are replaced with a new variable xir1s.
All occurrences of a constant crms are replaced with 0r1s if the ith bit of the constant
is 0, and by �0r1s otherwise.

In a similar way, if m ¡ k, pt1,hirm�ks � t2,hi
rm�ksq represents the remaining

pm�kq rows of the original equality corresponding to the most significant bits. All
occurrences of a variable xrms are replaced with a new variable xhirm�ks and all
occurrences of a constant crms are replaced with 0rm�ks. Since this preprocessing
step is logarithmic in the value of cmax, it is polynomial in |Φ|. W.l.o.g., we now
assume that Φ does not contain any bit-vector constants different from 0rns.

We now construct a formula Φ1 by reducing the bit-widths of all bit-vector
terms in Φ. Each term trns in Φ, with bit-width n, is replaced with a term trn

1s,
with n1 :� mintn, |Φ|u. Apart from this, Φ1 is exactly the same as Φ. As a conse-
quence, maxbw pΦ1q ¤ |Φ|. The set of formulas constructed in this way is bit-width
bounded according to Definition 3.7. To complete our proof, we now have to show
that the proposed reduction is sound, i.e., out of every satisfying assignment to
the bit-vector variables x1

rn1s, . . . , xk
rnks for Φ, we can also construct a satisfying

assignment to x1
rn11s, . . . , xk

rn1ks for Φ1 and vice versa.
It is easy to see that whenever we have a satisfying assignment α1 for Φ1, we

can construct a satisfying assignment α for Φ. This can be done by simply setting
all additional bits of all bit-vector variables to the same value as the most signifi-
cant bit of the corresponding original vector, i.e., by performing a signed extension.
Since all equalities still evaluate to the same value under the extended assignment,
αpF q � α1pF 1q for all equalities F and F 1 of Φ and Φ1), respectively. As a direct
consequence, αpΦq � α1pΦq � 1. The other direction needs slightly more reason-
ing. Given α, with αpΦq � 1, we need to construct α1, with α1pΦ1q � 1. Again,
we want to ensure that α1pF 1q � αpF q for all equalities F and F 1 in Φ and Φ1.
respectively.

In each variable xirnis, i P t1, . . . , ku, we are going to select some of the
bits. For each equality F with αpF q � 0, we select a bit-index as a witness for
its evaluation. If αpF q � 1, we select an arbitrary bit-index. We then mark the
selected bit-index in all bit-vector variables contained in F , as well as in all other

36 CHAPTER 3. CSR 2013

bit-vector variables of the same bit-width. Having done this for all equalities, we
end up with sets Mi of selected bit-indices, for all i P t1, . . . , ku, where

|Mi| ¤ mintni, |Φ|u

Mi �Mj @j P t1, . . . , ku with ni � nj

The selected indices contain a witness for the evaluation of each equality. We now
add arbitrary further bit-indices, again selecting the same indices in bit-vector vari-
ables of the same bit-width, until |Mi| � mintni, |Φ|u @i P t1, . . . , ku. Finally,
we can directly construct α1 using the selected indices and get α1pΦ1q � αpΦq � 1
because of the fact that we included a witness for every equality in our index-
selection process. Note, that we only had to choose a specific witness for the case
that αpF q � 0. For αpF q � 1, we were able to choose an arbitrary bit-index be-
cause every satisfied equality will trivially still be satisfied when only a subset of
all bit-indices is considered. l

Remark 3.10. A similar proof can be found in [140, 141]. While the focus
of [140, 141] lies on improving the practical efficiency of SMT solvers by re-
ducing the bit-width of a given formula before bit-blasting, the author does not
investigate its influence on the complexity of a given problem class. In fact, the au-
thor claims that bit-vector theories with common operators are NP-complete. As
we have already shown in [151], this only holds if unary encoding on the bit-widths
is used. However, unary encoding leads to the fact that the given class of formu-
las remains NP-complete, independent of whether a reduction of the bit-width is
possible. While the arguments on bit-width reduction given in [140, 141] still hold
for binary encoded bit-vector formulas when only bitwise operators are used, our
proof considers the complexity of the problem class.

3.5 Discussion

The complexity results given in Section 3.4 provide some insight in where the
expressiveness of bit-vector logics with binary encoding comes from. While we
assume bitwise operations and equality naturally being part of a bit-vector logic, if
and to what extent we allow shifts directly determines its complexity. Shifts, in a
certain way, allow different bits of a bit-vector to interact with each other. Whether
we allow no interaction, interaction between neighbouring bits, or interaction be-
tween arbitrary bits is crucial to the expressiveness of bit-vector logics and the
complexity of their decision problem.

Additionally, we directly get classifications for various other bit-vector opera-
tions: for example, we still remain in PSPACE if we add linear modular arithmetic
to QF_BV2!1. This can be seen by replacing expressions xrns � yrns � zrns by�

xrns � yrns ` zrns ` cin
rns
	

&
�
cin

rns � cout
rns ! 1rns

	
&�

cout
rns �

�
xrns&yrns

	
|
�
cin

rns&yrns
	
|
�
xrns&cin

rns
		

3.6. CONCLUSION 37

with new variables cinrns, coutrns, and by splitting multiplication by constant into
several multiplications by 2 (or shifts by 1), similar to [209, 208]. However, this is
not surprising since QFPAbit is already known to be PSPACE-complete [208].

More interestingly, we can also extend QF_BV2!1 (or QFPAbit) by indexing
(denoted by xrnsris) without growth in complexity. The counter we introduced in
our translation from QF_BV2!1 to sequential circuits can be used to return the
value at a specific bit-index of a bit-vector. Extending QF_BV2!1 with additional
relational operators like e.g., unsigned less than (denoted by xrns u y

rns) does not
increase complexity, either. For instance, the above expression can be replaced by
checking whether x � y 0 holds, which can simply be done by constructing an
adder for xrns�

�
�yrns � 1rns

�
, as shown above, and then check whether overflow

occurs, i.e.,
�
yrns � 0rns

�
&
�
cout

rnsrn� 1s � 0r1s
�
.

On the other hand, slicing (denoted by xrns ri : js) cannot be added without
growth in complexity. To prove this, consider�

xrns rn� 1 : cs � yrns rn� c� 1 : 0s
	

&
�
xrns rc� 1 : 0s � 0rcs

	
,

which is equivalent to
xrns � pyrns ! crnsq,

and shows that slicing can be used to express shift by constant. Therefore, the
resulting logic becomes NEXPTIME-complete. The same result holds for general
multiplication. We can use

xrns � pyrns � 2crnsq

to replace shift by constant and use exponentiation by squaring to calculate 2crns

with rlog2pnqs multiplications.
Note that those results only hold for fixed-size bit-vector logics. For exam-

ple, allowing multiplication (in combination with addition) makes non-fixed-size
bit-vector logics undecidable [79]. We are not aware of any complexity results
concerning non-fixed-size bit-vector logics with slicing or shift by constant.

3.6 Conclusion

In this chapter, we discussed the complexity of fixed-size bit-vector logics with
binary encoding on numbers. In contrast to existing literature, except for our pre-
vious work [151], where usually it is not distinguished between unary or binary
encoding, we argued that it is important to make this distinction. Our results apply
to the actually much more natural binary encoding as it is also used in standard for-
mats, e.g., in the SMT-LIB format. In previous work [151], we already showed the
quantifier-free case of those bit-vector logics to be NEXPTIME-complete. We now
extended our previous work by analyzing the quantifier-free case in more detail
and gave two new complexity results.

38 CHAPTER 3. CSR 2013

In particular, we showed that the complexity of deciding quantifier-free bit-
vector logics with bitwise operations and equality depends on whether we al-
low shift by constant (QF_BV2!c), shift by 1 (QF_BV2!1), or no shifts at all
(QF_BV2bw). While deciding QF_BV2!c still remains NEXPTIME-complete,
we proved that QF_BV2!1 is PSPACE-complete, and QF_BV2bw even becomes
NP-complete. In addition to the already previously proposed concept of bit-width
boundedness, this gives an alternative way to avoid the increase in complexity that
comes with binary encoding in the general case. To be more specific for practi-
cal logics, we then looked at the effect some other common operations have on
this complexity results. We discussed why logics with addition, multiplication by
constant, indexing, and relational operations still can be decided in PSPACE, and
showed that allowing general multiplication or slicing already causes NEXPTIME-
completeness.

On the one hand, our theoretical results give an argument for using more pow-
erful solving techniques when dealing with bit-vector logics. Currently the most
common approach used in state-of-the-art SMT solvers for bit-vectors is based on
simple rewriting, bit-blasting, and SAT solving. We have shown this can possi-
bly produce exponentially larger formulas when a logarithmic encoding is used in
the input. As already argued in [151], possible candidates for the general case are
techniques used in EPR and/or DQBF solvers (see e.g. [99, 147]).

On the other hand, we described various logics that remain in lower complex-
ity classes. For QF_BV2bw this shows the importance of bit-width reduction as
proposed in [140, 141] before bit-blasting. For formulas in QF_BV2!1 or one of
the related classes, only using shift by 1, addition, multiplication by constant, and
indexing, techniques used in state-of-the-art QBF solvers [165] or symbolic model
checking on sequential circuits [194] might be of interest.

3.7 Appendix

3.7.1 Table: Completeness Results for Fixed-Size and Non-Fixed-Size
Logics

fixed-size non-fixed-size

QF_BV2:
NEXPTIME [151]

undecidable [79]

QF_BV2!c: ?

QF_BV2!1: PSPACE r�s PSPACE [209, 208]

QF_BV2bw: NP r�s NP r�s 2

Presburger arithmetic: ? NP
(� shown in this chapter)

39

3.7.2 Example: A Reduction of QBF to QF_BV2!1

Consider the following QBF:

Dx@u2Dy@u1u0Dz . pu2 _ u1 _ zq ^

pu2 _ x_ yq ^

pu0 _ x_ zq ^

pu1 _ y _ zq ^

pu0 _ u1 _ zq

This QBF is satisfiable, and is translated to the following QF_BV2!1 formula:�
pU2 | U1 |�Zq&pU2 |�X | Y q&pU0 |�X |�Zq&

pU1 |�Y | Zq&pU0 |�U1 | Zq
	
��0r8s ^©

mPt0,1,2u

�� ©
0¤i m

Ui

�
` Um � Um ! 1

�
^

pX& �1q � pX ! 1q ^�
U 1

2 � �
�
pU2 ! 1q ` U2

��
^

�
pY&U 1

2q �
�
pY ! 1q&U 1

2

��
(3.4)

Let us note that we omit the bit-widths for the sake of readability, and also because
all the bit-vector variables are of bit-width 8.

In the following, let us show that this formula is also satisfiable. Note that
U0 � 010101012

r8s, U1 � 001100112
r8s, and U2 � 000011112

r8s. The following
table gives some insight into the process of generating these binary magic numbers:

1` U0 � U0 ! 1 Ñ U0 U0 ` U1 � U1 ! 1 Ñ U1

 U0,7 U0,6 0 U1,7 U1,6 0
 U0,6 U0,5 1 U1,6 U1,5 0
 U0,5 U0,4 0 U1,5 U1,4 1
 U0,4 U0,3 1 U1,4 U1,3 1
 U0,3 U0,2 0 U1,3 U1,2 0
 U0,2 U0,1 1 U1,2 U1,1 0
 U0,1 U0,0 0 U1,1 U1,0 1
 U0,0 0 1 U1,0 0 1

2Although we did not point this out explicitly, it is easy to check that the proof we gave for the
specific fixed-sized bit-vector logic in Theorem 3.9 still holds for the corresponding non-fixed-size
one if we set all bit-widths in Φ1 to n1 :� |Φ|.

40 CHAPTER 3. CSR 2013

pU0 ^ U1q ` U2 � U2 ! 1 Ñ U2

U2,7 U2,6 0
U2,6 U2,5 0
U2,5 U2,4 0
 U2,4 U2,3 0
U2,3 U2,2 1
U2,2 U2,1 1
U2,1 U2,1 1
 U2,0 0 1

First, we show how the bits of X get restricted by the constraints introduced
above. Let us denote the originally unrestricted bits of X with x7, x6, . . . , x0.
Since the bit-vectors

pX& �1q � px7, x6, x5, x4, x3, x2, x1, 0q

pX ! 1q � px6, x5, x4, x3, x2, x1, x0, 0q

are forced to be equal, all bits of X have to be equal:

X :� px0, x0, x0, x0, x0, x0, x0, x0q

Similarly we get the constraints on Y :

U 1
2 :� �ppU2 ! 1q ` U2q � 11101110

and, therefore,

pY&U 1
2q � py7, y6, y5, 0, y3, y2, y1, 0q

pY ! 1q&U 1
2q � py6, y5, y4, 0, y2, y1, y0, 0q

which are forced to be equal. Then we put restrictions on individual bits of Y :

Y :� py4, y4, y4, y4, y0, y0, y0, y0q

Finally, Z is not restricted in any way since u0 is the innermost universal vari-
able that z depends on, i.e., z depends on all universal variables.

Z :� pz7, z6, z5, z4, z3, z2, z1, z0q

In order to show that the formula (3.4) is satisfiable, let us evaluate the “clauses”
in the formula:

pU2 | U1 |�Zq � p z7, z6, 1, 1, 1, 1, 1, 1q

pU2 |�X | Y q � p x0 _ y4, x0 _ y4, x0 _ y4, x0 _ y4, 1, 1, 1, 1q

pU0 |�X |�Zq � p x0 _ z7, 1, x0 _ z5, 1, x0 _ z3, 1, x0 _ z1, 1q

pU1 |�Y | Zq � p y4 _ z7, y4 _ z6, 1, 1, y0 _ z4, y0 _ z3, 1, 1q

pU0 |�U1 | Zq � p1, 1, z5, 1, 1, 1, z1, 1q

41

By applying bitwise and to them, we get the following bit-vector:

Φ1 �

������������

 z7 ^ p x0 _ y4q ^ p x0 _ z7q ^ p y4 _ z7q
 z6 ^ p x0 _ y4q ^ p y4 _ z6q
p x0 _ y4q ^ p x0 _ z5q ^ z5

 x0 _ y4

p x0 _ z3q ^ p y0 _ z4q
 y0 _ z3

p x0 _ z1q ^ z1

1

�����������
In order to check if Φ1 ��0r8s is satisfiable, one can check the satisfiability of

the following simplified clause set:

t z7, x0, y4, z6, z5, y0 _ z4, y0 _ z3, z1u

This can be satisfied, e.g., by setting

z7 � x0 � y4 � z6 � y0 � 0

z5 � z1 � 1

Therefore,

U0 � 010101012
r8s, U1 � 001100112

r8s, U2 � 000011112
r8s,

X � 000000002
r8s, Y � 000000002

r8s, Z � 001111112
r8s

is a possible solution of the bit-vector formula (3.4).

42 CHAPTER 3. CSR 2013

Chapter 4

Complexity of Fixed-Size
Bit-Vector Logics

Published. In the Journal of Theory of Computing Systems (TOCS’15), Springer
2015, DOI 10.1007/s00224-015-9653-1 [153].

Authors. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere.

Abstract. Bit-precise reasoning is important for many practical applications of
Satisfiability Modulo Theories (SMT). In recent years, efficient approaches for
solving fixed-size bit-vector formulas have been developed. From the theoretical
point of view, only few results on the complexity of fixed-size bit-vector logics have
been published. Some of these results only hold if unary encoding on the bit-width
of bit-vectors is used. In our previous work [151], we have already shown that
binary encoding adds more expressiveness to various fixed-size bit-vector logics
with and without quantification. In a follow-up work [101], we then gave addi-
tional complexity results for several fragments of the quantifier-free case. In this
chapter, we revisit our complexity results from [101, 151] and go into more detail
when specifying the underlying logics and presenting the proofs. We give a bet-
ter insight in where the additional expressiveness of binary encoding comes from.
In order to do this, we bring together our previous work and propose several new
complexity results for new fragments and extensions of earlier bit-vector logics.
We also discuss the expressiveness of various bit-vector operations in more detail.
Altogether, we provide the currently most complete overview on the complexity of
common bit-vector logics.

4.1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical ap-
plications of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for

43

44 CHAPTER 4. TOCS 2015

bit-precise reasoning are Boolector [47], MathSAT [50], STP [104], Z3 [81], and
Yices [87].

The theory of fixed-size bit-vector logics is investigated in several scientific
works [19, 35, 51, 74, 96], and even concrete formats for specifying such bit-vector
problems exist, e.g., the SMT-LIB format [18] or the BTOR format [48]. Working
with non-fixed-size bit-vectors has been considered, for instance, in [6, 35], and,
more recently, in [208, 209], but is not further discussed in this chapter. Most
industrial applications (and examples in the SMT-LIB 1) have fixed bit-width.

We investigate the complexity of solving fixed-size bit-vector formulas. Some
papers propose such complexity results, e.g., in [19], the authors consider the com-
mon quantifier-free bit-vector logic and give an argument for NP-hardness of its
satisfiability problem. In [51], a sublogic of the previous one is claimed to be NP-
complete. Interestingly, in [52], there is a claim about the full quantifier-free logic
being NP-complete, however the proposed decision procedure justifies this claim
only if the bit-widths of the bit-vectors in the input formula are written/encoded in
unary format. In [233, 234], the quantified case is addressed, and the satisfiability
problem for this logic with uninterpreted functions is proved to be NEXPTIME-
complete. However, the proof, similarly to the decision procedure in [52], only
holds if we assume unary encoded bit-widths.

Parts of our chapter already appeared as previous work [101, 151]. Apart from
this, we are not aware of any work that investigates how the encoding of the bit-
widths in the input affects complexity (as an exception, see [71, Page 239, Foot-
note 3]). In practice, the more natural and exponentially more succinct logarithmic
encoding is used, such as in the SMT-LIB [18] or the BTOR [48] format. We in-
vestigate how complexity varies if we consider either a unary or a binary encoding.
Note that binary encoding, throughout the whole chapter, can be replaced with any
other logarithmic encoding.

The present chapter extends our previous work in several ways. After giving a
motivation for the use of binary encoded bit-vector logics in Section 4.2, we spec-
ify various fixed-size bit-vector logics in detail (Section 4.3). While our previous
chapters were referring to the common syntax and semantics used in other works,
e.g., [19, 35, 48, 51, 74, 96], but was never fully specified from the theoretical point
of view, we now want to provide self-contained descriptions for the bit-vector log-
ics that we are considering. Therefore, we introduce syntax and semantics for
fixed-size bit-vector logics containing all common bit-vector operations as used in
the SMT-LIB format.

After these preliminary definitions, we give a short overview of the existing
complexity results for bit-vector logics with unary encoding in Section 4.4. We
then introduce the concept of scalar-boundedness for bit-vector logics with bi-
nary encoding in Section 4.5 and give improved versions of our complexity proofs
for quantifier-free bit-vector logics in Section 4.6. Although our previous proofs
from [101, 151] are still valid, we modified and restructured our work to present

1http://www.smtlib.org/

http://www.smtlib.org/

4.2. MOTIVATION 45

those proofs in a clearer, easier-to-read, way. In Section 4.7, we look at the expres-
siveness of various bit-vector operations and analyze whether they can be used to
extend some of the previously defined fragments or to give an alternative charac-
terization of a given class. We then revisit the quantified case in Section 4.8 and
give new complexity results for fragments with restrictions on operations and the
bit-widths of universal variables. Also, we provide a new complexity result for
quantifier-free logics extended with non-recursive macros, which are allowed, for
example, in the SMT-LIB format.

Finally, we discuss practical considerations of our results in Section 4.9, giving
a brief overview of related practical work which we presented in [100, 150], and
explain how our theoretic contributions can help to improve practical SMT solving.
We then conclude in Section 4.10. The Appendix contains examples that make
some definitions and proofs easier to understand.

4.2 Motivation

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting.
The latter is defined as the process of translating a bit-vector description (also
called word-level description) into a combinatorial circuit, as in hardware synthe-
sis. The result can then be checked by a (propositional) SAT solver.

Usually, numbers contained in a bit-vector description (e.g., the bit-widths of
bit-vector variables) are encoded in a logarithmic way. When translating the orig-
inal description into a circuit, all numbers are effectively replaced by their unary
encoding. Bit-blasting can therefore lead to an exponential growth, if the numbers
are not logarithmic in the original description size.

To illustrate this effect on a practical example, consider the following bit-vector
formula in SMT-LIB syntax [18]:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))

The first line defines the logic to be the one of quantifier-free bit-vectors. The
following three lines introduce bit-vector variables x, y, and z of bit-width one mil-
lion. The last three lines enforce some constraints between the variables. Basically,
the formula verifies that, for an arbitrary bit-vector x of bit-width one million, there
exists no bit-vector y � x with x� y � x ! 1.

Written to a file, this formula can be encoded with 217 bytes. Using the SMT
solver Boolector (even with all rewritings switched on), bit-blasting produces a
circuit of size 129 MB, encoded in the actually rather compact AIGER format.
Tseitin transformation results in a CNF in DIMACS format of size 843 MB. A

46 CHAPTER 4. TOCS 2015

bit-width of 10 million bits can be represented by four more bytes in the original
SMT-LIB input, but could not be bit-blasted anymore with our tool-flow (due to
integer overflow). As this example illustrates, checking satisfiability of bit-vector
formulas through bit-blasting can suffer dramatically from the exponential growth
caused by the implicit unary re-encoding of the numbers.

Obviously, its exponential nature also disqualifies bit-blasting as a sound way
to prove that the satisfiability problem for (quantifier-free) bit-vector logics is in
NP. In [151], we showed that deciding bit-vector logics, even without quantifiers,
is much harder. It turned out to be NEXPTIME-complete. Informally speaking,
we showed that moving from unary to binary encoding for bit-widths increases
complexity exponentially and that binary encoding has at least as much expres-
sive power as quantification. However, in [101, 151], we also proposed certain
restrictions for bit-vector problems to remain in a “lower” complexity class, when
moving from unary to binary encoding.

These theoretical insights as well as later practical results from [100, 150] give
reason to look into bit-vector logics more closely and to provide a comprehensive
framework for dealing with complexity of bit-vector logics, particularly combined
with the use of a binary encoding.

4.3 Preliminaries

N denotes the set of natural numbers t0, 1, 2, . . . u, while N� denotes Nzt0u and
B :� t0, 1u is the Boolean domain, thus, truth values false and true are represented
by 0 and 1, respectively. Given n P N�, let Ln denote the ceiling of the logarithm
of n base 2: Ln :� rlog2 ns.

4.3.1 SAT, QBF, and DQBF

Let V be a set of Boolean variables. Boolean formulas over V are defined induc-
tively as follows: (i) x is a Boolean formula where x P V ; (ii) φ0, pφ0 ^ φ1q,
pφ0 _ φ1q, pφ0 ñ φ1q, and pφ0 ô φ1q are Boolean formulas where φ0, φ1 are
Boolean formulas. A Boolean formula φ is satisfiable if and only if there exists an
assignment α : V ÞÑ B to the variables, such that φ evaluates to 1 under α. The
Boolean satisfiability problem (SAT) is NP-complete.

The class of Quantified Boolean Formulas (QBF) is obtained by adding quanti-
fiers to Boolean formulas. Each QBF ψ can be written in prenex normal form, i.e.,
as a closed formula Q.φ where Q is a quantifier prefix DV0@V1DV2 . . .@Vm�1DVm,
the Vis are pairwise disjoint sets of variables, and φ is a Boolean formula, which is
called the matrix of ψ. A variable v P Vi depends on a variable v1 P Vj if and only
if i ¡ j. This defines a total order on the variables of ψ. A QBF is satisfiable if and
only if there exist Skolem functions for its existential variables to make the formula
evaluate to 1. The satisfiability problem for QBF is PSPACE-complete [185, 216].

Instead of using totally ordered quantifiers, it is also possible to extend Boolean
formulas with Henkin quantifiers [122]. Henkin quantifiers specify variable depen-

4.3. PRELIMINARIES 47

dencies explicitly instead of using implicit dependencies defined by the quantifier
order. This allows to define more general dependency constraints, only requiring
a partial order. Adding Henkin quantifiers to Boolean formulas results in the class
of Dependency Quantified Boolean Formulas (DQBF), as first defined in [187].
Again, a DQBF can always be expressed in prenex normal form, i.e., as a closed
formula Q1.φ, where Q1 is a quantifier prefix

@u1, . . . , umDe1pu1,1, . . . , u1,m1q, . . . , enpun,1, . . . , un,mnq

where each ui,j is a universally quantified variable, mi P N, and the matrix φ is
a Boolean formula. In DQBF, existential variables can always be placed after all
universal variables in the quantifier prefix, since the dependencies of a certain vari-
able are explicitly given, and not implicitly defined by the order of the prefix (in
contrast to QBF). The more general quantifier order makes DQBF more powerful
than QBF and allows more succinct encodings. A DQBF is satisfiable if and only if
there exist Skolem functions for its existential variables to make the formula eval-
uate to 1. In DQBF, the arguments for Skolem functions of an existential variable
are exactly the universal variables that are explicitly specified in its Henkin quan-
tifier. The satisfiability problem for DQBF is NEXPTIME-complete [188, 187].
Although we did not formally specify the dependencies of universal variables, this
can be done by the use of Herbrand functions [9].

Throughout this chapter, we use SAT, QBF, and DQBF to give reductions from
or to certain bit-vector logics, showing inclusion or hardness for the corresponding
complexity class, respectively. While SAT and QBF are considered to be prototyp-
ical complete problems for their complexity classes, DQBF is used less frequently.
Another NEXPTIME-complete logic used in reductions in the context of unary
encoded bit-vector logics [233] is Effectively Propositional Logic (EPR) [161].
However, due to its simplicity, we consider DQBF to be a better choice for our
purposes.

4.3.2 Circuits

We distinguish between two kind of circuits: combinatorial circuits and sequential
circuits. For both kinds of circuits, we stick closely to the definitions in [208]:

A combinatorial circuit with ni inputs and no outputs is a finite acyclic directed
graph with exactly ni vertices of in-degree zero and no vertices of out-degree zero.
All vertices of a non-zero in-degree have a logical function assigned to them and
are called gates. All vertices of in-degree one represent a NOT-gate and vertices
of greater in-degrees are either AND- or OR-gates. Given boolean values for the
inputs, each gate can be evaluated in the natural way according to the logical func-
tion it represents. As already noted in the introduction, this kind of representation
of a bit-vector formula is created during bit-blasting. For every combinatorial cir-
cuit, a corresponding set of no SAT formulas with ni variables can be constructed
naturally.

48 CHAPTER 4. TOCS 2015

A (clocked) sequential circuit SC consists of a combinatorial circuit C and a
set of D-type flip-flops. The data input of each flip-flop is connected to a unique
output of C and the Q-output of each flip-flop is connected to a unique input of C.
Such a backward-connected output-input pair will be denoted as a state variable.
The circuit is assumed to work in clock pulses. In every clock pulse, it takes the
values of its inputs and computes the output values. Via the flip-flops these values
are routed back to the inputs for the use in the next clock cycle. Inputs of C that do
not receive their value from an output through a flip-flop will be called the inputs of
the sequential circuit SC and outputs of C that do not pass their value to an input
of a flip-flop will be called the outputs of the sequential circuit SC.

All the state variables are assumed to be provided with initial values stored
in the flip-flops before the first clock cycle. The input variables need to be pro-
vided values from outside the system at every clock cycle and the output variables
produce a new output at every clock cycle. A sequential circuit can be used to rec-
ognize languages. A word w P pt0, 1uniq� is said to be accepted by a sequential
circuit SC with one output o, if and only if the value of o is 1 after the last clock
cycle when w is given as input, one letter each clock cycle.

Symbolic model checking for sequential circuits refers to the problem of check-
ing whether the language for a given sequential circuit is empty. It is known to
be PSPACE-complete [194, 198, 205].

4.3.3 Fixed-Size Bit-Vector Logics

A bit-vector, or word, is a sequence of bits, i.e., Boolean values. Such a sequence
may be either infinite or of a fixed size n P N�, where n is called the bit-width of
the bit-vector. While non-fixed-size bit-vectors have been considered for example
in [6, 35, 208, 209], working with fixed-size bit-vectors is the focus of this chapter.

Let Dn denote the set of all bit-vectors of bit-width n. Given d P Dn, the ith
bit of d is denoted by dris, where i P N and i n. Using vector notation, d is
written as

�
drn� 1s, . . . , dr1s, dr0s

�
, i.e., the most significant bit standing on the

left-hand side and the least significant bit on the right-hand side. Sometimes, we
omit parentheses and commas.

Syntax and semantics of fixed-size bit-vector logics do not differ much in the
literature [19, 35, 51, 74, 96]. Concrete formats for specifying bit-vector problems
also exist, e.g., the SMT-LIB format [18] or the BTOR format [48]. In the subse-
quent sections, we give the necessary definitions, in a more general way than in the
works cited above, in order to propose a uniform and general framework using any
set of bit-vector operations.

Syntax

The main objective of this section is to define bit-vector formulas. As it turns out
in Definition 4.2 and 4.3, such a formula, informally speaking, is a combination of
bit-vector operations on some atomic elements, each of which can be represented

4.3. PRELIMINARIES 49

either as a bit-vector or an integer, which we call a scalar. Let us emphasize that
scalars in formulas are not represented as bit-vectors. Note that the bit-width of a
bit-vector is also a scalar.

A bit-vector operator symbol (or operator for short) represents an operation
that takes some bit-vector operands and scalar operands, and computes a single
bit-vector. Given an arbitrary operator set, one has to specify syntactic rules for
using the operators. Definition 4.1 of a signature captures these rules by providing
three properties for each operator: (1) An operator is given an arity, which is a
pair of numbers that specify the number of bit-vector operands and the number of
scalar operands, respectively. For instance, the arithmetic operator addition has
2 bit-vector and 0 scalar operands, while extraction has 1 bit-vector and 2 scalar
operands. (2) Since there usually exist restrictions on what kind of operands are
legal to use with an operator, a signature has to specify a condition on the bit-
widths and scalar values of operands. For instance, the operands of addition must
be of the same bit-width; the scalar operands i, j of extraction must be less than
the bit-width of the bit-vector operand and i ¥ j. (3) A bit-width of the resulting
bit-vector is assigned to each legal combination of bit-widths and scalar values of
operands.

Definition 4.1 (Signature). A signature for an operator set Op is defined as a set
ΣOp :� txarityo, condo, widoy | o P Opu, where

• arityo P N� N;

• condo : pN�qk � Nl ÞÑ B where xk, ly :� arityo;

• wido : Paro ÞÑ N� where
Paro :�

p P pN�qk � Nl | xk, ly :� arityo, condoppq

(
.

Table 4.1 shows the set of the most common operators provided by the SMT-
LIB format [18] and the literature [19, 35, 51, 74, 96], such as bitwise opera-
tors (negation, and, or, xor, etc.), relational operators (equality, unsigned/signed
less than, unsigned/signed less than or equal, etc.), arithmetic operators (addition,
subtraction, multiplication, unsigned/signed division, unsigned/signed remainder,
etc.), shifts (left shift, logical/arithmetic right shift), extraction, concatenation, ze-
ro/sign extension, etc. Let Op denote the common operator set given in Table 4.1.
Op includes all bit-vector operators used in the SMT-LIB providing a collection of
the most common bit-vector operators in software and hardware verification; other
frameworks, like Boolector and Z3, provide additional useful operators, e.g., re-
duction operators and overflow operators. Let ΣOp denote the common signature
for Op. Note that Table 4.1 specifies some of the syntactic properties provided by
ΣOp in an implicit way: the arity is completely, the condition is partly implicit.

50 CHAPTER 4. TOCS 2015

operation condition bit-width alternative syntax

negation: bvnot
�
trns

�
n � trns

and: bvand
�
t1
rns, t2

rns
�

n
�
t1
rns&t2

rns
�

or: bvor
�
t1
rns, t2

rns
�

n
�
t1
rns | t2

rns
�

xor: bvxor
�
t1
rns, t2

rns
�

n
�
t1
rns ` t2

rns
�

nand: bvnand
�
t1
rns, t2

rns
�

n

nor: bvnor
�
t1
rns, t2

rns
�

n

xnor: bvxnor
�
t1
rns, t2

rns
�

n

if-then-else: ite
�
t1
r1s, t2

rns, t3
rns
�

n

equality: bvcomp
�
t1
rns, t2

rns
�

1
�
t1
rns � t2

rns
�

unsigned (u.) less than: bvult
�
t1
rns, t2

rns
�

1
�
t1
rns u t2

rns
�

u. less than or equal: bvule
�
t1
rns, t2

rns
�

1

u. greater than: bvugt
�
t1
rns, t2

rns
�

1

u. greater than or equal: bvuge
�
t1
rns, t2

rns
�

1

signed (s.) less than: bvslt
�
t1
rns, t2

rns
�

1

s. less than or equal: bvsle
�
t1
rns, t2

rns
�

1

s. greater than: bvsgt
�
t1
rns, t2

rns
�

1

s. greater than or equal: bvsge
�
t1
rns, t2

rns
�

1

shift left: bvshl
�
t1
rns, t2

rns
�

n
�
t1
rns ! t2

rns
�

logical shift right: bvlshr
�
t1
rns, t2

rns
�

n
�
t1
rns "u t2

rns
�

arithmetic shift right: bvashr
�
t1
rns, t2

rns
�

n
�
t1
rns "s t2

rns
�

extraction: extract
�
trns, i, j

�
n ¡ i ¥ j i� j � 1 trns ri : js

concatenation: concat
�
t1
rms, t2

rns
�

m� n
�
t1
rms � t2

rns
�

zero extend: zero_extend
�
trns, i

�
n� i extu

�
trns, i

�
sign extend: sign_extend

�
trns, i

�
n� i

rotate left: rotate_left
�
trns, i

�
n ¡ i ¥ 0 n

rotate right: rotate_right
�
trns, i

�
n ¡ i ¥ 0 n

continued on next page

4.3. PRELIMINARIES 51

continued from previous page

repeat: repeat
�
trns, i

�
i ¡ 0 n � i

unary minus: bvneg
�
trns

�
n �trns

addition: bvadd
�
t1
rns, t2

rns
�

n
�
t1
rns � t2

rns
�

subtraction: bvsub
�
t1
rns, t2

rns
�

n
�
t1
rns � t2

rns
�

multiplication: bvmul
�
t1
rns, t2

rns
�

n
�
t1
rns � t2

rns
�

unsigned division: bvudiv
�
t1
rns, t2

rns
�

n
�
t1
rns {u t2

rns
�

u. remainder: bvurem
�
t1
rns, t2

rns
�

n

signed division: bvsdiv
�
t1
rns, t2

rns
�

n

s. remainder
with rounding to 0: bvsrem

�
t1
rns, t2

rns
�

n

s. remainder
with rounding to �8: bvsmod

�
t1
rns, t2

rns
�

n

Table 4.1: Syntax (signature) for common bit-vector operators

The simplest bit-vector expressions, or terms, are the variables and constants,
as Definition 4.2 shows. Operators can be applied to bit-vector terms which obey
the syntactic rules given by the signature of the operator set. While operators have
a priori fixed syntax and semantics, uninterpreted functions can be introduced on
demand.

Definition 4.2 (Term). A bit-vector term t of bit-width n P N� is denoted by trns.
A term over a signature ΣOp is defined inductively as follows:

term condition bit-width

constant: crns c P N, 0 ¤ c 2n n

variable: xrns x is an identifier n

operation: opt1
rn1s, . . . , tk

rnks,
i1, . . . , ilq

o P Op, xk, ly :� arityo
t1
rn1s, . . . , tk

rnks are terms
i1, . . . , il P N

condopn1, . . . , nk, i1, . . . , ilq

widopn1, . . . , ilq

uninterpreted
function: f rnspt1

rn1s, . . . , tk
rnksq

f is an identifier, k P N
t1
rn1s, . . . , tk

rnks are terms
n

Let us emphasize that, in a term, bit-widths are specified explicitly only for
constants, variables, and uninterpreted functions. In all other cases, the bit-width

52 CHAPTER 4. TOCS 2015

is implicit, i.e., it can be derived from the bit-widths of the operands of operations.
In the following, we may omit explicit bit-widths and parentheses if they can be
concluded from the context.

Definition 4.3 (Formula). A bit-vector formula is an expression Q.tr1s, where tr1s

is a bit-vector term, Q is a quantifier prefix Q0x0
rn0sQ1x1

rn1s . . . Qkxk
rnks, each

Qi P t@, Du, and each xirnis is a bit-vector variable. We call t the matrix of the
formula.

If only existential quantifiers appear in a formula, we may omit the quantifier
prefix and refer to this kind of formula as a quantifier-free one. In the same way,
we refer to a formula as being quantified, if it contains universal quantifiers.

W.l.o.g., we can assume that variables and uninterpreted functions are identi-
fied by their unique names. In a formula, therefore, each variable and each unin-
terpreted function must be used in a consistent way, regarding its bit-width and the
bit-widths of its arguments.

In the literature, most of the approaches distinguish between a bit-vector level
and a Boolean level within a bit-vector formula, by allowing only relational oper-
ators (i.e., operators with result of bit-width 1) at the Boolean level [19, 49, 51, 74,
96]. Note that, in our definitions, there is no such explicit distinction. Therefore,
for example, relational operators are allowed to be embedded in concatenations or
arithmetic operations. However, by introducing the so-called flat form in Defini-
tion 4.8, the same separation of a Boolean level and a bit-vector level can be made
in any bit-vector formula over ΣOp, assuming the common interpretation of ΣOp,
defined in Section 4.3.3.

Semantics

Given a signature ΣOp and an operator o P Op where xk, ly :� arityo, each
p :� pn1, . . . , nk, i1, . . . , ilq P Paro can be mapped to a set of possible operands
(bit-vectors and scalars) and also to a set of possible results (bit-vectors). These
two sets, called the domain and the range of p, are defined as follows:

Domoppq :� Dn1 � � � � �Dnk � ti1u � � � � � tilu

Rangeoppq :� Dwidoppq

In order to evaluate a term or formula, it is first necessary to interpret all the oper-
ators we use (Definition 4.4), and then to assign domain elements to free variables
and to interpret uninterpreted functions (Definition 4.5).

Definition 4.4 (Interpretation). An interpretation of a signature ΣOp is defined as
a set xOp of functions, consisting of an po for each o P Op, such thatpo :

¤
pPParo

Domoppq ÞÑ
¤

pPParo

Rangeoppq

where
@p P Paro, d P Domoppq . popdq P Rangeoppq

4.3. PRELIMINARIES 53

Let yOp denote the common interpretation of ΣOp, detailed in Table 4.2, based
on [51, 58, 96] and the SMT-LIB. Note that Table 4.2 uses a notation that is intro-
duced by the following definitions.

Definition 4.5 (Model). M :� xα, pF y is a model for a formula Φ where

• α is an assignment, i.e., it assigns an element of Dn to each free variable
xrns in Φ;

• pF is a set of interpretations pf : Dn1 � � � � �Dnk ÞÑ Dn of all uninterpreted
functions f rns

�
t1
rn1s, . . . , tk

rnks
�

in Φ.

To facilitate the presentation, similar to [51, 96], we define an auxiliary bijective
meta-function natn : Dn ÞÑ r0, 2n � 1s. Given a bit-vector d P Dn, natnpdq :�°n�1
i�0 2idris. We also introduce the inverse meta-function bvn :� nat�1

n .

Definition 4.6 (Evaluation). Given a signature ΣOp, a formula Φ over ΣOp, an
interpretation xOp of ΣOp, and a model M :� xα, pF y for Φ, Φ can be evaluated to

either 0 or 1, by using the inductive definition of the evaluation function J�K
xOp
M , as

follows:

constant:
q
crns

yyOp
M

:� bvn pcq

variable:
q
xrns

yyOp
M

:� αpxq

operation:
q
o
�
t1
rn1s, . . . , tk

rnks, i1, . . . , il
�yyOp
M

:�

po�q
t1
rn1s

yyOp
M
, . . . ,

q
tk
rnks

yyOp
M
, i1, . . . , il

uninterpreted
function:

q
f rns

�
t1
rn1s, . . . , tk

rnks
�yyOp
M

:� pf �q
t1
rn1s

yyOp
M
, . . . ,

q
tk
rnks

yyOp
M

quantifiers:

q
@xrns.Φ

yyOp
M

:�
©
dPDn

JΦK
yOp

xαYtxrns ÞÑdu, pFy

q
Dxrns.Φ

yyOp
M

:�
ª
dPDn

JΦK
yOp

xαYtxrns ÞÑdu, pFy

As mentioned before, the common interpretation yOp is given in Table 4.2. In
the table, we omit the interpretation and the model for evaluation. Furthermore, we
use two abbreviations:

msb
�
trns

�
:� JtKrn� 1s

abs
�
trns

�
:�

"
�t if msb ptq
t otherwise

54 CHAPTER 4. TOCS 2015

bvnot:
q
� trns

y
:� bvn

�°n�1
i�0 2i p JtKrisq

	
bvand:

q
t1
rns&t2

rns
y

:� bvn

�°n�1
i�0 2i pJt1Kris ^ Jt2Krisq

	
bvor:

q
t1
rns | t2

rns
y

:� bvn

�°n�1
i�0 2i pJt1Kris _ Jt2Krisq

	
bvxor:

q
t1
rns ` t2

rns
y

:� bvn

�°n�1
i�0 2i p Jt1Kris ô Jt2Krisq

	
bvnand:

q
bvnand

�
t1
rns, t2

rns
�y

:�
q
�pt1

rns&t2
rnsq

y

bvnor:
q

bvnor
�
t1
rns, t2

rns
�y

:�
q
�pt1

rns | t2
rnsq

y

bvxnor:
q

bvxnor
�
t1
rns, t2

rns
�y

:�
q
�pt1

rns ` t2
rnsq

y

ite:
q

ite
�
t1
r1s, t2

rns, t3
rns
�y

:�

"
Jt2K if Jt1K
Jt3K otherwise

bvcomp:
q
t1
rns � t2

rns
y

:� bv1 pnatn pJt1Kq � natn pJt2Kqq

bvult:
q
t1
rns u t2

rns
y

:� bv1 pnatn pJt1Kq natn pJt2Kqq

bvule:
q

bvule
�
t1
rns, t2

rns
�y

:� J�pt2 u t1qK

bvugt:
q

bvugt
�
t1
rns, t2

rns
�y

:� Jt2 u t1K

bvuge:
q

bvuge
�
t1
rns, t2

rns
�y

:� Jbvule pt2, t1qK

bvslt:
q

bvslt
�
t1
rns, t2

rns
�y

:� bv1

�
pmsb pt1q ^ msb pt2qq_
ppmsb pt1q ô msb pt2qq ^ Jt1 u t2Kq

bvsle:
q

bvsle
�
t1
rns, t2

rns
�y

:� J�bvslt pt2, t1qK

bvsgt:
q

bvsgt
�
t1
rns, t2

rns
�y

:� Jbvslt pt2, t1qK

bvsge:
q

bvsge
�
t1
rns, t2

rns
�y

:� Jbvsle pt2, t1qK

bvshl:
q
t1
rns ! t2

rns
y

:� bvn
�
natn pJt1Kq � 2k mod 2n

�
where k :� natn pJt2Kq

bvlshr:
q
t1
rns "u t2

rns
y

:� bvn
�X
natn pJt1Kq {2k

\�
where k :� natn pJt2Kq

bvashr:
q
t1
rns "s t2

rns
y

:�

"
J�p� t1 "u t2qK if msb pt1q
Jt1 "u t2K otherwise

extract:
q
trns ri : js

y
:� bvi�j�1

�X
natn pJtKq {2j

\
mod 2i

�
concat:

q
t1
rms � t2

rns
y

:� bvm�n p2
nnatm pJt1Kq � natn pJt2Kqq

zero_extend:
q

extu
�
trns, i

�y
:� bvn�i pnatn pJtKqq

continued on next page

4.3. PRELIMINARIES 55

continued from previous page

sign_extend:
q

sign_extend
�
trns, i

�y
:�

"
bvn�i

�
2n�i � 2n � natn pJtKq

�
if msb ptqq

extu
�
trns, i

�y
otherwise

rotate_left:
q

rotate_left
�
trns, i

�y
:�

"
JtK if n�1_ i�0
Jt rn�i�1 : 0s � t rn�1 : n�isK otherwise

rotate_right:
q

rotate_right
�
trns, i

�y
:�

"
JtK if n � 1_ i � 0
Jt ri� 1 : 0s � t rn� 1 : isK otherwise

repeat:
q

repeat
�
trns, i

�y
:�

"
JtK if i � 1
Jt � repeat pt, i� 1qK otherwise

bvneg:
q
�trns

y
:� bvn p2

n � natn pJtKqq

bvadd:
q
t1
rns � t2

rns
y

:� bvn pnatn pJt1Kq � natn pJt2Kq mod 2nq

bvsub:
q
t1
rns � t2

rns
y

:� Jt1 � p�t2qK

bvmul:
q
t1
rns � t2

rns
y

:� bvn pnatn pJt1Kq � natn pJt2Kq mod 2nq

bvudiv:
q
t1
rns {u t2

rns
y

:� bvn ptnatn pJt1Kq {natn pJt2Kquq

bvurem:
q

bvurem
�
t1
rns, t2

rns
�y

:� Jt1 � pt1 {u t2q � t2K

bvsdiv:
q

bvsdiv
�
t1
rns, t2

rns
�y

:�

"
Jabspt1q {u abspt2qK if msb pt1q � msb pt2q
J�pabspt1q {u abspt2qqK otherwise

bvsrem:
q

bvsrem
�
t1
rns, t2

rns
�y

:�

"
J�bvurem pabspt1q, abspt2qqK if msb pt1q
Jbvurem pabspt1q, abspt2qqK otherwise

bvsmod:
q

bvsmod
�
t1
rns, t2

rns
�y

:�

$&
%

Jbvsrem pt1, t2qK if Jbvsrem pt1, t2qK�0
_msb pt1q�msb pt2q

Jbvsrem pt1, t2q � t2K otherwise

Table 4.2: Semantics (interpretation) for common bit-vector operators

In Appendix 4.11, we use the notation trns K

� d, where d P Dn, as an alterna-
tive for

q
trns

y
� d, assuming an appropriate model for t, implied by the context.

A formula Φ (over ΣOp) is satisfiable over an interpretation xOp (of ΣOp) if and

only if there exists a model M for Φ such that JΦK
xOp
M � 1. M is called a satisfying

model for Φ over xOp.

56 CHAPTER 4. TOCS 2015

Definition 4.7 (Bit-blasting). Bit-blasting (or flattening [158]) a bit-vector formula
Φ means to construct an equisatisfiable Boolean formula φ. Φ and φ are equisatis-
fiable over an interpretation xOp if and only if the following condition holds: there
exists a satisfying model for Φ over xOp if and only if there exists a satisfying
assignment for φ.

Bit-blasting techniques represent bit-vector variables as strings of Boolean vari-
ables and encode bit-vector operations as corresponding Boolean circuits. It is
a well-known fact that for all common operations, interpreted by yOp, a corre-
sponding polynomial-size (in the bit-widths of operands) Boolean circuit can be
constructed. This fact plays an important role in several of our proofs.

Logics and Encodings

For the rest of this chapter, we fix the operator set. We use Op, with the signa-
ture ΣOp (Table 4.1) and the interpretation yOp (Table 4.2), and we refer to this
framework as the Common Operator Framework.

By considering bitwise operators in the Boolean case (i.e., for bit-width 1) as
logical connectives, the same separation of a Boolean level and a bit-vector level
can be made in any bit-vector formula as in most approaches in the literature [19,
49, 51, 74, 96]. Note, however, that relational operations can occur not only at
the Boolean level, but even below that, due to Definition 4.2, which allows any
operations to be nested. In order to be compatible with the above-mentioned two-
level approaches, we introduce a normal form for bit-vector formulas as follows:

Definition 4.8 (Flat Form). A bit-vector formula Φ is in flat form if and only if it
does not contain any nested relational operations.

It is easy to see that any bit-vector formula Φ can be translated into flat form
with only linear growth in formula size. For each nested relational operation in Φ,
iteratively replace the innermost one opt1rn1s, . . . , tk

rnks, i1, . . . , ilq by introduc-
ing a new (Tseitin) variable tsr1s existentially quantified at the innermost prefix
position and adding the constraint tsr1s ô opt1

rn1s, . . . , tk
rnks, i1, . . . , ilq to the

formula (i.e., conjuncting it with the matrix).
In this chapter, we investigate the following four common bit-vector logics, as

well as fragments and extensions thereof:

QF_BV: quantifier-free bit-vector formulas without uninterpreted functions;

QF_UFBV: quantifier-free formulas allowing uninterpreted functions;

BV: formulas allowing quantification, but no uninterpreted functions;

UFBV: formulas allowing quantification and uninterpreted functions.

We distinguish between logics that use a unary or a binary encoding on scalars
appearing in formulas. Recall that binary encoding can be replaced with any other

4.4. LOGICS WITH UNARY ENCODING 57

logarithmic encoding. Note that a scalar can appear either as a bit-width or a scalar
operand. The value c of a bit-vector constant crns is always encoded in binary
format, since it represents a bit-vector.

Definition 4.9 (Logic with Unary and Binary Encoding). Given a bit-vector logic
L, let L1 and L2 denote the logic L using unary and binary encoding on all the
scalars in formulas, respectively.

In the rest of this chapter, we investigate the complexity of the satisfiability
problem for QF_BV1, QF_UFBV1, BV1, UFBV1, QF_BV2, QF_UFBV2, BV2,
and UFBV2. For this, we define the size of a formula.

Definition 4.10 (Formula Size). Suppose we are given a bit-vector logic L and a
formula Φ P L, with Φ :� Q0x0

rn0sQ1x1
rn1s . . . Qkxk

rnks.tr1s. The size of Φ is
defined as |Φ| :�

��x0
rn0s

��� � � � � ��xkrnks��� ��tr1s��.
The expression |trns| denotes the size of a term trns and is defined as follows:

expression size

constant:
��crns�� 1� Lpc� 1q � encLpnq

variable:
��vrns�� 1� encLpnq

operation:
��o �t1rn1s, . . . , tk

rnks, i1, . . . , il
��� 1�

��t1rn1s
��� � � � � ��tkrnks

��
�

encLpi1q � � � � � encLpilq

uninterpreted
function:

��f rns �t1rn1s, . . . , tk
rnks

��� 1� encLpnq
���t1rn1s

��� � � � � ��tkrnks
��

scalar: encLpnq

1� n, if L uses unary
encoding

1� Lpn� 1q, if L uses binary
encoding

4.4 Logics With Unary Encoding

First, we consider bit-vector logics with unary encoding. The results of this section
can also be found in our previous work [151].

Without uninterpreted functions nor quantification, i.e., for QF_BV1, the fol-
lowing complexity result can be shown (for partial results and related work see
also [19] and [51]):

Proposition 4.11. QF_BV1 is NP-complete.2

Proof. Recall that QF_BV1 uses the Common Operator Framework. Therefore,
by bit-blasting, QF_BV1 can be (polynomially) reduced to Boolean formulas, for

2This kind of result is often called unary NP-completeness [105].

58 CHAPTER 4. TOCS 2015

which the satisfiability problem (SAT) is NP-complete. i.e., the class of Boolean
formulas is a subset of QF_BV1. l

Adding uninterpreted functions to QF_BV1 does not increase complexity:

Proposition 4.12. QF_UFBV1 is NP-complete.

Proof. In a quantifier-free formula, uninterpreted functions can be eliminated by
replacing each occurrence with a new bit-vector variable and then adding (at most
quadratic many) Ackermann constraints (see, e.g., [158, Chapter 3.3.1]). There-
fore, QF_UFBV1 can be polynomially translated into QF_BV1. The other direc-
tion follows from the fact that QF_BV1 � QF_UFBV1. l

Adding quantifiers to QF_BV1 yields the following complexity (see also [71]):

Proposition 4.13. BV1 is PSPACE-complete.

Proof. By applying bit-blasting, BV1 can be reduced to Quantified Boolean For-
mulas (QBF), which is PSPACE-complete. Hardness follows from the fact that
QBF � BV1 (following the same argument as in Proposition 4.11). l

Adding quantifiers to QF_UFBV1 increases complexity exponentially:

Proposition 4.14. UFBV1 is NEXPTIME-complete (see [233]).

Proof. The Effectively Propositional Logic (EPR) is NEXPTIME-complete [161],
and can be reduced to UFBV1 [233, Theorem 7]. For completing the other direc-
tion, apply the reduction in [233, Theorem 7] combined with bit-blasting of the
bit-vector operations. l

4.5 Scalar-Bounded Problems

For some of our remaining complexity results, we apply the concept of re-encoding
scalars from binary to unary format. Due to the nature of these encodings, this
process can lead to an exponential growth in formula size for the general case.
However, this exponential growth can be avoided sometimes.

In [151], we introduced the concept of bit-width bounded bit-vector prob-
lems. In this section, we generalize this concept by introducing the concept of
scalar-boundedness, a sufficient condition for bit-vector problems to remain in the
“lower” complexity class, when re-encoding scalars from binary to unary format.
This condition tries to capture the bounded nature of scalars in certain problems.

Note that, in any bit-vector formula, there has to be at least one scalar, due to
the fact that there has to be at least one term with explicit specification of its bit-
width (as a scalar).3 Given a formula Φ, let maxscl pΦq denote the maximal scalar
in Φ and, furthermore, let cntscl pΦq denote the number of scalars in Φ.

3Recall that only a variable, a constant, or an uninterpreted function can have explicit bit-width.

4.6. QUANTIFIER-FREE LOGICS WITH BINARY ENCODING 59

Definition 4.15 (Scalar-Bounded Formula Set). An infinite set S of bit-vector for-
mulas is (polynomially) scalar-bounded, if and only if there exists a polynomial
function p : N ÞÑ N such that @Φ P S. maxscl pΦq ¤ ppcntscl pΦqq.

Proposition 4.16. Given a scalar-bounded set S of formulas with binary encoded
scalars, any Φ P S grows polynomially when re-encoding the scalars to unary
format.

Proof. Let Φ1 denote the formula obtained through re-encoding scalars in Φ to
unary format. For the size of Φ1, the following upper bound holds:|Φ1| ¤ cntscl pΦq�
maxscl pΦq�|Φ|. Note that cntscl pΦq�maxscl pΦq is an upper bound on the sum over
the sizes of all the scalars in Φ1. The second term, |Φ|, represents an upper bound
for the part of Φ that does not contain any scalars. Since S is scalar-bounded, it
holds that

|Φ1| ¤ cntscl pΦq � maxscl pΦq � |Φ|

¤ cntscl pΦq � ppcntscl pΦqq � |Φ| ¤ |Φ| � pp|Φ|q � |Φ|

where p is a polynomial function. Therefore, the size of Φ1 is polynomial in the
size of Φ. l

By applying this proposition to the logics of Section 4.3.3, together with the results
from Section 4.4, we get:

Corollary 4.17. Suppose we are given a scalar-bounded set S of bit-vector formu-
las. If S � QF_BV2 (and even if S � QF_UFBV2), then S P NP. If S � BV2,
then S P PSPACE. If S � UFBV2, then S P NEXPTIME.

4.6 Quantifier-Free Logics with Binary Encoding

Our main contribution in [101, 151] was to give complexity results for bit-vector
logics with the more common binary encoding, in the general case (i.e., for sets
of formulas that are not scalar-bounded). In this section, we present modified
versions of our proofs for the quantifier-free logics and restructured our results in
order to give a better overall picture.

First, we introduce our main complexity results as theorems, starting with the
full logic of QF_BV2 in Theorem 4.18, and continuing with three fragments of
QF_BV2 in Theorems 4.19, 4.20, 4.21. All these theorems reference separate lem-
mas, which we introduce afterwards.

Theorem 4.18. QF_BV2 is NEXPTIME-complete [151].

Proof. It is easy to see that QF_BV2 P NEXPTIME, since a QF_BV2 formula can
be translated exponentially to QF_BV1 P NP (Proposition 4.11), by applying a
simple unary re-encoding to all the scalars in the formula. NEXPTIME-hardness of

60 CHAPTER 4. TOCS 2015

QF_BV2 is a direct consequence of Lemma 4.23, in which a fragment of QF_BV2
is proved to be NEXPTIME-hard. l

Note that UFBV1 and QF_BV2 have the same complexity. This shows that, in-
formally speaking, binary encoding on scalars has the same expressive power as
quantification and uninterpreted functions altogether.

In [101], we investigated the complexity of the satisfiability problem for the
following three fragments of QF_BV2, which only allow a restricted set of bit-
vector operations in formulas:

QF_BV2!c: only bitwise operations, equality, and left shift by constant, i.e.,
expressions trns ! crns where c is a constant, are allowed.

QF_BV2!1: only bitwise operations, equality, and left shift by 1, i.e., expres-
sions trns ! 1rns, are allowed.

QF_BV2bw: only bitwise operations and equality are allowed.

Theorem 4.19. QF_BV2!c is NEXPTIME-complete [101].

Proof. In Lemma 4.23, we give a reduction from DQBF (which is NEXPTIME-
complete) to QF_BV2!c. This shows the NEXPTIME-hardness of QF_BV2!c.
The fact that QF_BV2!c P NEXPTIME directly follows from Theorem 4.18. l

Theorem 4.20. QF_BV2!1 is PSPACE-complete [101].

Proof. In Lemma 4.24, we give a reduction from QBF, being PSPACE-complete,
to QF_BV2!1. This shows the PSPACE-hardness of QF_BV2!1. In Lemma 4.25,
we then prove PSPACE-inclusion by giving a reduction from deciding satisfia-
bility of QF_BV2!1 formulas to the model checking problem for sequential cir-
cuits. Symbolic model checking for sequential circuits is PSPACE-complete as
well [194, 198, 205]. l

Also note that this theorem has an important practical aspect. It allows us to use
symbolic model checkers (see the hardware model checking competition) for solv-
ing these restricted bit-vector problems instead of using SAT solvers after an expo-
nential explosion through bit-blasting. This is further discussed in Section 4.9.

Theorem 4.21. QF_BV2bw is NP-complete [101].

Proof. Since Boolean formulas are a subset of QF_BV2bw, NP-hardness follows
directly. To show that QF_BV2bw P NP, we give a reduction from QF_BV2bw to
a scalar-bounded set of formulas S � QF_BV2 in Lemma 4.26. The claim then
follows from Corollary 4.17. l

As already indicated in Proposition 4.12, adding uninterpreted functions to all
quantifier-free logics we discussed so far does not affect complexity. We formalize
this in the following proposition:

4.6. QUANTIFIER-FREE LOGICS WITH BINARY ENCODING 61

Proposition 4.22. QF_UFBV2 and QF_UFBV2!c are NEXPTIME-complete,
QF_UFBV2!1 is PSPACE-complete, QF_UFBV2bw is NP-complete [101, 151].

Proof. Apply the same arguments as were used in Proposition 4.12. l

As we outlined above, now we propose our main lemmas, referenced in the previ-
ous theorems.

Lemma 4.23. DQBF can be reduced to QF_BV2!c [101, 151].

Proof. The basic idea is to use bit-vector expressions to encode function tables in
an exponentially more succinct way, which then allows us to characterize indepen-
dence of an existential variable from a particular universal variable in a polynomial
way.

In the proof, we apply bit masks of the form

binmagic p2m, 2nq :�

2nhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
0 . . . 0loomoon

2m

1 . . . 1loomoon
2m

. . . 0 . . . 0loomoon
2m

1 . . . 1loomoon
2m

Note that these bit masks correspond to the so-called binary magic numbers (or
magic masks in [145, page 141]), and can arithmetically be calculated in the fol-
lowing way (actually as the result of a geometric sum):

binmagic p2m, 2nq :�
2p2

nq � 1

2p2mq � 1

In order to reformulate this definition in terms of bit-vectors, (i) the numerator can
be written as � 0r2

ns, (ii) 2p2
mq as 1 ! 2m, and (iii) the resulting binary magic

number as a bit-vector variable br2
ns:

br2
ns � �0r2

ns {u
�
p1 ! 2mq � 1

�
b �

�
p1 ! 2mq � 1

�
� �0r2

ns

pb ! 2mq � b � �0r2
ns

Addition can be eliminated easily as follows, by using two’s complement represen-
tation for �1 and �b:

pb ! 2mq � b � �1

b ! 2m � �1� b

b ! 2m � �1� �b� 1

b ! 2m � �b

We now use the binary magic numbers to create a certain set of fully-specified
exponential-size bit-vectors by using a polynomial expression, due to binary en-
coding on scalars. Afterwards, we then formally point out the well-known fact that

62 CHAPTER 4. TOCS 2015

those bit-vectors correspond exactly to the set of all assignments. By adding con-
straints on those bit-vectors, we can then use a polynomial-size bit-vector formula
for cofactoring Skolem-functions in order to express independency constraints.

First, we describe the reduction, then we show that the reduction is polynomial,
and, finally, that it is correct. An example can be found in Appendix 4.11.1.

The Reduction. Let ψ :� Q.φ denote a DQBF with quantifier prefix Q and ma-
trix φ. Furthermore, let u0, . . . , un�1 and e0, . . . , en1�1 denote all the universal
and existential variables that occur in Q, respectively. Translate ψ to a QF_BV2!c
formula Φ by eliminating the quantifier prefix and translating the matrix φ as fol-
lows:

Step 1. Replace all Boolean constants 0 and 1 with 0r2
ns and �0r2

ns, all Boolean
universal variables um and existential variables em1 with bit-vector variables
Um

r2ns and Em1
r2ns, and all logical connectives with corresponding bitwise

bit-vector operators (e.g., ^ with &). Let tr2
ns denote the bit-vector term

generated so far. Extend it to the formula t ��0r2
ns. We refer to this as Φ0.

Step 2. We now construct Φ1 by adding new constraints to Φ0. For each um P
tu0, . . . , un�1u, in order to assign a binary magic number to Um, add the
following equality (i.e., conjunct it with the current formula):

Um ! 2m � �Um

Step 3. Next, we construct Φ2 by adding another set of constraints to Φ1. For
each existential variable em1 P te0, . . . , en1�1u, depending on the universal
variables Depspem1q � tu0, . . . , un�1u, and for each um R Depspem1q, add
the following equality:

Em1& �Um � pEm1 ! 2mq& �Um (4.1)

Finally, we define Φ :� Φ2.

Polynomiality. Note that all the scalars and constants in Φ are encoded in binary
form. Therefore, exponential bit-widths and constants (2n and 2m) are encoded
into linear many (n and m) binary digits. We now show that each reduction step
results only in polynomial growth of the formula size.

Step 1 may introduce additional bit-vector constants to the formula and adds
variables U r2ns

m , E
r2ns
m1 . The total number of elements is bounded by the size of

the input. All bit-widths are 2n and, therefore, the resulting formula is bounded
quadratically in the input size. Step 2 adds n equalities as constraints. Again, all
bit-widths are 2n. Thus, the size of the added constraints is bounded quadratically
in the input size. Step 3 adds at most n constraints for each existential variable. All
bit-widths are 2n. Therefore, the size is bounded cubically in the input size.

4.6. QUANTIFIER-FREE LOGICS WITH BINARY ENCODING 63

Correctness. In order to show that the original DQBF ψ and the resulting bit-
vector formula Φ are equisatisfiable, we consider the individual steps separately.

In Step 1, we used the matrix φ of ψ to create a bit-vector formula with the
same underlying structure which is true if and only if each row evaluates to 1.
Since all the bits of bit-vectors in Φ0 are independent of each other and there are
no additional constraints on the bit-vector variables, Φ0 is satisfiable if and only if
the Boolean formula φ is satisfiable.

Now consider the bit-vector variables Um after constructing Φ1 by adding the
constraints of Step 2. In the following, we formalize the well-known fact that the
combination of all the Ums corresponds exactly to all possible assignments to the
universal variables of ψ. By construction, all bits of Um are fixed to some constant
value. Additionally, for every bit-index bi P r0, 2n � 1s, there exists a bit-index
bj P r0, 2

n � 1s such that

JUmKrbis � JUmKrbjs and (4.2a)

JUkKrbis � JUkKrbjs , @k � m. (4.2b)

Actually, we can define bj in the following way (considering the 0th bit to be the
least significant):

bj :�

"
bi � 2m if JUmKrbis � 0
bi � 2m if JUmKrbis � 1

By defining bj this way, Equation (4.2a) and (4.2b) both hold, which can be
seen as follows. Let Rpc, lq be the bit-vector of length l with each bit set to the
Boolean constant c. Equation (4.2a) holds, since, due to construction, Um consists
of 2n�1�m concatenated bit-vector fragments 0 . . . 01 . . . 1 � Rp0, 2mqRp1, 2mq
(with both 2m zeros and 2m ones). Therefore, it is easy to see that

JUmKrbis � JUmKrbi � 2ms and JUmKrbis � JUmKrbi � 2ms holds if
JUmKrbis � 0 and JUmKrbis � 1, respectively.

With a similar argument, we can show that Equation (4.2b) holds:

JUkKrbis � JUkKrbi � 2ms and JUkKrbis � JUkKrbi � 2ms holds if
JUkKrbis � 0 and JUkKrbis � 1, respectively,

since bi � 2m and bi � 2m are located either still in the same half or already in a
concatenated copy of a Rp0, 2kqRp1, 2kq fragment, if k � m.

Now, consider all possible assignments to the universal variables of our orig-
inal DQBF ψ. For a given assignment α P t0, 1un, the existence of such a pre-
viously defined bj for every Um and bi allows us to iteratively find a bα such
that

�
JU0Krbαs , . . . , JUn�1Krbαs

�
� α. Thus, we have a bijective mapping from

the universal assignments α for ψ to the bit-indices bα for Φ1. Up to this point,
each bit-vector Em1 can basically still take 2p2

nq different values in Φ1. The value
of each individual bit JEm1Krbαs corresponds to the value that em1 takes under a

64 CHAPTER 4. TOCS 2015

given universal assignment α P t0, 1un. Note that, without any further restric-
tion, there is no connection between the different bits of Em1 and, therefore, the
bit-vector represents an arbitrary Skolem-function for em1 . It may have differ-
ent values for all universal assignments and thus would allow em1 to depend on
all universal variables. Consequently, Φ1 is satisfiable if and only if the QBF
@u1, . . . , un�1De1, . . . , en1�1.φ is satisfiable.

In Step 3, we rule out all those assignments to the Em1s that correspond to
Skolem-functions which do not respect the dependency scheme of ψ. Whenever
em1 does not depend on a universal variable um, we add the constraint of Equa-
tion (4.1). In DQBF, independence can be formalized in the following way: em1

does not depend on um if em1 has to take the same value in the case of all pairs
of universal assignments α, β P t0, 1un where αrks � βrks for all k � m. Ex-
actly this is enforced by our constraint. Looking at the corresponding bit-indices
bα and bβ for α and β, respectively, our constraint for independence ensures that
JEKrbαs � JEKrbβs. More precisely, Equation (4.1) ensures that the positive and
negative cofactors of the Skolem-function for em1 with respect to an independent
variable um have the same value. Having added those constraints, Φ2 is now re-
specting the dependency scheme and therefore Φ is satisfiable if and only if the
original DQBF ψ is satisfiable. l

Lemma 4.24. QBF can be reduced to QF_BV2!1 [101].

Proof. To show the PSPACE-hardness of QF_BV2!1, we give a reduction from
QBF, similar to the one from DQBF to QF_BV2!c that we used in Lemma 4.23.

For our reduction, we again use the binary magic numbers. Note that, in
Lemma 4.23, we used left shift by constant to construct the binary magic numbers.
This is not permitted in QF_BV2!1. We therefore give an alternative construction
of the binary magic numbers using only bitwise operations, equality, and left shift
by 1.

Let b0r2
ns, . . . , bn�1

r2ns be n initially unconstrained bit-vector variables. By
adding certain constraints, we ensure that the only possible value the variables can
take are those of the binary magic numbers. For the following argument, consider
the bit-vector variables b0r2

ns, . . . , bn�1
r2ns as column vectors in a matrixBr2n�ns.

Written next to each other in this way, the matrix formed by the binary magic
numbers would be uniquely determined by the following property: If each row of
B is interpreted as a number 0 ¤ c 2n in binary representation, the next row is
equal to c�1. The rows ofB therefore represent a counter from 0 to 2n�1. We can
capture this fact by adding the following n constraints, with m P t0, . . . , n� 1u:� ©

0¤i m

bi

	
` bm � bm ! 1

The left side of each constraint considers one specific column of B (i.e., one in-
dex of the counter) and the value of each position will change if and only if all
columns to the right are equal to 1 (i.e., the lower indices of the counter generate

4.6. QUANTIFIER-FREE LOGICS WITH BINARY ENCODING 65

an overflow). In this sense, the left sides of all constraints increment the counter
value corresponding to a row ofB. The right sides of all constraints ensure that the
incremented counter value is placed in the next row of B.

As already mentioned, we now give the reduction which is similar to the one
in Lemma 4.23. An example can be found in Appendix 4.11.2.

The Reduction. Let ψ :� Q.φ denote a QBF with quantifier prefix Q and ma-
trix φ. Since ψ is a QBF (in contrast to DQBF in Lemma 4.23), we know that
Q defines a total order on the universal variables. We assume the universal vari-
ables u0, . . . , un�1 of φ are ordered according to their appearance in Q, with u0

and un�1 being the innermost and outermost variable, respectively. Translate ψ
to a QF_BV2!1 formula Φ by eliminating the quantifier prefix and translating the
matrix as follows:

Step 1. Replace all Boolean constants 0 and 1 with 0r2
ns and �0r2

ns, all Boolean
universal variables um and existential variables em1 with bit-vector variables
Um

r2ns and Em1
r2ns, and all logical connectives with corresponding bitwise

bit-vector operators (e.g., ^ with &). Let tr2
ns denote the bit-vector term

generated so far. Extend it to the formula t ��0r2
ns. We refer to this as Φ0.

Step 2. We now construct Φ1 by adding new constraints to Φ0. For each universal
variable um P tu0, . . . , un�1u, in order to assign a binary magic number
to Umr2ns, add the following equality (i.e., conjunct it with the current for-
mula): � ©

0¤i m

Ui

	
` Um � Um ! 1

Step 3. Next, we construct Φ2 by adding another set of constraints to Φ1. For each
existential variable em1 P te0, . . . , en1�1u depending on the universal vari-
ables Depspem1q � tum, . . . , un�1u, with um being the innermost universal
variable that em1 depends on, check the following conditions:

if Depspem1q � H, add the equality:

Em1&�1 � Em1 ! 1 (4.3)

otherwise, if m � 0, add the two equalities:

U 1
m � �

�
pUm ! 1q ` Um

�
(4.4)

Em1&U 1
m � pEm1 ! 1q&U 1

m (4.5)

Finally, we define Φ :� Φ2.

Step 1 and Step 2 are equal to those of Lemma 4.23 apart from the fact that a
different construction for the binary magic numbers is used.

66 CHAPTER 4. TOCS 2015

Again, each bit-index of Φ corresponds to the evaluation of ψ under a spe-
cific assignment to the universal variables u0, . . . , un�1, and, by construction of
U0

r2ns, . . . , Un�1
r2ns, all possible assignments are considered. Equation (4.4) cre-

ates a bit-vector U 1
m
r2ns for which each bit equals to 1 if and only if the correspond-

ing universal variable changes its value from one universal assignment to the next.
In contrast to Lemma 4.23, this can now only be done for neighbouring bit-indices
since we are only allowed to use left shift by 1 instead of arbitrary constants in
Step 3. For QBF, this is sufficient because Q defines a total order on the universal
variables.

Of course, Equation (4.4) does not have to be added multiple times, if sev-
eral existential variables depend on the same universal variable. Equation (4.5)
and Equation (4.3) ensure that the corresponding bits of Em1

r2ns satisfy the de-
pendency scheme of ψ by only allowing the value of em1 to change if an outer
universal variable takes a different value. If Depspem1q � tu0, . . . , un�1u, i.e., if
em1 depends on all universal variables, Equation (4.4) evaluates to U 1

0 � 0r2
ns, and,

as a consequence, Equation (4.5) simplifies to true. Because of this, no constraints
need to be added for m � 0.

A similar approach used for translating QBF to Symbolic Model Verification
(SMV) can be found in [84]. See also [194] for a translation from QBF to sequen-
tial circuits. l

Lemma 4.25. QF_BV2!1 can be reduced to sequential circuits [101].

Proof. In [208, 209], the authors give a polynomial translation from quantifier-
free Presburger arithmetic with bitwise operations (QFPAbit [200]) to sequential
circuits. While they deal with non-fixed-size bit-vectors, we focus on fixed-size bit-
vectors but share the goal of avoiding the exponential explosion due to explicit state
representation as for example used in MONA [144]. We can adopt their approach
in order to construct a translation for QF_BV2!1. Related work, introducing an
automata-based representation for Presburger Arithmetic (without bitwise opera-
tions), can be found in [235].

For the most part, the basic structure as well as the arguments used throughout
the reduction are the same as in [208, 209]. To keep the proof compact, we there-
fore focus on pointing out the changes compared to their earlier work and regularly
refer to [208, 209] for the technical details.

As mentioned, the main difference between QFPAbit and QF_BV2!1 is the
fact that bit-vectors of arbitrary, non-fixed, size are allowed in QFPAbit while all
bit-vectors contained in QF_BV2!1 have a fixed bit-width. We now give the re-
duction.

Given Φ P QF_BV2!1 in flat form, let xrns, yrns denote bit-vector variables,
crns a bit-vector constant, and t1rns, t2rns bit-vector terms only containing bit-vector
variables and bitwise operations. Following [208, 209], we also assume, w.l.o.g.,
that Φ only consists of logical combinations of three types of atomic expressions:
t1
rns � t2

rns, xrns � crns, and xrns � yrns ! 1rns. Similar to generating a formula

4.6. QUANTIFIER-FREE LOGICS WITH BINARY ENCODING 67

in flat form (Definition 4.8), it is easy to see that any QF_BV2!1 formula can be
written like this with only linear growth in size by introducing Tseitin variables.

We then encode each equality in Φ into an individual sequential circuit sepa-
rately. In the following, those are referred to as atomic sequential circuits. Com-
pared to [208, 209], two modifications for the construction of an atomic sequential
circuits are needed. First, we need to give a translation of x � y ! 1 to sequential
circuits. This can be done, for example, by using the sequential circuit for x � 2 �y
in QFPAbit. The second modification relates to dealing with fixed-size bit-vectors.
Let n be the bit-width of all bit-vectors in a given atomic expression. We extend
each atomic sequential circuit to include a counter (circuit). The counter initially
is set to 0 and is incremented by 1 in each clock cycle up to a value of n. When the
counter reaches a value of n, the counter as well as the original atomic sequential
circuit keep their value during all remaining cycles. In this way, their output also
remains the same during all following cycles.

Using D-type flip-flops, as being part of the definition of sequential circuits
in Section 4.3.2, this can be easily realized by adding a combinatorial part: As-
sume that the counter consists of k bits, represented by flip-flops c0, . . . , ck�1 with
outputs o0, . . . , ok�1, respectively. Checking whether the counter has reached a
value of n can be realized by a Boolean function fpo0, . . . , ok�1q, represented as a
combinatorial circuit. Furthermore, let c denote the flip-flop of the original atomic
sequential circuit and let o and i (which again can be an arbitrary function) denote
its output and its input, respectively. We now replace the input i by a combinatorial
circuit realizing the function

pfpo0, . . . , ok�1q ^ oq _ p fpo0, . . . , ok�1q ^ iq

This forces c to use its own output as its input if the counter has reached a value
of n, and use its regular input otherwise. The counter flip-flops c1, . . . , ck will be
forced to stabilize after n has been reached in the same way. Note that a counter
like this can be realized with Ln gates, i.e., polynomially in the size of Φ. For a
practical implementation, it is of course not necessary to introduce separate coun-
ters for each atomic sequential circuit. Instead, one counter can be used to address
all atomic sequential circuits. However, concerning our complexity result, this ob-
viously makes no difference.

In contrast to the implementation described in [208], we assume that the input
streams for all variables start with the least significant bit. As already pointed out
by the authors in [208], their choice was arbitrary and it is no more complicated to
construct the circuits the other way around.

Finally, after constructing all atomic sequential circuits, their outputs are com-
bined by logical gates following the Boolean structure of Φ, in the same way as
for non-fixed bit-width in [208, 209]. Due to the counters being part of the atomic
sequential circuits, we ensure that for every input stream xi, that represents a bit-
vector variable of bit-width ni, only the first ni bits of xi influence the result of the
whole circuit. l

68 CHAPTER 4. TOCS 2015

Lemma 4.26. QF_BV2bw P NP [101].

Proof. To show that QF_BV2bw P NP, we give a reduction from QF_BV2bw to
a scalar-bounded set of formulas S. With S � QF_BV2, the claim then follows
from Corollary 4.17. An example, that combines further results from Section 4.7.2,
can be found in Appendix 4.11.3.

Suppose we are given a formula Φ P QF_BV2bw in flat form (Definition 4.8).
We assume that any disequality t1rns � t2

rns in Φ is expressed by�
�
t1
rns � t2

rns
�
.

If Φ contains any constants crms where c � 0, we remove those constants in
a (polynomial) preprocessing step. Let cmax

rms :� bk�1 . . . b1b0 be the largest
constant in Φ denoted in binary representation with bk�1 � 1 and arbitrary bits
bk�2, . . . , b0. We now replace each equality t1rns � t2

rns, in Φ with

t1,0
r1s � t2,0

r1s ^ . . . ^ t1,n�1
r1s � t2,n�1

r1s,

if n ¤ k. Otherwise, if n ¡ k, we instead replace t1rns � t2
rns with

t1,0
r1s � t2,0

r1s ^ . . . ^ t1,k�1
r1s � t2,k�1

r1s ^ tHI1
rn�ks � tHI2

rn�ks.

For 0 ¤ i mintn, ku, we use t1,ir1s � t2,i
r1s to express the ith row of the original

equality. For constructing the terms t1,ir1s and t2,ir1s, (i) replace each occurrence
of a variable xrns with the variable xir1s, and (ii) replace each constant crns with
0r1s if the ith bit of c is 0, and with �0r1s otherwise.

In a similar way, if n ¡ k, tHI1
rn�ks � tHI2

rn�ks represents the remaining
n � k rows of the original equality corresponding to the most significant bits. For
constructing tHI1

rn�ks and tHI2
rn�ks, (i) replace each occurrence of a variable xrns

with the variable xHIrn�ks, and (ii) replace each constant crns with 0rn�ks.
Since this preprocessing step is logarithmic in the value of cmax, it is poly-

nomial in |Φ|. W.l.o.g., we now assume that Φ does not contain any bit-vector
constants different from 0rns.

We now construct a formula Φ1 by reducing the bit-widths of all bit-vector
terms in Φ. We use cnteq pΦq to denote the number of equalities in Φ. Each term
trns in Φ is then replaced with a term trn

1s, with n1 :� mintn, cnteq pΦqu ¤ |Φ|.
Apart from this, Φ1 is exactly the same as Φ. As a consequence, maxscl pΦ1q ¤ |Φ|.
The set of formulas constructed in this way is scalar-bounded according to Def-
inition 4.15. To complete our proof, we now have to show that the proposed re-
duction is sound, i.e., out of every satisfying assignment to the bit-vector vari-
ables x1

rn1s, . . . , xk
rnks for Φ we can also construct a satisfying assignment to

x1
rn11s, . . . , xk

rn1ks for Φ1 and vice versa.
It is easy to see that whenever we have a satisfying assignment α1 for Φ1, we

can construct a satisfying assignment α for Φ. This can be done by simply setting
all additional bits of all bit-vector variables to the same value as the most signifi-
cant bit of the corresponding original vector, i.e., by performing a signed extension.
Since all equalities still evaluate to the same value under the extended assignment,
αpF q � α1pF 1q for all equalities F and F 1 of Φ and Φ1, respectively. As a direct

4.7. EXTENSIONS AND ALTERNATIVE CHARACTERIZATIONS 69

consequence, αpΦq � α1pΦ1q � 1. The other direction needs slightly more reason-
ing. Given α, with αpΦq � 1, we need to construct α1, with α1pΦ1q � 1. Again,
we want to ensure that α1pF 1q � αpF q for all equalities F and F 1 in Φ and Φ1,
respectively.

In each variable xirnis, i P t1, . . . , ku, we select some of the bits. For each
equality F with αpF q � 0, we select a bit-index as a witness for its evaluation. If
αpF q � 1, we select an arbitrary bit-index. We then mark the selected bit-index in
all bit-vector variables contained in F , as well as in all other bit-vector variables of
the same bit-width. Having done this for all equalities, we end up with sets Mi of
selected bit-indices, for all i P t1, . . . , ku, where

|Mi| ¤ mintni, cnteq pΦqu

Mi � Mj @j P t1, . . . , ku with ni � nj

The selected indices contain a witness for the evaluation of each equality. We
now add arbitrary further bit-indices, again selecting the same indices in bit-vector
variables of the same bit-width, until |Mi| � mintni, cnteq pΦqu @i P t1, . . . , ku.

Finally, we can directly construct α1 using the selected indices and, by doing
so, we know that α1pΦ1q � αpΦq � 1, because of the fact that we included a
witness for every equality in our index-selection process. Note that we only had to
choose a specific witness for the case that αpF q � 0. For αpF q � 1, we were able
to choose an arbitrary bit-index because every satisfied equality is obviously still
satisfied when only a subset of all bit-indices is considered. l

Remark 4.27. A similar proof can be found in [140, 141]. While the focus
of [140, 141] lies on improving the practical efficiency of SMT solvers by reducing
the bit-width of a given formula before bit-blasting, the author does not investigate
its influence on the complexity of a given problem class. In fact, the author claims
that bit-vector theories with common operations are NP-complete. As we have al-
ready shown, this only holds if unary encoding on scalars is used. However, unary
encoding leads to the fact that the given class of formulas remains NP-complete, in-
dependent of whether a reduction of the bit-width is possible. While the arguments
on bit-width reduction given in [140, 141] still hold for binary encoded bit-vector
formulas when only bitwise operations are used, our proof considers the effect on
the complexity of the problem class.

4.7 Extensions and Alternative Characterizations

In this section, we investigate possible extensions to the fragments we have been
dealing with so far and give alternative characterizations of specific logics. We use
the term base operations to refer to the operations that we previously selected to
define a certain class of bit-vector problems. Considering the complexity results

70 CHAPTER 4. TOCS 2015

from the previous section, we know that the specific sets of base operations are suf-
ficient to guarantee certain completeness results. This leads towards two potential
directions of analysis.

On the one hand, it is interesting to see which common operations could be
added to a fragment without increasing the complexity of the satisfiability prob-
lem. With QF_BV2!c being NEXPTIME-complete, any common operation can
extend this fragment without increasing complexity; the full extension is exactly
the definition of QF_BV2. It is more interesting to investigate which operations can
be added to QF_BV2bw and QF_BV2!1 while still remaining in NP and PSPACE,
respectively. In order to check this, we present several reductions of additional
operations to base operations.

On the other hand, it is also interesting to explore possible reductions of base
operations to additional ones. We showed that satisfiability for QF_BV2bw, i.e.,
when bitwise operations and equality are used as base operations, is NP-complete.
Using left shift by 1 or left shift by constant as an additional base operation di-
rectly causes the satisfiability problem to become PSPACE-hard (Lemma 4.24)
or NEXPTIME-hard (Lemma 4.23), respectively. If it is possible to show that any
of these two base operations can be reduced to another operation o (together with
bitwise operations and equality), then o can be considered as an alternative base
operation, ensuring the satisfiability problem to remain hard for the specific com-
plexity class.

4.7.1 Notation

Note that, since binary encoding is used on scalars, all the translations of opera-
tions must be logarithmic in the bit-widths of operands, in order to ensure that a
reduction is polynomial in the formula size.

For describing our reductions, we often use the following form:

term1

replace with: term2 ,
add assertion(s): formula1

...
formulak

By this description, we want to express that we replace a term term1 in a formula Φ
with term2, and simultaneously add all the quantifier-free formulas formula1, . . . ,
formulak to Φ (i.e., conjunct each of them with the matrix of Φ). We call formula1,
. . . , formulak the assertions in the definition. All the variables that do not occur
in term1, but do occur in any of the expressions term2, formula1, . . . , formulak
are considered as Tseitin variables, i.e., they are assumed to be added to Φ as new
existential variables at the innermost prefix position.

Let us note that, in our fragments, it is sufficient to use a minimal functionally
complete set of bitwise operations, e.g., bvnand alone.

4.7. EXTENSIONS AND ALTERNATIVE CHARACTERIZATIONS 71

By bitwise operations and equality, functional if-then-else (ite) can be ex-
pressed easily, as follows. Note that, in order to avoid exponential blowup, a Tseitin
variable x is introduced for the Boolean condition:

ite
�
t1
r1s , t2

rns , t3
rns
�

replace with: yrns ,
add assertions: xr1s � t1

x ñ y � t2
 x ñ y � t3

4.7.2 QF_BV2bw

Let us introduce the operation indexing trnsris, which is defined as t ri : is, i.e., a
special case of extraction. Although, in Section 4.7.4, we show that adding ex-
traction makes the fragment NEXPTIME-hard, QF_BV2bw can be extended with
indexing without growth in complexity.

Theorem 4.28. QF_BV2bw extended by indexing is in NP.

Proof. To show this, we extend the proof of Lemma 4.26 by an additional prepro-
cessing step even before removing the non-zero constants. Suppose we are given a
formula Φ P QF_BV2bw, also containing expressions trnsris. Let

I :� ti | trnsris appears in Φu

be the set of all indices that appear explicitly in the formula. We can assume that
I � ti1, . . . , imu, with il il�1, @l P t1, . . . ,m � 1u. After extracting those bit-
indices from Φ, we explicitly encode the corresponding bits into Boolean variables,
by translating Φ in a similar way as in Lemma 4.26. Consider three different kinds
of terms in the following order:

1. Terms trnsris are replaced by tir1s.

2. Terms tr1s remain in the formula as they are.

3. Any other term has a bit-width n ¡ 1. Therefore, we know that it can only
occur as part of an equality t1rns � t2

rns. We define

l1 :� |tl P t1, . . . ,mu | il nu|

as the number of explicitly specified indices smaller than n. Now, similar to
Lemma 4.26, replace each equality t1rns � t2

rns with

pt1,0
r1s � t2,0

r1sq ^ . . . ^ pt1,n�1
r1s � t2,n�1

r1sq,

72 CHAPTER 4. TOCS 2015

if n � l1. Otherwise, if n ¡ l1, replace t1rns � t2
rns with�� ©

lPt1,...,l1u

pt1,il
r1s � t2,il

r1sq

�^ tREM1
rn�l1s � tREM2

rn�l1s.

As in Lemma 4.26, we use t1,ir1s � t2,i
r1s to express the ith row of the original

equality. In the same way, tir1s, being introduced for an indexing, represents the
ith bit of t. The new terms t1,i , t2,i , and ti are constructed in the same way as in
Lemma 4.26.

Similarly, if n ¡ l1, the expression tREM1
rn�l1s � tREM2

rn�l1s represents the
remaining n � l1 rows of the original equality corresponding to the indices that
have not been extracted explicitly. Those terms are again constructed in the same
way as in Lemma 4.26, except for the construction of new constants: each constant
crns is replaced with a new constant cREMrn�l1s by setting the jth bit of cREM to the
value of the kth bit of c, for k :� min tk1 | |t1, . . . , k1u zI| � ju.

After this translation, the resulting formula Φ1 does not contain indexing op-
erations anymore and is equisatisfiable to the original one. Also, |Φ1| ¤ pp|Φ|q
for some polynomial p, since the growth in size is bounded by the number of oc-
currences of the indexing operation in Φ. Note that this reduction is only possible
because there is no interaction between different bit-indices, i.e., because Φ only
contains bitwise operations and equality, apart from indexing. l

Similarly, extending QF_BV2bw with additional relational operations from Ta-
ble 4.1 does not increase complexity, either.

Theorem 4.29. QF_BV2bw extended by relational operations from Table 4.1 is in
NP.

Proof. We give a reduction for the relational operation unsigned less than (bvult).
The remaining relational operations in Table 4.1 can be reduced in a similar way.
Given Φ P QF_BV2bw (without indexing), additionally containing expressions
t1
rns u t2

rns, we adopt the proof of Lemma 4.26 in three ways.
First, the elimination of constants has to be modified. Again, let us define

cmax :� bk�1 . . . b1b0 to be the largest constant in Φ denoted in binary representa-
tion with bk�1 � 1 and arbitrary bits bk�2, . . . , b0. W.l.o.g., assume n ¡ k. We
now replace each relation t1rns u t2

rns in Φ with

ptHI1
rn�ks u tHI2

rn�ksq

_ ptHI1
rn�ks � tHI2

rn�ksq ^ p t1,k�1
r1s ^ t2,k�1

r1sq

_ . . .

_ ptHI1
rn�ks � tHI2

rn�ksq ^ pt1,k�1
r1s ô t2,k�1

r1sq ^. . .^ p t1,0
r1s ^ t2,0

r1sq

All expressions t1,ir1s, t2,ir1s, tHI1
rn�ks, and tHI2

rn�ks are defined in the same way
as it was done in Lemma 4.26. Second, we need to use the number of all the rela-
tional operations cntrel pΦq, when reducing the bit-widths in Φ. The third modifica-
tion is needed for constructing a satisfying assignment α1 for the bit-width reduced

4.7. EXTENSIONS AND ALTERNATIVE CHARACTERIZATIONS 73

formula Φ1 out of the satisfying assignment α for Φ. When selecting the bit-index
which is used as a witness for the evaluation of a given expression t1rns u t2

rns,
we choose the index of the most significant bit which is assigned to a different
value in the two terms. As in Lemma 4.26, an arbitrary bit-index can be chosen if
both terms are assigned to the same value.

Again, the reduction is only possible because there is no interaction between
different bit-indices. While we only considered t1rns u t2

rns in our proof, it is
easy to see that it holds for all relational operations from Table 4.1. All unsigned
operations can be replaced by t1rns u t2

rns as in the definition of Table 4.1. For
signed operations, an additional if-then-else constraint on the most significant bit
is needed. l

So far, we only discussed extensions by indexing and relational operations sepa-
rately. However, using the same principles, it is indeed possible to show that we
can add both kind of operations at the same time without growth in complexity. We
only sketch the argument: As in the original proof for indexing, we first remove
all occurrences of the indexing operation from the formula. This time, it is not
sufficient to extract those bit-indices from the bit-vectors. Instead, we have to split
all bit-vectors at the corresponding bit-index. Let i with 0 i n be an index
that explicitly occurs at some point in the formula. Replace t1rns u t2

rns with

ptHI1
rn�i�1s u tHI2

rn�i�1sq

_ ptHI1
rn�i�1s � tHI2

rn�i�1sq ^ p t1,i
r1s ^ t2,i

r1sq

_ ptHI1
rn�i�1s � tHI2

rn�i�1sq ^ pt1,i
r1s ô t2,i

r1sq ^ ptLO1
ris u tLO2

risq

For the more general case, with indices I � ti1, . . . , imu, the bit-vectors need to
be split analogously at all bit-indices il. Apart from this, the reduction works as
already described. This leads to the following corollary:

Corollary 4.30. QF_BV2bw extended by indexing together with relational opera-
tions from Table 4.1 is in NP.

See Appendix 4.11.3 for an example.

4.7.3 QF_BV2!1

Figure 4.1 depicts our forthcoming results on extending QF_BV2!1 with opera-
tions. An edge po1, o2q means that o1 can be reduced to o2, together with bitwise
operations and equality. The vertex bvshl_1 represents left shift by 1, and plays a
central role as being a base operation in QF_BV2!1. The vertex bvmul_c repre-
sents multiplication by constant, and the four vertices to the right correspond to
different kinds of unsigned and signed relational operations. All the other vertices
are self-explanatory. Note that each operation which is mutually reachable with
bvshl_1, namely bvlshr_1, bvadd, bvsub, and bvmul_c, can be used as an alterna-
tive base operation instead of bvshl_1.

74 CHAPTER 4. TOCS 2015

bvshl_1

bvlshr_1 bvashr_1

bvadd

bvsub

bvneg

bvmul_c

indexing

bv�lt bv�le

bv�gt bv�ge

Figure 4.1: Extending QF_BV2!1 with operations

First, we show that QF_BV2!1 can be extended with indexing. Although a
similar result was proposed for QF_BV2bw, the reduction we used there is not
appropriate for QF_BV2!1, because of the presence of shifts in the formulas.

Theorem 4.31. QF_BV2!1 extended by indexing is in PSPACE.

Proof. The counter we introduced in our translation from QF_BV2!1 to sequential
circuits (Lemma 4.25) can be used to return the value at a specific bit-index of a
bit-vector. l

Instead of left shift by 1, we could also have used logical right shift by 1 to define
QF_BV2!1.

Theorem 4.32. Left shift by 1 and logical right shift by 1 can be reduced to each
other.

Proof. We give a direct translation:

trns ! 1rns

replace with: xrns

add assertions: x "u 1 � t&
�
�0rns "u 1

�
x&1rns � 0rns

trns "u 1rns

replace with: xrns ,
add assertions: x ! 1 � t&

�
�0rns ! 1

�
x&vrns � 0rns

v ! 1 � 0rns

v � 0rns

The claim follows. l

Furthermore, it is well-known that any arithmetic right shift t1rns "s t2
rns can be

reduced to logical right shift, using ite pt1rn� 1s , �p� t1 "u t2q , t1 "u t2q.
We now look at arithmetic operations:

4.7. EXTENSIONS AND ALTERNATIVE CHARACTERIZATIONS 75

Theorem 4.33. QF_BV2!1 extended with linear modular arithmetic is in PSPACE.

Proof. Addition can be expressed as follows:

t1
rns � t2

rns

replace with: ts1 ` ts2 ` cin ,
add assertions: ts1

rns � t1
ts2

rns � t2
cinrns � cout ! 1

coutrns � pts1&ts2q | pts1&cinq | pts2&cinq

Multiplication by constant can be splitted into several multiplications by 2, i.e., left
shift by 1, and addition, similar to [208, 209]. Given such a multiplication trns �crns,
we introduce two sets of variables, si and xi, 0 ¤ i ¤ Lc. Each si represents t ! i,
and calculated by shifting si�1 by 1. Note that only logarithmic many steps need
to be performed. Each xi represents the subresult in the ith step. By considering
the individual bits of c, si either is or is not added to the previous subresult xi�1.
Finally, xLc provides the required product.

trns � crns

replace with: xLc
rns

add assertions: s0
rns � t

si
rns � si�1 ! 1 , 0 i ¤ Lc

x0
rns �

"
s0 if JcKr0s � 1
0 otherwise

xi
rns �

"
xi�1 � si if JcKris � 1
xi�1 otherwise

, 0 i ¤ Lc

Considering the opposite direction, t ! 1 can easily be expressed as t � 2. Con-
sequently, it can also be expressed as ts � ts where tsrns is a Tseitin variable for
t. This shows we could also have used addition instead of left shift by 1 to define
QF_BV2!1.

Unary minus (bvneg) and subtraction (bvsub) can obviously be defined in
QF_BV2!1 by using two’s complement representation. Furthermore, it is easy
to see that addition and subtraction can be reduced to each other. Extending
QF_BV2!1 with common relational operations, such as unsigned less than (bvult),
does not increase complexity either. A term t1

rns u t2
rns is the same as checking

whether t1 � t2 u 0 holds, which can be replaced by constructing an adder for
t1 � p� t2q � 1, analogously to the one above, and then check whether overflow
occurs, i.e., ts2 � 0 & coutrn� 1s. Obviously, the common unsigned or signed
relational operations less than, greater than, less than or equal, and greater than
or equal are equally powerful. l

76 CHAPTER 4. TOCS 2015

4.7.4 QF_BV2!c

Figure 4.2 depicts our forthcoming results on extending QF_BV2!c with opera-
tions. The vertex bvshl_c represents left shift by constant, which is a base opera-
tion. Since bvshl_1 is a special case of bvshl_c, all the operations that can extend
QF_BV2!1 (cf. the previous section), represented by the dashed segment in the
upper left corner, can obviously be reduced to bvshl_c. Actually, as we have al-
ready mentioned before, any common operation can extend this fragment, with
QF_BV2!c being NEXPTIME-complete. This explains why bvshl_c is reachable
from all the vertices. We only give the most interesting explicit reductions in this
direction. The other direction, i.e., presenting operations being reachable from
bvshl_c, is more important from the theoretical point of view, since those ones can
be used as alternative base operations instead of bvshl_c. These operations are
extract, concat, bvmul, bvshl, bvlshr_c, and bvlshr.

bvshl_c

bvshl_1

extract

concat

bvshl

bvlshr_c

bvlshr

bvashr_c

bvashr

bvmul

Figure 4.2: Extending QF_BV2!c with operations

Theorem 4.34. The operators bvshl_c and bvlshr_c can be reduced to each other.

Proof. Given a term trns ! crns or trns "u c
rns, there are two boundary cases: if

c � 0 then rewrite the term to t; if c ¥ n then rewrite to 0rns. Otherwise, i.e., for
0 c n, the following reductions can be applied:

trns ! crns

replace with: xrns ,
add assertions: x "u c � t&

�
�0rns "u c

�
x&

�
�0rns "u pn� cq

rns
	
� 0rns

trns "u c
rns

replace with: xrns

add assertions: x ! c � t&
�
�0rns ! c

�
x&

�
�0rns ! pn� cqrns

	
� 0rns

The claim follows. l

4.7. EXTENSIONS AND ALTERNATIVE CHARACTERIZATIONS 77

Each kind of shift by constant is a special case of the respective general shift.4

As mentioned in the previous section, arithmetic shift can be expressed by logical
shift.

Theorem 4.35. Extraction, concatenation, and bvshl_c can be reduced to each
other.

Proof. First, consider extraction and concatenation:

t1
rms � t2

rns

replace with: xrm�ns ,
add assertions: t1 � x rm� n� 1 : ns

t2 � x rn� 1 : 0s

trns ri : js

replace with: xri�j�1s

add assertion:

$''&''%
t � x if i � n� 1

t � y1
rn�i�1s � x otherwise

*
if j � 0

t � x � y2
rjs if i � n� 1

t � y1
rn�i�1s�x�y2

rjs otherwise

*
otherwise

The base operation bvshl_c can then easily be expressed by extraction and
concatenation (and also by any of them alone, since they can be reduced to each
other). The boundary cases for bvshl_c can be handled in the same way as above,
therefore we now assume that 0 c n, and rewrite the term trns ! crns to
t rn� c� 1 : 0s � 0rcs.

The reduction in the other way around, i.e., extraction (or concatenation) to
bvshl_c and bvlshr_c, takes a special role. Given a term trns ri : js, extraction
produces a new term of bit-width i � j � 1. This change in bit-width (which
also occurs for concatenation) cannot be captured by only applying rewriting rules
using shifts. However, we can find a reduction from bit-vector formulas using only
extraction, bitwise operations, and equality to ones using only shift by constant,
bitwise operations, and equality, as follows.

Given a formula Φ with bit-vector variables x1
rn1s, . . . , xl

rnls, let us calcu-
late the maximal bit-width nmax :� maxktnku. First, replace each extraction
trms ri : js in Φ with�

t ! pnmax � 1� iq
�
"u pnmax � 1� i� jq

In a second step, replace each bit-vector variable xkrnks with a new bit-vector vari-
able x1k

rnmaxs. Finally, for each x1k , add the following assertion to the formula:

x1k
rnmaxs �

�
x1k ! pnmax � nkq

�
"u pnmax � nkq

4Although we do not intend the present a reduction of a general shift to the respective shift by
constant, it is worth to mention that a common approach for such a reduction is the barrel shifter.

78 CHAPTER 4. TOCS 2015

In the resulting formula, all bit-vectors have the same bit-width, and each bit-vector
and each result of an extraction can take exactly those values it could take in the
original formula, apart from leading zeros. l

We now take a closer look at multiplication:

Theorem 4.36. Multiplication and bvshl_c can be reduced to each other.

Proof. First, we show how bvshl_c can be expressed by bvmul. Again, assume that
0 c n. In this case, trns ! crns can be expressed as t � 2c. We can construct 2c,
being an exponential number, as a bit-vector in Lc steps using exponentiation by
squaring. We introduce two sets of variables, pi and xi, 0 ¤ i ¤ Lc. Each pi rep-
resents the number 2p2

iq, and each xi the subresult in the ith step. By considering
the individual bits of c, the previous subresult xi�1 either is or is not multiplied by
pi. Finally, xLc provides the value 2c.

trns ! crns

replace with: t � xLc
rns

add assertions: p0
rns � 2

pi
rns � pi�1 � pi�1 , 0 i ¤ Lc

x0
rns �

"
2 if JcKr0s � 1
1 otherwise

xi
rns �

"
xi�1 � pi if JcKris � 1
xi�1 otherwise

, 0 i ¤ Lc

Although we know, based on the complexity results, that even general multi-
plication can be expressed in this fragment, it is still a non-trivial task to give an
explicit reduction. While everal polynomial multiplication algorithms in the bit-
width of operands exist, we cannot directly apply them since we now need a loga-
rithmic translation in the bit-width. Before showing how to simulate the common
“shift and add” algorithm, we first introduce four bit-vector helper operations to
make the presentation as transparent as possible: binmagic, selfconcat, halfshuffle,
and expand. Furthermore, let us introduce the notation Pn for the nearest power of
2, and define it as follows: Pn :� 2Ln.

For the helper operation binmagic, which is in fact about constructing a binary
magic number, we use the same notation and approach as in Lemma 4.23, where
m n:

binmagic p2m, 2nq

replace with: xr2
ns ,

add assertion: x ! 2m � �x

Selfconcat receives a bit-vector term tr2
ms and concatenates it with itself until

constructing a bit-vector of bit-width 2n, as follows, where m ¤ n:

4.7. EXTENSIONS AND ALTERNATIVE CHARACTERIZATIONS 79

selfconcat
�
tr2

ms, 2n
�

replace with: xn
r2ns

add assertions: xm
r2ms � t

xi
r2is � xi�1 � xi�1 , m i ¤ n

Halfshuffle applies a logarithmic translation, which is based on the general-
ization of a bit-vector operation called half-shuffle [231, Chapter 7]. This gener-
alized variant receives a bit-vector tr2

ms and produces the following bit-vector of
bit-width 2n:

0 . . . 0loomoon
2n�m�1

tr2m � 1s 0 . . . 0loomoon
2n�m�1

tr2m � 2s . . . 0 . . . 0loomoon
2n�m�1

tr0s

In the initialization step, we apply zero extension to t. Then, in m steps, we shuffle
smaller and smaller bit groups in our bit-vector. In the 1st step, the two halves
(i.e., 2m�1-bit groups) are shuffled. In the 2nd step, the halves of all the previously
shuffled halves (i.e., 2m�2-bit groups), and so on. In the last step, we shuffle single
bits, and this is how to put each bit at its destination. Assume again that m ¤ n.

halfshuffle
�
tr2

ms, 2n
�

replace with: xm
r2ns

add assertions: x0
r2ns � extu pt, 2n � 2mq

xi
r2ns �

�� xi�1 |
�
xi�1 ! p2

n�i � 2m�iq
�

&
binmagic

�
2m�i, 2n

�
� , 0 i ¤ m

As it can be seen above, in the ith step we (i) shift our current bit-vector left by the
constant 2n�i � 2m�i, (ii) merge it with the original bit-vector, by using bitwise
or, (iii) and we mask some unnecessary bit groups out, by using a binary magic
number. For an example, see Appendix 4.11.4.

Expand “multiplies” each bit of tr2
ms into a bit group of size 2n�m. The result-

ing bit-vector can be visualized as follows:

tr2m � 1s . . . tr2m � 1slooooooooooooomooooooooooooon
2n�m

tr2m � 2s . . . tr2m � 2slooooooooooooomooooooooooooon
2n�m

. . . tr0s . . . tr0slooooomooooon
2n�m

In the initial step, we use halfshuffle. In the next n �m steps, we copy larger and
larger non-zero bit groups, by using left shift and bitwise or. Assume again that
m ¤ n.

expand
�
tr2

ms, 2n
�

replace with: xn�m
r2ns

add assertions: x0
r2ns � halfshuffle pt, 2nq

xi
r2ns � xi�1|

�
xi�1 ! 2i�1

�
, 0 i ¤ n�m

80 CHAPTER 4. TOCS 2015

Now we are ready to propose how to express multiplication by simulating the
common “shift and add” algorithm for integers. In a first step, one of the operands
is multiplied independently by each digit of the other operand. Using base 2, this
multiplication by a single digit can be expressed by a logical and-operation. After-
wards, the results of the single-digit multiplications are shifted by the offset of the
corresponding digit and finally added to give the result of the full multiplication.
While this approach is straightforward in a naive implementation, we have to en-
sure only logarithmic many operations in the bit-width are used in our encoding.
To achieve this, we generate bit-vectors of quadratic bit-width pPnq2 out of our
original operands of bit-width n, by applying selfconcat to the first one and expand
to the second one. Using bitwise and on the two new bit-vectors, we directly get
the results of all single-digit multiplications in one step. More precisely, the result-
ing bit-vector consists of Pn groups of Pn bits, each group representing the result
of one single-digit multiplication. To add all Pn partial results, a binary addition
algorithm is used. Iteratively pairs of neighbouring groups are shifted relative to
each others’ offsets and then added to form one new group. The number of groups
therefore is halved in each step, resulting in the final sum after log2pPnq � Ln
steps. For a detailed example, see also Appendix 4.11.5.

t1
rns � t2

rns

replace with: xLn rn� 1 : 0s

add assertions: x0
rpPnq2s � selfconcat

�
extu pt1,Pn� nq , pPnq2

�
&expand

�
extu pt2,Pn� nq , pPnq2

�
bi
rpPnq2s � binmagic

�
2i � Pn, pPnq2

�
,

0 ¤ i
i Ln

xi
rpPnq2s �

pxi�1&bi�1q �
pxi�1& �bi�1q "u

�
2i�1 � pPn� 1q

� ,
0 i
i ¤ Ln

The claim follows. l

4.8 Logics with Quantifiers and Binary Encoding

In this section, we look into the complexity of quantified bit-vector logics with bi-
nary encoding. While we already gave some results for BV2 and UFBV2 in [151],
we now extend our previous work by discussing some fragments of those logics.
Additionally, we also take a look at non-recursive macros (as allowed, e.g., in the
SMT-LIB format) for quantifier-free logics, which have a very similar effect to
restricting the bit-width of universal variables in quantified logics. We give new
complexity results for all fragments and extensions.

4.8.1 General Quantification

By allowing quantification and uninterpreted functions, and using binary encoding,
we obtain UFBV2, the most expressive bit-vector logic considered in this chapter.

4.8. LOGICS WITH QUANTIFIERS AND BINARY ENCODING 81

Theorem 4.37. UFBV2 is 2-NExpTime-complete [151].

Proof. It is straightforward to see that UFBV2 P 2-NExpTime, considering that
every UFBV2 formula can be translated exponentially to a corresponding for-
mula in UFBV1 P NEXPTIME (Proposition 4.14), by applying a simple unary
re-encoding to all the scalars in the formula. 2-NExpTime-hardness directly fol-
lows from Lemma 4.40. l

To prove that UFBV2 is 2-NExpTime-hard, we pick a 2-NExpTime-hard problem
and then reduce it to UFBV2. We can find a suitable problem among the so-called
domino tiling problems [65]. First, we give a definition of a domino system and
then specify a 2-NExpTime-hard problem on this kind of systems.

Definition 4.38 (Domino System). A domino system is a tuple xT,H, V, ny, where

• T is a finite set of tile types, in our case, T � r0, k � 1s, where k ¥ 1;

• H,V � T � T are the horizontal and vertical matching conditions, respec-
tively;

• n ¥ 1, encoded in unary format.

Note that the above definition differs (but not substantially) from the classical
one in [65]. W.l.o.g., we use sub-sequential natural numbers for identifying tiles.
Similarly to [171, 183], the size factor n, encoded in unary form, is part of the
input. However, while a start tile α and a terminal tile ω is usually used, in our
case, w.l.o.g., the starting tile is denoted by 0 and the terminal tile by k � 1.

There are different domino tiling problems examined in the literature. In [65],
a classical tiling problem is introduced, namely the square tiling problem, which
can be defined as follows:

Definition 4.39 (Square Tiling). Given a domino system xT,H, V, ny, an fpnq-
square tiling is a mapping λ : r0, fpnq � 1s � r0, fpnq � 1s ÞÑ T such that

• the first row starts with the start tile: λp0, 0q � 0

• the last row ends with the terminal tile: λpfpnq � 1, fpnq � 1q � k � 1

• all horizontal matching conditions hold:�
λpi, jq, λpi, j � 1q

�
P H @i, j . 0 ¤ i fpnq, 0 ¤ j fpnq � 1

• all vertical matching conditions hold:�
λpi, jq, λpi� 1, jq

�
P V @i, j . 0 ¤ i fpnq � 1, 0 ¤ j fpnq

In [65], a general theorem on the complexity of domino tiling problems is proved.
More precisely, the fpnq-square tiling problem can be shown to be NTIME pfpnqq-
complete. From this, it directly follows that the 2p2

nq-square tiling problem is
2-NExpTime-complete.

82 CHAPTER 4. TOCS 2015

Lemma 4.40. The 2p2
nq-square tiling problem can be reduced to UFBV2.

Proof. Given a domino system xT � r0, k � 1s, H, V, ny, let us introduce the
following notations which we intend to use in the resulting UFBV2 formula.

• Represent each tile in T with the corresponding bit-vector constant of bit-
width Lk.

• Represent the horizontal and vertical matching conditions with uninterpreted
functions (actually predicates) hr1spt1rLks, t2rLksq and vr1spt1rLks, t2rLksq, re-
spectively.

• Represent the tiling with an uninterpreted function λrLkspir2
ns, jr2

nsq. λ re-
turns the tile in the cell at the row index i and column index j. Note that the
bit-width of i and j is exponential in the size of the domino system, but due
to binary encoding it can represented polynomially.

The resulting UFBV2 formula is as follows:

@ir2
ns, jr2

ns.

λp0, 0q � 0 ^ λ
�

2p2
nq � 1, 2p2

nq � 1
	
� k � 1

^
©

pt1,t2qPH

hpt1, t2q ^
©

pt1,t2qPV

vpt1, t2q

^
�
j � 2p2

nq � 1 ñ h
�
λpi, jq, λpi, j � 1q

� 	
^

�
i � 2p2

nq � 1 ñ v
�
λpi, jq, λpi� 1, jq

� 	
This formula contains four kinds of constants. Three can be encoded directly (0r2

ns,
0rLks, and pk � 1qrLks). The constant 2p2

nq�1 has to be encoded as�0r2
ns in order

to avoid an exponential representation. The size of the resulting formula, due to
binary encoding on bit-widths, is polynomial in the size of the domino system. l

Similar to Section 4.6 and to our work in [101], we can now restrict the set of
operations in UFBV2 to allow only bitwise operations, equality and left shift by
constant (or left shift by 1). We refer to this logic as UFBV2!c (or UFBV2!1,
in the case of left shift by 1). From a different point of view, it is also possible
to consider this as an extension of QF_BV2!c and QF_BV2!1 by quantifiers and
uninterpreted functions.

Since we can use bitwise operations, equality and left shift by constant to ex-
press all common operations, UFBV2!c remains 2-NExpTime-complete. How-
ever, in contrast to quantifier-free logics, we do not lose any expressiveness in
UFBV2!1, either. We can see this already from the fact that we only used bitwise
operations, equality and addition in Lemma 4.40. Since, as we pointed out in Sec-
tion 4.7.3, addition can be reduced to bitwise operations, equality and left shift by
1, the following result follows immediately:

4.8. LOGICS WITH QUANTIFIERS AND BINARY ENCODING 83

Corollary 4.41. UFBV2!1 is 2-NExpTime-complete.

Nevertheless, we want to formalize this in a proposition and give a constructive
proof by showing how UFBV2!c can be reduced to UFBV2!1.

Proposition 4.42. UFBV2!c can be reduced to UFBV2!1.

Proof. Let Φ denote a bit-vector formula, xrns, yrns fresh bit-vector variables, and
fn

rns p�, �q a fresh uninterpreted function of arity 2, taking arguments of bit-width
n. Replace each expression trns ! crns in Φ with fn

rns
�
trns, crns

�
, extend the

quantifier prefix of Φ with @xrns, yrns, and add the following two constraints to the
matrix of Φ:

fn
rns px, 0q � x

fn
rns px, y � 1q � fn

rns px, yq ! 1

While the second constraint still contains addition to improve readability, this can
be replaced by using left shift by 1, as described in Section 4.7.3. l

Remark 4.43. This result is not very surprising if we consider the alternative char-
acterizations of QF_BV2!1 and QF_BV2!c as given in Section 4.7. We showed
that addition is equally expressive as left shift by 1 and multiplication is equally
expressive as left shift by constant. In Peano arithmetic, multiplication is defined
by using addition, uninterpreted functions, and quantification. In the context of bit-
vectors, this definition of multiplication can be expressed by introducing @xrns, yrns

to the quantifier prefix and adding the following constraints:

fn
rns px, 0q � 0

fn
rns px, y � 1q � fn

rns px, yq � x

With these two axioms, the multiplication t1rns � t2rns of two elements in Peano
arithmetic is uniquely defined by the instance fnrns

�
t1
rns, t2

rns
�

of the uninter-
preted function fn.

While we were also able to give some complexity results for BV2 in [151], it
remains unclear whether BV2 is complete for any complexity class.

Proposition 4.44. BV2 P EXPSPACE and BV2 is NEXPTIME-hard [151].

Proof. Given a BV2 formula, a simple unary re-encoding can be used to give an
exponential translation to BV1 P PSPACE (Proposition 4.13). As a consequence,
BV2 P EXPSPACE. Because of QF_BV2 � BV2, NEXPTIME-hardness follows
trivially. l

84 CHAPTER 4. TOCS 2015

4.8.2 Restricting the Bit-Width of Universal Variables

We now show that a completeness result can be obtained when a certain restric-
tion to the bit-width of the universal variables is applied. For a given formula
Φ P BV2, let maxbwpDq pΦq and maxbwp@q pΦq denote the maximal bit-width of
all the existentially and universally quantified variables, respectively. (We define
maxbwpDq pΦq :� 0 and maxbwp@q pΦq :� 0 if Φ does not contain any existential and
universal variables, respectively.) Now we give a definition, similar to the one of
scalar-boundedness in Definition 4.15:

Definition 4.45 (Universally Bit-Width Bounded Formula Set). An infinite set S
of quantified bit-vector formulas is universally bit-width bounded, if and only if
there exists a polynomial function p : N ÞÑ N, such that, for each formula Φ P S,
it holds that maxbwp@q pΦq ¤ p

�
LmaxbwpDq pΦq

�
.

Theorem 4.46. If S � UFBV2 (or S � BV2) is universally bit-width bounded,
then S P NEXPTIME.

Proof. Let S � UFBV2 be universally bit-width bounded and let p0 be the poly-
nomial function that exists according to Definition 4.45. For any Φ0 P S, let
n :� |Φ0|. We can assume that Φ0 contains at most k ¤ n universal variables.
Also, let maxscl pΦ0q and cntscl pΦ0q be defined in the same way as it was done in
Section 4.5. This implies maxbwpDq pΦ0q ¤ maxscl pΦ0q ¤ 2n and cntscl pΦ0q ¤ n.

To prove that S P NEXPTIME, we now give a reduction to QF_BV1 P NP
which is only single-exponential in n � |Φ0| for any Φ0 P S. First, all universal
variables are eliminated by universal expansion. This produces a quantifier-free
formula Φ1 P QF_UFBV2 with

maxscl pΦ1q � maxscl pΦ0q ¤ 2n

cntscl pΦ1q ¤ cntscl pΦ0q � 2
k�maxbwp@qpΦ0q

¤ cntscl pΦ0q � 2
n�p0pLmaxbwpDqpΦ0qq

¤ cntscl pΦ0q � 2
p1pnq

for some polynomial function p1. Since Φ1 does not contain any (universal) quanti-
fiers, it can be polynomially translated to some Φ2 P QF_BV2, by replacing all un-
interpreted functions of Φ1 with bit-vector variables and adding at most quadratic
many Ackermann constraints (as in Proposition 4.12). Therefore,

maxscl pΦ2q � maxscl pΦ1q ¤ 2n

cntscl pΦ2q ¤ p2 pcntscl pΦ1qq ¤ p2

�
cntscl pΦ0q � 2

p1pnq
	

for some polynomial function p2. In a last step, a unary re-encoding is applied to
Φ2 (similar to Proposition 4.18), resulting in Φ3 P QF_BV1. The size of Φ3 is
bounded by

|Φ3| ¤ maxscl pΦ2q � cntscl pΦ2q � c

¤ 2n � p2

�
cntscl pΦ0q � 2

p1pnq
	
� c ¤ 2p3pnq � c

4.8. LOGICS WITH QUANTIFIERS AND BINARY ENCODING 85

for some polynomial function p3. Therefore, Φ3 P QF_BV1 is still only single-
exponential in the size of Φ0. Together with QF_BV1 P NP (Proposition 4.11),
this shows that S P NEXPTIME. l

We now define BVlog � BV2 and UFBVlog � UFBV2 as the set of all Φ P BV2
and Φ P UFBV2 with maxbwp@q pΦq ¤ LmaxbwpDq pΦq � 1, respectively. These
fragments are of special practical interest, because they can be used to express
quantification over array indices if arrays are represented as bit-vectors. Arrays
play an important role in automated software model checking as, for example,
done in the SAGE project by Microsoft [115]. Quantification over array indices
is also discussed in [42], where the so-called bounded array property fragment is
addressed.

Theorem 4.47. BVlog and UFBVlog are NEXPTIME-complete.

Proof. It is easy to see that BVlog and UFBVlog are NEXPTIME-hard since both
logics are an extension of QF_BV2, which is already NEXPTIME-hard (Proposi-
tion 4.22). The other direction is a consequence of Theorem 4.46, since BVlog and
UFBVlog are universally bit-width bounded by definition. l

Note that this kind of proof only holds for bit-vector logics with binary encoding.
When a unary encoding is used, restricting the bit-width of universal variables does
not have any effect on the complexity of the given problem class.

4.8.3 Non-Recursive Macros

A very similar effect occurs when non-recursive macros are added to our logics.
For example, SMT-LIB allows the usage of non-recursive macros via the keywords
define-fun and let. In the general case, allowing macros can increase the
complexity of a given class. For instance, Boolean formulas extended by non-
recursive macros equal to the class of Boolean Programs or Nested Boolean Func-
tions (NBF), which is known to be PSPACE-complete [54, 72]. The same obviously
holds for QF_BV1.

However, as shown in Theorem 4.50, extending QF_UFBV2 (or QF_BV2)
with non-recursive macros does not give additional expressiveness in terms of
complexity. Let the subscriptM denote the fact that, additionally, non-recursive
macros can be used in our logic.

Definition 4.48 (Logic with Non-Recursive Macros). Given a bit-vector logic L,
let LM denote the set of all bit-vector formulas in the following form:

Q @u0
rn0s, . . . , uk

rnks . tr1s

^ f0
rw0spu0, . . . , uk0q � d0

rw0s

^ . . .

^ fm
rwmspu0, . . . , ukmq � dm

rwms

86 CHAPTER 4. TOCS 2015

where (i) Q.tr1s P L, (ii) the universal variables uirnis do not appear in Q.tr1s,
(iii) the uninterpreted functions fi are called macros, (iv) the terms dirwis are called
macro definitions, and (v) di contains no occurrence of fj if i ¤ j.

Note that t might contain occurrences of any fi. Expanding a macro fi means
to replace all occurrences fips0, . . . , skiq in t with diσ, where s0, . . . , ski are terms
and σ :� tu0 ÞÑ s0, . . . , uki ÞÑ skiu is a term substitution.

We now introduce a normal form, similar to the flat form in Definition 4.49,
in order to obtain an upper bound for the growth in formula size when applying
macro expansion.

Definition 4.49 (Functional Flat Form). A bit-vector formula Φ is in functional
flat form if and only if every uninterpreted function in Φ has only variables as
arguments.

It is easy to see that any Φ can be translated into functional flat form with only
linear growth in formula size. Given a term fpt1

rn1s, . . . , tk
rnksq in Φ, where f is

an uninterpreted function, check if ti is a variable: if it is, then xi :� ti; otherwise
let xirnis be a new Tseitin variable existentially quantified at the innermost prefix
position, and add the constraint xi � ti to the formula. Then, replace the original
term with fpx1, . . . , xkq.

Theorem 4.50. QF_UFBV2M is NEXPTIME-complete.

Proof. NEXPTIME-hardness is obvious, since QF_UFBV2 � QF_UFBV2M. In-
clusion can be shown in a similar way as it is done in Theorem 4.46.

Let Φ0 :� @u0
rn0s, . . . , uk

rnks . t ^ tM be a QF_UFBV2M formula of size
n :� |Φ0|, where t P QF_UFBV2 and tM consists of all the macro definitions.
Assume that t is in functional flat form. We now inductively expand all macros in
t, in the order of fm, fm�1, . . . , f0, and also, after each expansion step, we translate
the resulting formula into functional flat form again.

First, each macro occurrence fmpx0, . . . , xkmq in t is replaced by an instance
dmσ of the macro definition. Since each xi is a variable, we know that |dmσ| �
|dm| ¤ n. Because fm has at most n occurrences in t, expanding fm results in a
formula of size bounded by n2. Recall that we also translate the resulting formula
into functional flat form, resulting in formula size bounded linearly in n2.

Then, we expand fm�1, which now has at most n2 occurrences. The resulting
formula is of size bounded linearly in n3. By continuing the expansion process with
fm�2, . . . , f0, we finally obtain from t a formula Φ1 P QF_UFBV2 that contains
no more macros. It holds that

maxscl pΦ1q � maxscl pΦ0q ¤ 2n

cntscl pΦ1q ¤ l
�
nm�1

�
¤ l

�
nn

�
¤ l

�
2n�Ln

�
for some linear function l. We now apply a unary re-encoding to Φ1, yielding
Φ2 P QF_UFBV1. The size of Φ2 is bounded by

|Φ2| ¤ maxscl pΦ1q � cntscl pΦ1q � c ¤ 2n � l
�
2n�Ln

�
� c,

4.9. PRACTICAL CONSIDERATIONS 87

which is only single-exponential in the size of Φ0. As a consequence, this implies
QF_UFBV2M P NEXPTIME. l

4.9 Practical Considerations

As mentioned in Section 4.2, our original motivation for considering the complex-
ity of bit-vector logics comes from the fact that state-of-the-art SMT solvers usually
rely on bit-blasting when dealing with bit-vector formulas. Our introductory ex-
ample shows the effect that the exponential explosion caused by bit-blasting can
have on a bit-vector formula and, therefore, current SMT solvers often are not able
to deal efficiently with bit-vector formulas that are not scalar-bounded.

While our complexity results in Section 4.6 explain why this is the case from a
complexity-theoretic point of view, it is of high practical interest if and how state-
of-the-art SMT solvers can profit from this knowledge.

4.9.1 Alternative Approaches

Instead of using bit-blasting, we can try to find alternative approaches for solving
bit-vector formulas. One possible approach is to polynomially translate bit-vector
formulas to some other logic in the same complexity class. For example, target
logics for QF_BV2!c (or general QF_BV2) are DQBF or EPR, which are both
NEXPTIME-complete [161, 188, 187]. For QF_BV2!1, a translation to model
checking for sequential circuits as given in Lemma 4.25 can be used instead. In
both cases, we can profit from the performance of existing techniques for other
problem classes. While DQBF solvers have not been considered at all until our
recent work in [99], their performance does not nearly reach the one of current EPR
solvers as, e.g., iProver [147]. On the other hand, many efficient model checkers
for sequential circuits in SMV or AIGER format exist.

In [150], we therefore gave a polynomial translation from QF_BV2 to EPR
(this is in contrast to existing translations in [90, 143], which are not guaranteed
to be polynomial in the general case), and then did an experimental evaluation us-
ing iProver to solve the resulting EPR formulas. The overall results were rather
mixed. While we were able to solve some formulas faster, SMT solvers performed
better by orders of magnitude on most other problems considering runtime. Look-
ing at the space requirements, iProver performed better in general. However, the
gain was less significant than expected. An explanation for this can be found in
the way iProver deals with EPR formulas. By solving propositional overapprox-
imations and iteratively applying instantiations of predicates (the underlying con-
cept is known as the Inst-Gen calculus), the formula can also grow exponentially.
Of course this is no flaw in iProver but a direct consequence of the NEXPTIME-
completeness of EPR and QF_BV2.

A different situation occurs when we look at QF_BV2!1. As seen in our in-
troductory example, bit-blasting can still be exponential for formulas of this class.
However, we know that it is possible to solve this kind of formulas in polynomial

88 CHAPTER 4. TOCS 2015

space, since QF_BV2!1 P PSPACE. In [100], we therefore presented a polynomial
translation from QF_BV2!1 to SMV. Since current model checkers usually expect
input in AIGER format, we then also translated our outputs to AIGER format us-
ing smv2aig, which is part of the AIGER library. Our experiments showed that,
with growing bit-width, BDD-based model checkers (e.g., NuSMV [66] and IImc5,
using techniques described in [40, 43], with BDD-engine enabled) outperformed
state-of-the-art SMT solvers on almost all of our benchmarks by orders of mag-
nitude in runtime. Considering space requirements, the gain was even more sig-
nificant. On the other hand, model checkers based on unrolling performed worse,
and comparable to SMT solvers, on most benchmarks. This is not surprising, since
unrolling to the full bit-width turns out to be the same as bit-blasting.

Altogether, our experiments show that the theoretical results given in [101,
151] and Section 4.6 can practically lead to improvements in state-of-the-art SMT
solving. It is an interesting open problem to look at these results more closely and
to integrate those concepts into SMT solvers in order to to increase their overall
performance.

4.9.2 Benchmark Problems

Another practical outcome of our theoretical work was the creation of several dif-
ferent benchmark sets.

In [150], we proposed two new sets of QF_BV2 benchmarks for our experi-
ments on evaluating the performance of EPR solvers for quantifier-free bit-vector
formulas. In connection with our experiments on using model checkers for effi-
ciently solving restricted bit-vector formulas, we generated six more benchmark
sets for QF_BV2!1 in [100]. Another family of benchmarks was directly derived
from the discussion on the expressiveness of bit-vector operations in this chapter.
As we know from Section 4.6, all common bit-vector operations can be logarith-
mically expressed (in bit-width) by bitwise operations and equality in combination
with shift by constant, multiplication, concatenation, or slicing. While we did not
give direct translations for all common bit-vector operations in this work, we en-
coded most of them into SMT-LIB instances and used Boolector to verify their
correctness for various bit-widths.

These benchmarks, together with those from [100, 150], can be found on our
webpage6 and will be submitted to the SMT-LIB. All of our benchmark sets are
challenging for state-of-the-art SMT solvers (as well as for EPR solvers and model
checkers) due to the fact that they are not scalar-bounded. For better solvers and
future challenges, the difficulty of a problem can be adjusted by simply increasing
the bit-widths in the original SMT-LIB instance. Bit-blasted versions of our bench-
marks also turned out to be challenging for state-of-the-art SAT solvers in the SAT
Competition 20137 [152].

5http://ecee.colorado.edu/wpmu/iimc/
6http://fmv.jku.at/
7http://www.satcompetition.org/

http://ecee.colorado.edu/wpmu/iimc/
http://fmv.jku.at/
http://www.satcompetition.org/

4.10. CONCLUSION 89

4.10 Conclusion

We discussed the complexity of deciding various quantified and quantifier-free
fixed-size bit-vector logics. In contrast to existing literature, where usually it is
not distinguished between unary and binary encoding on scalars in formulas, we
argued that it is important to make this distinction. Most of our results apply to the
actually much more natural binary encoding as it is also used in standard formats,
e.g., in the SMT-LIB format. For this kind of logics, already the quantifier-free
fragment without uninterpreted functions (QF_BV2) turned out to be NEXPTIME-
complete [151].

In this chapter, we extended our previous work from [101, 151]. We first gave
a detailed formal framework for fixed-size bit-vector logics including definitions
for syntax and semantics. Our self-contained formalization is the first to consider
different encodings and to provide a concrete measure for the size of bit-vector
formulas as well as to provide the possibility to include arbitrary bit-vector opera-
tions.

Regarding the Common Operator Framework, as used, e.g., in the SMT-LIB
format, we then revisited our previous complexity results from [101, 151] and ex-
tended those results in several ways. For quantifier-free logics, we combined our
earlier work and restructured it to present several of our proofs in a clearer, easier-
to-read way, with some small modifications in the proofs.

We then looked at several bit-vector operations and discussed their expres-
siveness, and checked if these operations can be logarithmically translated to each
other (in bit-width). This kind of analysis helps to understand the complexity that
is inherent in certain classes of bit-vector formulas and its relation to the kind of
encoding used for bit-widths. While this allows us to check what kind of prop-
erties can be expressed in a given fragment, it also enables us to identify easier
subclasses of formulas, which then can be solved more efficiently in practice by
applying specialized algorithms.

Considering quantified logics, it is still an open question whether BV2 is com-
plete for any complexity class. However, we could give some new results for quan-
tified logics with a restriction on the bit-width of universal variables. We intro-
duced the notion of universally bit-width bounded problems and showed that this
kind of problems are in NEXPTIME. This then allowed us to prove that BV2log
is NEXPTIME-complete. Since bit-vector logics with arrays represented by bit-
vectors are in this set if quantification is only allowed on array indices, this class is
of particular practical interest. For a last complexity theoretical result, we looked
into QF_BV2M, the class of quantifier-free bit-vector logics extended with non-
recursive macros, as allowed, e.g., in the SMT-LIB format. Again, we showed
that this logic remains NEXPTIME-complete. Altogether, we provide the currently
most complete overview on the complexity of common bit-vector logics.

To point out that our theoretical insights are also interesting from a practical
point of view, we briefly discussed two approaches of solving bit-vector formulas
not by bit-blasting but by using translations based on our complexity results. While

90 CHAPTER 4. TOCS 2015

bit-blasting is exponential in general, we proposed polynomial translations into
EPR and SMV in recent practical work [100, 150], to show that bit-vector solvers
can indeed profit from our techniques. Several QF_BV2 benchmark families that
we created throughout our work turned out to be challenging for state-of-the-art
SMT and SAT solvers

For future work, it is still an interesting topic to consider our results in the
context of parametrized complexity [85]. In particular, our definitions of (poly-
nomially) scalar-bounded and universally bit-width bounded problem sets might
be of relevance in this context. So far, mainly problems in NP are considered in
parametrized complexity. This is another reason why extending our work in this di-
rection is of special interest. Also, as already mentioned, the complexity of BV2 is
still another open problem. Finally, from the practical side, it would be interesting
to investigate how state-of-the-art SMT solvers can profit most from our insights
and techniques.

4.11 Appendix

4.11.1 Example: Reduction from DQBF to QF_BV2!c

Consider the following DQBF:

@u0, u1, u2Dxpu0q, ypu1, u2q . px_ y _ u0 _ u1q ^

px_ y _ u0 _ u1 _ u2q ^

px_ y _ u0 _ u1 _ u2q ^

p x_ y _ u0 _ u2q ^

p x_ y _ u0 _ u1 _ u2q

This DQBF is unsatisfiable.
Using the reduction given in Lemma 4.23, this formula is translated to the

following QF_BV2!c formula:�
pX | Y |�U0 |�U1q&pX |�Y | U0 |�U1 |�U2q&pX |�Y |�U0 |�U1 | U2q

&p�X | Y |�U0 |�U2q&p�X |�Y | U0 | U1 |�U2q
	
� �0r8s ^©

mPt0,1,2u

Um ! 2m � �Um ^

X& �U1 � pX ! 21q& �U1 ^

X& �U2 � pX ! 22q& �U2 ^

Y & �U0 � pY ! 20q& �U0

(4.6)
In the following, let us show that this formula is also unsatisfiable.

Recall that the notation trns K

� d is an alternative for
q
trns

y
� d, assuming an

appropriate model for t. By construction, U0

K

� 01010101, U1

K

� 00110011, and

91

U2
K

� 00001111.
First, we show how the bits of X get restricted by the constraints introduced

above. Let us denote the originally unrestricted bits of X with x7, x6, . . . , x0.
Since the bit-vectors

X& �U1

K

� px7, x6, 0, 0, x3, x2, 0, 0q

pX ! 21q& �U1

K

� px5, x4, 0, 0, x1, x0, 0, 0q

are forced to be equal, some bits of X should coincide, as follows:

X

K

� px5, x4, x5, x4, x1, x0, x1, x0q

Furthermore, considering also the equality

X& �U2

K

� px7, x6, x5, x4, 0, 0, 0, 0q

pX ! 22q& �U2

K

� px3, x2, x1, x0, 0, 0, 0, 0q

results in
X

K

� px1, x0, x1, x0, x1, x0, x1, x0q

In a similar fashion, the bits of Y are constrained as follows:

Y

K

� py6, y6, y4, y4, y2, y2, y0, y0q

In order to show that the formula (4.6) is unsatisfiable, let us evaluate the “clauses”
in the formula:

X | Y |�U0 |�U1

K

� p1, 1, 1, x0_y4, 1, 1, 1, x0_y0q

X |�Y | U0 |�U1 |�U2

K

� p1, 1, 1, 1, 1, 1, x1_ y0, 1q

X |�Y |�U0 |�U1 | U2

K

� p1, 1, 1, x0_ y4, 1, 1, 1, 1q

�X | Y |�U0 |�U2

K

� p1, 1, 1, 1, 1, x0_y2, 1, x0_y0q

�X |�Y | U0 | U1 |�U2

K

� p1, 1, 1, 1, x1_ y2, 1, 1, 1q

By applying bitwise and to them, we get the bit-vector constrained by the formula
(4.6):

t

K

�

������������

1
1
1

px0_ y4q ^ px0_y4q
 x1_ y2

 x0_y2

x1_ y0

px0_y0q ^ p x0_y0q

�����������
�

������������

1
1
1
x0

 x1_ y2

 x0_y2

x1_ y0

y0

�����������
In order to check if t �� 0r8s is satisfiable, it is sufficient to try to satisfy the set
of the above Boolean clauses. It is easy to see that this clause set is unsatisfiable,
since, by unit propagation, x1 and y2 must be assigned to 1, which contradicts with
the clause x1 _ y2.

92 CHAPTER 4. TOCS 2015

4.11.2 Example: Reduction from QBF to QF_BV2!1

Consider the following QBF:

Dx@u2Dy@u1u0Dz . pu2 _ u1 _ zq ^

pu2 _ x_ yq ^

pu0 _ x_ zq ^

pu1 _ y _ zq ^

pu0 _ u1 _ zq

This QBF is satisfiable.
Using the reduction given in Lemma 4.24, this formula is translated to the

following QF_BV2!1 formula:�
pU2 | U1 |�Zq&pU2 |�X | Y q&pU0 |�X |�Zq&

pU1 |�Y | Zq&pU0 |�U1 | Zq
	
� �0r8s ^©

mPt0,1,2u

� ©
0¤i m

Ui

	
` Um � Um ! 1 ^

X& �1 � X ! 1 ^�
U 1

2 � �
�
pU2 ! 1q ` U2

�	
^

�
Y&U 1

2 � pY ! 1q&U 1
2

�
(4.7)

In the following, let us show that this formula is also satisfiable. As in the pre-
vious example, we have U0

K

� 01010101, U1

K

� 00110011, and U2

K

� 00001111.
However, this time the binary magic numbers were created in a different way to
ensure that only addition and bitwise operations are used.

First, we show how the bits of X get restricted by the constraints introduced
above. Let us denote the originally unrestricted bits of X with x7, x6, . . . , x0.
Since the bit-vectors

X& �1

K

� px7, x6, x5, x4, x3, x2, x1, 0q

X ! 1

K

� px6, x5, x4, x3, x2, x1, x0, 0q

must be equal, all bits of X are forced to be equal:

X

K

� px0, x0, x0, x0, x0, x0, x0, x0q

Similarly, we get some constraints on Y . By using the mask

U 1
2 � �

�
pU2 ! 1q ` U2

� K

� 11101110

the following bit-vectors

Y&U 1
2

K

� py7, y6, y5, 0, y3, y2, y1, 0q

pY ! 1q&U 1
2

K

� py6, y5, y4, 0, y2, y1, y0, 0q

93

are forced to be equal, putting restrictions on the individual bits of Y :

Y

K

� py4, y4, y4, y4, y0, y0, y0, y0q

Finally, Z is not restricted in any way since u0 is the innermost universal vari-
able that z depends on, i.e., z depends on all universal variables.

Z
K

� pz7, z6, z5, z4, z3, z2, z1, z0q

In order to show that the formula (4.7) is satisfiable, we evaluate the “clauses”
in the formula:

U2 | U1 |�Z

K

� p z7, z6, 1, 1, 1, 1, 1, 1q

U2 |�X | Y

K

� p x0_y4, x0_y4, x0_y4, x0_y4, 1, 1, 1, 1q

U0 |�X |�Z

K

� p x0_ z7, 1, x0_ z5, 1, x0_ z3, 1, x0_ z1, 1q

U1 |�Y | Z

K

� p y4_z7, y4_z6, 1, 1, y0_z4, y0_z3, 1, 1q

U0 |�U1 | Z

K

� p1, 1, z5, 1, 1, 1, z1, 1q

By applying bitwise and to them, we get the bit-vector constrained by the formula
(4.7):

t

K

�

������������

 z7 ^ p x0_y4q ^ p x0_ z7q ^ p y4_z7q
 z6 ^ p x0_y4q ^ p y4_z6q
p x0_y4q ^ p x0_ z5q ^ z5

 x0_y4

p x0_ z3q ^ p y0_z4q
 y0_z3

p x0_ z1q ^ z1

1

�����������
�

������������

 z7 ^ y4

 z6

z5

 x0

 y0_z4

 y0_z3

z1

1

�����������
t ��0r8s can easily be satisfied, e.g., by setting

z7 � z6 � y4 � y0 � x0 � 0

z5 � z1 � 1

Therefore,

U0

K

� 01010101, U1

K

� 00110011, U2

K

� 00001111,

X

K

� 00000000, Y

K

� 00000000, Z

K

� 00111111

is a possible satisfying assignment for the bit-vector formula.

4.11.3 Example: Bit-Width Reduction in QF_BV2bw

Let

Φ0 :�
�
xr100s u y

r100s
�
^
�
zr50s � wr50s

�
^
�
wr100sr38s � yr100sr72s

�

94 CHAPTER 4. TOCS 2015

be a bit-vector formula with maximal bit-width 100. Note that we now use decimal
encoding on the scalars. The set of explicit indices in the formula is given by
I :� t38, 72u. We now generate Φ1 by splitting all bit-vectors at the corresponding
bit-indices. First, xr100s u y

r100s is therefore replaced by

�
x199:73

r27s
 u y

1
99:73

r27s�
_

�
x199:73

r27s
� y199:73

r27s�
^
�
 x172

r1s
^ y172

r1s�
_

�
x199:73

r27s
� y199:73

r27s�
^
�
x172

r1s
ô y172

r1s�
^
�
x171:39

r33s
 u y

1
71:39

r33s�
_

�
x199:73

r27s
� y199:73

r27s�
^
�
x172

r1s
ô y172

r1s�
^
�
x171:39

r33s
� y171:39

r33s�
^
�
 x138

r1s
^ y138

r1s�
_

�
x199:73

r27s
� y199:73

r27s�
^
�
x172

r1s
ô y172

r1s�
^
�
x171:39

r33s
� y171:39

r33s�
^
�
x138

r1s
ô y138

r1s�
^
�
x137:0

r38s
 u y

1
37:0

r38s�
Next, zr50s � wr50s is replaced by�

z149:39
r11s

� w1
49:39

r11s�
^
�
z138

r1s
ô w1

38
r1s�

^
�
z137:0

r38s
� w1

37:0
r38s�

Finally, wr100sr38s � yr100sr72s is replaced by

w1
38
r1s
ô y172

r1s

Since we only have 11 relational operations in Φ1, we can generate a bit-width
reduced formula Φ2 by replacing all bit-widths n in Φ1 with mint11, nu. We
therefore replace the variables

x199:73
r27s

, y199:73
r27s

, x171:39
r33s

, y171:39
r33s

,

x137:0
r38s

, y137:0
r38s

, z137:0
r38s

, w1
37:0

r38s
,

by
x299:73

r11s
, y299:73

r11s
, x271:39

r11s
, y271:39

r11s
,

x237:0
r11s

, y237:0
r11s

, z237:0
r11s

, w2
37:0

r11s

respectively.

4.11.4 Example: Half-Shuffle and Expand

halfshuffle
� tr4shkkikkj

1101 , 16
�

can be replaced with x2
r16s, by adding the following as-

sertions. First, zero extension is applied to the original vector:

x0
r16s � extu

�
tr4s, 12

	 K

� 0000 0000 0000 1101

95

Now, in two iterations, the bits of tr4s are separated and moved to the distinct
partitions of the extended vector:

x1
r16s �

�
x0

r16s |
�
x0

r16s ! 6
		

& binmagic p2, 16q

K
� p0000 0000 0000 1101 | 0000 0011 0100 0000q

& 0011 0011 0011 0011

� 0000 0011 0000 0001

x2
r16s �

�
x1

r16s |
�
x1

r16s ! 3
		

& binmagic p1, 16q

K

� p0000 0011 0000 0001 | 0001 1000 0000 1000q

& 0101 0101 0101 0101

� 0001 0001 0000 0001

The result now can be used for example in expand: expand
� tr4shkkikkj

1101 , 16
�

can be
expressed as x12

r16s, by adding the following assertions:

x10
r16s

� halfshuffle
�
tr4s, 16

	 K

� 0001 0001 0000 0001

x11
r16s

� x10
r16s

|
�
x10

r16s
! 1

	

K

� 0001 0001 0000 0001 | p0010 0010 0000 0010q

� 0011 0011 0000 0011

x12
r16s

� x11
r16s

|
�
x11

r16s
! 2

	

K

� 0011 0011 0000 0011 | p1100 1100 0000 1100q

� 1111 1111 0000 1111

4.11.5 Example: Multiplication

The multiplication

t1r4shkkikkj
0011 �

t2r4shkkikkj
0101 can be expressed as x2

r16s r3 : 0s, by adding the
following assertions. First, both bit-vectors are transformed by selfconcat and ex-
pand to quadratic size in order to generate all single-digit multiplications in one
step by using bitwise and:

xr16s � selfconcat pt1, 16q&expand pt2, 16q

K

� 0011 0011 0011 0011&0000 1111 0000 1111

� 0000loomoon
g3r4s

0011loomoon
g2r4s

0000loomoon
g1r4s

0011loomoon
g0r4s

g3
r4s, g2

r4s, g1
r4s, and g0

r4s are the bit groups representing the bit-vector which is
the result of single-digit multiplication of t1r4s � 0011 with the single bits of

96 CHAPTER 4. TOCS 2015

t2
r4s � 0101. Now, the neighbouring groups have to be shifted to their relative

offsets and are added:

b0
r16s � binmagic p4, 16q

K

� 0000 1111 0000 1111

x1
r16s � px0&b0q �

�
px0& �b0q "u 3

�
K

� p0000 0011 0000 0011q � p0000 0000 0000 0000 "u 3q

� 0000 0011loooomoooon
g32r8s

0000 0011loooomoooon
g10r8s

g32
r8s and g10

r8s are the bit groups representing the bit-vectors which would be
obtained by adding the bit-vectors represented by g3

r4s, g2
r4s and g1

r4s, g0
r4s, re-

spectively. This involves respecting their relative offsets, i.e., g32 � pg3 ! 1q � g2

and g10 � pg1 ! 1q � g0.
Since we still have several partial results, we have to continue adding neigh-

bouring groups:

b1
r16s � binmagic p8, 16q

K

� 0000 0000 1111 1111

x2
r16s � px1&b1q �

�
px1& �b1q "u 6

�

K

� p0000 0000 0000 0011q � p0000 0011 0000 0000 "u 6q

� 0000 0000 0000 1111loooooooooooomoooooooooooon
g3210r16s

After the last step, there is only one bit group left and the least significant bits
of the bit-vector x2

r16s K

� 0000 0000 0000 1111 correspond to the solution of the
multiplication, i.e., 0011 � 0101 � x2

r16s r3 : 0s

K

� 1111.
Further examples for multiplication or for other operations can easily be gen-

erated by feeding our benchmark family of bit-vector operations encoded in the
SMT-LIB format into an SMT solver.

Chapter 5

A DPLL Algorithm for Solving
DQBF

Published. In Proceedings International Workshop on Pragmatics of SAT (POS
2012), Affiliated to SAT 2012, Trento, Italy, 2012, Informal Proceedings [99].

Authors. Andreas Fröhlich, Gergely Kovásznai, and Armin Biere.

Abstract. Dependency Quantified Boolean Formulas (DQBF) comprise the set of
propositional formulas which can be formulated by adding Henkin quantifiers to
Boolean logic. We are not aware of any published attempt in solving this class
of formulas in practice. However, with DQBF being NEXPTIME-complete, effi-
cient ways of solving it would have many practical applications. In this chapter,
we describe a DPLL-style approach (DQDPLL) for solving DQBF. We show how
methods successfully applied in similar algorithms for SAT/QBF can be lifted to
this richer logic. This enables to reuse efficient SAT and QBF solving techniques.

5.1 Introduction

Dependency Quantified Boolean Formulas (DQBF), as first defined in [187], are
obtained by adding Henkin quantifiers [122] to Boolean formulas. In contrast to
QBF, the dependencies of a variable in DQBF are not implicitly defined by the
order of the quantifier prefix, but are explicitly specified. The dependencies, there-
fore, are not forced to represent a total order, but only a partial one.

While QBF is PSPACE-complete [185], DQBF was shown to be NEXPTIME-
complete [187, 188]. Because of this, DQBF offers more succinct descriptions
than QBF, provided that the two classes do not collapse. Apart from DQBF, many
practical problems are known to be NEXPTIME-complete, e.g., partial information
non-cooperative games [188] or certain bit-vector logics [151, 234] used in the
context of Satisfiability Modulo Theories (SMT).

There have been theoretical results on succinct formalizations using DQBF

97

98 CHAPTER 5. POS 2012

and certain subclasses, e.g., DQBF-Horn has been shown to be solvable in poly-
nomial time [55]. However, we are not aware of any description on solving DQBF
problems in practice, nor any actual implementation of a decision procedure for
DQBF. More recently, formula expansion and transformations specific to QBF
have been discussed [9], which stayed only on the theoretical side but might yield
an expansion-based DQBF solver, similar to those existing for QBF [24].

Effectively Propositional Logic (EPR) is another class of problems, for which
the decision problem is NEXPTIME-complete. Thus, there exist polynomial re-
ductions from DQBF to EPR, and vice versa. Consequently, it is also possible to
use EPR solvers, e.g., iProver [147] being the currently most successful one, to
solve DQBF, given some translation from DQBF to EPR. However, since EPR
solvers, in general, have to reason with predicates and larger domains, solvers
directly working on the propositional level should have advantages when DQBF
formalizations of a problem are more natural.

Implementations of the DPLL algorithm [78], and improved variants, com-
monly known as CDCL solvers [170], are successfully used in many industrial
applications. Inspired by the success of modern SAT solvers, similar algorithms
have been developed for QBF, extending the algorithm by quantifier-reasoning and
new concepts like cube learning. Although modern QBF solvers do not reach the
performance of their SAT-counterparts yet, their capability also increased consid-
erably in recent years.

This success of DPLL-style algorithms in the context of SAT and QBF gives
reason to investigate how a similar algorithm could be adapted to DQBF. In the
following, we propose a DPLL-style [78] algorithm (DQDPLL) for solving DQBF.

5.2 Definitions

Let V be a set of propositional variables. A literal l is a variable x P V or its
negation x, and let x � varplq denote its variable. A clause C is a disjunction
of literals. A propositional formula φ is in conjunctive normal form (CNF), if it is
a conjunction of clauses. A DQBF ψ can always be expressed as

ψ � Q.φ � @u1, . . . , umDe1pu1,1, . . . , u1,m1q, . . . , enpun,1, . . . , un,mnq.φ ,

with Q being the quantifier prefix and φ being a propositional formula (matrix) in
CNF over the variables V :� U Y E and U � tu1, . . . , umu, E � te1, . . . , enu,
ui,j P U @ i P t1, . . . , nu, j P t1, . . . ,miu. In DQBF, existential variables can
always be placed after all universal variables in the quantifier prefix, since the
dependencies of a certain variable are explicitly given and not implicitly defined
by the order of the prefix (in contrast to QBF).

Given an existential variable ei, we use deppeiq :� tui,1, . . . , ui,miu to denote
its dependencies. For universal variables u, we define deppuq :� H. We also
extend the notion of dependency to literals, defining depplq :� deppvarplqq for

5.2. DEFINITIONS 99

any literal l. An assignment is a mapping α : V Ñ ttrue, falseu from the vari-
ables of a formula to truth values. Similarly, a partial assignment is a mapping
β : V Ñ ttrue, false, undef u. To simplify the notation, we extend the definition of
assignments and partial assignments to literals, clauses and formulas in the natu-
ral way. In the rest of this chapter, αplq, αpCq, and αpF q will denote the truth
value a literal l, a clause C, and a formula F , take under the assignment α, respec-
tively. We extend the notation for partial assignments β in the same way defining
undef _ true :� true, undef ^ true :� undef , undef _ false :� undef , and
undef ^ false :� false.

A propositional formula φ in CNF is satisfiable, if and only if all clauses in
φ are satisfied by at least one assignment α. We then call α a model of φ. In
QBF and DQBF, a model cannot be expressed by a single assignment. We use
assignment trees [197] instead, more precisely the variant of [166]. Given a DQBF
ψ, an assignment tree T is a tree with the following attributes: Every node N in T ,
except the root, represents a truth assignment to a variable. A node has a sibling
(exactly one representing the opposite truth value) if and only if it assigns a truth
value to a universal variable.

Every path from the root to a leaf of T corresponds to an assignment α for
the variables in ψ. In the same way, a path from the root to an internal node
corresponds to a partial assignment β. Compared to QBF, there are two differences
on the restrictions for possible trees:

Property 1: For every existential variable e and every universal variable u, such
that u P deppeq, the node Nu for u must be an ancestor of the node Ne

for e. This ensures that for every possible path and every node Ne for an
existential variable, the variable is allowed to take different values for differ-
ent assignments to its dependencies, since the assignment tree splits in the
corresponding node Nu.

Property 2: For each pair of paths, with corresponding assignments α1, α2, it has
to hold that α1peq � α2peq, if α1puq � α2puq @ u P deppeq. This guar-
antees that an existential variable takes the same value in two distinct paths
whenever its dependencies were assigned the same values in both paths.

A model for a DQBF ψ � Q.φ, therefore, is an assignment tree that fulfills
both property 1 & 2, and, at the same time, for each path from the root to a leaf,
the corresponding assignment is a model for φ.

Actually, property 1 is not needed to make sure that ψ has a solution: There
is a model respecting property 1 & 2 if and only if there is a model respecting
only property 2. This follows from the fact that removing property 1 allows exis-
tential variables to move up in the assignment tree and, therefore, to be assigned
even before all their dependencies are assigned, i.e., to remove some dependencies.
However, removing dependencies makes a formula more difficult to satisfy, and,
therefore, it is enough to consider satisfiability given property 1 & 2. This already
rules out many assignment trees and yields a smaller search space.

100 CHAPTER 5. POS 2012

1 procedure QDPLL(F)

2 while(true)

3 state = checkState(β);

4 if (state = STATE_UNSAT)

5 level = analyzeUNSAT();

6 if (level = 0) return UNSAT;

7 backtrack(level);

8 else if (state = STATE_SAT)

9 level = analyzeSAT();

10 if (level = 0) return SAT;

11 backtrack(level);

12 else

13 literal = selectLiteral();

14 β = updateAssignment(literal);

15 addDecision(literal);

Figure 5.1: Main loop of QDPLL as pseudo-code

5.3 DQDPLL Architecture

In the following, we assume that the reader is familiar with the design of a DPLL
solver for SAT/QBF. Figure 5.1 shows the typical pseudo-code for a QBF solver
based on the DPLL algorithm. In Figure 5.2, the pseudo-code of our adapted ver-
sion for DQBF is presented. We will now discuss the DQDPLL algorithm in de-
tail and point out the changes in specific methods compared to the original QBF-
version.

The main underlying aspect when dealing with DQBF is the concept of depen-
dency. As described in the previous section, a model for a DQBF exists if and only
if there is an assignment tree where all paths satisfy the propositional matrix and, at
the same time, the tree respects the restrictions defined by the underlying variable
dependencies given in the prefix.

Instead of constructing arbitrary assignment trees, and at the end checking
whether they fulfill the dependency restrictions (property 1 & 2), our algorithm
will only construct the subset of assignment trees that does respect those restric-
tions.

Given a partial assignment tree, selectLiteral decides on the next node to branch
on. An arbitrary selection heuristic can be used for doing so as long as it preserves
property 1 of our assignment tree. This means a universal variable can be chosen
at any time and an existential variable e can be chosen whenever all u P deppeq are
already assigned in the current path of our tree. Compared to QDPLL, this gives
more possible decisions in each step, even given a QBF as an input, since decisions
on existential variables may always be “delayed”.

5.3. DQDPLL ARCHITECTURE 101

1 procedure DQDPLL(F)

2 while(true)

3 state = checkState(β);

4 if (state = STATE_UNSAT)

5 level = analyzeUNSAT();

6 if (level = 0) return UNSAT;

7 backtrack(level);

8 else if (state = STATE_SAT)

9 level = analyzeSAT();

10 if (level = 0) return SAT;

11 restoreAssignment(level);

12 else

13 literal = selectLiteral();

14 skolemClause = generateSkolemClause(β, literal);

15 β = updateAssignment(literal);

16 addDecision(beta, skolemClause);

17

18 procedure backtrack(level)

19 while (stack.Size > level) popStack();

20 (β, _) = stack.Element(level);

21

22 procedure restoreAssignment(level)

23 (β, _) = stack.Element(level);

24

25 procedure addDecision(β, skolemClause)

26 pushStack(β, skolemClause);

Figure 5.2: Main methods of DQDPLL as pseudo-code

Now we have to ensure that the constructed assignment tree also fulfills prop-
erty 2 from the previous section. In our DQDPLL-approach, it is possible that
an existential variable is set after a universal variable on which it does not de-
pend. This cannot be avoided since we enforce a total order on the variables by our
assignment tree whereas the dependency scheme of a DQBF is only partially or-
dered. To make sure that our assignment tree, nevertheless, fulfills property 2 we,
therefore, have to “remember” the choice for an existential variable under a certain
assignment of its dependencies. It will then be forced to take the same value in
all other branches of the tree which imply the same assignment to those universal
variables.

In our algorithm, this happens in the addDecision method. While the
QDPLL algorithm only has to save the literal that was assigned during a deci-

102 CHAPTER 5. POS 2012

sion, the DQDPLL algorithm additionally saves a Skolem clause Csk linked with
the branch on the literal of an existential variable on the decision stack. For a de-
cision on a universal variable, no Skolem clause is added (i.e., Csk � true in the
context of our pseudo-code). The Skolem clause added for an existential decision
corresponds to the restriction implied for future branches due to property 2.

Note that, in our pseudo-code for DQDPLL, we do not push the branching lit-
eral on the decision stack, but instead push the current assignment β. Of course
we could at any point reconstruct the branching literal from two consecutive as-
signments or the other way round, reconstruct an assignment from the sequence of
branching literals. We have chosen to use the notation of storing assignments in our
pseudo-code because this will simplify backtrack and restoreAssignment. In a real
implementation, however, a version saving only the branching literals probably is
a better choice since it reduces the memory requirement by a factor corresponding
to the number of variables.

The Skolem clause Csk linked with the decision can be constructed as follows:
Let β be the partial assignment corresponding to the path from the root to the
current branching node and let lei be the branching literal with varpleiq � ei,
deppeiq � tui,1, . . . , ui,miu, then:

Csk :� pli,1, . . . , li,mi , leiq, li,j �

#
ui,j , if βpui,jq � false
 ui,j , if βpui,jq � true

Since we only are allowed to branch on ei if all ui,j P deppeiq have already
been assigned, we know that βpui,jq � undef , i.e., Csk is well-defined. Adding
this Csk to the formula ensures that ei will take the same value in all other paths of
the tree where all ui,j P deppeiq are assigned the same way as in the current path,
i.e., property 2 is preserved. We decided to name this a Skolem clause because
it corresponds to a partial definition of the Skolem function associated with an
existential variable.

It is important to note that, in each step, the current set of clauses consists of
the original matrix conjuncted with all Skolem clauses added so far. Depending on
whether checkState returns the current set of clauses to be satisfied, unsatisfied or
undecided under the partial assignment corresponding to the current path, the al-
gorithm continues by conflict handling, solution handling or just assigning further
literals.

Whenever the current set of clauses is discovered to be UNSAT, a call to an-
alyzeConflict returns an existential decision which can be flipped. In a naive im-
plementation, this could be simply the last existential variable that was picked by
a call to selectLiteral. During the following call to backtrack, all decisions up to
that point are undone and the corresponding Skolem clauses are removed. The de-
cision variable is set to the opposite value and a new Skolem clause representing
the necessary constraint is introduced.

If, on the other hand, the current set of clauses is SAT at some point, analyzeS-
olution returns a previous decision on a universal variable that still has to consider

5.3. DQDPLL ARCHITECTURE 103

the second branch. In a naive implementation, this could be just the latest universal
variable that was picked by a call to selectLiteral, for which the second branch has
not been checked yet. This condition should actually be considered as part of β in
the pseudo-code. This time, however, in contrast to QDPLL, no backtracking takes
place. Instead, restoreAssignment is called. This method restores the assignment to
the one at the point of the decision but does not undo any decisions or remove any
Skolem clauses. This is important because it means we keep the Skolem clauses
over different universal branches and preserve property 2 of our assignment tree.

Note that, after calling backtrack as well as after calling restoreAssignment,
the second branch at the corresponding level has to be checked. This is not explic-
itly specified in our pseudo-code, but, for simplicity, just is assumed to be part of
selectLiteral.

Soundness and completeness of the algorithm can be checked easily:

Soundness: Altogether, the given specifications of the methods guarantee that ev-
ery constructed assignment tree fulfills property 1 and property 2. Further-
more, the algorithm only returns SAT when all possible universal branches
have been visited. This shows soundness of the DQDPLL-approach.

Completeness: Backtracking occurs as long as an existential variable can take a
different value. The algorithm only returns UNSAT if no more backtracking
is possible. Thus, in the worst case, all possible Skolem functions for all
existential variables are enumerated, which implies completeness.

Aside from this, it is also easy to check runtime and space requirements of
the proposed algorithm. Due to the fact that all possible Skolem functions are
enumerated in the worst case, the runtime is double-exponential. This is no surprise
considering that DQBF is NEXPTIME-complete. The space required is bounded
exponentially. This corresponds to the size of the current assignment tree being
checked for whether it is a solution to the formula.

There are several optimizations one can consider when implementing the pro-
posed algorithm. For example, as already mentioned, it is not necessary to save the
whole assignment on the stack for each decision, but, instead, one can only use the
decision literal and later reconstruct previous assignments during backtrack and
restoreAssignment. This is a bit more complicated as it is in QBF, since sometimes
several universal branches have to be considered and, therefore, variables might
first get unassigned and then reassigned again to exactly reconstruct the assign-
ment in a certain state. Still, this is quite straightforward to implement but was
neglected here in order to keep the pseudo-code easier to read.

Further optimizations are possible which do not backtrack in a linear way, but
take advantage of the underlying tree-structure, instead of iterating through the
whole stack. This again is neglected here to improve readability. As a low level
optimization, it is not the focus of this chapter. In the next section, we will look at
different concepts used in DPLL algorithms for SAT/QBF and describe how they
can be adapted to be used in the DQDPLL-framework.

104 CHAPTER 5. POS 2012

5.4 Conversion of Concepts from SAT/QBF

Having described the general design of DQDPLL, we now want to investigate if
and how several techniques used in DPLL algorithms for SAT/QBF can be con-
verted to the DQBF context. During the last decades, many concepts have been
introduced to speed up DPLL algorithms for SAT, and many of those concepts
have later been adapted to QBF. Some of these are unit propagation, pure literal
reduction, and clause learning. Additionally, there were also concepts especially
defined for QBF, e.g., universal reduction and cube learning. Apart from these,
selection heuristics and watched literal schemes also play an important role in the
performance of various solvers in those domains. In this section, we will describe
how those concepts can be used for DQBF.

Unit Propagation. As one of the most important techniques used in DPLL-style
algorithms for SAT and QBF, unit propagation is usually implemented as part of
checkState, which is then often referred to as Boolean Constraint Propagation
(BCP).

Consider a clause C � pl1, . . . , lkq and a partial assignment β, so that Dj P
t1, . . . , ku : βpljq � undef , βpliq � false @ i P t1, . . . , kuztju. For SAT, βpljq
can then be set to true. For QBF, βpljq can be set to true, if varpljq is an existential
variable, and checkState returns STATE_UNSAT otherwise. The latter one also
trivially holds for DQBF, following the arguments used in the QBF version.

However, in the case of an existential variable being assigned because of unit
propagation, there are the following aspects we have to consider: In contrast to
selecting an existential variable e due to a decision, it is possible that not all
u P deppeq have been assigned yet when it gets propagated. Assigning e before
all u P deppeq are assigned, actually, violates property 1 defined in Section 5.2.
Nevertheless, it is still sound to do so and will help pruning the search tree.

We already argued in Section 5.2 that property 1 only was added to prevent
the algorithm from constructing irrelevant assignment trees, since an assignment
tree not respecting property 1 corresponds only to an under-approximation of the
original formula and does not preserve satisfiability. In the case of unit propagation,
the last observation is not true any more. If unit propagation on e is possible under
a certain partial assignment β, then the same unit propagation step is possible under
all possible partial assignments β1 which can be constructed from β by assigning all
remaining variables u P deppeq, βpuq � undef . This means that assigning a unit e
earlier, i.e., before all the universal variables on which it depends are assigned, does
not violate any dependency restrictions of e. Actually, the same effect occurs in
QBF during propagation on an existential unit variable, if not all universal variables
in the outer scopes are assigned yet.

In order to ensure property 2 of the assignment tree, a Skolem clause needs
to be added for all possible remaining assignments of tu P deppeq | βpuq �
undef u. Using resolution and subsumption, this can be expressed by adding only

5.4. CONVERSION OF CONCEPTS FROM SAT/QBF 105

one clause:

Csk :� pli,1, . . . , li,mi , leiq, li,j �

$'&'%
ui,j , if βpui,jq � false
 ui,j , if βpui,jq � true
false, if βpui,jq � undef ,

assuming varpleiq � ei, deppeiq � tui,1, . . . , ui,miu.

Pure Literal Reduction. For universal variables, pure literal reduction can be
implemented exactly as it is done for QBF. Whenever a pure universal literal lu is
found, it can be set to false. To see that this procedure is sound, one can move the
concerned universal variable outwards and expand it [9]. It is enough to consider
the part where the literal is set to false since it subsumes the other part.

For existential variables, this becomes more complicated and there is no dual
version, as there exists for QBF. The reason for this is the following: setting a pure
existential literal to true does not guarantee to preserve satisfiability since it adds a
new Skolem clause to the formula (i.e., restricts the solutions), which might force
the literal to the same value in some later branch of the assignment tree, although
the literal is not pure there anymore. In QBF, this was possible because all branches
of the decision tree were independent of each other.

To guarantee that pure literal reduction on existential variables remains sound
for DQBF, it can only be applied under certain conditions: An existential literal lei
can be set to true if every clause containing lei is already satisfied by at least one
lu, varpluq P deppleiq, or by an existential literal lej , depplej q � deppleiq. In this
case, we know that all clauses containing lei are already satisfied whenever the
newly added Skolem clause propagates lei . This means lei is still pure whenever
the Skolem clause propagates, and, therefore, the Skolem clause does not put an
additional restriction on the original formula.

Clause Learning. Adding clause learning to DPLL-based SAT algorithms is re-
sponsible for a huge performance improvement of SAT solvers during the last
two decades, particularly in the combination with conflict driven clause learning
(CDCL) solvers [170]. Clause learning was then also applied to QBF [114, 160,
238]. In SAT as well as in QBF, it often allows to prune large parts of the search
tree.

It turns out that conflict clauses in DQDPLL can be generated in the same way
as it was done for QBF, and originally for SAT. The simple reason is that clause
learning is based on (propositional) resolution and, therefore, can be applied on the
matrix level, totally ignoring variable dependencies. Any resolvent of two clauses
can be added to a formula without affecting satisfiability. In SAT/QBF it is com-
mon to perform resolution with clauses on the decision stack while backtracking.
It can be shown that, like this, the conflict can be resolved and the new clause is
asserting under the current assignment after backtracking.

However, if clause learning is applied in the same way in DQDPLL, it is possi-
ble that Skolem clauses are used for resolution. The resulting resolvent, therefore,

106 CHAPTER 5. POS 2012

is only valid as long as all Skolem clauses used to create it are still part of the for-
mula. Because of this, we need to differentiate between temporary learned clauses
and permanent learned clauses.

Any learned clause created by resolution with at least one Skolem clause or
with a temporary learned clause is only valid as long as all clauses participating in
the resolution steps are still part of the formula, and will be a temporary learned
clause itself. Therefore, it will be linked with the latest such clause and is removed
whenever the linked clause is. A permanent learned clause is created when no
Skolem clause and no temporary learned clause was part of the resolution process
applied during backtracking. A clause like this can be kept or removed at any point,
in the same way as it is done in SAT/QBF.

Apart from this, it is also possible to create a permanent clause during back-
tracking if there are Skolem clauses or temporary learned clauses participating in
the conflict. The algorithm can just skip the resolution steps with those clauses
and, of course, ends up with a permanent clause. However, in this case, it is not
guaranteed that the resulting clause is asserting under the current assignment after
backtracking, and the permanent learned clause is less restrictive than the corre-
sponding temporary learned clause.

It is, therefore, reasonable to generate both types of clauses in order to profit
from the individual advantages. The temporary clause will prune larger parts of
the current search tree, while the permanent clause can still affect other parts of the
search tree whenever the temporary clause gets removed during further backtrack-
ing. If the permanent learned clause is too weak and does not contribute, it can be
automatically deleted if removal schemes, like those proposed in [116], are used.

Universal Reduction. This can be adopted for DQBF in a straightforward way.
Consider a universal variable u and a clauseC � plu, l1, . . . , lkq, and let varpluq �
u, βpliq � true @ li P C. If u R

�
βpliq�undef tdeppliqu, lu can be set to false.

This can be seen when considering the universal expansion of C considering
u. Let Clu�v be the clause obtained from C by setting lu to v P ttrue, falseu. A
solution for F has to satisfy Clu�true and Clu�false. Since all variables that are
contained inC and are still unassigned at the current node in the assignment tree do
not depend on u, they have to take the same value in both Clu�true and Clu�false.
Since Clu�true is already satisfied by lu, only Clu�false needs to be considered
instead of C, i.e., lu can be removed from C.

Cube Learning. Introduced for QBF in [114, 160, 239], cube (goods / solution)
learning is used to prune satisfied branches of the assignment tree. It can be con-
sidered as the dual concept to clause (no goods) learning, creating so-called cubes,
i.e., a subset of literals already satisfying the formula. A cube therefore is a con-
junction of literals and is added to the formula by disjunction. Initial cubes are
created from a satisfying assignment by extracting a minimal subset of literals nec-
essary to satisfy it. Later, further cubes can be generated by using resolution on
existing cubes, similar to the way new clauses are created when a conflict occurs.

5.4. CONVERSION OF CONCEPTS FROM SAT/QBF 107

The same principle can still be applied to DQBF since all reasoning for creating
cubes is done on the matrix level. However, similar to the reasoning necessary
for adapting clause learning, a cube in DQBF is not permanent in a certain sense.
When a Skolem clause is added during a decision, the set of satisfying assignments
for the formula matrix shrinks. Because of this, it is possible that a cube which was
added to the DQBF in a previous step does not represent a satisfying assignment
for the formula matrix anymore after adding additional Skolem clauses. Whenever
a Skolem clause is added to the formula, the algorithm, therefore, has to check
whether it is satisfied by the existing cubes. Cubes not satisfying the new clause
are linked with the Skolem clause and get flagged “inactive”. They are not removed
from the formula because they can be flagged “active” again if the Skolem clause
later gets removed during backtracking.

An important point to note is that reasoning with cubes changes compared to
QBF. While unit propagation on universal variables in cubes is still sound, a cube
only consisting of existential variables cannot considered to be satisfied in DQBF.
The reasoning behind this is the same as for pure literal reduction. Setting the
remaining existential variables in a cube to true implies restricting the formula by
Skolem clauses, i.e., it might rule out solutions and therefore does not preserve
satisfiability.

Selection Heuristics. An important aspect determining the performance of a SAT
solver is given by its selection heuristic. A selection heuristic determines the order
of the variables getting assigned and the value they first get assigned to. In SAT,
there is a huge choice of different heuristics. Recently, the most common heuris-
tics are VSIDS [176] and phase saving [192]. QBF solvers suffer from the fact
that variable selection is much more restricted due to the total order defined by the
quantifier prefix. Only variables from the current quantifier scope can be chosen.
Sometimes, this constraint can be reduced by explicitly checking for dependen-
cies between the different variables on the matrix level, as done for example by
DepQBF [165]. Note that this is a different concept of dependency. While inde-
pendence on the matrix level means that the result of the formula will be the same
no matter which ordering for the variables is chosen, independence in the context
of DQBF is a constraint forcing a variable to take consistent values on different
branches of the assignment tree.

Since variable dependencies in DQBF are less strict and the design of DQD-
PLL allows to “delay” decisions on existential variables, this offers more freedom
on the selection of variables compared to QBF. We, therefore, suggest that selec-
tion heuristics have more influence in the DQBF case. For our implementation, we
used VSIDS [176] and phase saving [192] in the same way as it is done in SAT, but
restricted to the set of possible candidates defined by the properties of our assign-
ment trees. It might, however, also be interesting to extend heuristics for DQBF by
incorporating information specified on the quantifier-level, e.g., preferring existen-
tial variables over universal variables, or picking those existential variables with
dependencies most “similar” to the current universal assignment.

108 CHAPTER 5. POS 2012

Watched Literal Schemes. The watched literal scheme, as a lazy data structure for
unit literal detection, has proved itself to be efficient in SAT solving [237, 176]. The
basic idea is that the clauses are kept untouched (i.e., no literals are ever removed),
and, furthermore, the data structure does not require any update during backtrack-
ing. The watched literal scheme has been adapted also to QBF [108, 165]. In the
two literal watching scheme, in each clause two literals l1 and l2 are watched, ful-
filling the following invariant: l1 is existential, and if l2 is universal then varpl2q P
deppl1q. Note that, in QBF, this latter condition about dependency only requires
to check whether varpl2q is quantified before varpl1q in the prefix. This can be
adapted to DQBF in a straightforward way, by checking the explicit dependencies
of varpl1q. It is important to initialize watchers on the fly for each fresh clause
(i.e., conflict clause or Skolem clause). The detection of falsified, satisfied, and
unit clauses can be done in the same way just like in QBF.

However, a special situation, right after backtracking, has to be considered: l1
is assigned and l2 � undef is universal. In QBF solvers, or even in DQBF solvers
respecting property 1, this situation cannot occur. However, when neglecting prop-
erty 1, backtracking to a previous path might result in such a situation. Neverthe-
less, it is easy to improve the solver to avoid this situation: update the watchers
of all the literals which are assigned by β, provided by the backtrack method. We
would like to point out that this update could be highly optimized by the imple-
mentation optimization mentioned in Section 5.3, namely that only the branching
literals should be saved on the decision stack instead of assignments. Given the
current node n and the node n1 to jump back to, let lcapn, n1q denote the lowest
common ancestor of n and n1. During traversing the path from lcapn, n1q to n1,
update the watchers of the literals assigned by the touched nodes.

5.5 Preliminary Results

We implemented a prototype of our DQDPLL algorithm, as introduced in Sec-
tion 5.3, and added all the concepts described in Section 5.4. Testing was rather
difficult since there is no DQBF library yet nor any other DQBF solver to compare
results with.

Since EPR is also NEXPTIME-complete, we used EPR formulas from the
TPTP and converted the formulas to DQBF. Unfortunately, the conversion caused
a large blow-up in the formula size. Bit-blasting of the domain, introduction of
Ackermann constraints when removing predicates [158, Chapter 3.3.1], inverse
destructive equality reasoning [234] to remove dependencies on other existential
variables (which are not defined in DQBF), and final transformation to CNF led to
an explosion in formula size. This blow-up, though being polynomial, produced
formulas which were too large for our algorithm to solve.

Using QBF benchmarks as an input, we then compared our solver with De-
pQBF [165]. As expected, DepQBF was faster by several orders of magnitude,
since it is much more specialized while our solver has additional exponential over-

5.6. FUTURE WORK 109

head dealing with the stack of Skolem clauses which are not necessary for QBF.
Nevertheless, we could check that the returned satisfiability status of all instances
solved by our algorithm was equal to the one returned by DepQBF, and, therefore,
QBF seems to be solved correctly.

To check whether DQBF instances can be solved at all, we wrote a tool for
generating random DQBF with different parameters, including number of clauses,
number of existential variables, number of universal variables and expected num-
ber of dependencies per existential. We then used medium sized instances (10-50
variables, 100-1000 clauses), generated by our tool, to check that our algorithm
can deal with those problems and that it always produces consistent results during
several hundred randomized runs. We also gernerated very small sized instances
(2-6 variables) to check correctness on this subset manually.

A further way to check correctness could be obtained by translating our ran-
domly generated DQBF to EPR, and then comparing our results with the results of
an EPR solver on the converted benchmark, as done for QBF in [202].

5.6 Future Work

At the moment, our algorithm is not able to solve translated EPR instances and
therefore cannot compete with EPR solvers. One reason is that there is a huge
blow-up during conversion. A second explanation could be the fact that those in-
stances often were especially created using the properties of EPR. It might be inter-
esting to look for problems which have a natural representation as DQBF instead.
Maybe, in domains that fit well to Boolean reasoning and do not directly sug-
gest the usage of predicates, the use of a low level DPLL-style approach is better
suited, and allows to profit from the well-established techniques already successful
in SAT/QBF.

Apart from this, our solver is still a prototype and there are many possible op-
timizations concerning data structures, and other details related to implementation
of our techniques, which we should consider in the future. We also do not use
restarts yet. Regarding the proposed concepts, it will be interesting to analyze in
detail, if and how each of them improves the performance of a DQBF solver based
on our DQDPLL architecture.

It might also be of interest to create an expansion-based solver for DQBF and
see how it would compare to a DPLL-style solver such as the one we proposed.
Additionally, expansion also could be used to construct a QBF out of a DQBF
by expanding universal variables until the quantifiers can be totally ordered. A
QBF generated this way can be given to any DPLL-based QBF solver to see if our
approach of applying the concepts directly on the more succinct DQBF level gives
any benefits over dealing with the less succinct QBF representation.

Finally, considering the increased complexity compared to solvers for QBF and
SAT, it becomes even more important to verify results. While the Skolem clauses
on the decision stack after termination of our algorithm exactly define a Skolem

110 CHAPTER 5. POS 2012

function representing a solution, it might be interesting to check if certificates for
conflicts can be generated similar to how it is done for QBF [182].

5.7 Conclusion

In this chapter, we described DQDPLL, a DPLL-style algorithm for DQBF. We
have formally defined necessary conditions for assignment trees representing solu-
tions for DQBF. Based on this, we have also shown what adaptations of the DPLL-
architecture to DQBF are necessary and how they can be implemented by intro-
ducing a stack of Skolem clauses, representing partial definitions of the Skolem
functions defining the existential variables.

With the main reason for the success of DPLL algorithms in SAT and QBF
being found in various techniques such as unit propagation, pure literal reduction
and clause learning, universal reduction, cube learning, selection heuristics and
watched literal schemes, we also discussed how these can be translated to DQBF.

Our implementation shows that it is indeed possible to solve DQBF with this
approach, at the same time, however, it does not perform very well. We have given
reasons for why this is the case for EPR formulas, and suggested to find problems
which can be formalized in DQBF more naturally.

Since the introduction of DQBF in [187], our work contains the first detailed
description of an algorithm to solve this class of problems. While still a lot of
progress has to be made in this field, we hope that our contribution helps getting
a better insight into the topic of DQBF, as well as into possibilities and pitfalls on
the way of practically solving it.

Chapter 6

Bv2epr: A Tool for Polynomially
Translating Quantifier-free
Bit-Vector Formulas into EPR

Published. In Proceedings 24th International Conference on Automated Deduc-
tion (CADE-24), Lecture Notes in Computer Science (LNCS) volume 7898, pages
443–449, Springer 2013 [150].

Authors. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere.

Abstract. Bit-precise reasoning is essential in many applications of Satisfiability
Modulo Theories (SMT). In recent years, efficient approaches for solving fixed-
size bit-vector formulas have been developed. Most of these approaches rely on bit-
blasting. In [151], we argued that bit-blasting is not polynomial in general, and then
showed that solving quantifier-free bit-vector formulas (QF_BV) is NEXPTIME-
complete. In this chapter, we present a tool based on a new polynomial translation
from QF_BV into Effectively Propositional Logic (EPR). This allows us to solve
QF_BV problems using EPR solvers and avoids the exponential growth that comes
with bit-blasting. Additionally, our tool allows us to easily generate new challeng-
ing benchmarks for EPR solvers.

6.1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical ap-
plications of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
fixed-sized bit-vector logics are Boolector, MathSAT, STP, Z3, and Yices. All these
solvers rely on bit-blasting in order to translate bit-vector formulas into proposi-
tional logic (SAT). The result is then checked by a SAT solver.

In practice, e.g., in the SMT-LIB [18], the BTOR [48], and the Z3 format, the

111

112 CHAPTER 6. CADE 2013

bit-widths in bit-vector formulas are encoded as binary, decimal, or hexadecimal
numbers, i.e., a logarithmic encoding is used. In [151], we proved that the encoding
of bit-widths affects the complexity of the decision problem of bit-vector logics.
In particular, logarithmic encoding makes the quantifier-free fragment QF_BV2
NEXPTIME-complete.1 Thus, bit-blasting is not polynomial in general. For a
polynomial reduction, the target logic has to be NEXPTIME-hard.

In this chapter, we introduce our new tool Bv2epr. Bv2epr translates QF_BV
formulas into Effectively Propositional Logic (EPR), which is NEXPTIME-
complete [161], by using a new (polynomial) reduction. This is in contrast to exist-
ing translations in [143, 90], which produce exponential EPR formulas in general,
as we will point out in Section 6.2.1. We give some experimental results in Sec-
tion 6.4 with the EPR solver iProver.

6.2 Preliminaries

We assume the usual syntax for QF_BV. A bit-vector term t of bit-width n (n P N,
n ¥ 1) is denoted by trns. An atomic term can be either (a) a bit-vector constant
crns, where c P N, 0 ¤ c 2n; or (b) a bit-vector variable vrns. Compound
terms and formulas can contain the usual bit-vector operators (cf. SMT-LIB [18]),
e.g., bitwise operators, shifts, arithmetic operators, relational operators, etc. The
decision problem for QF_BV is NEXPTIME-complete [151].

EPR, known as the Bernays-Schönfinkel class, is a NEXPTIME-complete frag-
ment of first-order logic [161]. It corresponds to the set of first-order formulas
that, written in prenex form, contain (a) no function symbol of arity greater than
0; and (b) no existential quantifier within the scope of a universal quantifier. After
Skolemization, existential variables turn into constants (i.e., function symbols of
arity 0), and quantifiers can be omitted. Consequently, an EPR atom can be de-
fined as an expression of the form ppt1, . . . , tnq where p is a predicate symbol of
arity n and each ti is either a (universal) variable or a constant.

6.2.1 Existing Translations

In [143], encodings of hardware verification problems with bit-vectors into first-
order logic are proposed. In particular, an encoding into EPR is given and called
the relational encoding [90], since bit-vectors are modeled as unary predicates.
These predicates are over bit-indices, represented by dedicated constants. For in-
stance, the ith bit of a bit-vector xrns, 0 ¤ i n, is represented by the atom
pxpbitIndiq, where bitIndi is a constant. Note that for QF_BV2, such a trans-
lation might introduce exponentially many constants, since bit-widths like n are
encoded logarithmically. The so-called range-aware relational encoding in [90],
furthermore, introduces exponentially many assertions into the EPR formula in

1In [151], we introduced the notation QF_BV1 and QF_BV2 for QF_BV using a unary and a
logarithmic (w.l.o.g., binary) encoding, respectively.

6.3. THE TOOL 113

SMT2
QF_BV Parser Translator

Graph
Data Structure

Simplifier

Generator TPTP
CNF

Figure 6.1: The architecture of Bv2epr

general, e.g., atoms lesskpbitIndiq for all 0 ¤ i k. Finally, not all the QF_BV
bit-vector operators are addressed by the relational encoding, but only equality.2

All the arithmetic operators are assumed to be synthesized/bit-blasted in the verifi-
cation front-end [90], potentially leading to an exponential blowup already before
the actual encoding. In [143], an abstraction of shifts is proposed, which is, how-
ever, basically the same as bit-blasting. Consequently, the relational encoding is
exponential in general, in contrast to our translation in Section 6.3.1.

6.3 The Tool

Bv2epr takes a QF_BV formula in SMT2 format as input, and outputs an EPR
clause set in TPTP format. The tool is implemented in C and available at [59].
The architecture of Bv2epr can be seen in Figure 6.1, consisting of the following
modules:

Parser. The Parser is Boolector’s SMT2 parser.
Translator. The Translator provides an interface accessed by the Parser, in or-

der to deal with the SMT2 QF_BV operators. This module builds a graph data
structure, in which each bit-vector operation is modeled by an EPR predicate.
Predicates are represented by shared nodes in the graph data structure. A node
for a predicate p stores, besides other data, the functional definition of p as an
EPR clause set. With each of these clauses, an argument list in�1, . . . , i0 for p
is stored, indicating that this clause is part of the functional definition of the EPR
atom ppin�1, . . . , i0q. Such a clause is realized as a list of EPR literals, each of
which contains a reference to a predicate p1 and an argument list for p1.

Simplifier. The graph constructed by the Translator is a good basis for var-
ious simplifications. Note that only polynomial simplification steps are accept-
able. Among others, we implemented two kinds of simplification, both proposed
in [125]: (a) unused definition elimination and (b) non-growing definition inlining.

Generator. Out of the (simplified) graph, this module generates a TPTP clause
set. Since the graph might contain cycles, the Generator detects and avoids them.
Due to the construction of the graph data structure, clauses can be extracted di-
rectly, i.e., no additional approach for clause generation is needed.

2Bitwise operators could be handled in a similar way.

114 CHAPTER 6. CADE 2013

6.3.1 The Translator

We briefly sketch the (polynomial) reduction of QF_BV to EPR used by the Trans-
lator, without striving for completeness. As it will turn out, the target logic of this
reduction is actually not general EPR, but rather its fragment which uses only two
constants, 0 and 1. We call this fragment EPR2.3 To each bit-vector term of bit-
width n, a dedicated rlog2 ns-ary EPR2 predicate is introduced and assigned. For
example, a term xr32s is represented by a 5-ary predicate px. Since px is an EPR2
predicate, each of its arguments can be either 0, 1, or a universal variable. For in-
stance, the atom pxp1, 1, 0, 0, 1q represents the 25th bit of x, since 2510 � 110012.
Using universal variables as arguments makes it possible to represent several bits
by a single EPR2 formula; for instance, the atom pxpi4, i3, i2, i1, 0q represents all
even bits of x.

Bitwise Operators. Translating bitwise operators is quite natural. We demon-
strate the translation for bitwise or (denoted by |): Given a term xr2

ns | yr2
ns, where

x and y are bit-vector terms, to which the predicates px and py have already been
assigned, respectively. We need to specify each bit of the resulting bit-vector as
the disjunction of the corresponding bits of x and y. We introduce a new predicate
por, and give the following functional definition:

porpin�1, . . . , i0q ô pxpin�1, . . . , i0q _ pypin�1, . . . , i0q

Addition. Given a term xr2
ns � yr2

ns, let us first rewrite it to the following
bit-vector equations, where ` denotes bitwise xor, & bitwise and, and ! left shift.

addr2
ns � xr2

ns ` yr2
ns ` cinr2

ns (6.1)

cinr2
ns � coutr2

ns ! 1 (6.2)

coutr2
ns � pxr2

ns & yr2
nsq | pxr2

ns & cinr2
nsq | pyr2

ns & cinr2
nsq (6.3)

Note that Equation (6.1) and (6.3) only contain bitwise operators (and equality).
Therefore, both can be translated into EPR2 as introduced previously. Only Equa-
tion (6.2), which contains shift by 1, has to be handled differently.

We introduce a helper predicate succ which will represent the fact that a bit-
index j is the successor of a bit-index i, i.e., j � i � 1. Since i is represented by
an EPR2 argument list in�1, . . . , i0 and, similarly, j by jn�1, . . . , j0, the 2n-ary
predicate succpin�1, . . . , i0, jn�1, . . . , j0q can be defined by n facts:

succpin�1, . . . , i3, i2, i1, 0, in�1, . . . , i3, i2, i1, 1q
succpin�1, . . . , i3, i2, 0, 1, in�1, . . . , i3, i2, 1, 0q
succpin�1, . . . , i3, 0, 1, 1, in�1, . . . , i3, 1, 0, 0q...

succp0, 1, . . . , 1, 1, 0, . . . , 0q

Using this helper predicate, Equation (6.2) can be translated into EPR2 as follows:

 pcinp0, . . . , 0q ,
succpin�1, . . . , i0, jn�1, . . . , j0q ñ

ppcinpjn�1, . . . , j0q ô pcoutpin�1, . . . , i0qq

3The Herbrand universe of EPR2 can be considered as the Boolean domain.

6.3. THE TOOL 115

This kind of adder can be adapted to represent other arithmetic operators like unary
minus and subtraction. In Bv2epr, all the relational operators, like equality and
unsigned less than, are also represented by such an adapted adder.

Shifts. Shifts are translated into EPR2 by applying barrel shift. For instance,
given a term xr2

ns ! yr2
ns, for all bit-indices i, 0 ¤ i n, the ith bit of y is

checked: if it is 1, then left shift by 2i has to be done.

 pyp0, . . . , 0q ñ�
p0
shlpin�1, . . . , i0q ô pxpin�1, . . . , i0q

�
,�

pyp0, . . . , 0q ^
succpin�1, . . . , i0, jn�1, . . . , j0q

ñ�

p0
shlpjn�1, . . . , j0q ô pxpin�1, . . . , i0q

�
,

 pyp0, . . . , 0, 1q ñ�
p1
shlpin�1, . . . , i0q ô p0

shlpin�1, . . . , i0q
�

,�
pyp0, . . . , 0, 1q ^

succp0, in�1, . . . , i1, 0, jn�1, . . . , j1q

ñ�

p1
shlpjn�1, . . . , j1, i0q ô p0

shlpin�1, . . . , i0q
�

,
...

Multiplication. The Translator applies a shift-and-add approach for translat-
ing a term xr2

ns � yr2
ns. We generate 2n subproducts of bit-width 2n, and represent

all of them by a single 2n-ary predicate pmul: the ith bit of the jth subproduct is
represented by the atom pmulpjn�1, . . . , j0, in�1, . . . , i0q.

First, the p2n � 1qth subproduct is computed, by checking the most significant
bit of y: if it is 0, this subproduct is set to 0; otherwise, it is set equal to x.

 pyp1, . . . , 1q ñ pmulp1, . . . , 1, in�1, . . . , i0q

pyp1, . . . , 1q ñ ppmulp1, . . . , 1, in�1, . . . , i0q ô pxpin�1, . . . , i0qq

The jth subproduct, 0 ¤ j 2n � 1, is computed by checking the jth bit of
y: if it is 0, then the pj � 1qth subproduct has to be shifted left by 1 (represented
by the predicate pshl); otherwise, the shifted subproduct and x have to be added
(represented by padd).�

 pypjn�1, . . . , j0q ^
succpjn�1, . . . , j0, j

1
n�1, . . . , j

1
0q

ñ�

pmulpjn�1, . . . , j0, in�1, . . . , i0q ô
pshlpj

1
n�1, . . . , j

1
0, in�1, . . . , i0q

,�

pypjn�1, . . . , j0q ^
succpjn�1, . . . , j0, j

1
n�1, . . . , j

1
0q

ñ�

pmulpjn�1, . . . , j0, in�1, . . . , i0q ô
paddpj

1
n�1, . . . , j

1
0, in�1, . . . , i0q

The final product is given by pmulp0, . . . , 0, in�1, . . . , i0q.

116 CHAPTER 6. CADE 2013

bmark bw smt2 btor Boolector aig cnf Lingeling epr iProver
mulh

s 8; 947 1K 10.3s 3K 44K 9.0s 45K 1m 44s
16; 959 1K TO 12K 205K TO 55K TO
64; 982 2K TO 221K 4M TO 78K TO

lfs
r_

2_
bw

_1
6 63; 6K 9K 0.2s 64K 258K 0.7s 56K 18.0s

127; 7K 9K 1.2s 139K 545K 1.3s 61K 1m 14s
1023 7K 11K 5.1s 1M 5M 4.7s 74K TO
8191 7K 18K 2m 37s 11M 43M 3m 10s 89K TO

ad
d2

n 25 452 455 0.0s 3K 25K 0.1s 12K 1m 21s
26 456 671 0.1s 7K 53K 0.7s 13K TO

212 484 8K 3m 5s 549K 4M 1m 28s 21K TO

ad
dm

ul 27 149 99 0.2s 174K 3M 2.4s 8K 0.1s
29 149 99 2.7s 3M 58M 3m 22s 11K 0.1s

211 151 103 TO 48M 1G TO 13K 0.1s

Table 6.1: Evaluation for the original SMT2 file

Polynomiality and Correctness. All above translation steps are polynomial in
the input size since they are polynomial in the number of atoms and logarithmic in
their bit-width. Formally showing correctness exceeds the scope of this chapter and
is part of future work. We also investigated correctness empirically by exhaustively
testing consistency of the solving results by Boolector and Bv2epr+iProver, for
each bit-vector operation, up to a certain bit-width.

6.4 Benchmarks and Experiments

Solving QF_BV formulas in general is NEXPTIME-complete [151]. However,
certain families of QF_BV formulas are in NP, under certain restrictions on the
bit-widths. We called this kind of families bit-width bounded [151]. Since solv-
ing EPR formulas is NEXPTIME-complete, our translation fits well to families
which are not bit-width bounded. In [151], two examples of this kind were given:
(a) QF_BV/brummayerbiere3/mulhsbw represents instances of computing
the high-order half of product problem, parameterized by the bit-width of multi-
plicands (bw); (b) QF_BV/bruttomesso/lfsr/lfsrt_bw_n formalizes the
behaviour of a linear feedback shift register [51]. Furthermore, we propose two
new benchmark families that are not bit-width bounded: (a) add2nbw describes
how bit-vectors of bit-width 2bw can be added by using two adders for bit-vectors
of bit-width bw. (b) addmulbw checks, whether the sum of two bit-vectors of
bit-width bw can differ from their product.

In order to demonstrate the exponential blow-up of bit-blasting, in contrast to
our translation into EPR, we used the bit-blaster Synthebtor, part of the Boolec-
tor distribution, to generate AIGER files and DIMACS (CNF) files out of BTOR
files. Table 6.1 summarizes these results, when word-level rewriting in Boolector
is switched off. We give the file sizes (in bytes) in all formats and additionally
provide the runtimes of Boolector (for SMT2), Lingeling (for CNF), and iProver

6.5. CONCLUSION 117

bmark bw smt2 btor Boolector aig cnf Lingeling epr iProver
mulh

s 8; 2K 804 9.8s 3K 42K 8.1s 63K 1m 48s
16; 2K 956 TO 11K 197K TO 77K TO
64; 2K 1K TO 215K 4M TO 110K TO

lfs
r_

2_
bw

_1
6 63; 126K 59K 0.5s 81K 254K 0.9s 156K 3.0s

127; 126K 59K 0.6s 174K 540K 1.4s 158K 9.5s
1023 126K 60K 7.0s 1M 5M 5.1s 165K 9m 21s
8191 126K 67K 46.1s 13M 43M TO 173K TO

ad
d2

n 25 1K 575 0.0s 4K 25K 0.1s 17K 23.6s
26 1K 671 0.1s 9K 53K 0.7s 18K 5m 0s

212 2K 9K 2m 42s 711K 4M 1m 16s 32K TO

ad
dm

ul 27 239 75 0.2s 174K 3M 2.5s 8K 0.1s
29 239 75 2.8s 3M 58M 1m 40s 11K 0.1s

211 241 79 TO 48M 1G TO 13K 0.1s

Table 6.2: Evaluation for the simplified SMT2 file

(for EPR), using a timeout of 10 minutes. In order to test the effect of word-level
rewriting, we added a module to Boolector which reads an SMT2 file, performs
rewriting, and outputs the simplified SMT2 file. In Table 6.2, we give the results
for the simplified SMT2 files.

6.5 Conclusion

We presented Bv2epr, a tool for polynomially translating QF_BV into EPR. The
motivation for our tool lies in previous work [151], where we have shown QF_BV
to be NEXPTIME-complete. Thus, bit-blasting QF_BV to SAT, as it is usually
done in current SMT solvers, results in exponentially larger formulas in general.
Previous translations from QF_BV into EPR also apply bit-blasting on certain op-
erators and introduce exponentially many constants and constraints in the general
case [143, 90]. In contrast to this, the Translator used in Bv2epr always produces
EPR formulas of polynomial size. After discussing Bv2epr, we evaluated the size
of the formulas produced by our tool and compared it to other commonly used for-
mats. Our results show that the overhead in size is rather small when translating
QF_BV into EPR, while all other formats often suffer from exponential blow-up as
soon as the bit-widths in the input formula grow larger. However, our results also
show that the runtime of iProver on the generated EPR formulas is usually worse
compared to the runtime of Boolector on the original QF_BV formula or the one
of Lingeling after bit-blasting has been applied. Nevertheless, the evaluation also
shows that there exist benchmarks where iProver is faster. While it is probably still
possible to improve EPR solvers on this kind of instances, formulas generated by
Bv2epr can also help providing challenging benchmarks for current state-of-the-art
solvers. The tool Bv2epr is available at [59].

;Official SMT-LIB benchmarks.

118 CHAPTER 6. CADE 2013

Chapter 7

IDQ: Instantiation-Based DQBF
Solving

Published. In Proceedings International Workshop on Pragmatics of SAT (POS
2014), Affiliated to SAT 2014, EPiC Series, volulme 27, pages 103–116, EasyChair
2014 [102].

Authors. Andreas Fröhlich, Gergely Kovásznai, Armin Biere, and Helmut Veith.

Abstract. Dependency Quantified Boolean Formulas (DQBF) are obtained by
adding Henkin quantifiers to Boolean formulas and have seen growing interest
in the last years. Since deciding DQBF is NEXPTIME-complete, efficient ways
of solving it would have many practical applications. Still, there is only few
work on solving this kind of formulas in practice. In this chapter, we present an
instantiation-based technique to solve DQBF efficiently. Apart from providing a
theoretical foundation, we also propose a concrete implementation of our algo-
rithm. Finally, we give a detailed experimental analysis evaluating our prototype
IDQ on several DQBF as well as QBF benchmarks.

7.1 Introduction

With steadily increasing success of decision procedures for propositional formu-
las (SAT) and Quantified Boolean Formulas (QBF), also interest in Dependency
Quantified Boolean Formulas (DQBF) has grown during the last years.

DQBF has first been described in [187] and comprises the set of propositional
formulas which are obtained by adding Henkin quantifiers [122] to Boolean logic.
In contrast to QBF, the dependencies of a variable in DQBF are explicitly specified
instead of being implicitly defined by the order of the quantifier prefix. This enables
us to also use partial variable orders as part of a formula instead of only allowing
total ones.

As a result, problem descriptions in DQBF can possibly be exponentially more

119

120 CHAPTER 7. POS 2014

succinct. Whereas QBF is PSPACE-complete [185], DQBF was shown to be
NEXPTIME-complete [188, 187]. Aside from DQBF, many practical problems
are known to be NEXPTIME-complete. This includes, e.g., partial information
non-cooperative games [188] or certain bit-vector logics [151, 234] used in the
context of Satisfiability Modulo Theories (SMT). More recently, also applications
in the area of equivalence for partial implementations [109, 110] and synthesis for
fragments of linear temporal logic [64] have been discussed and translations to
DQBF have been proposed.

There has been theoretical work on succinct formalizations using DQBF and
certain subclasses, e.g., DQBF-Horn has been shown to be solvable in polyno-
mial time [55]. However, apart from our previous work on adapting DPLL for
DQBF [99] and a recent incomplete approach (only allowing refutation of unsat-
isfiable formulas) [94], there have not been many attempts to solve DQBF prob-
lems in practice nor actual implementations of decision procedures for DQBF. As
already pointed out in [99], our previous approach did not end up being very ef-
ficient. Apart from this, formula expansion and transformations specific to QBF
have been discussed in [9, 8], which stayed only on the theoretical side but can
yield an expansion-based DQBF solver similar to those existing for QBF [24].
In [94], an expansion-based solver is also briefly mentioned. A (not publicly avail-
able) expansion-based solver was used in [110]. Furthermore, in [9, 8], it has been
conjectured that QBF solvers based on Skolemization [22] could easily be adapted
for DQBF. However, the current implementation of the described QBF solver
SKIZZO [22] does not solely use Skolemization but also relies on an additional
top-level DPLL approach for larger formulas. Adapting this kind of approach is
not straightforward but requires special techniques as described in our previous
work [99] and might have a similar negative impact on the performance of the
resulting solver.

Effectively Propositional Logic (EPR) is another logic which is NEXPTIME-
complete [161]. This implies that there exist polynomial reductions from DQBF to
EPR and vice versa. Thus, it is possible to use EPR solvers, e.g., IPROVER [147]
being the currently most successful one, to solve DQBF given some translation
from DQBF to EPR. In [202], a translation from QBF to EPR is described which
can be extended to DQBF easily. However, since EPR solvers in general have to
reason with predicates and larger domains, solvers directly working on the propo-
sitional level should have an advantage if a DQBF formalization of a problem is
more natural.

In the following, we present an instantiation-based approach to solving DQBF.
Our approach is closely related to the so-called Inst-Gen calculus [148, 149], which
can be considered as the state-of-the-art decision procedure for EPR [147]. While
DQBF can be translated to EPR, we focus on applying the decision procedure
directly on the given input logic. This results in a simpler framework and an algo-
rithm which is easy to implement and adapt. At the same time, our approach can
also be applied to QBF without further modifications. After defining some prelimi-
naries in Section 7.2 and giving related work in Section 7.3, we provide the theoret-

7.2. PRELIMINARIES 121

ical foundation in Section 7.4 and point out parallel features used in EPR solving.
We also propose a concrete implementation of our algorithm in Section 7.5, and
provide detailed experiments, comparing our prototype IDQ with state-of-the-art
solvers on several DQBF as well as QBF benchmarks in Section 7.6. It turns out
that our implementation results in an efficient DQBF solver that works on practical
benchmarks and is even able to compete with QBF solvers on some problems. We
conclude and propose directions for future work in Section 7.7.

7.2 Preliminaries

Let V be a set of propositional variables. A literal l is a variable x P V or its
negation x. For a given literal l, we write varplq to reference the corresponding
variable. A clause C is a disjunction of literals. A propositional formula φ is in
conjunctive normal form (CNF), if it is a conjunction of clauses. Any DQBF can
always be expressed as

ψ � Q.φ � @u1, . . . , umDe1pu1,1, . . . , u1,k1q, . . . , enpun,1, . . . , un,knq.φ

with Q being the quantifier prefix and φ being a propositional formula (matrix) in
CNF over the variables V :� U Y E and U � tu1, . . . , umu, E � te1, . . . , enu,
ui,j P U , @ i P t1, . . . , nu, j P t1, . . . , kiu. We refer to the elements of U and E
as the universal variables and existential variables of ψ, respectively. In DQBF,
existential variables can always be placed after all universal variables in the quan-
tifier prefix, since the dependencies of a certain variable are explicitly given and
not implicitly defined by the order of the prefix (in contrast to QBF).

Given an existential variable ei, we use deppeiq :� tui,1, . . . , ui,kiu to denote
its dependencies. For universal variables u, we define deppuq :� H. We extend
the notion of dependency to literals, defining depplq :� deppvarplqq for any literal
l. Obviously, any QBF ψqbf can be translated to some ψdqbf in the specified form
by moving all universal variables to the beginning and then setting deppeq � tu P
U | u is before e in the quantifier prefix of ψqbfu for all existential variables.

An assignment is a (partial) mapping α : V Ñ t1, 0u from the variables of
a formula to truth values. To simplify the notation, we extend the definition of
assignments to literals, clauses and formulas in the natural way. In the rest of this
chapter, αplq, αpCq, or αpF q will denote the truth value (under the assignment
α) of a literal l, a clause C, or a formula F , respectively. An assignment α to a
formula F is satisfying, if and only if αpF q � 1.

A propositional formula φ in CNF is satisfiable, if and only if all clauses in
φ are satisfied by at least one assignment α. We then call α a model of φ. In
DQBF (as well as in QBF), a model cannot be expressed by a single assignment.
Instead, we use Skolem functions to represent solutions of a formula. A Skolem
function fe : t1, 0u|deppeq| Ñ t1, 0u describes the evaluation of an existential vari-
able e under a given assignment to its dependencies. Let φsk denote the formula
obtained from φ by replacing all existential variables e by their Skolem function

122 CHAPTER 7. POS 2014

fe. A DQBF ψ � Q.φ is satisfiable if and only if there exist Skolem functions
fe1 , . . . , fen , so that φsk is satisfied for all possible assignments to the universal
variables of ψ.

Universal expansion is defined as the process of removing a universal vari-
able u from a formula ψ considering both its values separately. This can be done
by removing all existential variables e with u P deppeq and introducing two new
existential variables eu�1, eu�0 with deppeu�1q � deppeu�0q � deppeqztuu. Ad-
ditionally, the matrix φ is replaced by φu�1 ^ φu�0. With φu�v, we describe
the formula obtained from φ by replacing u by a constant v P t1, 0u and all
occurrences of e with u P deppeq by eu�v. We can use universal expansion to
reduce any DQBF ψ to an equisatisfiable propositional formula. If the result-
ing propositional formula is satisfiable, the Skolem functions of the original for-
mula can be directly constructed from the assignments to the propositional vari-
ables by setting fepv1, . . . , vkq � eu1�v1,...,uk�vk . In the following, we some-
times use the shorter notation φu and φu instead of φu�1 and φu�0, respectively.
We also extend this notation to clauses in the same way as we introduced it for
formulas and refer to this as a clause instance, in the sense the Inst-Gen calcu-
lus [148, 149] uses instantiation, applied to the natural encoding of (D)QBF into
first-order logic [202]. Furthermore, for a given clause instance Cl1,...,lk , we define
ctxpCl1,...,lkq :� tli | i � 1, . . . , ku. We call this the context of an instantiation.

The unique identifiers for the new existential variables introduced in this way
make sure that the same existential variable is referred even if the individual clauses
are considered separately. Also, the identifiers and the dependencies of all existen-
tial variables introduced during universal expansion are implicitly defined by the
original quantifier prefix description. For example, for the DQBF

@u1, u2De1pu1q, e2pu1, u2q, e3pu1, u2q . pu1_e1q^pu2_e2q^pu1_u2_e3q (7.1)

we can now write equations of clause instances such as:

� pe1qu1 ^ pu2 _ e2q ^ pu1 _ u2 _ e3q � pe1qu1 ^ pe2qu2 ^ pu1 _ u2 _ e3q

� pe1qu1 ^ pe2qu2 ^ pu2 _ e3qu1 � pe1qu1 ^ pe2qu2 ^ pe3qu1u2

The last line is a succinct representation of the full universal expansion of the origi-
nal formula and minimal in the sense of our algorithm. We refer to each individual
step as a local universal expansion. Note that we immediately dropped all triv-
ially satisfied clauses (due to ui � 1) in each step. Also, all intermediate steps
can be performed in arbitrary order, e.g., although we started with expanding the
first clause regarding u1, it is not necessary to expand all other clauses on u1 be-
fore expanding some clauses on u2. Obviously, we could continue applying local
universal expansion and obtain equivalent formulas of growing size:

pe1qu1 ^ pe2qu2 ^ pe3qu1u2 � pe1qu1 ^ pe2qu1u2 ^ pe2qu1u2 ^ pe3qu1u2

The last expression is maximal and of the same size as the full universal expan-
sion of ψ. There is no point in further expanding the first clause instance, because

7.3. RELATED WORK 123

u2 R deppe1q implies that pe1qu1 � pe1qu1u2 � pe1qu1u2 . Obviously, if a clause
instance Cl1,...,lk is part of a formula, we can always add a more specific instance
Cl1,...,lk,lk�1,...,lk1

without affecting satisfiability. The more specific instance is ac-
tually subsumed by the original one, i.e. the full local universal expansion of the
new instance is a subset of the full local universal expansion of the less specific
one. This fact is crucial for the algorithm presented in Section 7.4.

EPR, known as the Bernays-Schönfinkel class, is a NEXPTIME-complete frag-
ment of first-order logic [161]. It consists of the set of first-order formulas that,
written in prenex form, contain (1) no function symbol of arity greater than 0,
and (2) no existential quantifier within the scope of a universal quantifier. After
Skolemization, existential variables turn into constants (i.e., function symbols of
arity 0). Consequently, an EPR atom can be defined as an expression of the form
ppt1, . . . , tnq where p is a predicate symbol of arity n and each ti is either a (uni-
versal) variable or a constant.

In [202], a translation from QBF to EPR is proposed. The approach consists
of three steps and can be easily adapted to DQBF: (1) replace each existential
variable e with its Skolem function fe (which is in fact a predicate due to the
Boolean domain), (2) replace each universal variable u with ppuq where p is a
fixed predicate, and (3) add the constraints pp1q and pp0q to the formula. For
example, for the DQBF in Equation (7.1) the resulting EPR formula is

@u1, u2 .
�
ppu1q _ fe1pu1q

�
^
�
 ppu2q _ fe2pu1, u2q

�
^�

 ppu1q _ ppu2q _ fe3pu1, u2q
�
^ pp1q ^ pp0q

7.3 Related Work

The concepts of instantiation and expansion that we defined in Section 7.2 are
similar to the notation used in [22], describing the solver SKIZZO, which in partic-
ular shares similarities in the use of clause instances (cf. symbolic representation
in [22]). But apart from slightly different notation, there are three fundamental
differences in the underlying algorithms: First, our method aims at solving DQBF
while SKIZZO, as described, targets QBF solving. Second, SKIZZO uses a top-
level QDPLL step, which cannot be applied to DQBF without introducing addi-
tional concepts as presented in our previous work [99]. Finally, the most important
difference is that SKIZZO performs a full Skolemization after preprocessing, while
our solver uses local extension to iteratively generate a (potentially exponentially)
more succinct formula which is sufficient to prove (un)satisfiability of the original
input, as described in Section 7.4.

Another similar notation and related work is proposed in [134, 135, 136]. Their
solver RAREQS [135] creates propositional abstractions and uses a CEGAR ap-
proach [68] for refinement. As we will discuss in Section 7.4, this is also what
our solver does. However, the way abstractions are generated and refined is dif-
ferent. One main difference can be found in the expansion of universal variables.

124 CHAPTER 7. POS 2014

1 procedure CEGAR(F)

2 F 1 = initInstantiation(F);

3 while(true)

4 F 2 = propositionalAbstraction(F 1);

5 pstate, assignmentq = checkState(F 2);

6 if (state = UNSAT) return UNSAT;

7 if (isValid(assignment, F, F 1)) return SAT;

8 F 1 = refineInstantiation(assignment, F, F 1);

Figure 7.1: Pseudo-code of a CEGAR loop as used in the Inst-Gen procedure [147,
148, 149].

In contrast to SKIZZO, both, RAREQS as well as our solver, allow partial expan-
sion in the sense that only φu�1 or φu�0 might be considered for some formula
φ containing u. Nevertheless, even the restricted expansion of universal variables
in [134, 135, 136] always applies to all clauses of a formula, whereas our approach
uses the previously described concept of local universal expansion, which allows
to expand clauses individually. Furthermore, RAREQS is a QBF solver and can-
not tackle DQBF. Due to the usage of recursive calls depending on the order of the
quantifier prefix, an extension to DQBF does not seem to be straightforward.

Another solver that relies on abstraction refinement, is given in [234]. While
they target quantified bit-vector formulas with uninterpreted functions, QBF and
DQBF of course can be seen as a special case. To generate abstractions, they
apply Skolemization and use templates for functions. The effectiveness of their
approach heavily relies on the right choice of templates, which can be difficult for
QBF and DQBF. Finally, another algorithm that has a similar structure can be
found in [190]. Again, their solver actually targets more general SMT formulas,
but could theoretically also be used for QBF. Since their approach expects an
ordered quantifier prefix, it cannot be directly applied to DQBF.

7.4 IDQ architecture

In this section, we present the IDQ architecture. It is based on the more general
Inst-Gen calculus [148, 149] for EPR as used in IPROVER [147], but reduced to the
more specific case of DQBF. Instead of dealing with predicates, we use the notion
of clause instances as introduced in Section 7.2. The Inst-Gen architecture is based
on the CEGAR paradigm [68] and the pseudo-code is given in Figure 7.1.

For EPR, usually no specific initial instantiation is used, i.e., the formula is
completely uninstantiated. A propositional abstraction is then created by ground-
ing the current formula and can be solved by a SAT solver. If the SAT solver
returns unsat, the original formula is unsat too, since the ground formula is an
overapproximation. On the other hand, if the SAT solver returns sat, the result-

7.4. IDQ ARCHITECTURE 125

ing assignment has to be checked for consistency with the EPR formula. In each
propositional clause, we select a satisfying literal, determined by a fixed selection
function. If there is no pair of oppositely signed, selected literals, such that the
corresponding EPR literals can be unified, the solution is also valid for the original
EPR formula. If there are such pairs of literals, then we try to apply the following
inference step to each corresponding EPR clause: apply the most general unifier
(MGU) to the clause and add the result as a new clause. By checking if the new
clause is already part of the formula with respect to some redundancy concept, it is
also possible that no new clause is added. The formula is then called saturated and
the current assignment is also valid for the input formula. Otherwise, the calculus
starts the next iteration.

Using the approach described in [202], any DQBF can be translated to EPR.
All universal variables u are embedded into EPR by introducing a predicate p and
replacing each occurrence of u by ppuq. Additionally, the constraints pp1q and
 pp0q are added to the formula. Obviously, this implies that ppuq and ppuq can
never end up being the only satisfying literal of a clause. If this was the case,
unification with pp1q and pp0q would be possible, respectively. As a result, the
corresponding instance would be added to the formula and, from that point on, in
every loop iteration the SAT solver would immediately set the instantiated literal
to 0 by unit propagation.

Knowing that we deal with DQBF, this will always be the case. Therefore, we
can directly simplify the formula in the beginning by starting with a more specific
initial instantiation. For each clause, we only care about those assignments to the
universal variables which do not trivially satisfy the clause. In our notation, this
initial instantiation is equal to the minimal instantiation created by local universal
expansion as described in Section 7.2. Consider the following example:

ψ � @u1, u2De1pu1, u2q, e2pu2q . pu1 _ e1q ^ pu1 _ e1q ^ pu1 _ u2 _ e1 _ e2q

We now create the initial set of clause instances, using the unique minimal instan-
tiation that removes all universal variables from the clauses:

pe1qu1 ^ pe1qu1 ^ pe1 _ e2qu1u2

We then create a propositional abstraction of the current clause instance set,
by assuming that all existential variables that do not occur in the same instantia-
tion context can be different. This means, for P denoting the power-set, we use
a function m : E � Pptl | varplq P Uuq Ñ V 1 for some new set of proposi-
tional variables V 1, and map each literal e in a clause instance C to a propositional
variable mpe, ctxpCqq. We restrict m as follows:

mpe1, ctxpC1qq � mpe2, ctxpC2qq
if and only if

e1 � e2
l1 P ctxpC1q | varpl1q P deppe1q

(
�

l2 P ctxpC2q | varpl2q P deppe2q

(

126 CHAPTER 7. POS 2014

Obviously, the propositional formula generated by this mapping is an overapprox-
imation of the current set of clause instances. It will often be the case that there is
some kind of dependency between different variables.

In our example, we get the following propositional formula:

px1q ^ px1q ^ px2 _ x3q

Satisfiability can easily be checked by using any off-the-shelf SAT solver. In this
specific example, the propositional overapproximation is unsatisfiable. This im-
plies that the original formula is also unsatisfiable.

If, on the other hand, the propositional formula was satisfiable, we would need
additional reasoning. For this, consider a second example:

ψ � @u1, u2De1pu1, u2q, e2pu2q . pu1 _ e1q ^ pu2 _ e1 _ e2q

Again, we create the initial set of clause instances using the unique minimal instan-
tiation that removes all universal variables from the clauses:

pe1qu1 ^ pe1 _ e2qu2

The propositional overapproximation now looks as follows:

px1q ^ px2 _ x3q

Note that the same existential variable e1 is mapped to two different variables
x1, x2 because it appears in different contexts. The SAT solver would now tell
us that this abstraction is satisfiable and return a satisfying assignment α, e.g.,
α � tx1 Ñ 1, x2 Ñ 0, x3 Ñ 0u.

We now check, whether α is a valid satisfying assignment for the current set of
clause instances. This is the case if and only if no pair of oppositely signed, selected
(satisfying) literals corresponds to the same existential variable in overlapping con-
texts. For EPR, this is exactly what happens in the Inst-Gen calculus when there
is a check on whether the corresponding literals can be unified [147, 148, 149]. In
the case that a satisfying assignment is valid for the current set of clause instances,
we know that the original DQBF is satisfiable. If, however, the assignment is not
valid, we refine the instantiation on the clauses that contain the conflicting literals
by adding new instances. Those instances are actually subsumed by the original
ones but lead to a different propositional abstraction by the definition of m. In the
next step, the propositional abstraction will automatically rule out this conflicting
assignment.

In our latest example, α is indeed not a valid assignment for the current set
of clause instances: x1 and x2 correspond to e1, appear in overlapping contexts
and, therefore, the propositional variables cannot be assumed to be independent of
each other. We therefore apply the inference step of merging the two contexts and
adding new clause instances. Now, the resulting formula looks as follows:

pe1qu1 ^ pe1qu1u2 ^ pe1 _ e2qu2 ^ pe1 _ e2qu1u2

7.5. IMPLEMENTATION 127

The propositional abstraction is given by:

px1q ^ px2q ^ px3 _ x4q ^ px2 _ x4q

Note that e2 is mapped to the same variable x4 in both clause instances although
it appears in a different instantiation context. This is due to u1 R deppe2q, which
implies that pe2qu2 � pe2qu1u2 . Again, this propositional formula is satisfiable and
the SAT solver could return a satisfying assignment α � tx1 Ñ 1, x2 Ñ 1, x3 Ñ
0, x4 Ñ 1u. However, this time we can pick a literal in each clause so that no
implicit dependencies are violated. Therefore, the algorithm terminates and the
original formula is known to be satisfiable.

Furthermore, also note that in our particular case, we could have directly ap-
plied local universal expansion to our instances instead of adding a single more
specific one, e.g., yielding pe1qu1u2 ^ pe1qu1u2 instead of pe1qu1 ^ pe1qu1u2 . How-
ever, this can only be done without growth in formula size, if there is exactly one
additional literal in the new context of the instance, which we would have added
otherwise. Nevertheless, this is a possible DQBF-specific extension, which is part
of future work, and sometimes might reduce the number of loop iterations.

7.5 Implementation

In this section, we describe how we actually implemented the proposed algorithm
and point out where we can profit from DQBF-specific restrictions. For our solver,
we use input files in a format that is an extension of the QDIMACS format and
which we call DQDIMACS. The only difference to QDIMACS is the fact that we
additionally allow partially ordered dependencies by using expressions of the form
d <int32> [<int32> ... <int32>] 0 in the quantifier prefix descrip-
tion. This defines a new existential variable given by the first ID as integer which
(optionally) depends on a list of previously defined universal variables. All other
quantifier definitions using a and e are still interpreted in the same way as it is
done in the QDIMACS format and existential variables defined by using e are as-
sumed to depend on all previously defined universal variables as usual. In this way,
DQDIMACS is easy to parse and a real extension of QDIMACS. DQDIMACS is also
the input format which we use in all our experiments in Section 7.6.

After parsing the input, the data structures we use are similar to those of com-
mon SAT solvers. The matrix of the original formula is saved as a list of clauses
and a clause is saved as a list of literals represented by integers. Additionally, the
quantifier prefix is saved as a list of variables and each variable has an ID, a quan-
tifier type and, if it is an existential variable, a bit-vector, called the dependency
mask, representing the universal variables that it depends on.

We store a list of instances with each clause. An instance is defined by two
bit-vectors, called the context mask and the value mask, representing the univer-
sal variables that are assigned by the context and the values they are assigned to,
respectively. For example, see instance (I) in Figure 7.2, where the first mask is

128 CHAPTER 7. POS 2014

Universal variables: u1, u2, u3
Existential variable: epu1, u3q (D) dependency mask: 101
Input clause: pu2 _ u3 _ eq
(I) Initial instance: pequ2u3 011 / 001
(C) e’s concrete context: u3 D & I1 = 001 / C1 & I2 = 001
(G) e’s ground context: u1u3 D = 101 / I2 = 001

(a) Dependencies and contexts.

(A) Instance with e: pe_ . . . qu1u2u3 111 / 011
(B) Instance with e: pe_ . . . qu2u3 011 / 001
(E) e’s concrete context: u1u3 101 / 001
(F) e’s concrete context: u3 001 / 001
Overlapping contexts? (E1 & F1) & E2 ?

� (E1 & F1) & F2
(N) New instance: pe_ . . . qu1u2u3 B1 | E1 = 111 / B2 | E2 = 001

Redundant? (1) ground B ?
� ground N (both are 111 / 001)

(2) B1 & N1 ?
� B1 and B1 & N2 ?

� B1 & B2

(b) Inference step and redundancy check.

Figure 7.2: Examples of using bit-vector representation for calculations in IDQ.

the context mask and the second one is the value mask. For the propositional ab-
straction, a propositional clause is also stored with each instance. All propositional
clauses are incrementally added to the underlying SAT solver, PICOSAT [26].

Initial Instantiation. Creating the initial instantiation is straightforward. When
parsing the clauses of the formula, universal literals l are not added to the literal
list of the current clause, but instead the corresponding bits in the context mask and
the value mask are set accordingly to represent that l is part of the context of the
current instance; see (I) in Figure 7.2.

Propositional Abstraction. Each occurrence of a existential variable is mapped
to a corresponding propositional variable. This can be done efficiently by using the
bit-vectors that are saved with each existential variable and each clause instance.
Given an existential variable e that occurs in an instance c, we calculate e’s concrete
context that is to show which part of c’s context is relevant for e. The concrete
context can be calculated by applying bitwise and to e’s dependency mask and c’s
context mask, and another bitwise and with c’s value mask. This is illustrated in
Figure 7.2 as the context mask (C1) being calculated from (D) and (I1), and the
value mask (C2) from (C1) and (I2).

We map the variable ID and the concrete context to a unique propositional
variable. Accordingly, if two variable occurrences have the same ID (i.e., they rep-
resent the same existential variable) and their concrete contexts are equal, they are
mapped to the same propositional variable. In order to check whether we already
introduced the corresponding propositional variable in a previous step, we keep a
hash table with all previously introduced propositional variables.

7.5. IMPLEMENTATION 129

Grounding. As the Inst-Gen calculus [148, 149] suggests, before mapping an
existential variable e and its concrete context to a propositional variable, IDQ gen-
erates the grounding of this context. Grounding is basically about assigning a
concrete truth value, w.l.o.g., 0, to all the universal variables which e depends on
and which are not already assigned by the context. This can easily be done by
setting the context mask to e’s dependency mask and leaving the value mask as it
is, assuming that all bits in our bit-vectors are initialized to 0. Figure 7.2 shows an
example, as setting (G1) to (D) and (G2) to (I2).

Active and Passive Instances. Similar to IPROVER’s architecture, clause in-
stances are separated into two sets, called active and passive. Active instances
are the ones among which all possible inference steps have been performed, mod-
ulo literal selection. Passive instances are the ones which are waiting to participate
in inferences. In IDQ, passive instances are stored in a priority queue ordered by a
given heuristic. In each solving iteration, IDQ dequeues a given number of passive
instances with the highest priority, and sets them active one by one, which involves
trying to apply an inference step with each active instance.

In the current implementation of IDQ, an active instance does not move back
to the passive instance set whenever its literal selection changes, as opposed to
IPROVER. We rather apply inference steps to it with each active instance, on the
newly selected literal.

An inference step on two selected literals can easily be implemented, as illus-
trated in Figure 7.2. First, to check whether the concrete contexts of the literals
are overlapping, we apply bitwise and. Second, to calculate the context and value
masks for a new instance, we apply bitwise or to the masks representing the origi-
nal instance and the ones representing the literal from the other instance.

Heuristics. Two choices depend on some heuristics: (1) how to order the priority
queue of passive instances, and (2) how to select a satisfying literal in an active
instance. We have been experimenting with two types of heuristics, using different
criteria for both choices.

One of the heuristics is inspired by IPROVER’s default heuristic, based on the
lexicographical combination of orders defined on given numerical/Boolean param-
eters. Similar to IPROVER’s notation [149], we use the following combinations:
(1) [-num_dep;+age;-num_symb] for the priority queue of instances, and
(2) [+sign;+ground;-num_dep;-num_symb] for literal selection. This
means priority is given to instances with fewer unassigned dependencies, then to
instances generated at earlier iterations, and finally to instances with fewer sym-
bols (0 or 1) assigned to dependencies. The heuristic for literal selection can be
interpreted in a similar way, where positive and then ground literals are prioritized
the most.

The other heuristic is inspired by SAT solving. It is based on the VSIDS
scores [176] of propositional variables used in the propositional abstraction. IDQ

130 CHAPTER 7. POS 2014

counts the occurrences of those variables in the propositional clauses generated so
far, and then, after each 50 iterations, all the scores are divided by 2. Based on the
VSIDS scores, (1) priority is given to the passive instance with the highest average
score of its literals, and (2) the literal with the highest score is selected.

Redundancy Check. Redundancy elimination is crucial for the applicability of
any calculus, in order to avoid infinite runs and to obtain a smaller knowledge base.
Due to the finite domain property, it is easy to obtain a sufficient, but not practi-
cal, redundancy check for both EPR and DQBF, by simply checking the equality
of clause instances, i.e., of context/value masks in IDQ. However, a practical re-
dundancy check might be more complicated, e.g., IPROVER employs dismatching
constraints [149]. With IDQ, a practical check can be obtained more easily. IDQ
decides if a new instance c would not give any new information to the active in-
stance set, meaning that the propositional abstraction would stay the same and all
inference steps with c would also result in redundant instances. We consider c
redundant if there exists an active instance d of the same clause such that (1) the
propositional abstractions of c and d are the same, and (2) d subsumes c. Both
checks can be done by bit-vector operations, as illustrated in Figure 7.2. Impor-
tantly, (2) requires to check if c’s context is a superset of d’s contexts.

7.6 Experimental Results

In this section, we report experiments1 with our solver. The source code, bench-
marks, and log files are available at http://fmv.jku.at/idq. We tested IDQ with
two types of heuristics as proposed in Section 7.5. IDQ and IDQvsids refer to the
versions that employ the default heuristic and the VSIDS-based heuristic, respec-
tively. Lacking in publicly available, general-purpose DQBF solvers (the solver
DQBF2QBF in [94] can reason only with unsat formulas), we decided to also
compare IDQ against IPROVER (v0.8.1).

We also tested IDQ on QBF benchmarks, by exploiting the fact that QBF
is a real fragment of DQBF. By doing so, we could compare IDQ not only
against IPROVER, but also against genuine QBF solvers, like the QDPLL-based
DEPQBF [165] (v3.0), the CEGAR-based RAREQS [135] (v1.1), the expansion-
based NENOFEX [164] (v1.0), and the Skolemization-based SKIZZO [22] (v0.8.2).
For the sake of fair comparison, we did not run any preprocessor.

DQBF Benchmarks. We used the only publicly available DQBF benchmarks
by Finkbeiner and Tentrup [94]. All of them encode partial equivalence checking
(PEC) problems, i.e., circuits containing some “black boxes” compared against full
circuits. This benchmark set includes the benchmarks of the 3-bit arithmetic cir-
cuits adder and the 16-bit arbiter implementations bitcell and lookahead from [75],

1Setup: Vienna Scientific Cluster (VSC-2), AMD Opteron Magny Cours 6132HE CPUs, 2.2
GHz cores, 900 seconds time limit, 3800 MB memory limit.

http://fmv.jku.at/idq

7.6. EXPERIMENTAL RESULTS 131

and also the circuit family pec_xor from [110] about comparing the XOR of in-
put bits against a random Boolean function. We converted those benchmarks to
DQDIMACS format, and then ran IDQ on them. For IPROVER, we further con-
verted the DQDIMACS instances to EPR (TPTP CNF format) by using the transla-
tion from [202], which can be easily adapted to DQBF.

Table 7.1 shows the results: the number of solved instances (#), the number
of timeouts (TO), and the average runtime. The number at the end of bench-
mark names shows the number of black boxes in circuits. In most of the cases,
IDQ outperforms IPROVER. IDQvsids performs even better than IDQ on the bit-
cell benchmarks but worse on the lookahead and adder benchmarks. The gap
between the performance of IDQ and IPROVER is significant. On unsat instances,
DQBF2QBF generally is the fastest solver. However, the performance of IDQ
sometimes comes quite close, whereas DQBF2QBF cannot solve sat instances at
all. Also note that the benchmarks are biased in the way that most sets contain
mainly unsat instances. Finally, we think that one reason for the better perfor-
mance of DQBF2QBF on unsat instances is the better encoding of the original
benchmarks and the overhead introduced by CNF translation. Preliminary results
on simple preprocessing techniques show that this can lift the performance of IDQ
to come even closer to the one of DQBF2QBF.

#(sat/uns) TO time #(sat/uns) TO time #(sat/uns) TO time

bitcell_16_2 bitcell_16_4 bitcell_16_6
DQBF2QBF 98 (0/98) 2 18.6 98 (0/98) 2 18.8 97 (0/97) 3 27.8
IDQ 88 (2/86) 12 128.1 52 (0/52) 48 488.9 22 (0/22) 78 735.9
IDQvsids 97 (2/95) 3 39.2 75 (0/75) 25 255.9 36 (0/36) 64 592.0
IPROVER 82 (0/82) 18 248.6 34 (0/34) 66 684.5 7 (0/7) 93 851.7

lookahead_16_2 lookahead_16_4 lookahead_16_6
DQBF2QBF 97 (0/97) 3 27.7 97 (0/97) 3 27.7 96 (0/96) 4 36.6
IDQ 98 (3/95) 2 30.4 88 (0/88) 12 118.9 69 (0/69) 31 342.4
IDQvsids 93 (2/91) 7 68.1 62 (0/62) 38 383.0 20 (0/20) 80 729.9
IPROVER 67 (0/67) 33 351.8 32 (0/32) 68 656.3 6 (0/6) 94 862.9

adder_3_2 adder_3_4 adder_3_6
DQBF2QBF 94 (0/94) 6 54.8 89 (0/89) 11 99.8 74 (0/74) 26 234.6
IDQ 82 (1/81) 18 246.8 58 (0/58) 42 440.2 11 (0/11) 89 841.4
IDQvsids 43 (0/43) 57 546.3 21 (0/21) 79 734.0 6 (0/6) 94 863.9
IPROVER 86 (1/85) 14 221.6 54 (0/54) 46 538.2 5 (0/5) 95 876.9

pec_xor2 pec_xor3 pec_xor4
DQBF2QBF 49 (0/49) 51 459.4 77 (0/77) 23 207.5 99 (0/99) 1 10.6
IDQ 100 (51/49) .5 100 (23/77) .7 100 (1/99) 3.3
IDQvsids 100 (51/49) .5 100 (23/77) .6 100 (1/99) 2.2
IPROVER 100 (51/49) .5 100 (23/77) .9 100 (1/99) 2.8

Table 7.1: Results for DQBF PEC benchmarks

132 CHAPTER 7. POS 2014

QBF Benchmarks. We used QBF Gallery 2013 benchmarks, from which we
selected instances with a size that does not exceed 2 megabytes. In some cases,
we randomly selected instances from the resulting sets. Table 7.2 shows the re-
sults, including the number of memory outs (MO) and the number of crashes
(CR). Between parentheses after each benchmark name, the number of instances is
shown. As expected, genuine QBF solvers outperform IDQ and IPROVER on most
benchmarks, although SKIZZO and NENOFEX terminate with memory out quite
frequently. On some instances, IPROVER and NENOFEX crash. IDQ performs
particularly well on the benchmarks conformant-planning and planning-CTE, and
reasonably well on sauer-reimer. In general, the VSIDS-heuristic seems to be the
slightly better choice.

#(sat/uns) TO/MO time CR #(sat/uns) TO/MO time CR

conformant-planning (100) planning-CTE (57)
DEPQBF 89 (19/70) 11/0 130.7 42 (26/16) 15/0 297.0
RAREQS 94 (17/77) 4/2 49.1 57 (35/22) 1.4
NENOFEX 95 (19/76) 19.7 5 57 (35/22) 3.8
SKIZZO 51 (11/40) 34/15 380.9 57 (35/22) 1.8
IDQ 95 (14/81) 5/0 81.9 57 (35/22) 6.2
IDQvsids 95 (14/81) 5/0 80.2 57 (35/22) 6.5
IPROVER 91 (14/77) 9/0 90.9 57 (35/22) 4.6

qbf-hardness (162) reduction-finding (100)
DEPQBF 59 (12/47) 103/0 586.1 65 (34/31) 35/0 348.4
RAREQS 63 (12/51) 99/0 572.0 81 (41/40) 19/0 201.2
NENOFEX 26 (12/14) 0/136 487.9 35 (19/16) 0/65 425.0
SKIZZO 48 (12/36) 79/35 526.8 34 (19/15) 46/20 468.2
IDQ 44 (12/32) 118/0 665.0 30 (16/14) 70/0 635.4
IDQvsids 42 (12/30) 120/0 666.8 29 (15/14) 64/7 598.2
IPROVER 26 (12/14) 135/0 762.8 1 31 (18/13) 48/6 554.9 15

sauer-reimer (100) eval2012r2 (264)
DEPQBF 50 (35/15) 50/0 457.3 90 (33/57) 174/0 610.8
RAREQS 33 (20/13) 0/67 248.2 67 (23/44) 162/35 626.7
NENOFEX 18 (9/9) 0/82 564.7 54 (28/26) 7/200 519.0 3
SKIZZO 18 (9/9) 43/39 614.8 89 (39/50) 128/47 521.7
IDQ 20 (8/12) 80/0 724.7 45 (15/30) 217/2 757.8
IDQvsids 27 (17/10) 73/0 658.7 51 (18/33) 178/35 682.2
IPROVER 19 (10/9) 76/5 725.8 54 (18/36) 178/30 672.7 2

Table 7.2: Results for QBF Gallery 2013 benchmarks

7.7 Conclusion

In this chapter, we presented an instantiation-based algorithm for solving DQBF,
resulting in a complete and at the same time practical DQBF solver.

On the theoretic side, we showed how successful techniques in EPR solving

7.7. CONCLUSION 133

can be lifted to the more specific DQBF case. We brought together related work
on Skolemization with the Inst-Gen calculus. On the other hand, we extended
work on IPROVER by giving a simpler framework. While our implementation is
still a prototype, our experiments confirmed that the simpler structure of DQBF
compared to the more general EPR, as well as the smaller formula size compared
to the full expansion, can have a positive impact on solver performance.

So far, our optimization compared to IPROVER was mainly on the implemen-
tation side using more efficient data structures and operations tailored to the Bool-
ean domain. Apart from the possibility of applying local universal expansion as a
special case of instantiation, looking into more potential DQBF-specific benefits,
especially on the heuristic level, is part of future work. Specialized preprocess-
ing techniques, e.g., related to those applied in SKIZZO [22] or for general QBF
solvers [32], as well as removing dependencies of existential variables by analyz-
ing the propositional matrix [165], might also be a further interesting step into the
direction of even more efficient DQBF solving.

Another potential benefit of our solver could be related to providing certifi-
cates. Certificate construction in QBF has seen increasing interest in recent re-
search [56, 89, 123, 134, 136, 182, 206, 207]. While providing certificates is not
implemented in our prototype yet, our architecture can easily be extended by this
feature. Obviously, Skolem functions for satisfying formulas can directly be con-
structed out of a solution as discussed in Section 7.2. However, the more interesting
contribution might be for unsatisfiable formulas. As unsatisfiability of a formula is
proven by a SAT solver in combination with universal expansion, we can directly
use the generated resolution proof for refuting the initial DQBF input, similar to
the approach described in [136]. Due to the iterative refinement in the solving pro-
cess, certificates (for unsatisfiability as well as satisfiability) might be rather small.
Further shrinking could be possible by looking for unsatisfiable cores.

Finally, we were able to outperform even more specific QBF solvers on some
benchmarks. As an additional side-effect, we therefore hope to get new insights
into QBF solving and maybe even QBF solvers might profit from our techniques.

134 CHAPTER 7. POS 2014

Chapter 8

Efficiently Solving Bit-Vector
Problems Using Model Checkers

Published. In Proceedings 11th International Workshop on Satisfiability Mod-
ulo Theories (SMT 2013), pages 6–15, Affiliated to SAT 2013, Helsinki, Finland,
2013, Informal Proceedings [100].

Authors. Andreas Fröhlich, Gergely Kovásznai, and Armin Biere.

Abstract. Bit-precise reasoning is essential in many applications of Satisfiability
Modulo Theories (SMT). Most approaches for solving quantifier-free fixed-size
bit-vector logics (QF_BV) rely on bit-blasting. In previous work, we have shown
that bit-blasting is not polynomial in general [151], and later proposed QF_BV!1,
a class of bit-vector problems that is PSPACE-complete [101]. In this chapter, we
give examples of how to create (polynomial) SMV specifications out of QF_BV!1

formulas. We then use various model checkers to solve those problems and give
detailed experimental results. Our results show that BDD-based model checkers
outperform current SMT solvers by several orders of magnitude on our bench-
marks. Unrolling and using SAT-based model checking turns out to be the same as
bit-blasting and gives worse results. In addition to this, our approach allows us to
easily generate new challenging benchmarks for SMT solvers as well as for model
checkers.

8.1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical ap-
plications of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
fixed-sized bit-vector logics are Boolector [47], MathSAT [50], STP [104], Z3 [81],
and Yices [87]. All these solvers rely on bit-blasting in order to translate bit-vector
formulas into propositional logic (SAT). The result is then checked by a SAT

135

136 CHAPTER 8. SMT 2013

solver.
In practice, e.g., in the SMT-LIB [18], the BTOR [48], and the Z3 format, the

bit-widths in bit-vector formulas are encoded as binary, decimal, or hexadecimal
numbers, i.e., a logarithmic encoding is used. In [151], we proved that the encod-
ing of bit-widths affects the complexity of the decision problem of bit-vector log-
ics. In particular, logarithmic encoding makes the quantifier-free fragment QF_BV
NEXPTIME-complete.1 Thus, bit-blasting is not polynomial in general. Consider
the following example (in SMT2 syntax):

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))

This formula verifies that, for an arbitrary bit-vector x of bit-width one million,
there exists no bit-vector y � x with x� y � x ! 1. Written to a file, this formula
can be encoded with 225 bytes. Using the SMT solver Boolector (even with all
rewritings switched on), bit-blasting produces a circuit of size 129 MB encoded
in the actually rather compact AIGER format. Tseitin transformation results in a
CNF in DIMACS format of size 843 MB.

In related work [150], we tried to avoid this growth in size by giving a trans-
lation from QF_BV to EPR and then using iProver to solve the problem. In most
cases, this approach turned out to perform worse than Boolector on the original
instance. Since QF_BV is NEXPTIME-complete, it is not clear if it is possible to
solve the general case more efficiently. However, the given example only uses ad-
dition, shift by one and equality. In [101], we showed that this kind of formulas can
be expressed by QF_BV!1, a subset of QF_BV which turned out to be PSPACE-
complete. In order to prove this, we gave a polynomial translation from QF_BV!1

to sequential circuits, similar to the one for linear arithmetic on non-fixed-size bit-
vectors proposed in [208, 209].

In this chapter, we show how model checkers can be used to solve fixed-size
bit-vector problems of this class. In contrast to [101], which provided the theoreti-
cal background, we now focus on experimental evaluation and analyze the potential
benefits for efficiently solving bit-vector formulas. First, in Section 8.2, we provide
a short overview of our translation as described in [101] and give some examples
to show how we used this concept to convert SMT2 files to SMV. In Section 8.3,
we then describe some benchmarks that we generated to evaluate the performance
of various model checkers compared to state-of-the-art SMT solvers with support
for fixed-sized bit-vector logics. On most of our benchmarks, BDD-based model

1In [151], we introduced the notation QF_BV1 and QF_BV2 for QF_BV using a unary and a
logarithmic (w.l.o.g., binary) encoding, respectively. In this chapter, QF_BV will always refer to the
logarithmic/binary case.

8.2. QF_BV!1 TO SMV 137

checkers turn out to be faster by several orders of magnitude. We provide experi-
mental data and discuss the results in detail. Finally, in Section 8.4, we conclude
the chapter and discuss further topics for future work.

8.2 QF_BV!1 to SMV

In [208, 209], the authors gave a polynomial translation for linear arithmetic on
non-fixed-size bit-vectors (QFPAbit) into sequential circuits. In contrast to [208,
209], we focus on fixed-size bit-vectors but share the goal of avoiding the ex-
ponential explosion due to explicit state representation as for example used in
MONA [144]. We adapted this translation in [101] to deal with fixed-size bit-
vectors and extended it by various other operators like shift by one and indexing.

Given a bit-vector formula Φ P QF_BV!1 without nested equalities. Let n
be a bit-width, xrns, yrns denote bit-vector variables, crns a bit-vector constant, and
t1
rns, t2

rns bit-vector terms only containing bit-vector variables and bitwise op-
erations. Following [208, 209], we assume, w.l.o.g., that Φ only consists of the
following types of atoms: t1rns � t2

rns, xrns � crns, and xrns � yrns ! 1rns. It
is easy to check that any QF_BV!1 formula can be written like this with only a
linear growth in the number of original variables.

We encode each atom in Φ separately into an atomic sequential circuit. The
encoding itself is straightforward in most cases. A concrete example translating
QF_BV to SMV is given after the theoretic part of this section. Compared to [208,
209], we have to consider the fact that all bit-vectors have a fixed bit-width.

Let nmax be the maximal bit-width of all bit-vectors in the formula. We con-
struct an additional sequential circuit representing a counter. The counter initially
is set to 0 and is incremented by 1 in each clock cycle. A counter like this can be
realized with rlog2pnmaxqs latches, i.e., polynomially in the size of Φ.

Now, for each atomic sequential circuit, we add a check whether the value of
the counter reached the bit-width n of the bit-vector variables corresponding to the
input streams of the circuit. Once this is the case, the individual circuit does not
change its output value anymore. Since nmax ¥ n, this will always hold at some
point.2

Finally, after constructing all atomic circuits, their outputs are combined by
logical gates following the Boolean structure of Φ. Other operators, such as addi-
tion or indexing, can either be replaced by shift by one in a preprocessing step or
directly encoded into a sequential circuit [101].

We now show the translation for the motivational example given in Section 8.1
to the concrete SMV-format. First of all, a counter for the bit-width of the variables
has to be introduced. This can be done using logarithmic many variables:

init(counter_bit0) := FALSE;

2In contrast to [208], we assume that the input streams for all variables start with the least
significant bit.

138 CHAPTER 8. SMT 2013

next(counter_bit0) := counter_bit0 xor (TRUE);
init(counter_bit1) := FALSE;
next(counter_bit1) := counter_bit1 xor (counter_bit0);
...
init(counter_bit19) := FALSE;
next(counter_bit19) := counter_bit19 xor

(counter_bit0 & ... & counter_bit18);

We then keep track of whether the counter already reached the value of a certain
bit-width.3 This variable later serves as a guard for all atoms containing variables
of the given bit-width:

init(counter_gte_1000000) := FALSE;
next(counter_gte_1000000) := counter_gte_1000000 |

(counter_bit0 & counter_bit1 & ... &
!counter_bit6 & ... & counter_bit19);

After introducing those helper variables, the actual formula can now be trans-
lated. The distinct operator is first replaced by negation of an equality. The trans-
lation to SMV then is straightforward:

init(atom_equal) := TRUE;
next(atom_equal) := case

counter_gte_1000000 : atom_equal;
TRUE : atom_equal & (x <-> y);

esac;

For translating addition, two atoms have to be introduced since the carry bit
has to be remembered in the next step:

init(atom_add) := TRUE;
next(atom_add) := case
counter_gte_1000000 : atom_add;
TRUE : atom_add & (z <-> (x xor y xor atom_cin));

esac;

init(atom_cin) := FALSE;
next(atom_cin) := case

counter_gte_1000000 : atom_cin;
TRUE : atom_add &

((x & y) | (x & atom_cin) | (y & atom_cin));
esac;

The shift operator can be translated in a very similar way but will not be given
here explicitly to keep the example short. Another possibility would be to replace
px ! 1q by px� xq in the preprocessing step.

Finally, the specification is defined by the logical combination of the individual
atoms and additionally respecting the bit-width:

3The counter bits in the next-statement correspond to the binary representation of n � 1 (i.e.,
99999910 � 111101000010001111112, in our example).

8.3. EXPERIMENTS 139

AG(!counter_gte_1000000 |
!atom_add | !atom_shift | atom_equal)

We also implemented our translation, including various different operators, in
a tool called Bv2smv. Binaries and source code are available for download at [60].

8.3 Experiments

We first describe our benchmark sets. We generated six different sets of QF_BV
formulas in SMT2 format. All sets of benchmarks consist of 32 instances each
and have two attributes: First, all benchmark sets are not bit-width bounded [101].
Because of this, bit-blasting is known to be exponential in general. Second, all
benchmarks only contain bitwise operators, addition, subtraction, shift by one,
indexing and relational operators. This ensures that a polynomial translation to
SMV exists. The different instances in a particular set of benchmarks only differ
in the bit-width of their variables and constants. The bit-widths n of the individual
instances are of the form n � 2i and n � 1.5 � 2i with i P t5, . . . , 20u for all six
sets. All benchmarks will be submitted to the QF_BV category of SMT-LIB.

QF_BV/froehlichkovasznaibiere/ndist.a.n:
We verify that, for two bit-vector variables xrns, yrns, it holds that xrns yrns

implies pxrns � 1rnsq ¤ yrns. The instances are unsatisfiable and use addition and
unsigned less/greater than operators.

QF_BV/froehlichkovasznaibiere/ndist.b.n:
We give a counter-example (due to overflow) to the claim that, for two bit-vector
variables xrns, yrns, it holds that pxrns � 1rnsq ¤ yrns implies xrns yrns. The
instances are satisfiable and use addition and unsigned less/greater than or equal
operators.

QF_BV/froehlichkovasznaibiere/power2bit.n:
We verify that, for a bit-vector variable xrns � 2j , it is not possible for two dif-
ferent bits to be both set to 1. The instances are unsatisfiable and use indexing,
subtraction, bitwise operators, and (in)equality.

QF_BV/froehlichkovasznaibiere/power2eq.n:
We verify that, for two bit-vector variables xrns � 2j , yrns � 2k, with a certain
identical bit set to 1, the bit-vectors cannot be distinct. The instances are unsatisfi-
able and use indexing, subtraction, bitwise operators, and (in)equality.

QF_BV/froehlichkovasznaibiere/power2sum.n:
We verify that, for two bit-vector variables xrns � 2j , yrns � 2k, with j � k,
xrns�yrns cannot be a power of 2. The instances are unsatisfiable and use addition,
subtraction, bitwise operators, and (in)equality.

QF_BV/froehlichkovasznaibiere/shift1add.n:
We verify that for an arbitrary bit-vector xrns, there exists no bit-vector yrns � xrns

with pxrns � yrnsq � pxrns ! 1q. The instances are unsatisfiable and use addition,

140 CHAPTER 8. SMT 2013

shift by one, and (in)equality. The example used throughout the chapter is part of
this benchmark family.

Out of the benchmark instances in SMT2 format, we generated SMV instances
by using Bv2smv and the flattening tool smvflatten.4 We used the state-of-the-
art SMT solvers Boolector, MathSAT, Z3, and STP on the SMT2 instances, and
NuSMV [66] on the corresponding SMV instances. In order to involve state-of-
the-art model checkers like Tip [88] and IImc5 (that uses techniques described
in [40, 43]), we also converted all the SMV instances to AIGER format by using
the translation tool smvtoaig that is part of the AIGER distribution.

All our experiments were run on the same cluster and with the same setup as the
latest Hardware Model Checking Competition (HWMCC’12).6 More precisely, we
used a 32-node cluster with Intel Quad Core 2.6 GHz processors and 8 GB RAM.
The wall clock time limit was set to 900 seconds and the memory limit to 7 GB.
Each solver had full access to one node (4 cores). In total, we used 19 different
solvers (or solver configurations) on 6 different benchmark sets each consisting of
32 instances, yielding a total of 3648 runs. All our results are available on our web
page at [60] together with generation scripts for all benchmarks in SMT2 format
and our tool Bv2smv.

Table 8.1 provides an overview of the total number of solved instances and
the average runtime (in seconds) and space requirement (in megabytes) on the
solved instances. For BMC solvers, we used the knowledge that the counters in
the generated specifications only allow the atomic circuits to change their value in
the first number of steps equal to the bit-width n of the original SMT2 formula.
We therefore set the bound for unrolling to be equal to n � 1 and, whenever a
BMC solver reached the bound without timeout or out-of-memory, counted the
instance to be shown unsatisfiable. The solvers were executed with default set-
tings if not stated otherwise explicitly. However, in some exceptional cases, we
intentionally used some promising or interesting strategies. For instance, in Ta-
ble 8.1, Tip-BMC references Tip using BMC-based strategy. Since we expected
and later experienced that BDD-based techniques perform particularly well on our
benchmarks, we intended to test model checkers with BDD-based strategies, those
which offer such an option. Note that NuSMV uses BDD-based forward reach-
ability analysis by default. We also tested NuSMV with backward reachability
analysis, referenced by NuSMV-bw. IImc also offers BDD-based solving strategy,
with both forward and backward reachability analysis; we reference IImc with de-
fault settings, with BDD-based forward, and with backward reachability analysis,
as IImc, IImc-BDD-fw, and IImc-BDD-bw, respectively.

Apart from the solvers reported in Table 8.1, we tested other models checkers
as well, all submitted to HWMCC’12. We excluded some of them due to uncer-

4http://fmv.jku.at/smvflatten/
5http://ecee.colorado.edu/wpmu/iimc/
6http://fmv.jku.at/hwmcc12/
;Versions submitted to HWMCC’12.

http://fmv.jku.at/smvflatten/
http://ecee.colorado.edu/wpmu/iimc/
http://fmv.jku.at/hwmcc12/

8.3. EXPERIMENTS 141

S
T
P

B
o
o
l
e
c
t
o
r

M
a
t
h
S
A
T
5

Z
3

I
I
m
c
-
B
D
D
-
b
w

N
u
S
M
V
-
b
w

I
I
m
c
-
B
D
D
-
f
w

I
I
m
c

N
u
S
M
V

B
l
i
m
c
;

T
i
p
-
B
M
C
;

A
i
g
b
m
c
;

T
i
p

solved 147 146 127 123 192 189 185 172 170 147 130 99 93
sat 23 32 13 23 32 29 32 32 27 9 31 21 17

unsat 124 114 114 100 160 160 153 140 143 138 99 78 76
time 206 190 310 171 12 30 79 132 148 233 266 295 496
space 1063 805 587 2180 8 24 9 74 38 95 1142 2073 6

Table 8.1: Overall results for all solvers

tain results: (a) Super_prove2 and Simple_sat, which employ ABC with improved
strategies, produced discrepancies on some satisfiable instances; (b) PdTrav, on
some instances, threw exception about syntactical error in input.

In total, IImc-BDD-bw clearly performs best as it can solve all instances.
Backward reachability analysis seems to produce better results than forward reach-
ability for BDD-based model checkers in general. While this applies especially to
unsatisfiable instances, NuSMV-bw only performs slightly better than NuSMV on
the satisfiable ones. Interestingly, Boolector also gives very good results for the
satisfiable instances. As expected, in particular the average space requirement of
all SMT solvers is very large. Figures 8.1, 8.2, and 8.3 provide a detailed overview
of the runtimes and space requirements of various solvers on the individual bench-
mark sets. We chose Boolector and STP representing the SMT solver class and
NuSMV, NuSMV-bw, IImc, IImc-BDD-bw, and Tip-BMC as model checkers.
Please consider that sampling memory is imprecise in case of low runtime, causing
noise on the plots that show memory consumption.

Figure 8.1 shows the results of the solvers on the ndist.a and ndist.b
benchmark sets. On the ndist.a instances, all BDD-based model checkers
clearly outperform both SMT solvers considering time and space. Tip-BMC per-
forms very similar to the SMT solvers. This is not surprising since unrolling up
to a bound equal to the bit-width will in the end produce the same propositional
formula as bit-blasting. With ndist.b being satisfiable, SMT solvers show better
runtimes while still requiring similar amounts of space. This can be explained by
the fact that it is enough to guess the correct assignment which might be found as
a consequence of good heuristics and at the same time could cause the variation in
the runtimes of STP. While backward reachability analysis seems to give a clear
advantage on the unsatisfiable benchmark, it only slightly increases performance
on the satisfiable one.

One interesting aspect in Figure 8.2 is the fact that STP performs really well on
both benchmarks. We suppose that this is connected to the fact that power2bit

142 CHAPTER 8. SMT 2013

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of ndista with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of ndista with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of ndistb with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of ndistb with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 8.1: Detailed results of the ndist.a and ndist.b benchmark sets.

and power2eq both use indexing with relatively small indices. Interestingly,
Boolector performs much worse on both instances. The good performance on
this kind of formulas, therefore, does not seem to be a result of bit-blasting and
applying SAT solvers but rather due to some special technique used in STP.

One might notice the typical shape of the runtime curves related to IImc: they
start steep, but above a certain bit-width they show rather moderate ascent. The
curves representing space consumption seem to grow slowly up to a certain point
where, after a big jump, space usage almost seems to be fixed to a constant or, in
some cases, even starts to decrease. We think that this strange behavior is due to the
fact that IImc uses several scheduled approaches, such as IC3 [40], BMC, BDDs,
etc. Probably due to the same fact, the IImc curves are even more hectic on the
power2bit benchmark in Figure 8.2. During our experiments we also tested
IImc with IC3 strategy alone, resulting in timeouts on most instances. Therefore,
we assume that above a certain bit-width IImc with default scheduling switches to
BDDs, resulting in moderate ascent in memory consumption and runtime.

Probably Figure 8.3 depicts most properly the distinction between BDD-based
approaches and those which use SAT-based ones. Although SMT solvers and
Tip-BMC time out quite soon on both problem sets, and, on the power2sum
benchmark, the performance of IImc now is rather similar, BDD-based model
checkers are able to deal even with very large bit-widths.

In general, looking at the runtimes, we can see that SMT solvers can compete
well on instances with smaller bit-width, while BBD-based model checkers start to

8.4. CONCLUSION 143

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2bit with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2bit with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2eq with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2eq with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 8.2: Detailed results of the power2bit and power2eq benchmark sets.

outperform their counter-parts with growing bit-width.
This effect becomes even stronger when we look at the space used during solv-

ing the formulas. Judging from the graphs, it might even be possible that the space
requirement of BDD-based model checkers is logarithmic compared to that of SMT
solvers. This could be the case due to the fact that SMT solvers apply bit-blasting,
which is exponential for benchmarks that are not bit-width bounded, while our
translation does not cause the problems to leave PSPACE. However, this alone is
not sufficient. BDD-based model checkers like NuSMV might create exponential
sized BDDs nevertheless. More rigorous arguments or larger empirical analysis
are needed.

8.4 Conclusion

In this chapter, we efficiently solved quantifier-free bit-vector formulas by using
model checkers. While state-of-the-art SMT solvers usually apply bit-blasting to
solve this kind of formulas, we already showed in previous work [151] that this
can cause an exponential blowup in general. An approach for polynomially trans-
lating QF_BV to EPR exists [150] (as well as exponential ones [90, 143]), but
solving the resulting formulas also suffers from the NEXPTIME-completeness of
EPR [150, 161]. Building on previous complexity results [101], however, we know
that restricting QF_BV to only allowing bitwise operators, shift by one, addition,
subtraction, multiplication by constant, relational operators and indexing leads to

144 CHAPTER 8. SMT 2013

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2sum with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2sum with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 8.3: Detailed results of the power2sum and shift1add benchmark sets.

PSPACE-completeness of the resulting logic. This allows us to polynomially trans-
late bit-vector formulas to sequential circuits and use model checkers for reacha-
bility analysis.

In order to show the potential benefit of our approach, we created a set of
benchmarks and used it to compare the performance of various model checkers on
the translated instances to the one of current SMT solvers on the original files. We
showed that on most of our problems, state-of-the-art model checkers like IImc and
even older ones, such as NuSMV, performed better by several orders of magnitude
considering runtime as well as space.

Our results also showed that BDD-based model checking techniques perform
much better than SAT-based model checkers. This probably is the case because
of the similarity between BMC and bit-blasting, and gives reason to investigate
especially BDD-based solving techniques further. Some of the best results were
achieved by NuSMV. Considering the fact that NuSMV has seen relatively little
development during the last years compared to current SMT solvers, this could
lead to even better results if it is possible to improve the underlying techniques.
One of the main reasons we assume to be responsible for the good performance of
model checkers on our benchmarks, is their better fit to the PSPACE-nature of this
problem class. Still, the resulting BDDs can of course be exponential in general.

While we did not pay special attention to the variable ordering during our trans-
lation, we ran NuSMV using -dynamic command, letting it figure out a good
variable order during runtime. We also used the -reorder command to output

8.4. CONCLUSION 145

the optimal variable order found by NuSMV and to look for patterns in it. When
using this variable order in a second run instead of choosing the order dynamically,
the runtimes usually decreased further.7 Maybe our translation can be adapted us-
ing additional information to directly create variable orders that result in smaller
BDDs. In order to do this, it might be interesting to look at the structure of the in-
stances produced by our translation more closely. Especially the usage of counter
definitions and constraints is similar throughout all formulas.

Sequential optimization techniques, such as those implemented in state-of-the-
art model checkers like ABC [44], are useful even for bounded model checkers
which otherwise only rely on unrolling. It is an interesting question whether it
is possible to lift these techniques from model checking to bit-vector reasoning in
combination or as a preprocessing step before bit-blasting. Finally, only one model
checker could solve all of our instances for the largest bit-widths. Constructing this
kind of formulas, therefore, offers an easy way to provide challenging benchmarks
for state-of-the-art SMT solvers and model checkers at the same time. For better
solvers and future challenges, the difficulty of a problem can be adjusted by simply
increasing the bit-width of the original SMT formula.

As a related classification problem, it will be interesting to investigate the com-
plexity of Presburger arithmetic on fixed-size bit-vectors.8 While the correspond-
ing decision problem is known to be NP-complete for non-fixed-size bit-vectors, it
is not clear whether we still remain in NP when considering fixed-size bit-vectors
and whether translations as proposed in [45] are polynomial if a logarithmic en-
coding is used for the bit-widths.

7This is not included in our results since we did not analyze it in detail yet.
8The benchmark sets ndist.a and ndist.b are in this class.

146 CHAPTER 8. SMT 2013

Chapter 9

Quantifier-Free Bit-Vector
Formulas with Binary Encoding:
Benchmark Description

Published. In Proceedings SAT Competition 2013, A. Balint, A. Belov, M. Heule,
M. Järvisalo (editors), volulme B-2013-1 of Department of Computer Science Se-
ries of Publications B, pages 107–108, University of Helsinki, 2013 [152].

Authors. Gergely Kovásznai, Andreas Fröhlich, and Armin Biere.

Abstract This document describes several sets of benchmarks corresponding to
quantifier-free bit-vector formulas. A generation script first creates all benchmarks
in SMT2 format and then uses Boolector to generate CNF instances in DIMACS
format by bit-blasting.

9.1 Introduction

Bit-precise reasoning over fixed-size bit-vector logics (QF_BV) is important for
many practical applications of Satisfiability Modulo Theories (SMT), particularly
for hardware and software verification. In [151], we argued that a logarithmic
(w.l.o.g., binary) encoding, as used, e.g., in the SMT-LIB format [18], leads to
NEXPTIME-completeness of the underlying decision problem. Bit-blasting, as
used in most current SMT solvers, therefore, produces exponentially larger CNF
formulas on certain QF_BV formulas. We provide generation scripts for several
sets of QF_BV benchmarks in SMT-LIB format where this is the case and use bit-
blasting to generate SAT benchmarks out of the original SMT2 specifications. All
scripts and generated benchmarks are available at http://fmv.jku.at/smtbench.

147

http://fmv.jku.at/smtbench

148 CHAPTER 9. SC 2013

9.2 Benchmarks

Our benchmark sets can be divided into two main categories: Expressing com-
mon bit-vector operations by other operations and general properties that can be
expressed by a fragment of QF_BV with a restricted set of operations.

9.2.1 Translating Bit-Vector Operations

The first category contains 13 different benchmark sets and was used for verifying
correctness of various translations between bit-vector operators. Having proved
that bitwise operations, equality, and slicing suffice to derive NEXPTIME-hardness
theoretically, we also wanted to give concrete examples of how to replace common
bit-vector operations by those base operations. To check correctness, we encoded
all translations into SMT2 and verified that no counter-example exists. We did this
for 13 different operations. All benchmarks are unsatisfiable:

addition (bvadd), subtraction (bvsub), multiplication (bvmul), unsigned
division (bvudiv), signed division (bvsdiv), unsigned remainder (bvurem),
signed remainder (bvsrem), signed modulo (bvsmod), shift left (bvshl), log-
ical shift right (bvlshr), arithmetic shift right (bvashr), unsigned less than
(bvult), and signed less than (bvslt). To give one specific example, addition
can be expressed by base operations as follows:

t1
rns � t2

rns is replaced by ts1
rns ` ts2

rns ` cin
rns and additional constraints

1. ts1
rns � t1

rns

2. ts2
rns � t2

rns

3. coutrns � pts1
rns&ts2

rnsq | pts1
rns&cin

rnsq | pts2
rns&cin

rnsq

4. cinrns � cout
rns ! 1rns

are added. Now again, coutrns ! 1rns can be replaced by ts3
rns and additional

constraints

1. ts3
rns rn : 1s � cout

rns rn� 1 : 0s

2. ts3
rns r0 : 0s � 0r1s

are added.
While this is well-known for the example of addition, expressing multiplication

or other operations by using only those base operations is much more complicated
and cannot be detailed in the scope of this description. On the other hand, this
already explains the benefit of verifying correctness by using our benchmarks.

9.2.2 Bit-Vector Properties in PSPACE

The second category consists of QF_BV benchmark sets with a reduced set of op-
erations. In [101], we showed that QF_BV becomes PSPACE-complete under cer-
tain restrictions on the set of allowed operations. While bit-blasting still produces

9.3. SMT2 AND CNF GENERATION 149

exponentially larger formulas, the original benchmarks could be solved more effi-
ciently, e.g., by using model checkers. It will be interesting to see whether any of
the SAT solvers can also profit from this fact.

The 4 benchmark sets contained in this category are the following ones:
ndist.a: We verify that, for two bit-vector variables xrns, yrns, it holds that

xrns yrns implies pxrns � 1rnsq ¤ yrns. The instances are unsatisfiable.
ndist.b: We give a counter-example (due to overflow) to the claim that,

for two bit-vector variables xrns, yrns, it holds that pxrns � 1rnsq ¤ yrns implies
xrns yrns. The instances are satisfiable.

power2sum: We verify that, for two bit-vector variables xrns � 2j , yrns � 2k,
with j � k, xrns � yrns cannot be a power of 2. The instances are unsatisfiable.

shift1add: We verify that for an arbitrary bit-vector xrns, there exists no
bit-vector yrns � xrns with pxrns � yrnsq � pxrns ! 1rnsq. The instances are
unsatisfiable.

9.3 SMT2 and CNF generation

For each of the 17 benchmark sets, an individual generation script is provided. The
scripts generate several instances of the given problem set, starting from a minimal
bit-width up to a maximal bit-width, incrementing the bit-width by a given step
size. Given those parameters as input, they output several SMT2 formulas with
bit-vector variables of corresponding bit-widths. Additionally, a generate.sh
script is included. This script automatically calls all individual generation scripts
with appropriate parameters (i.e., bit-widths that create challenging but not too-
hard instances) and afterwards calls Boolector [47] with argument -de to bit-blast
the SMT2 instances and create CNF formulas in DIMACS format, therefore, di-
rectly providing the input benchmarks for the SAT solvers. Additional CNF in-
stances corresponding to different bit-widths can be created manually by using
the individual scripts with custom parameters and then translating the output with
Boolector.

9.4 Practical Considerations

All our benchmarks were originally created to evaluate the performance of SMT
solvers. While most benchmarks were challenging for all SMT solvers, some
solvers turned out to perform particularly well on specific instances. So far, it
is not clear whether this difference in performance is due to SMT rewriting rules,
differences in bit-blasting, or because of the underlying SAT solvers. Therefore,
it will be interesting to see how various SAT solvers perform on the bit-blasted
version of our benchmarks.

150 CHAPTER 9. SC 2013

Chapter 10

Stochastic Local Search for
Satisfiability Modulo Theories

Published. In Proceedings 29th AAAI Conference on Artificial Intelligence, pages
1136–1143, AAAI Press 2015 [98].

Authors. Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, and Youssef
Hamadi.

Abstract. Satisfiability Modulo Theories (SMT) is essential for many practical
applications, e.g., in hard- and software verification, and increasingly also in other
scientific areas like computational biology. A large number of applications in these
areas benefit from bit-precise reasoning over finite-domain variables. Current ap-
proaches in this area translate a formula over bit-vectors to an equisatisfiable propo-
sitional formula, which is then given to a SAT solver. In this chapter, we present
a novel stochastic local search (SLS) algorithm to solve SMT problems, especially
those in the theory of bit-vectors, directly on the theory level. We explain how sev-
eral successful techniques used in modern SLS solvers for SAT can be lifted to the
SMT level. Experimental results show that our approach can compete with state-of-
the-art bit-vector solvers on many practical instances and, sometimes, outperform
existing solvers. This offers interesting possibilities in combining our approach
with existing techniques, and, moreover, new insights into the importance of ex-
ploiting problem structure in SLS solvers for SAT. Our approach is modular and,
therefore, extensible to support other theories, potentially allowing SLS to become
part of the more general SMT framework.

10.1 Introduction

Satisfiability Modulo Theories (SMT) represents the decision problem for logical
formulas with respect to certain background theories. It combines the problem
of Boolean satisfiability (SAT) with other areas, e.g., the theories of integers, real

151

152 CHAPTER 10. AAAI 2015

numbers, lists, arrays, and bit-vectors, and has many different applications, pre-
dominantly in hard- and software verification [82, 17, 236, 115, 179]. While most
of the methods presented in this chapter are generally applicable, we focus on the
theory of bit-vectors (quantifier-free and fixed-size), which enjoys decidability, but
pays the high price of being NEXPTIME-complete, as [151] have shown. Examples
of state-of-the-art SMT solvers with support for bit-precise reasoning are Boolec-
tor [47], MathSAT [50], and Z3 [81].

Most approaches for solving this kind of formulas rely on translating the in-
put formula into SAT (dubbed ‘bit-blasting’) and then handing it to a SAT solver,
most often of the conflict driven clause learning (CDCL) kind. In this chapter, we
present a novel stochastic local search (SLS) algorithm to solve bit-vector formulas
directly on the theory level. SLS is a heuristic method which has always played
an important role in AI and is successfully applied to many different problems in
various areas, e.g., see [128]. Today, SLS is not a usual ingredient in SMT solvers.
We intend to close this gap by providing an SLS algorithm (specialized for the
theory of bit-vectors), which is, for the most part, easy to adapt for other theories.
Besides avoiding the blowup in size that often comes with bit-blasting, applying
SLS techniques on the bit-vector level has several advantages. For example, struc-
tural information, i.e., word-level information, is used to guide the search directly.
In contrast, a CDCL SAT solver operating on the propositional representation is
not aware of this information. Nevertheless, it is possible to profit from techniques
used in SAT solving also in SLS on the SMT representation. We show how several
techniques that are common in SLS SAT solvers are successfully lifted to the SMT
level. In many cases of practical applications [236, 115, 179], input formulas are
actually expected to be satisfiable, making them well-suited for SLS algorithms.
The idea of integrating SLS solvers with other solvers has been explored before,
either by employing an SLS solver on the Boolean skeleton of a formula [119], or
by explicit incorporation of high-level constraints, either learned automatically, or
provided by the user [178]. Apart from this, model-driven techniques (though, not
local search based) exist for arithmetic theories [83].

Our experimental results show that the SLS approach we present is competitive
with state-of-the-art bit-vector solvers on many practical instances and that it fre-
quently outperforms existing SMT solvers based on bit-blasting. While we found
that bit-blasting solvers are still faster overall, this offers an interesting line of re-
search combining SLS with existing techniques, with the goal of improving the
state-of-the-art for SMT solvers. Although having undergone years of develope-
ment, existing SLS solvers for SAT turn out to perform worse than our approach,
sometimes by orders of magnitude. From a theoretical point of view, the impor-
tance of exploiting problem structure in SAT solvers has often been conjectured
and discussed [218, 21, 86, 139, 189]. Nevertheless, previous attempts have not
yielded in efficient techniques that play a role in state-of-the-art solvers so far.
However, the performance of our algorithm clearly demonstrates that SLS solvers
can indeed benefit from structural information during search.

The remaining part of the chapter is structured as follows: In Section 10.2, we

10.2. PRELIMINARIES 153

define the logic and the input format that we use. A brief overview about stochastic
local search and the architecture of our algorithm is presented in Section 10.3. In
Section 10.4, we give details and concrete implementations of all components used
in our algorithm. Furthermore, we describe how several techniques used in SLS
solvers for SAT are adopted for SMT. We present an experimental evaluation in
Section 10.5 and discuss insights we gained, as well as possible future work in
Section 10.6. Finally, we compare our approach to related work in Section 10.7
and conclude in Section 10.8.

10.2 Preliminaries

The theory of fixed-size bit-vector logics (i.e., logics where each bit-vector has a
given, fixed bit-width) is discussed in many different settings (e.g., [19, 35, 51,
74, 96]). Several different formats for bit-vector logics exist, perhaps currently the
most common being the SMT-LIB format [18]. In this chapter, we use a restricted
definition of a bit-vector logic, which is the input that our SLS algorithm accepts.
This form of (simplified) formulas is easily obtained through the means of any
SMT solver that has facilities for converting to Negation Normal Form (NNF; we
use Z3 as our SMT solver). A bit-vector formula F in NNF is defined by the
following grammar:

F � oexpr ¡ ^ � � �^ oexpr ¡

 oexpr ¡ � aexpr ¡ _ � � �_ aexpr ¡

 oexpr ¡ � Atom | Atom

 aexpr ¡ � oexpr ¡ ^ � � �^ oexpr ¡

 aexpr ¡ � Atom | Atom

Atoms are either Boolean variables or relations (�,¤) between two bit-vector ex-
pressions. We refer to the top-level expressions of F as assertions. It is easy to
check that every bit-vector formula can be translated to an equivalent one in this
grammar with only polynomial growth. To see this, consider that¤ can be replaced
by a combination of and �, ¥ by negation, and , and if-then-else constructs
by using implications on the Boolean level. In some cases, to achieve conversion
in polynomial time (and space), it is helpful to introduce Tseitin variables.

The concrete definition of a bit-vector term is left open on purpose; the exact
syntax and semantics of the terms are not relevant in the context of our approach.
All common operators, e.g., those from SMT-LIB [18], can be used to build arbi-
trary syntactically valid expressions. The only condition we require is that there is
a function to evaluate expressions if fixed input values are assigned to all variables
they contain.

Example 10.1. As a running example, consider the assertion

x� 3 � �x ,

154 CHAPTER 10. AAAI 2015

where x is a bit-vector of size n (sometimes a large number), � denotes bitwise
negation, and the� operation is as usual, i.e., with overflow semantics. To simplify
our example, assume n � 6. If we initialize the search at x � 0, or in vector
notation, at

x � r0, 0, 0, 0, 0, 0s ,

then the assertion evaluates to

r0, 0, 0, 0, 1, 1s � r1, 1, 1, 1, 1, 1s .

Furthermore, assume that the cost function s for � is the relative number of bits
that are assigned equal. Initially, s � 2

6 .

10.3 Architecture

Given an optimization problem, a generic local search algorithm starts from an ini-
tial state and then iteratively moves to a neighbouring state. For the problem of
propositional satisfiability, a state corresponds to a truth assignment to all Boolean
variables of a given formula. The neighbourhood of a given assignment α is usually
defined to be the set of all assignments that have a Hamming distance of 1 from α.
Therefore, a neighbouring assignment is obtained by flipping the value of a single
Boolean variable and a search consists of repeatedly flipping the values of Bool-
ean variables until a satisfying assignment is found. Most SAT solvers consider
input formulas in conjunctive normal form (CNF), i.e., formulas which are sets of
clauses. In that case, a scoring function for evaluating the quality of an assignment
and optimizing is naturally given by the number of unsatisfied clauses. Actual
implementations mainly differ in the heuristics used during the search [128].

We use a similar architecture to obtain an SLS solver for SMT problems by
generalizing the notion of states to assignments to theory variables; our focus being
on fixed-size bit-vector variables. A natural neighbourhood relation is then given
by the set of assignments that are reached by flipping a single bit of a bit-vector
variable, or the value of a Boolean variable. In the following, whenever we use the
term ‘variable’ without giving an explicit specification of its type, the variable is
either a bit-vector variable or Boolean. When we have a set that contains both types
of variables and we only give a certain definition for the bit-vector variables, we
implicitly treat Boolean variables as bit-vector variables of bit-width 1. Extensions
to this neighbourhood relation are discussed in Section 10.4. Figure 10.1 describes
the high-level concept of our SLS algorithm for SMT.

To drive the search and to evaluate the quality of an assignment, we require a
scoring function. We define the score s of a nested expression with respect to an
assignment α recursively as a floating value:

spe1 _ � � � _ en, αq � maxtspe1, αq, . . . , spen, αqu

spe1 ^ � � � ^ en, αq �
1
n � pspe1, αq � � � � � spen, αqq

10.4. IMPLEMENTATION 155

1 procedure SLS4SMT(F)

2 for i � 1 to 8

3 α = initialize(F);

4 for j � 1 to maxSteps(i)

5 V = selectCandidates(F,α);

6 move = findBestMove(F, α, V);

7 if (move � none) α = update(α,move);

8 else α = randomize(α, V);

Figure 10.1: Pseudo-Code of our SLS architecture for SMT.

Furthermore, the score of an atom is defined by

spxr1s, αq � x|α ,

if the atom is a Boolean variable and, for 0 ¤ c1 ¤ 1, by

spt
rns
1 � t

rns
2 , αq �

#
1 if t1|α � t2|α

c1 � p1�
hpt1|α,t2|αq

n q otherwise
,

spt
rns
1 ¤ t

rns
2 , αq �

#
1 if t1|α ¤ t2|α

c1 � p1�
t1|α�t2|α

2n q otherwise
,

with h being the Hamming distance, if the atom is a bit-vector expression. Negated
atoms are evaluated analogously. The constant c1 allows to focus on satisfying ex-
pressions by scaling all unsatisfied atoms. It is easy to check that, given a formula
F and an assignment α, spF, αq evaluates to 1 if and only if α is a satisfying as-
signment for F .

10.4 Implementation

Note that the algorithm in Figure 10.1 contains two loops. The inner loop describes
a single round of search, while the outer loop is used to implement restarts after a
certain number of search steps. Facilities for restarts are not strictly required, but
they increase performance in practice.
Initialization. An initial assignment is generated by setting all variables to some
specific value. While SLS solvers for SAT usually use random values to initialize
Boolean variables, setting all bit-vectors to 0 can sometimes be beneficial in the
context of verification domains. Note that setting all bit-vectors to 0 does not cor-
respond to setting all Boolean variables to 0 in the CNF representation. Without
explicit tracking, this information is usually lost during bit-blasting.
Candidate Selection. The time spent in each search step is directly proportional

156 CHAPTER 10. AAAI 2015

to the number of possible moves that are considered. Checking the full neighbour-
hood of an assignment is often expensive. To avoid this, we look at the restricted
neighbourhood with respect to certain candidate variables. Since we are looking
for a satisfying assignment and our input formula is a conjunction of top-level as-
sertions, it is reasonable to consider those variables as candidates that occur in at
least one unsatisfied assertion. Changing any other variable cannot increase the
score by definition. This is a well-known concept in SLS for SAT; similar to the
one applied in selection heuristics of the so-called class of GSAT algorithms. The
set of candidate variables is then further shrunk by considering only variables from
one unsatisfied assertion, which is selected according to some heuristic beforehand.
This is inspired by the so-called class of WalkSAT algorithms for SAT. While this
comes at the cost of potentially missing the best move with respect to the score
function, the overall performance of the algorithm often improves because it per-
forms more moves per second and, at the same time, it is guaranteed that each
clause has at least one variable with a wrong assignment. Furthermore, not pick-
ing the best move with respect to the overall score is even beneficial sometimes,
because it offers some diversification and makes the algorithm more robust with
respect to local minima of the search space. For those reasons, WalkSAT architec-
tures are often preferred for SAT. More details and a discussion of the GSAT and
WalkSAT architectures are found in [128].

For SAT, clause selection in most WalkSAT algorithms is usually done ran-
domly. However, recent work shows that clause selection has a strong impact on
the performance of WalkSAT algorithms and random selection is sometimes sub-
optimal. For example, breadth-first selection heuristics sometimes achieve better
results [13]. Still, clause selection has to be rather simple because SLS solvers for
SAT often perform several million moves per second. In contrast, fast assertion
selection is less important for our architecture, due to the fact that a single move is
much more complicated compared to SAT. This allows us to use more sophisticated
heuristics for assertion selection without the risk of it becoming the bottleneck of
our algorithm.

Running some preliminary experiments showed that it is frequently better to se-
lect assertions that already have a high score (i.e., are almost satisfied). Given the
results from [13], it is likely that some diversification is beneficial as well. There-
fore, we use a heuristic inspired by the field of bandit theory used in the UCB
(Upper Confidence Bounds) algorithm [1]. Let ai be the assertions of a given for-
mula and c2 be some constant. We select the unsatisfied assertion that maximizes
the term

spai, αq � c2 �

c
log selectedpaiq

moves
,

where selectedpaiq is the number of times, the specific assertion ai has already
been selected and moves is the total number of search steps that have been per-
formed so far.
Move Selection. Given a candidate set, we inspect the neighbourhood of the cur-
rent assignment with respect to all candidate variables. In particular, this implies

10.4. IMPLEMENTATION 157

evaluating the score of each possible assignment obtained by flipping any bit of
any candidate variable. Given a set of candidate variables txrn1s

1 , . . . , x
rnks
k u, the

neighbourhood is of size N � Σini. Compared to SAT, the neighbourhood used
in our architecture is way larger. Furthermore, evaluating the score function im-
plies updating the whole formula. This is again in contrast to SAT, where the score
change is either cached or easy to compute on the fly [13]. Evaluating possible
moves, therefore, is the bottleneck of our current implementation. As pointed out
in Section 10.3, we try to maximize the score function. One important feature to
use during score computation is early pruning. In our solver, a formula is saved
in a directed acyclic graph (DAG) structure. When evaluating a new assignment,
we have to proceed bottom-up. We start evaluating the atoms and then iteratively
continue evaluating parent expressions. We do this in a breadth first way and save
all current expressions in a queue structure. Due to the definition of the score func-
tion and the fact that our formula does not contain any negations other than those
at the atom level, we can immediately stop evaluating a specific assignment if, at
one point, the queue only contains expressions with lower scores than those for the
same expressions with respect to the original assignment.

In the end, the move with the largest improvement in score is selected. If no
improvement in score is possible, no move is returned. This is similar to the be-
haviour of many SLS algorithms for SAT. For example, the state-of-the-art solver
Sparrow [14] also applies a similar deterministic highest-reward strategy in one of
its components. In order to prevent getting stuck in local minima, we optionally
allow random walks [203]. With a certain walk probability wp, a random move
is selected (even if it is non-improving). From a theoretical point of view, a ran-
dom walk additionally causes our algorithm to be probabilistically approximately
complete (PAC) [128].

Example 10.2. Consider the assertion in Example 10.1 and the state of the search
being such that x is assigned 0 (for n � 6). The assertion evaluates to

r0, 0, 0, 0, 1, 1s � r1, 1, 1, 1, 1, 1s .

Flipping any single-bit either increases the score by 1
6 (1

n , in the general case), or
does not increase the score at all. In contrast, negating x directly improves the
score by 3

6 (n�2
n , in the general case). Thus, the algorithm would negate x and the

assertion would now evaluate to

r0, 0, 0, 0, 1, 0s � r0, 0, 0, 0, 0, 0s ,

with x � r1, 1, 1, 1, 1, 1s and s � 5
6 being the new values of x and the score func-

tion, respectively.

Update. After an improving move was found, the assignment is updated and prop-
agated through the DAG structure of the formula. As mentioned before, scores are

158 CHAPTER 10. AAAI 2015

also stored for each subexpression when updating, in order to allow early pruning
in the next search steps.
Randomization. Whenever no improving move was found, we simply set one of
the candidate variables to a random value within its range and update all nodes
in the formula DAG. This strong kind of randomization enables the algorithm to
efficiently escape many local minima and allows to traverse new parts of the search
space. In contrast to random walks during move selection, this part of the algorithm
is essential for solving practical instances. Nevertheless, using only this kind of
randomization does not guarantee the PAC-property from the theoretical point of
view.
Assertion Weights. In SLS solvers for SAT, clause weighting schemes were an
important novelty and are part of many efficient algorithms [128]. PAWS was
the first solver to apply an additive weighting scheme and the same approach can
still be found in many modern solvers [219]. We adopted this approach to SMT
and used it to dynamically assign weights to the top-level assertions of an input
formula during search. Each assertion ai of F gets assigned a weight wi. Initially,
all weights are set to 1. Updates occur whenever no increasing move is possible,
i.e., when we randomize, in the following way: With probability p1� spq, increase
the weight wi of all unsatisfied assertions by c3. With probability sp, decrease the
weight wi of all satisfied assertions by c3 to a minimum of 1. Whenever the score
of the formula F with respect to an assignment α is evaluated in order to select the
best move, we do so according to

spF, αq � w1 � spa1, αq � � � � � wn � span, αq .

Although this new score function is not normalized anymore, this does not affect
the correctness of the algorithm.
Restarts. While restarts are one of the most important features of CDCL solvers,
they are usually not beneficial in SLS solvers for SAT. For our bit-vector approach,
restarts turn out to be beneficial. We implemented an exponential restart scheme,
similar to those that are used in CDCL solvers, specifically, the Luby scheme [168].
We define the maximum number of steps in the i-th round as

maxSteps(i) :�

#
c4, if i is odd
c4 � 2

i
2 , if i is even

This is different to existing schemes in the sense that it has more very short runs
but at the same time it grows faster.

Note that restarts in our implementation only refer to a reset of the current
assignment. In contrast, they do not imply a reset of information gathered during
search, e.g., how often an assertion has already been selected or the weight of an
assertion. Preliminary experiments showed that it is beneficial to keep those values.
Intuitively, this allows learning from previous runs to make better decisions in later
ones.

10.5. EXPERIMENTAL RESULTS 159

Extended Neighbourhoods. As pointed out in Section 10.3, a simple neighbour-
hood relation is given by flipping single bits of bit-vector variables, which is very
similar to the neighbourhood considered in SLS solvers for SAT. It is easy to see
that this neighbourhood relation already allows traversing the full search space.
Nevertheless, extended neighbourhoods tailored towards bit-vectors often have ad-
vantages. We therefore included three additional moves for bit-vector variables
in our algorithm: Incrementing by 1, decrementing by 1, and bitwise negation.
Given a set of candidate variables txrn1s

1 , . . . , x
rnks
k u, the neighbourhood then is

of size N 1 � Σipni � 3q. Considering the fact that ni often is 16 or 32 in bit-
vector applications, the overhead is relatively small and usually outweighed by the
benefit of permitting those natural bit-vector moves. We also tried implementing
other moves, such as shifts by 1, multiplication by 3, or unary minus, but could not
further improve performance by doing so, in general. For future work, it will be
interesting to combine our approach with techniques used in the context of Vari-
able Neighbourhood Search (VNS) [174, 121]. Preliminary experiments showed
promising results.

Example 10.3. We left Example 10.2 at x � r1, 1, 1, 1, 1, 1s, with the assertion
evaluating to

r0, 0, 0, 0, 1, 0s � r0, 0, 0, 0, 0, 0s ,

which is already very close to a solution. Flipping the least significant bit is the
only move that will further increase the score. We get x � r1, 1, 1, 1, 1, 0s, and the
assertion will now evaluate to

r0, 0, 0, 0, 0, 1s � r0, 0, 0, 0, 0, 1s .

Thus, we arrive at a solution for this example in only two moves. Note that the
number of moves does not depend on the size of the vectors; n� 1 separate bit-flip
moves, each of which slightly improving the cost, are replaced by two moves.

10.5 Experimental Results

To evaluate the performance of our algorithm, we ran experiments on two differ-
ent sets of benchmarks. The first benchmark family is the QF_BV benchmark set,
which can be found in the SMT-LIB and is also part of the SMT Competition. The
QF_BV benchmark set is a huge and broad collection of benchmarks, consisting of
many smaller families and is the standard reference for measuring the performance
of bit-vector solvers. We ran Z3 [81] on the full benchmark set of 33068 instances
and removed all those which Z3 proved to be unsatisfiable within 1200 seconds.
From the remaining 11715 instances, we further filtered out those 4543 formulas,
that were shown to be satisfiable only by using preprocessing techniques. This
left us with a total of 7498 instances in the QF_BV set for the following experi-
ments. A second benchmark family is given by the SAGE2 benchmark set. Those

160 CHAPTER 10. AAAI 2015

0

1

10

100

T/O

0 1 10 100 T/O

Z3
 B

V-
SL

S
[s

ec
]

CCAnr [sec]

(a) QF_BV

0

1

10

100

T/O

0 1 10 100 T/O
Z3 (Default) [sec]

(b) QF_BV

0

1

10

100

T/O

0 1 10 100 T/O

Z3
 B

V-
SL

S
[s

ec
]

Z3 (Default) [sec]

10

10²

10³

10⁴

(c) SAGE2

Figure 10.2: Scatter plots and heat maps comparing BV-SLS to CCAnr on QF_BV
and to Z3 on both benchmark sets.

problems were generated as part of the SAGE project at Microsoft [115], describ-
ing some testcases for automated whitebox fuzz testing. Older benchmarks from
the SAGE project can also be found as part of the QF_BV benchmark set. The
SAGE2 set consists of 8017 instances (filtered out of original 17920 instances,
9903 were shown to be unsatisfiables within 1200 seconds, none were solved by
preprocessing only), which are known to be hard for state-of-the-art SMT solvers.
All experiments were run on a Windows HPC cluster of dual Quad-Xeon (E54xx)
machines, 16 GB RAM, and used a time limit of 1200 seconds.

We compared our new solver BV-SLS to the most recent version of the state-
of-the-art SMT solver Z3, which is based on bit-blasting and then running a CDCL
SAT solver on the propositional encoding. For all benchmarks, we used the default
configuration of BV-SLS: All variables are initialized to 0, candidate selection
occurs using the UCB scheme, constants are set to c1 � 0.5, c2 � 20, c3 � 0.025,
c4 � 100, wp � 0.1, sp � 0.05, and it uses the extended neighbourhood relation
that additionally allows increment by 1, decrement by 1, and bitwise negation.

To evaluate the direct benefit of using bit-vector information for SLS, we ran

10.5. EXPERIMENTAL RESULTS 161

QF_BV SAGE2
CCAnr 5409 64
CCASat 4461 8
probSAT 3816 10
Sparrow 3806 12
VW2 2954 4
PAWS 3331 143
YalSAT 3756 142
Z3 (Default) 7173 5821
BV-SLS 6172 3719

Table 10.1: Number of solved instances.

several state-of-the-art SLS solvers for SAT on propositional encodings of our
benchmarks as CNF. To obtain those encodings, we used the bit-blasting com-
ponent of Z3. This conversion was done together with preprocessing in advance to
the experiments (also using a time limit of 1200 seconds). We did not add this to
the actual runtime of the solvers, assuming that the input is directly given as a pre-
processed CNF. In theory, this gives an advantage to the SAT solvers. Furthermore,
CNF conversion did not succeed for all instances. This was either because Z3 ran
out of memory (M/O) or because it did simply not terminate in the given time limit
(T/O). In total, CNF conversion produced 21 M/O and 75 T/O results for QF_BV, and
29 T/O results for SAGE2. We considered those instances as not being solved by
the SAT solvers, since it was not feasible to obtain a CNF representation in the first
place. Z3, using bit-blasting, could not solve any of those either. BV-SLS was
also not able to solve any of the corresponding QF_BV instances, but found a so-
lution in 13 cases for the SAGE2 formulas. As SLS SAT solvers, we used several
versions of CCA [62], probSAT [15], Sparrow [14], YalSAT [27], and the imple-
mentations of PAWS [219] and VW2 [195] in UBCSAT [220]. CCASat, probSAT,
and Sparrow have consistently achieved good results over the last SAT Compe-
titions. CCAnr, PAWS and VW2 are known for performing particularly well on
some application benchmarks. YalSAT was among the few ‘pure’ SLS solvers (i.e.,
not using a CDCL component) that produced good results in the application track
of the latest SAT Competition. We also tried to include Sattime2014r [163], but
encountered difficulties porting it to Windows. However, Sattime2014r had very
similar performance to YalSAT in the application track of the SAT Competition
2014.

The number of solved instances is given in Table 10.1. The scatter plots and
heat maps in Figures 10.2a, 10.2b, and 10.2c provide details about the runtime
behavior of our implementation. All solvers were run once (i.e., with one seed) per
instance.

162 CHAPTER 10. AAAI 2015

10.6 Discussion

The results from Section 10.5 provide several insights. First of all, comparing our
SLS algorithm on the bit-vector representation with SLS solvers for SAT showed
that we can actually profit from using additional word-level information, especially
on the SAGE2 benchmark set (Table 10.1). This is particularly interesting in the
context of SAT solvers. While SLS solvers for SAT are known to perform well on
randomly generated formulas and, sometimes, on hard combinatorial benchmarks,
CDCL solvers usually perform much better on so-called structured formulas, of-
ten coming from practical problems in industry which have been re-encoded into
propositional logic. This is often attributed to the fact that CDCL solvers are able
to learn during search and make inferences, extracting this kind of original struc-
ture from a propositional formula. In contrast, most SLS solvers only use very
local information. Exploiting structure for SLS SAT solvers has been looked at
before, but did not yield in efficient solvers so far. Our results clearly show that
SLS solvers can actually profit from using structural information during search.

While there is still a gap between the average performance of our solver com-
pared to state-of-the-art SMT solvers based on bit-blasting and CDCL (Table 10.1),
our approach can actually outperform Z3 on several instances, especially among
those contained in the SAGE2 benchmark set (Figure 10.2c). This is interesting
from two different points of view. First, our algorithm is a completely new ap-
proach, which has not yet had several years of research, development and tuning
that CDCL algorithms have seen. It is very likely that data structures, implemen-
tation and heuristics can still be improved easily for our approach. For example,
improvements might be found by adopting further techniques which have already
been applied successfully in SAT solving or by using more complex heuristics that
are not possible to realize in the propositional case. Since SLS solvers are known
to be very sensitive with regard to their parameters, automated configuration, as
applied for SAT [130], could be beneficial for our approach too. Second, combi-
nations of our algorithm with existing SMT solvers seem promising, because both
kind of solvers often perform well on distinct kind of problems (Figure 10.2c).
Simply running an SLS component for a very short time before the actual SMT
solver could already help finding solutions for many additional problems, poten-
tially improving the state-of-the-art in SMT by SLS. In a further step, solvers could
also start to exchange information between each other, as it has already been tried
for SLS and CDCL solvers for SAT [155], e.g., by initializing the VSIDS values of
the CDCL solver according to information gained by a previous SLS run.

Another possibility for future work is the extension of our algorithm to allow
other theories apart from bit-vectors. As described in Section 10.3, the underly-
ing architecture of our algorithm is very general. The only time we actually use
bit-vector information is in the definition of the score function for bit-vector ex-
pressions and the neighbourhood relation. All other components, as described in
Section 10.4, as well as their improvements by techniques known from SAT solv-
ing, only take into account the Boolean part of a given formula. To allow dealing

10.7. RELATED WORK 163

with arbitrary other theories, it is sufficient to provide a score function for the the-
ory expressions as well as a neighbourhood relation on the theory variables.

10.7 Related Work

[119] defines the WalkSMT algorithm, which uses an SLS solver for the Boolean
abstraction of a given problem, but they do not exploit SLS on the theory level. An
additional theory solver is used to check satisfying Boolean assignments for theory
consistency and, if they are inconsistent, to refine the abstraction in a lazy way.

[178] presents a stochastic CSP solver that applies a bit-string encoding and
then uses a stochastic search algorithm. However, their description is rather high-
level and no concrete implementation is given. The most significant difference
to our work can be found in the fact that we explicitly look at the problem from
an SMT perspective. By doing so, we are able to successfully lift many sophisti-
cated techniques from SAT solving to our approach. The experimental evaluation
in [178] is only performed on a limited set of crafted benchmarks. By using the
full QF_BV benchmark for our evaluation, we provide a more detailed picture of
the overall performance of our solver.

10.8 Conclusion

In this chapter, we proposed an approach towards bridging the gap between SMT
and SLS. We presented a novel SLS algorithm to solve bit-vector formulas directly
on the theory level. Furthermore, we explained how several techniques used in
SLS solvers for SAT can be lifted to the SMT level and gave experimental results,
confirming the benefit of applying local search directly on the bit-vector represen-
tation instead of using a propositional encoding. This gave new insights into the
importance of exploiting problem structure also in SLS solvers for SAT. While
there is still a gap in performance compared to state-of-the-art bit-vector solvers,
our approach outperforms Z3 on many instances of practical relevance. This offers
interesting possibilities in combining our solver with existing approaches, poten-
tially improving the performance of both.

164 CHAPTER 10. AAAI 2015

Chapter 11

Contributions

As noted at several occasions, all of the work presented in Chapters 2–10 was the
result of joint work with other authors. Much of this would probably not have
been possible individually, and all papers were influenced by each of the authors.
In this section, my individual contribution to each of the chapters is pointed out.
Note that, even when some specific idea is attributed to a concrete author, the
idea usually was a product of many iterations, always being the result of steadily
ongoing discussions between all of the authors.

Chapter 2 [151]. The idea of satisfiability of general bit-vector formulas, i.e.,
not unary encoded ones, probably not being NP-complete, resulted from a joint
discussion of the authors. While NP-completeness does hold for the unary case, we
quickly realized that the principle of bit-blasting cannot be used to argue for NP-
inclusion when a logarithmic encoding is used. It was Gergely who first came up
with the translations that we used to show NEXPTIME and 2-NEXPTIME-hardness
of our distinct classes. Gergely also was the first to formalize the concept of bit-
width boundedness. My main contribution was to formally show correctness and
polynomiality of the main reduction. Aside from this, I specified the inclusion
results and was involved in the writing process.

Chapter 3 [101]. The central idea from this work, being the fact that restricted
sets of operators probably lead to less expressive bit-vector logics, again originated
from joint discussions of all authors. I then was the first to prove that the pre-
sented fragments are actually PSPACE-complete and NP-complete. Furthermore, I
showed how addition, multiplication and slicing are related to the presented logics.
On the other side, Gergely proved the possible extension for relational operators.
While Gergely also provided a formal definition of the bit formulas used in our
paper, I was responsible for writing the remaining part of the paper.

Chapter 4 [153]. Being a journal submission, a large part of the content in this
paper originated from the previous work presented in Chapter 2 and Chapter 3.
Considering the modifications and extensions of our previous work, Gergely for-
mally introduced the detailed formalization including syntax and semantic of our

165

166 CHAPTER 11. CONTRIBUTIONS

bit-vector formulas, as well as the Common Operator Framework and the ex-
tended concept of scalar boundedness. Gergely also reworked the NEXPTIME-
completeness proof for our main bit-vector logic and added several extensions for
some of the fragments. In particular, Gergely introduced if-then-else constraints,
certain relational constraints and right shifts for the PSPACE-fragment, and gen-
eral shifts (using barrel shifts), equivalence of extraction and concatenation, and
shuffle versions, for the NEXPTIME-fragment. I reworked the PSPACE- and NP-
completeness proofs and, moreover, introduced several new extensions for the NP-
fragment, allowing indexing and relational operators. Furthermore, I formalized
the alternative characterizations for the PSPACE class, including addition and mul-
tiplication by constant. For the NEXPTIME class, I showed the equivalent char-
acterization by extraction or concatenation, and the particularly sophisticated one
by multiplication. Additionally, I pointed out the relation of our 2-NEXPTIME

class to Peano arithmetic and introduced the concept of universal bit-width bound-
edness as well as quantification over array indices. I also showed the complexity
results for the universal bit-width-bounded class and for quantifier-free logics with
non-recursive macros. Writing was done in equal parts.

Chapter 5 [99]. The idea of developing a dedicated DQBF solver was the result
of joint discussion. I then introduced the DQDPLL approach by proposing a way
to extend the well-known QDPLL approach to allow dealing with partially ordered
quantification in the form of adding Skolem clauses to the solver. Prototypical
implementation as well as addition of most techniques in the paper was done by
me. Gergely then added the concept of watched literals and optimized some of the
data structures. The main part of the writing was done by me.

Chapter 6 [150]. The main idea to solve bit-vector formulas by giving a transla-
tion to EPR and then using IPROVER originated in a joint discussion. The actual
translation then was formulated by Gergely, who also did the main part of writing
in this paper. My main contribution was the construction of the add2n benchmark
set that was used for the experiments.

Chapter 7 [102]. Combining the goal of developing an efficient DQBF solver
with the observed effectiveness of IPROVER on many problems, I came up with the
idea of creating the instantiation based DQBF solving approach presented in this
paper. The prototypical implementation as well as the main part of the writing was
done by me. Gergely contributed by extending the original implementation, fixing
bugs as well as increasing performance of data structures, causing the prototypical
algorithm to become an efficient solver in its final version.

Chapter 8 [100]. The idea for this part was a natural consequence of our PSPACE-
inclusion proof. I formalized the initial translation to SMV, including bitwise oper-
ators, left shifts, and relational operators. Furthermore, I realized their first imple-
mentation in our translation tool. Gergerly extended this first version by addition,
indexing, and right shifts. He also fixed some bugs and memory leaks in the orig-

167

inal implementation, and provided the parser, necessary to translate concrete for-
mulas. The benchmarks were constructed by me, and the experiments were done
by Gergely. The plots and main part of the writing were done by me.

Chapter 9 [152]. All benchmarks were the result of our previous theoretical work.
While the PSPACE benchmarks were constructed by me and also used as parts
of the experiments in Chapter 8, the instances representing correctness proofs for
operator equivalences from Chapter 4 were formalized by Gergely.

Chapter 10 [98]. The original idea of applying an SLS solver for bit-vectors,
directly on the theory level, was proposed by Christoph, who also did a first imple-
mentation already some years before our actual paper. I was then responsible for
improving performance of the algorithm, e.g., by adopting techniques from SAT
solvers, but also by improving data structures, which resulted in the practically ef-
ficient final version. All authors were involved in the discussion of specific ideas.
The main part of the writing was done by me.

Further Related Contributions. Aside from the presented work, corresponding
to Chapters 2–10, the author was involved in several other papers [29, 30, 181, 16,
13, 154]. While all of those ended up being published at a peer-reviewed venue,
they are not part of this thesis and should not be considered the author’s main sci-
entific contribution. This is either because they are only partially related to the
topic of this thesis (as for [29, 30, 16, 13, 154]), or because they will be part of
the corresponding main author’s thesis at some point (as for [181]). Note that,
with bit-blasting still being the most common approach in solving bit-vector for-
mulas, improving SAT solvers (as in [29, 30, 16, 13]) usually directly affects the
performance of SMT solvers as well.

In [16], we revisited blocked sets for SAT. Blocked sets consist of clauses that,
due to certain attributes, can be added or removed from formulas without affecting
satisfiability. We formally proved several new theoretical properties and presented
improvements to various practical algorithms that are related to blocked clauses.
One specific improvement applies a re-encoding to existing formulas by making
use of the circuit related structure that can be generated by the use of blocked clause
decomposition. The resulting re-encoding in combination with the CDCL solver
Lingeling [27] further improved state-of-the-art in SAT solving. In particular, we
were able to solve 7 instances, that were not solved by any sequential solver in the
previous SAT competition [12]. The topic of blocked sets recently also turned out
to be very important in the context of DQBF [232]. This will be further discussed
in Chapter 12.

In [29] and [30], we revisited CDCL variable scoring schemes and CDCL
restart schemes, respectively. Both are widely considered to be essential ingre-
dients for the strong performance of modern CDCL solvers. Nevertheless, it is not
fully clear what exactly are the aspects which make certain schemes work so well.
In both papers, our goal was to increase the overall understanding of the individual
concepts by running and analyzing large sets of empirical evaluations, as well as

168 CHAPTER 11. CONTRIBUTIONS

providing several theoretical models. We extracted key features of the individual
heuristics, looked at the importance of careful implementation, and proposed new
variants for variable scoring schemes as well as restart schemes. In both papers,
we ended up improving the state-of-the-art in SAT solving by implementing the
resulting techniques in Lingeling [27].

In [13], we showed how the performance of state-of-the-art SLS solvers for
SAT can be improved in several different ways. In contrast to CDCL solvers, which
have been heavily optimized regarding implementation, SLS solvers for SAT have
seen less attention in this respect. We show that using implementation concepts
derived from CDCL solvers also results in faster SLS solvers. Given the fact that
the performance of SLS solvers heavily relies on the heuristic variable scoring,
we also proposed a new scoring scheme particularly optimized for random k-SAT
formulas with large k. Finally, we were the first to give a detailed analysis on the
importance of heuristics also during clause selection in modern SLS solvers.

In [181], we revisited the SLS approach on the bit-vector level from Chapter 10
and reimplemented the original algorithm from Z3 [81] in Boolector [47, 180]. As
a first part, we confirmed that the general concept of the algorithm is independent
from the underlying solver framework, not only in theory but also in practice. We
then extended the algorithm by path propagation, an approach consisting of prop-
agation from top level constraints down to the individual atoms through the struc-
tural representation of the formula, showing that this can significantly increase the
overall performance. As a second extension, we added the SLS approach as a pos-
sible prefilter to the Boolector engine, leveraging the strengths of both individual
approaches.

In [154], we analyzed the complexity of a very broad range of problems,
succinctly encoded as bit-vector formulas. In particular, we gave an upgrading
theorem, proving that any problem which is complete for a complexity class C
under quantifier-free reductions in its explicit representation, becomes complete
for a multi-exponentially harder complexity class expνpCq under log-space reduc-
tions, if it is succinctly encoded by a bit-vector formula that uses multi-logarithmic
encoded scalars. This is similar to related work for succinct encodings by cir-
cuits [167, 186, 225], Boolean formulas [226], and OBDDs [227]. To prove our re-
sult, we employed techniques from the field of descriptive complexity theory [131,
132], making it only partially related to the remaining complexity results of this
thesis. Note that the motivation for the work in [154] originated from the prac-
tical problem of word-level model checking, but earlier results on the topic then
were superseded by this more general theorem. Word-level model checking will
be revisited in Chapter 12. Furthermore, note that this kind of upgrading theorem
cannot be applied in the case of satisfiability, since no completeness result for an
explicit representation is available. Nevertheless, it is possible to extend our pre-
vious results for satisfiability to multi-logarithmic bit-vector logics. This will be
shown as a new contribution in Chapter 12.

Chapter 12

Beyond Previous Work

In this chapter, we will revisit some of the topics discussed in the previous parts
of this thesis. All papers from Chapters 2–10 were peer-reviewed and published
over the last four years, at the time of this writing. Further progress in research,
that has been made between the publication of each paper and the time of this
writing, allows to discuss certain earlier results under the light of new findings or
related work by other authors. This opens up the possibility to provide a better
understanding about certain results as well as a clearer picture of potential future
work that can be done in several directions. Furthermore, we will present some
extensions to the previous work, either by giving alternative proofs or by proposing
some novel results that have not been published before.

12.1 Complexity of Quantified Bit-Vector Formulas

Regarding our complexity results for bit-vector logics, the question of whether BV
is complete for any class, is still open. So far, we were only able to proof that
BV is NEXPTIME-hard and that it can be solved in EXPSPACE. As a first in-
tuition, it might seem unlikely that BV could be decidable in NEXPTIME, since
this would imply that pure quantification (without uninterpreted functions) does
not provide any additional expressiveness for bit-vectors with logarithmic encoded
scalars. NEXPTIME-inclusion would be in sharp contrast to the unary case, where
quantification actually does lift complexity from being NP-complete to PSPACE-
complete. A more natural assumption might be to expect EXPSPACE-hardness of
BV. This would be in analogy to the remaining logics, the quantifier-free case
(with and without uninterpreted functions) and the quantified one which addition-
ally includes uninterpreted functions. For all those cases, we can witness an expo-
nential growth in complexity when switching from unary encoding to a logarith-
mic one, as shown in Chapter 2. In particular, complexity of QF_BV (and also of
QF_UFBV) increases from NP to NEXPTIME, and complexity of QF_UFBV in-
creases from NEXPTIME to 2-NEXPTIME. The same exponential growth in com-
plexity takes place, e.g., for word-level model checking. While the unary case (i.e.,

169

170 CHAPTER 12. BEYOND PREVIOUS WORK

bit-level model checking) is PSPACE-complete, the logarithmic one is EXPSPACE-
complete, as proved in [154] (or later in this chapter).

Nevertheless, we want to give an intuition why this assumption should not nec-
essarily be expected to hold. To prove PSPACE-hardness of QBF, one can use Sav-
itch’s Theorem [198]. Given the fact that a program only uses polynomial space,
the total number of different states that can exist is bounded single-exponentially.
The original idea in Savitch’s Theorem, is to iteratively split the search in two parts
of half length each. In particular, a final state can be reached in 2ppnq steps from an
initial state, if there exists a mid-point m that can be reached in 2ppnq{2 steps from
the initial state and the final state can be reached from m in 2ppnq{2 steps as well.
The mid-point is existentially quantified and the new bound of 2ppnq�1 is required
to hold for both parts of the search, i.e., is universally quantified. After a polyno-
mial number of iterations, the bound for the number of steps has been decreased
to 1 and satisfiability can be checked by directly using the transition function. The
resulting QBF, therefore, is of polynomial size as well. Note, however, that in
each step a quantifier alternation is introduced and, therefore, also the number of
quantifier alternations is polynomial.

If we now try to lift this proof in a naive way, we will see the following ef-
fect. Trying to prove EXPSPACE-hardness, we know that the total number of states
is bounded double-exponentially, i.e., by 22ppnq or, w.l.o.g., by 22n . Iteratively
splitting in two parts would, therefore, require at least 2n steps. Even if we al-
lowed splitting in more than two parts, since a universally quantified bit-vector
of bit-width n can take 2n different values, it would still take a super-polynomial
many steps to decrease the bound to 1, because p2nqqpnq P op22nq for any poly-
nomial function q. Since we have to introduce new variables in the context of
each quantifier alternation in each step, the resulting BV formula will also be of
super-polynomial size.

Of course this only shows that the naive approach does not work, and does
not prove that no polynomial reduction is actually possible. However, this con-
struction points to a specific effect that seems to be inherent in the definition of
quantified bit-vector formulas with logarithmic encoded scalars. While the large
bit-widths due to the logarithmic encoding allow to put succinctly encoded infor-
mation (compared to unary encodings) into a single bit-vector, there is no corre-
sponding succinct version of quantifier alternations, because each alternation at
least requires the introduction of two variables, independent from the bit-width. In
this sense, the quantifier representation is less succinct than the actual encoding of
bit-vector information. Consider, for example, an arbitrary BV formula with the
restriction that it is not bit-width bounded. If we translate this formula into QBF by
bit-blasting, the resulting QBF will have exponentially more variables than quan-
tifier alternations, because each index of a bit-vector will become a variable, but
the number of alternations will be the same as in the original formula. In other
words, this implies that the number of quantifier alternations in the QBF will be
logarithmic in the number of variables.

In QBF literature, there are several results for formulas with restricted num-

12.2. BIT-VECTOR PROBLEMS IN PRACTICE 171

bers of quantifier alternations. In particular, it is known that k-QBF, with k being a
constant number of quantifier alternations, is complete for the kth class of the poly-
nomial hierarchy [215]. Note that all classes resulting from different k are assumed
to be distinct from each other, and to be a true superset of NP and a true subset of
PSPACE. Those results show that the number of quantifier alternations indeed di-
rectly affects the complexity of a formula class. Note that, compared to k-QBF, a
logarithmic bound on the number of quantifier alternations is still more expressive
than a constant bound for any k. Therefore, it is not clear whether this class of
formulas is still a true subset of PSPACE, or whether it could be equally powerful.
We are not aware of any results in literature considering this specific restriction to
QBF, but think that this could be an interesting direction for future research. Re-
garding bit-vectors, it might be possible that the similar kind of restriction, inherent
in BV, also reduces expressiveness to be less than EXPSPACE-hard.

12.2 Bit-Vector Problems in Practice

Similar to the statement for the complexity of SAT in Chapter 1, the related ques-
tion for bit-vector formulas seems apparent: With QF_BV being NEXPTIME-
complete, how is it actually possible that we solve this kind of formulas in practice?
Considering the fact that state-of-the-art SMT solvers for bit-vector formulas usu-
ally rely on bit-blasting, even exponential space is required as, e.g., illustrated in
Chapter 6 and Chapter 8. There are two main reasons why many practical bit-
vector formulas, nevertheless, can be solved. First, SAT solvers are very efficient.
As we showed in the previous chapters, even for our specifically crafted bench-
marks, SMT solvers usually only failed for very large bit-widths. This is due to
the fact that, although the bit-blasted formulas become very large, they are highly
structured, since they correspond to circuit representations. CDCL solvers are
known to perform very well on the task of exploiting many different kinds of struc-
ture within formulas. The second factor is given by the even more specific nature of
application benchmarks that are used in practice. In contrast to our crafted bench-
mark sets, many application benchmarks are bounded in a certain nature. While we
already analyzed some benchmark families with respect to bit-width boundedness
in Chapter 2, there is a further aspect to this: Our concept of bit-width bounded-
ness (as well as the extension to scalar boundedness in Chapter 4) is of theoretical
nature, in the sense that it considers an infinite set of instances, analyzing whether
the bit-width of all variables in this set can be bounded by a polynomial function of
the formula size. In practice, however, even for a specific benchmark family with
potentially infinitely many instances, we often do not consider the whole set of for-
mulas, but just a finite subset. The finite subset can be defined, e.g., by assuming a
constant bound k for the bit-width. This is often realistic because the bit-widths, in
many cases, correspond to the size of some integer or word-level representation in
software or hardware, e.g., 16, 32, or 64. There has been recent work on this topic,
analyzing the complexity of two applications at Intel, in the context of bit-width

172 CHAPTER 12. BEYOND PREVIOUS WORK

boundedness and beyond [177]. As proposed for future work in Chapter 2, the au-
thors of [177] extend our previous work on the topic of bit-width boundedness by
relating it to the field of parametrized complexity [85]. In particular, they show that
the important application of Clock Routing is NP-complete and the application of
Microcode Validation is para-NP-complete, from a parametrized complexity point
of view. This provides a further link between theory and practice, as well as ad-
ditional explanation on the strong performance of actual SMT solvers based on
bit-blasting [177].

Nevertheless, we want to point out that scalar boundedness is not the only cri-
terion for deciding whether bit-blasting techniques or some of our alternative ap-
proaches are more efficient. Consider, e.g., the conversion to SMV for the PSPACE

fragment, based on the theory from Chapter 3, and practically applied in Chap-
ter 8. Aside from our published work, certain instances from an industrial collabo-
ration with Intel showed that, even for application instances with small bit-widths
(16), the use of Model Checkers after translation to SMV was sometimes able
to outperform state-of-the-art SMT solvers by orders of magnitude. In particular,
we witnessed that Model Checkers were able to solve certain Word-Level Symbolic
Trajectory Evaluation instances from [63], which could not be solved by common
SMT solvers. Our approach was able to solve formulas for the target bit-width
32, while bit-blasting solvers already failed (within much larger time limits) for
instances of bit-width 10, and with runtimes growing exponentially. While those
instances are currently not publicly available, the reader should rather consider this
as a statement of existence, keeping in mind that considering alternative solving
approaches might actually be beneficial, not only on the crafted benchmark sets
from Chapter 6 and Chapter 8, but also on application instances which have not
been tested in this context yet. Finding more of those instances, and better under-
standing which is the criterion that makes Model Checkers perform badly or well,
might be another interesting topic for future work. With Boolector [47, 180] being
used for many industrial applications, e.g., by Intel [63, 91], implementing a ded-
icated version of our Model Checking approach as a component into Boolector is
of interest as well.

12.3 Progress and Issues in DQBF Solving

Over the last years, the research topic of DQBF has seen growing interest. With
SAT solvers having become increasingly efficient in solving the underlying NP-
complete problem, QBF and DQBF, being prototypical PSPACE- and NEXPTIME-
complete problems, seem more likely to be also feasible now. While practical QBF
solvers have already emerged for over a decade, their performance is still way be-
hind the one of SAT solvers. Nevertheless, the even more complex topic of DQBF
solving seems tempting, since DQBF allows very natural representations for many
problems. Since our first DQDPLL approach to DQBF solving, which was pre-
sented in Chapter 5, and which was not even able to solve very small instances,

12.3. PROGRESS AND ISSUES IN DQBF SOLVING 173

a lot of progress has been made. However, evaluation of solver performances has
faced some issues so far, mainly due to the lack of available benchmark sets. We
want to give an overview about the developments in DQBF solving, specifically
the most recent ones, which occurred after our latest related work from Chapter 7.
At the same time, we also want to point out the issues with DQBF benchmarks.

The theoretical concept of an expansion-based solver was first proposed in [9,
8]. An actual implementation of a very simple expansion-based solver was then
proposed in [110], but was not publicly accessible. The authors used this solver
to deal with DQBF formulations of certain partial equivalence checking (PEC)
benchmarks [199]. In [94], DQBF refutation is specifically addressed by propos-
ing an overapproximation-based solver, only being able to handle unsatisfiable in-
stances. In particular, the proposed solver iteratively produces QBF approxima-
tions of the original DQBF. This is done by only considering a certain number
of paths for the universal variables in the assignment tree. If a formula can be
refuted only by considering k different universal assignments, then the the origi-
nal DQBF is obviously unsatisfiable as well. The value for k is increased itera-
tively. They evaluated their solver on PEC benchmarks constructed from circuit
families proposed in [75, 110], outperforming a reimplementation of the simple
expansion-based solver from [110]. Lacking alternatives, the same set of bench-
marks from [94] was then used as part of our evaluation for IDQ, as presented in
Chapter 7. As mentioned in Chapter 7, the benchmark set is biased towards unsat-
isfiable instances. Since QBF is a subset of DQBF, we suggested to additionally
evaluate performance on QBF instances to increase the number of benchmarks,
but also to being able to compare efficiency of general DQBF solvers to the one of
dedicated QBF solvers, providing a base line.

The probably fastest DQBF solver at the present moment is HQS [111], which
is also based on a reduction to QBF, but in a different way and not approximation-
based, compared to [94]. Extending work from [110], a small number (often min-
imal) of variables is eliminated in such a way, that the resulting quantifier prefix
is totally ordered [111]. All simplifications are applied on an AIG representation
of the problem [111]. Once a QBF is obtained, the AIG-based QBF solver AIG-
solve [191] is called. Aside from being more efficient, the process of not using
approximations enables HQS to solve satisfiable instances as well. For their ex-
periments, the benchmarks from [94] were extended by further PEC benchmarks
created from the specifications in [199]. Unfortunately, benchmark selection is
again restricted to PEC benchmarks. HQS outperforms IDQ by orders of magni-
tude on their benchmark set [111]. While this difference is very significant, part
of this effect is most likely caused by the specific benchmark set. Dealing with
black boxes in circuits, AIG representations have a significant advantage on PEC
problems. Note that, in our previous experiments from Chapter 7, IDQ was fre-
quently able to outperform state-of-the-art QBF solvers on several instances from
a broader range of QBF benchmarks. While we do not want to claim that IDQ is
more efficient in general, this argument helps to illustrate the importance of pro-
viding a broader range of benchmark sets, e.g., as part of a common library, such

174 CHAPTER 12. BEYOND PREVIOUS WORK

as SAT-LIB [127], QBF-LIB [112], or SMT-LIB [18]. In the light of the fact that
only few DQBF benchmarks exist at all, we would also like to encourage people
to make benchmarks publicly available.

Recently, a practical way to obtain DQBF benchmarks was also proposed
in [10], by offering a simple translation from SAT to DQBF, resulting in more suc-
cinct formulas, i.e., with only logarithmic many variables compared to the original
SAT formula. Furthermore, a translation for reachability problems to DQBF was
described. The authors argue that this kind of encoding has some preferable prop-
erties compared to existing ones [10]. With lots of SAT and reachability problems
being available, both approaches could help to generate an interesting collection of
DQBF benchmarks. However, one has to be aware of the fact that, e.g., in the case
of re-encoding from SAT, the resulting representation is most likely not the most
natural one that would be obtained by directly encoding the original problem into
DQBF. Formulas generated in this way will automatically have a certain struc-
tural property that is inherently encoded due to the translation. This makes it an
interesting addition for larger benchmark sets, but, in general, a more diverse set
of families should be the overall goal.

Aside from full decision procedures, also preprocessing techniques for DQBF
have started to see increased interest. We already showed how many simple tech-
niques from SAT or QBF can be lifted to DQBF, in particular in the context of
DPLL based solvers, in Chapter 5. A more recent investigation of preprocessing for
DQBF is done in [232]. The authors address blocked clause elimination [137, 32],
equivalence reasoning [113], structure extraction [191], and variable elimination
by resolution [24]. Furthermore, it is proposed to use more complex, yet incom-
plete, algorithms, e.g., the approximation-based decision procedure from [94] with
small k, as a “filter” that is run in advance to the full decision procedure [232]. As
a benchmark set, the authors again use the PEC benchmarks from previous work
on HQS [111], but also add benchmarks from controller synthesis [36]. Combin-
ing preprocessing and filtering, the authors show that this can increase the number
of solved instances for HQS and IDQ, each, by more than a factor of 2. The
gain is also significant considering the overall runtime, showing that the additional
overhead of preprocessing and filtering more than pays off [232]. Note that the
particular case of blocked clause elimination takes a slightly special role in their
experiments. Being very important for IDQ, it can actually be harmful for HQS.
This is due to the fact that HQS works on the circuit representation of a formula,
which can be destroyed by BCE [232]. In contrast, IDQ can particularly profit
from BCE since it is able to simulate some of the circuit simplification techniques
possible on AIGs. In general, the AIG techniques still have an advantage on the
specific benchmark sets and more general benchmarks are desired.

Considering the success of preprocessing for SAT [137] and QBF [32], the
importance of preprocessing for DQBF is not surprising and the effect is even
stronger with growing complexity of the underlying problem, e.g., with SAT, QBF,
and DQBF being NP, PSPACE, and NEXPTIME-complete, respectively. As noted
in [232], a complexity-wise more expensive problem allows to use also more ex-

12.4. IMPROVEMENTS AND APPLICATIONS FOR SLS IN SMT 175

pensive sub-routines in the solving process. For example, SAT solvers are very
efficient and, therefore, each additional simplification step needs to be very fast
as well—otherwise, the overall performance will decrease because the additional
costs do not outweigh the gain (e.g., see [13]). In contrast, with a more complex
base-problem, as it is the case for DQBF, sub-routines can be more expensive
as well. For example, IDQ uses several full SAT solver calls, each time solving
a problem that is theoretically NP-complete (see Chapter 7). Similarly, finding
backbones of a formula is also NP-complete and could potentially be used as a
simplification technique in DQBF [232]. As a result, using slightly more expensive
preprocessing techniques will hardly contribute to the overall cost, but each sim-
plification of the later solving process will possibly increase the gain even more.

In general, the current state-of-the-art suggests that a combination of strong
simplification techniques, together with a reduction to a simpler problem, such
as SAT (as done by IDQ [102]) or QBF (as done by HQS [111]), seems to be
the most promising route for DQBF solving in the near future. This allows to
profit most from the succinct structure contained in a DQBF encoding, but also
from the efficiency of existing solvers, and the progress which has been made in
related problems over the last decades. Note that this is similar to the case of bit-
vector formulas, where state-of-the-art solvers usually rely on rewriting rules for
preprocessing, in combination with bit-blasting and the use of SAT algorithms for
actually solving the formula [47, 50, 104, 81, 87]. However, as discussed for bit-
vectors in the previous chapters, we still think that alternative solving approaches
should always be considered as well [100, 150, 98].

12.4 Improvements and Applications for SLS in SMT

In Chapter 10, we presented the first stochastic local search algorithm for SMT,
which is directly operating on the theory representation of a formula. We lifted
many techniques from SAT to the SMT level and showed that similarities between
SAT and SMT can be exploited. Dealing with bit-vectors, we provided a score
function and a neighbourhood relation that both respected certain properties of the
underlying theory. Nevertheless, our approach still did not consider other structural
properties of the formula, e.g., satisfaction of specific parts in the DAG represen-
tation. Due to the introduction of a weighting factor, penalizing unsatisfied con-
straints and the resulting increase in performance, we showed that putting focus on
satisfying individual constraints can indeed be beneficial. This work was extended
in [181], by introducing the concept of path propagation.

The authors proposed to add so-called propagation steps to our original SLS
framework. In a propagation step, no regular SLS move according to the score
function is performed but, instead, individual constraints in the SMT formula are
“fixed”, in the sense that a satisfying assignment for the constraint is constructed.
For example, in the case of an equality, this can be done by assuming one side
of the equality as constant and inverting the functions occurring on the other side.

176 CHAPTER 12. BEYOND PREVIOUS WORK

Note that, in general, this is neither guaranteed to be possible, nor to be uniquely
determined, but only under certain conditions. If propagation is not unique, non-
deterministic choices can occur. If it is not possible to fix constraints in a single
step, a two-step-approach can occur as well. If no propagation fix is possible in
general, e.g., if the considered sub-problem is not just a simple constraint but NP-
complete on its own, the algorithm from [181] falls back to regular SLS moves. In
general, it is also able to interleave regular SLS moves with propagation moves,
but the resulting algorithm usually performs worse than pure versions [181].

In Chapter 10, we also pointed out that state-of-the-art bit-vector solvers, based
on bit-blasting, and our new SLS approach both perform particularly well on dis-
tinct instances. Therefore, we assumed that combinations of current SMT solvers
with our SLS algorithm might be of particular interest. This has since been ana-
lyzed in [181], by running an SLS implementation (with and without path propa-
gation) for a short time before calling a regular SMT solver. Indeed, the resulting
combination turned out to solve significantly more instances compared to using the
SMT solver on its own. The overall runtime decreased as well, even though the pre-
ceding SLS call produces an overhead whenever it does not find a solution [181].

This directly offers a possible direction for future work, e.g., by later using
information gathered from the SLS solver, in the regular SMT solver. The exper-
imental results from Chapter 10 and from the reported work in [181] also point
towards the usefulness of our SLS approach in the context of parallelization. If a
combination of our SLS approach with bit-blasting solvers works in a sequential
setting, without reusing information, it will most likely be even more useful in a
parallel one, since the SLS search is not restricted by a cutoff and the minimal run-
time is not affected by an additional overhead. A similar approach is already used
in SAT solving by the parallel solvers Plingeling and Treengeling, which optionally
use the SLS solver YalSAT [27].

A further pointer towards parallelization can be found by the distinct perfor-
mances of SLS implementations with propagation moves compared to those with
regular moves on different sets of benchmark classes, as reported in [181]. This
could be leveraged by parallel SLS solvers. Similarly, our original implementa-
tion in Z3 produces different results than the Boolector implementation on some
benchmark families in [181]. It is not fully clear, whether this is due to different
preprocessing steps in the corresponding SMT frameworks, or if this can be con-
tributed to the different score function that is used. In the latter case, parallel SLS
solvers could profit from this by purposely using distinct score functions in individ-
ual threads. In the context of SAT solving, this kind of approach has already been
taken one step further, by combining the advantages of different SLS algorithms
and additionally exchanging information leading towards better assignments [2].
In our opinion, this seems promising in the context of SMT as well.

12.5. WORD-LEVEL MODEL CHECKING 177

12.5 Word-level Model Checking

In hardware and software verification, bit-vector logics are a natural framework
for word-level system descriptions. For example, registers in digital circuits and
variables in software can be represented by bit-vectors, and word-level operators,
such as bitwise ones and arithmetic ones, can be applied to them. We now take a
closer look at the problem of word-level model checking, a particular example of
a bit-vector encoded problem that is of importance in practice. Word-level model
checking was also used as the motivational example in our related work about
succinct bit-vector encodings [154].

A strictly formal description of word-level model checking usually employs
the concept of Kripke structures (see, e.g., [154]). In this section, we use the term
word-level model checking, slightly informally, to denote the problem of checking
whether there is a solution to a transition system (cf. Chapter 4, sequential circuits),
with states consisting of a set of bit-vectors as used in actual computer system rep-
resentations, and a transition relation consisting of all common bit-vector operators
(cf. Chapter 4, common operators). This representation allows us to naturally en-
code design information captured at a higher level than that of individual wires and
primitive gates and, therefore, is very practical for hardware and software verifica-
tion [154]. Naturally, all scalars are encoded in a binary way.

In the past, there has been lots of research on bit-level model checking [70],
as well as on bit-vector formula decision procedures [53, 169]. Comparatively few
work has yet been published on word-level model checking. However, with in-
creasing performance of state-of-the-art model checkers [41] and SMT solvers [47,
81], also the interest in word-level model checking is growing recently [33, 34].

While there are some practical approaches to solve word-level model check-
ing [33, 34], we are not aware of any work that is dealing with the complexity of
the underlying decision problem, apart from our work in [154]. The alternative
approach in this section does not provide any new complexity results compared to
the work from [154], but explains how we originally addressed our motivational
problem, and emphasizes the natural and simplistic encoding of arbitrary Turing
machines as word-level model checking problems. Furthermore, we point towards
differences compared to the complexity gap for the satisfiability problem on the
QF_BV!1 fragment from Chapter 3, and we present some constructive proofs by
giving concrete encodings.

In the following, we consider two different classes of word-level model check-
ing problems, differing in the operators that are allowed in the transition relation.
Both proofs were also part of our original approach for [154], but then superseded
by the more general results that we obtained.

12.5.1 Word-level Model Checking with all Common Operators

If we allow all common SMT-LIB operators, the following complexity result for
word-level model checking (WLM) holds.

Theorem 12.1. WLM is EXPSPACE-complete.

178 CHAPTER 12. BEYOND PREVIOUS WORK

Proof. We obtained this result as part of a general upgrading theorem in [154],
using techniques from descriptive complexity theory [131, 132]. The theorem also
follows directly from Lemma 12.2. l

With inclusion EXPSPACE-inclusion being trivial, we now want to give a con-
structive hardness-proof by showing how every language L P EXPSPACE can be
polynomially translated into a word-level model checking problem.

Lemma 12.2. @L P EXPSPACE, L ¤p WLM

Proof. Since L P EXPSPACE, we know that there exists an exponential space
deterministic Turing machine T that can decide L. The Turing machine has a
fixed-size description and a tape which can contain Opexppnqq symbols, with n
denoting the size of the input. W.l.o.g., we assume that the tape is bounded to
the right by the starting position of the Turing machine’s head. W.l.o.g., we also
assume that the alphabet of T only contains the symbols 1 and 0 (representing
the blank symbol). We now convert this Turing machine into a word-level model
checking problem as follows: Let taperNs be a bit-vector representing the tape of
T , with N :� exppnq, using a binary representation to write down the bit-width
N . Next, we introduce another bit-vector headrms (m :� rlogN s) containing the
current position of the Turing machine’s head. We can now formalize all possible
operations of T by a sequential system over taperNs and headrms.

• head1rms :� headrms � 1rms and head1rms :� headrms � 1rms define the
movement of the head to the left and to the right, respectively.

• tape1rNs :� ptaperNs&p� p1rNs ! headrmsqqq | pvrNs ! headrmsq writes
the symbol v P t1, 0u to the current position of the head.

• The evaluation of the term pptaperNs&p1rNs ! headrmsq � 0rNsq returns
the symbol v P t1, 0u at the current position of the head.

The fixed-size description of the Turing machine, including possible internal
states and the transition relation, are defined separately in a fixed-size (combina-
torial) circuit. Using word-level model checking, we can now decide whether an
accepting state of T is reached for a given input with a maximum of N symbols on
the tape in any step. To conclude the proof, we have to look at the size of the bit-
vectors in our translation. We know that the length of the tape of T (and, therefore,
the number of bits of taperNs) is bounded by Opexppnqq. By using a binary rep-
resentation for the bit-width of all bit-vectors, we can write down taperNs (and all
other bit-vectors) with only ppnq bits for some polynomial function p. This proves
that the given reduction is polynomial. l

12.5.2 Word-level Model Checking for QF_BV!1

In hardware verification, we often encounter restricted classes of bit-vector prob-
lems. One specific example is given by the class QF_BV!1. This is the class of

12.5. WORD-LEVEL MODEL CHECKING 179

bit-vector formulas which only contain bitwise operators, equality, and shift by
one. In Chapter 3 (and Chapter 4), we argued that the decision problem for formu-
las in QF_BV!1 is PSPACE-complete. If, instead, shifts by arbitrary constants are
allowed, we get the class QF_BV!c, which is already NEXPTIME-complete, i.e.
as expressive as general QF_BV with all common bit-vector operators. In Chap-
ter 8, we then gave a practical translation from QF_BV!1 to SMV and used model
checkers to solve this kind of formulas more efficiently compared to state-of-the-art
SMT solvers.

This gives rise to the question of whether a similar result can be obtained
for word-level model checking, i.e., whether the complexity of word-level model
checking for QF_BV!1 (WLM!1) is lower than for general QF_BV. This kind of
result might lead to more efficient algorithms, similar to our work on satisfiability
of QF_BV!1, in Chapter 8. However, this is not the case. Instead, the following
theorem holds.

Theorem 12.3. WLM!1 is EXPSPACE-complete.

Proof. As for WLM, this is also obtained as part of the upgrading theorem in [154].
The theorem also follows directly from Lemma 12.4. l

We give a constructive proof to show how WLM can be reduced to WLM!1. (Note
that the same kind of reduction could also be used to further eliminate ! 1 and
replace it by�1, in order to obtain the same set of operators that was used in [154].)

Lemma 12.4. WLM can be reduced to WLM!1.

Proof. Since we know that all operators in QF_BV can be polynomially expressed
in QF_BV!c [101], it is sufficient to show that shift by constant, in a sequential
system, can be expressed by shift by one.

W.l.o.g., we assume that each shift expression in the given sequential system
is of the form yr2

ns � xr2
ns ! crns, with input variables yr2

ns and xr2
ns, as well

as a constant crns. Any sequential system can be translated to this kind of format
with only polynomial growth in size. This can be done as follows. Each shift
termr2ns ! crns, potentially even being part of a nested expression, can be replaced
by a new Tseitin variable variable ts1

r2ns, defined non-deterministically by a new
input. In a second step, termr2ns is also replaced by a new input variable ts2

r2ns.
Additionally, constraints for ts2

r2ns � termr2ns and ts1
r2ns � ts2

r2ns ! crns are
added to the specification of the formula.

We now remove all occurrences of shift by constant. Assume we encounter
the expression yir2

ni s � xi
r2ni s ! ci

rnis (with i enumerating all shift expressions
in the formula). First, we introduce two additional registers. We use tempir2

ni s

to save a temporary value and countirnis to represent a counter. We now initialize
tempi

r2ni s with xir2
ni s, and countirnis with cirnis, respectively. In each cycle of the

system, we then check the value of the counter. While countirnis � 0rnis, we set
count1i

rnis :� counti
rnis � 1rnis and temp1i

r2ni s :� tempi
r2ni s ! 1rnis. Once the

counter reaches zero, the values of the registers are not changed anymore. Aside

180 CHAPTER 12. BEYOND PREVIOUS WORK

from this, we add a constraint to the formula, specifying that yir2
ni s � tempi

r2ni s.
We therefore know that yir2

ni s will have the value of xir2
ni s ! ci

rnis after ci cycles.
This is done for all shift expressions separately.

Finally, we need to delay all other registers in the sequential circuit (i.e., all
registers apart from the newly introduced tempir2

ni s, counti
r2ni s), expressing that

the results of all shifts are only available after maxitciu cycles. This means that all
other registers should only be updated whenever all counters (i.e., the counter cor-
responding to the largest ci) have reached zero. Otherwise, the value from the pre-
vious cycle is simply preserved. At the same time, all tempir2

ni s and countir2
ni s

registers are reinitialized in that step. l

12.6 Upgrading Satisfiability

In [154], we gave a generic upgrading theorem, lifting complexity results for ex-
plicit problem representations, to complexity results for succinct problem encod-
ings as bit-vector logics. Similar work has been done for succinct encodings by
circuits [167, 186, 225], Boolean formulas [226], and OBDDs [227]. In [154], it
was shown that, under certain restrictions, complete problems for a standard com-
plexity class will become complete for a (multi-)exponentially harder complexity
class when succinctly encoded by a bit-vector formula. The order of growth in
complexity, thereby, depends on the degree of succinctness used for the encod-
ing of scalars in the underlying bit-vector logic. Since the full details of the used
approach are out of the scope of this section, the reader is referred to [154] for
further details. In particular, this kind of succinctness of scalar representation was
addressed by the concept of multi-logarithmic bit-vector encodings.

In this section, we will prove a related result for satisfiability of bit-vector for-
mulas with multi-logarithmic encoded scalars. In contrast to [154], we will refer
to a ν-logarithmic encoding if we consider a bit-vector formula with scalars (in
particular bit-widths) 22...2

c

being encoded as c in binary form, where the degree
of exponentiation is ν � 1, for ν ¡ 0. This denotes an extension of our previ-
ous defintions, considering QF_BV with binary encoded scalars (ν � 1) to be
1-logarithmic (single-logarithmic). For ν ¡ 1, we use the term multi-logarithmic.
This notation differs from the one in [154], in the sense that this was considered to
be a pν�1q-logarithmic encoding, e.g., calling QF_BV with binary encoded scalars
2-logarithmic. Basically, the two notations only differ in being “off-by-one”. This
is attributed to the fact that, in [154], succinct representations of certain explicit
problems were considered. In that context, even the propositional case, which is
equally powerful to bit-vectors with unary encoded scalars, can already be used
for succinct representations of problems, and results in a (single-)logarithmic size
compared to the explicit representation (thus, being called 1-logarithmic in [154]).
However, this would not be consistent with our use of “logarithmic” throughout
this thesis. Furthermore, we will use the terms “ν-logarithmic encoded formu-
la/problem” and “ν-logarithmic encoded scalars” interchangeably.

12.6. UPGRADING SATISFIABILITY 181

As already pointed out in [154], a ν-logarithmic encoding can be found in prac-
tice, e.g., in the SMT-LIB. To declare arrays in SMT-LIB format, the expression
(Array idx elem) is used, where idx is the sort for array indexes, and elem
is the sort for array elements. If idx is a bit-vector sort (_ BitVec n), where n
is encoded in binary form, the size of the array is double-exponential in the length
of the binary encoding of n [154].

12.6.1 Satisfiability of BV!ν
Symbolic encodings of decision problems by Boolean formalisms are well-known
to increase the problem complexity [11, 38, 77, 93, 103, 117, 167, 186, 225, 226,
228, 230]. Examples of such problems, including those from [154], can be found
in [210, 211, 212, 213, 214]. However, the generic upgrading theorem from [154]
only applies to problems that are complete for a complexity class when using an
explicit encoding. While we know that the satisfiability problem is NP-complete
for bit-vector formulas with unary encoded scalars (we slightly abuse notation by
writing ν � 0) and NEXPTIME-complete with binary encoded scalars (ν � 1), as
discussed in Chapters 2-4, no general result for multi-logarithmic encodings of the
scalars (ν ¡ 1) was implied so far.

Nevertheless, a similar result can indeed be obtained for ν-logarithmic QF_BV,
with ν ¡ 1, and an operator set consisting of bitwise operators, equality, and shifts.
We would like to acknowledge Helmut Veith for initially conjecturing that this kind
of theorem could probably be shown for satisfiability of multi-logarithmic encoded
bit-vector logics. In the following, we will use a slightly different notation to the
previous chapters of this thesis. Similar to the notation in [154], we use BVΩ

ν

to denote a (quantifier-free) bit-vector logic with ν-logarithmic encoding (unary
encoding, for ν � 0) and an operator set Ω. Furthermore, similar to the notation in
Chapter 3 and Chapter 4, we define bw :� t&, |,�,�u, and, as a general extension
for a specific operator o, we define the logics BVoν :� BVbwYtouν . As we require
Ω � t&, |,�,�,!u, we first consider BV!ν .

In the following, we slightly abuse notation in regard to the symbols that we
use for bitwise operators. In contrast to most previous chapters, the operators^,_,
and will not represent the corresponding Boolean operators, but denote bitwise
and (&), bitwise or (|), and bitwise negation (�), respectively. We simply do this
since we have realized that the slightly abusive notation significantly improves the
intuitive readability of our equations. Similarly, Ø and Ñ will denote bitwise
equivalence and bitwise implication, respectively. Although Ø and Ñ are not
included in Ω, they could simply be replaced by combinations of ^, _, and .
Furthermore,! is assumed to take precedence over the bitwise operators whenever
parenthesis are omitted. As in the previous chapters, e.g., in Chapter 4, bit-vectors
(of bit-width n) are assumed to start with the largest bit-index n�1 on the left-hand
side, and end with the smallest bit-index 0 on the right-hand side.

Furthermore, we use the notation expν in two different ways: For a num-
ber n, the expression expνpnq donates the repeated exponentiation function, with

182 CHAPTER 12. BEYOND PREVIOUS WORK

exp0pnq :� n, and expi�1pnq :� 2expipnq, for i P N0. The second usage is
in the context of complexity classes. For a complexity class C, the expression
expνpCq, ν ¡ 0 donates the corresponding ν-exponentially harder complexity
class, e.g., exp1pNPq � NEXPTIME, exp2pNPq � 2-NEXPTIME, etc. This fol-
lows the notation from [154]. For a formal definition of this concept, it is possible
to use the concept of leaf languages [225, 38]. We define exp0pCq :� C.

Similar to the results from [154], the following theorem holds:

Theorem 12.5. Satisfiability of BV!ν , ν P N, is expνpNPq-complete.

Proof. With ν � 0 being the propositional case, we only have to consider ν ¡ 0,
and show that satisfiability is ν-NEXPTIME-complete for those classes.1 Mem-
bership follows directly from applying bit-blasting. Hardness is a consequence of
Lemma 12.6 or, alternatively, of Lemma 12.8. l

12.6.2 Encoding of Turing Machines

A direct way of proving hardness of the given set of bit-vector logics BV!ν is ob-
tained by showing how corresponding Turing machines can be encoded. This ap-
proach was also the one taken by Cook, when showing NP-hardness of SAT [73].

Lemma 12.6. Any ν-NEXPTIME Turing machine can be polynomially reduced to
a BV!ν formula.

Proof. For a given non-deterministic Turing machine M which solves a problem
in ν-NEXPTIME, we construct a BV!ν formula that is satisfiable if and only if M
accepts a given input I . The construction is similar to the one for proving the
Cook-Levin theorem [73] as used in [106].

Let M � pQ,Σ, s, F, δq be a Turing machine, where Q is the set of states, Σ
is the alphabet of tape symbols, s P Q is the initial state, F � Q is the set of
accepting states, and δ � ppQzF q � Σq � pQ � Σ � t�1,�1uq is the transition
relation. Furthermore, suppose thatM accepts or rejects an instance of the problem
in time expνpnq, where n is the size of the input I . With the number of steps being
bounded by steps :� expνpnq, we also know that it is sufficient to consider a tape
length of size :� 2 � expνpnq � 1, if we assume the initial head position 0 to be in
the middle of the tape, at offset mid :� expνpnq.

The BV!ν formula uses the variables H rNs, TσrNs, and QqrNs, with bit-width
N :� size � steps � p2 � expνpnq � 1q � expνpnq, σ P Σ and q P Q. First, we
need to check that we can indeed write down N polynomially in the input size n.
According to the definition of ν-logarithmic encoding, we have scalars expν�1pcq,
being encoded as c in binary form. With c in binary form, c itself can be exponential
in the size of the input, i.e., c � 2n, and n bits are sufficient to specify c. Thus, we
can indeed encode N � ppexpνpnqq � ppexpν�1p2

nqq ¤ expν�1p2
ppnqq by using

ppnq bits, i.e., polynomial in the size of the input I .
1The case of ν � 1 corresponds to our previous results from Chapters 2-4. Nevertheless, it is

also included as part of this more general theorem.

12.6. UPGRADING SATISFIABILITY 183

For easier readability, we store the original bound for the tape size and the offset
for the midpoint of the tape (position 0) in bit-vectors sizerNs � 2 � expνpnq � 1
and midrNs � expνpnq. Note that evaluation of expνpnq is polynomial when
implemented by using p1rNs ! p. . . p1rNs ! nrNsq . . . q, with the number of shifts
being equal to ν.

Intuitively, H rNs, TσrNs, and QqrNs represent the head position, the tape con-
tent, and the state of M in each single step during its computation, respectively. In
particular, the variables are uniquely defined by the following criteria:

1. The pj � size�mid� iqth bit of H rNs is 1 if and only if the head of M is at
position i at step j of the computation.

2. The pj � size �mid � iqth bit of TσrNs is 1 if and only if tape cell i of M
contains symbol σ at step j of the computation.

3. The pj � size �mid � iqth bit of QqrNs is 1 if and only if the head of M is
at position i at step j of the computation and M is in state q at step j of the
computation.

Here, � expνpnq ¤ i ¤ expνpnq and 0 ¤ j expνpnq.
Furthermore, we define some particular bit-vectors constants that we will use

for masking specific bits of our variables.

1. hirNs � 0rNs ! sizerNs

2. lorNs � p 0rNs ! sizerNsq

The latter mask allows us to consider only the initial state of the computation,
the first one considers all remaining steps. We now construct the formula as a
conjunction of the following constraints:

1. The tape initially contains the input I � σn�1 . . . σ0. We add n constraints,
one for each symbol σk, k P tn� 1, . . . , 0u in I:

Tσk
rNs ^ p1rNs ! midrNs ! krNsq � 0rNs

All other cells should contain the blank symbol � in the first step of the
computation. We ensure this by adding one more constraint:

T
�

rNs _ hirNs _ p2n � 1qrNs ! midrNs � 0rNs

Note that we can write down the constant 2n � 1 by using n bits, evaluating
the bit-vector term pp1rNs ! nrNsq � 1rNsq.

2. The head initially is at position 0:

H rNs ^ lorNs � 1rNs ! midrNs

184 CHAPTER 12. BEYOND PREVIOUS WORK

3. M initially is in state s:

Qs
rNs ^ lorNs � 1rNs ! midrNs

4. In each computation step, there is at most one symbol per tape cell, i.e.,
@σ, σ1 P Σ, with σ � σ1, we add:

 Tσ
rNs _ Tσ1

rNs � 0rNs

5. In each computation step, there is at least one symbol per tape cell:ª
σPΣ

Tσ
rNs � 0rNs

6. In each computation step, there is at most one state at a time, i.e., @q, q1 P Q,
with q � q1, we add:

 Qq
rNs _ Qq1

rNs � 0rNs

7. The bits of the state variables can only be set at the head positions:ª
qPQ

Qq
rNs ^ H rNs � 0rNs

8. The tape does not change at positions different from those of the head, i.e.,
@σ P Σ, we add:

pTσ
rNs ! sizerNs Ø Tσ

rNsq _ pH rNs ! sizerNsq _ lorNs � 0rNs

9. The transition relation, i.e., @q P Q, σ P Σ, we add:

pH rNs ^Qq
rNs ^ Tσ

rNsq ! sizerNs Ñª
pq,σ,q1,σ1,dqPδ

pH rNs �d 1rNs ^Qq1
rNs ^ Tσ1

rNsq � 0rNs

As in the definition of δ, d P t�1,�1u. We define ��1 �! and ��1 �
"u . The "u operator can then be replaced by !, as shown in Chapter 4,
Theorem 4.32.

10. M must reach a final state at one point:ª
qPF

Qq
rNs ^H rNs � 0rNs

All constraints so far were very similar to those used for the translation in [106].

12.6. UPGRADING SATISFIABILITY 185

Adding the special condition for states being only defined at the head positions is
slightly technical and not strictly necessary, but allows to have a unique state vector
as stated in the definition of QrNs. A small redundancy is given by the fifth con-
straint, requiring a symbol to be on each position of the tape in each computation
step. Actually, this implicitly follows from the initial constraints, in combination
with the encoding of the transition relation (assuming it is well-defined for M) and
the definition of head movement in the next paragraph.

The main difference between our reduction and the propositional version [106]
is found in the definition of the head movement. To specify the fact that the head
can only be at one position in each computation step, the proof in [106] uses con-
straints similar to those for the tape and the states. However, this is only possible
if the number of different head positions and, therefore, also the number of needed
constraints, is polynomial. This is true for the propositional case in their approach,
but since we allow 2 � expνpnq� 1 different head positions, we need a different en-
coding. In our approach, unique head positions and head movement can be realized
by adding the following three constraints:

1. If the head is in a certain position in a computation step, it cannot be at any
position other than left or right of the current one in the next step:

lorNs_ H rNs_H rNs ! psize� 1qrNs_H rNs ! psize� 1qrNs � 0rNs

2. If the head is in a certain position in a computation step, it has to be at
position left or right (non-exclusive) of the current one in the next step:

 pH rNs ! sizerNsq _H rNs ! 1rNs _H rNs "u 1rNs � 0rNs

3. In any computation step, the head will never be at two distinct positions
exactly two indices apart from each other:

H rNs ! 1rNs ^H rNs "u 1rNs � 0rNs

Assume that the head position in a certain computation step is given by a vector
h � p0, . . . , 0, 0, 1, 0, 0, . . . , 0q of bit-width size, and let i be the unique index with
hris � 1. The new head position is the next consecutive computation step is given
by the a vector h1 � ph1rsize� 1s, . . . , h1r0sq. We need to formalize that the head
will move left or right (exclusively). Condition 1 states that h1rjs � 0,@j R ti �
1, i�1u, i.e., h1 � p0, . . . , 0, h1ri�1s, 0, h1ri�1s, 0, . . . , 0q. Condition 2 guarantees
that h1ri� 1s � h1ri� 1s ¥ 1. Condition 3 ensures that h1ri� 1s � h1ri� 1s ¤ 1.

Note that the given encoding is again slightly redundant. Due to the fact that
there is always exactly one state in each computation step and the state vectors Q
can only be different from 0 at the bits corresponding to the head positions, we
actually would not need a separate variable H for the head of M , but could just
replace all occurrences of H rNs by

�
qPQQq

rNs. Nevertheless, we chose to keep a

186 CHAPTER 12. BEYOND PREVIOUS WORK

separate variable for the head in order to stick closer to the version for propositional
logic [106] and to improve the readability of the proof.

l

Remark 12.7. An easier way to guarantee the unique position for the head can
be obtained by using certain bit operations, similar to those in some benchmarks
from Chapter 8 and Chapter 9, but might be less intuitive for readers that are not
familiar with the topic of low level “bit hacks” as, e.g., found in [231]. For some
of the benchmarks in our earlier chapters, we used “is a power of two”-constraints.
Those constraints were generated using the following kind of condition:

hrns&phrns � 1rnsq � 0rns

It is straightforward to check that this kind of assertion is satisfied if and only if h
is a power of two, i.e., if exactly one bit of h is set to 1. This can be extended to
generate bit-vectors with exactly one bit being set to 1 in a certain range of indices
and, thus, allows us to formalize the fact that the head is at exactly one position in
every computation step.

Consider the bitmask brrNs �

Nhkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj
00 . . . 01looomooon

size

00 . . . 01looomooon
size

. . . 00 . . . 01looomooon
size

00 . . . 01looomooon
size

.

We can uniquely define this brrNs by adding the following two constraints:

1. brrNs ^ lorNs � 1rNs

2. brrNs ! sizerNs � brrNs ^ hirNs

Bit-vectors lorNs, hirNs, and sizerNs are defined according to the previous lemma.
By using the bitmask brrNs, the assertion

H rNs&pH rNs � brrNsq � 0rNs

will result in a natural extension of the previous constraint, forcing exactly one bit
of H to be set to 1 in each interval of bit-indices Hrpj � 1q � size � 1 : j � sizes,
with 0 ¤ j steps.

12.6.3 Encoding of Domino Tiling Problems

While a direct reduction from Turing machines to bit-vector logics is an interesting
construction by itself, an easier way to prove the given complexity result can be
obtained by using a reduction from a set of domino tiling problems [65, 171, 183],
as used in Chapter 2 and Chapter 4. We would like to acknowledge Moshe Vardi for
initially suggesting that a simpler proof probably might be derived by considering
domino tiling problems—it turned out he was right.

Lemma 12.8. The expνpnq-square tiling problem can be polynomially reduced to
a BV!ν formula.

12.6. UPGRADING SATISFIABILITY 187

Proof. LetD � pT � r0, . . . , k�1s, H, V, nq be a expνpnq square domino system
as defined in Chapter 2 and Chapter 4. We use i and j, to denote the horizontal and
vertical indices, respectively. For each t P T , we introduce a bit-vector TtrNs, with
N :� expνpnq

2, defining all positions that contain tile t. The pj � expνpnq � iqth
bit of Tt is 1 if and only if the ith column in row j of D contains tile t. As
already argued in Lemma 12.6, writing down N is polynomial in n when using
a ν-logarithmic encoding. Note that, for N � expνpnq

2, it is easy to see that
even much tighter bounds can be given, with N � expνpnq

2 � expν�1p2
nq2 ¤

expν�1pp2
nq2q � expν�1p2

2nq, only requiring 2n bits. This effect further in-
creases for larger ν. For ν ¡ 1, N � expνpnq

2 ¤ expν�1p2
n�1q can already be

specified by n� 1 bits.2 Nevertheless, tighter bounds do not affect our complexity
results.

We now construct a BV!ν formula that is satisfiable if and only if there exists
a tiling for D, starting with tile 0 and ending with tile k � 1, which respects the
horizontal and vertical matching conditions H and V .

The formula is a conjunction of the following constraints:

1. D starts with tile 0:
T0

rNs ^ 1rNs � 0rNs

2. D ends with tile k � 1:

Tk�1
rNs ^ pp 0rNsq "u 1rNsq � 0rNs

3. Each position in D contains exactly one tile, i.e., @t, t1 P T :

 Tt
rNs _ Tt1

rNs � 0rNs

4. The vertical matching conditions hold, i.e., @t P T :

pTt
rNs ! expνpnq

rNs Ñ
ª

pt,t1qPV

Tt1
rNsq � 0rNs

5. The horizontal matching conditions hold, i.e., @t P T :

pTt
rNs ! 1rNs Ñ

ª
pt,t1qPH

Tt1
rNs _ brrNsq � 0rNs

The mask brrNs is used to exclude neighbouring indices from the horizontal
matching conditions that actually represent column expνpnq � 1 of row j, and
column 0 of row j � 1, i.e., are not horizontally neighbouring tiles in the domino
system. It can be generated by adding the following constraints:

1. hirNs � 0rNs ! expνpnq
rNs

2Similar bounds hold for Lemma 12.6, but have to be constructed more carefully.

188 CHAPTER 12. BEYOND PREVIOUS WORK

2. lorNs � p 0rNs ! expνpnq
rNsq

3. brrNs ^ lorNs � 1rNs

4. brrNs ! expνpnq
rNs � brrNs ^ hirNs

l

12.6.4 Remarks on the Expressiveness of !c and !

Note that we defined Ω � t&, |,�,�,!u at the beginning of this section. In
particular, we required !P Ω, whereas we only used !c, i.e., shift by constant,
for the complexity results in Chapters 2–4. With hindsight, using !, i.e., general
shift, might have been the better choice. As argued in Section 4.2, general shift can
be realized by a so-called barrel shifter, using shift by constant. One application
thereof is also used for our translation to EPR, in Section 6.3.1. In general, this can
be done by replacing expressions x � y ! z with the following set of equations:

x0 � y,

xi � itepz& 2i�1 � 0, xi�1, xi�1 ! 2i�1q, i P t1, . . . , ku,

x � itepz& p�0 ! 2kq � 0, xk, 0q,

for bit-vector variables and constants of bit-width N , and with k :� rlog2N s.
Since all constants 2i are encoded as bit-vectors, each can be written down using
i ¤ k bits. Thus, the total size of a barrel shifter is polynomial in k, i.e., logarithmic
in N . As a consequence, using a single-logarithmic encoding for the bit-width N
(e.g., a binary one, as in Chapters 2–4) implies that the total size of a barrel shifter
is polynomial in the size of the input formula. Therefore, shift by constant and
general shift are equally powerful for single-logarithmic encoded scalars.

The situation is different for the multi-logarithmic case. With N being super-
exponential in the size of the input formula, k will be super-polynomial, and, thus,
the size of a barrel shifter will also be super-polynomial. Note that general shift
was used for proving Lemma 12.6 and Lemma 12.8, when evaluating expνpnq, by
using p1rNs ! p. . . p1rNs ! nrNsq . . . q, a chain of ν shifts.

While all of the previous work remains correct, we would like to propose two
alternative characterizations, which allow a more uniform treatment of the single-
logarithmic and the multi-logarithmic case.

Multi-Logarithmic Constants. One unification approach could be obtained by
redefining the characterization of constants in bit-vector formulas. So far, we con-
sidered constants to be represented as bit-vectors, as it is the case in the SMT-LIB
format [18]. However, constants could alternatively be considered as scalars. Ac-
cording to the definition of scalars in Chapter 4, this would allow multi-logarithmic
encodings of constants as well. For example, one could use an extension of floating

12.6. UPGRADING SATISFIABILITY 189

point representations, such as 1dn :� 1 � 2n, 1ddn :� 1 � 22n , . . . , i.e., 1dνn :�
expνpnq, for the constants in Lemma 12.6 and Lemma 12.8.3 Unfortunately, a dif-
ferent representation of constants could affect constant-related arguments in some
other proofs, e.g., in Lemma 4.26, Lemma 4.29, and Theorem 12.9. Aside from
this, it is not consistent with common constant representations, e.g., in the SMT-
LIB format. We therefore recommend the second approach.

General Shifts. The second unification approach could be obtained by redefining
the bit-vector classes QF_BV!c and QF_BV!1, introduced in Chapter 3 and Chap-
ter 4. For example, one could use BV!1 instead of QF_BV!c and BV!1

1 instead of
QF_BV!1, with operator sets Ω! � t&, |,�,�,!u, and Ω!1 � t&, |,�,�,!1u,
respectively. To further distinguish between! and!1, we would propose to define
!1 as a separate unary operator, similar to the definition of �1 in [154]. As it will
have no effect on any existing proof, and since it can be expressed in the SMT-LIB
format, we recommend this approach.

12.6.5 Satisfiability of BV�1
1

As pointed out in the previous two sections, there is a gap between the operators re-
quired for hardness results of satisfiability, and the ones required for general prob-
lems that are complete under explicit representations, e.g., model checking. As
shown in [154], word level model checking is already EXPSPACE-hard for an op-
erator set that contains increment (�1) instead of general shift (!). In Lemma 12.4
of this thesis, we then showed how the !c-operator can be encoded by !1, in the
context of word-level model checking, and also argued that a further reduction to
�1 can be done in the same way.

In Chapter 3 and Chapter 4, however, we proved that this is not true in the
case of satisfiability. We showed that satisfiability of BV!1 is NEXPTIME-hard for
Ω � t&, |,�,�,!u, but also that hardness does not hold anymore for Ω!1 �
t&, |,�,�,!1u. Instead, satisfiability of the resulting logic, BV!1

1 , turns out to
be PSPACE-complete. By further reducing the operator set to Ωbw � t&, |,�,�u,
satisfiability for the resulting logic, BVbw1 , even becomes NP-complete.

As a consequence of those results, investigating the complexity of satisfiability
for Ω�1 � t&, |,�,�,�1u arises to be of natural interest. We will now prove
that satisfiability for BV�1

1 is NP-complete. Thus, �1 turns out not to provide any
additional expressiveness over bitwise operators when considering satisfiability of
a formula. This is captured by the following theorem.

Theorem 12.9. Satisfiability for BV�1
1 is NP-complete.

Proof. NP-hardness immediately follows from BVbw1 � BV�1
1 . The proof for

inclusion follows the concept of the proofs from Chapter 4, when showing BVbw1 P
NP, and its possible extension by relational operators or indexing: We show that

3dν being ν times the concatenation of d.

190 CHAPTER 12. BEYOND PREVIOUS WORK

a given formula Φ P BV�1
1 is satisfiable if and only if Φ1, a certain small domain

encoding of Φ, i.e., a bit-width reduced, scalar bounded version of Φ, is satisfiable.
Since many proof steps are identical to those from Chapter 4 and also somewhat

technical, we will assume the reader is familiar with the general proof concept and
only point out necessary adjustments, in a less formal way than we did in Chapter 4.
In particular, consider Lemma 4.26. and proofs for related results in Section 4.7.2.

W.l.o.g., we consider formulas Φ in flat form and assume that all occurrences
of terms trns�1 in the formula have been replaced by Tseitin variables yrns. As
part of this process, the constraints yrns � xrns�1 and xrns � trns are conjuncted
with the formula, with xrns being further Tseitin variables.

Let cnteqpΦq and cnt�1pΦq be the number of equalities and the number of
increment expressions in Φ, respectively. Furthermore, let yj rns � xj

rns�1, for
j P t0, . . . ,m�1u andm :� cnt�1 , donate all increment expressions in Φ. We can
then write, Φ � Φbw ^Φ�1 , with Φbw P BVbw1 and Φ�1 �

�
jPt0,...,m�1u yj

rnjs �

xj
rnjs�1. In particular, this implies that all occurrences of �1 are within positive

equalities between variables. Note that we write�1 as a unary operator in affix no-
tation, similar to the usage of increment operators in many common programming
languages. This is done to improve readability by avoiding confusion with oper-
ators such as unary minus. Finally, we assume that all constants in Φ have been
removed. This is similar to the approach in Lemma 4.26 and will be addressed as
a remark after this proof.

In our original proof for Lemma 4.26, we argued why it is sufficient to con-
sider a formula Φ1 with smaller bit-widths, and we also argued why cnteqpΦq, the
number of equalities in Φ is a sufficient bound for the bit-width n1. In particular,
we defined n1 :� mintn, cnteqpΦqu for a specific bit-vector in Φ1. We now slightly
increase this bound to n1 :� mintn, cnteqpΦq � 1u. Note that this is just to cover
the corner case of cnteqpΦq � cnt�1pΦq. Obviously, n1 is polynomial in |Φ|, and
if we can show how solutions for Φ and Φ1 can be reduced to each other, we have
given a reduction to a scalar bounded formula set (see Definition 4.15).

Remember that the central argument in Lemma 4.26 was based on the fact
that different bit-indices are not related and, thus, it is sufficient to guarantee that
there can be a distinct bit-index which acts as a witness for each disequality. Now,
with �1 being part of the operator set, an interaction between different bit-indices
actually can happen. However, due to the nature of �1, this is only in a very
restricted way, whenever a carry bit is propagated: Propagation of a carry bit in
a bit-vector xrns � xn�1 . . . xi�101 . . . 1 is always starting from bit-index 0, until
bit-index i, with xi being the lowest bit of x that is equal to 0. This will result
in yrns � xn�1 . . . xi�110 . . . 0. For a set of vectors, tx0 , x1 , . . . , xm�1u, we
therefore have m such indices il, with l P t0, . . . ,m � 1u, up to which point a
carry bit is propagated.

Given a satisfying assignment α1 for Φ1 we now show how to construct a sat-
isfying assignment α for Φ. As for Lemma 4.26, we simply set all additional
bits of bit-vector variables with n1 n, to a certain value that we copy from one

12.6. UPGRADING SATISFIABILITY 191

of the existing bit-indices. With all bit-indices being unrelated in Lemma 4.26,
it was sufficient to choose an arbitrary bit-index, e.g., the most significant one.
For the current proof, this still holds for the bitwise part of our formula, but we
need to be more specific in order to guarantee that all equalities over increments
are still satisfied. Since yj rn

1
js � xj

rn1js�1 � xj,n1�1 . . . xj,ij�101 . . . 1�1 �
xj,n1�1 . . . xj,ij�110 . . . 0, it is easy to see that the equality will still hold if and
only if we copy any bit-index other than ij . In particular, considering the full for-
mula, we can choose any bit-index i R ti0, . . . , im�1u. Since n1 ¡ cnteqpΦq ¥
cnt�1pΦq, we know that this i always exists.

We now prove the other direction. Given α with αpΦq � 1, we show how to
construct α1 with α1pΦ1q. Similar to Lemma 4.26, we need to select sets Mk with
|Mk| � mintnk, cnteqpΦqu bit-indices, which are sufficient to satisfy the formula.
Note that those sets are selected individually for each distinct bit-width nk in Φ
(cf. Lemma 4.26). In order to guarantee satisfiability, we again have to use those
bit-indices that can act as a witness for each equality F P Φbw with αpF q � 0.
Arbitrary bits can be selected for equalities F P Φbw with αpF q � 1. For equalities
F P Φ�1 , the situation is different. Since all equalities in Φ�1 are positive, αpF q �
1 has to hold for all satisfying assignment of Φ, and we do not need to consider
αpF q � 0. On the other hand, equalities F P Φ�1 with αpF q � 1 can actually
become unsatisfied when removing the wrong bit. As before, yj rnjs � xj

rnjs�1

will evaluate to xj,n�1 . . . xj,i�110 . . . 0 � xj,n�1 . . . xj,i�101 . . . 1�1. Thus, a
previously satisfied equality will remain satisfied if and only if bit-index i is not
removed. We therefore always select the specific bit-indices i P ti0, . . . , im�1u for
equalities in Φ�1 .

Since cnteqpΦ�1q � cnt�1pΦ�1q, the total number |Mk| of bit-indices selected
for each bit-width nk in Φ is bounded by |Mk| ¤ cnteqpΦq. If |Mk| n1k �
mintnk, cnteqpΦq � 1u, we add n1k � |Mk| arbitrary additional indices to Mk.
Finally, all bit-indices apart from those in Mk are removed from all bit-vectors
with bit-width nk. After applying this process for all different bit-widths nk, the
result corresponds to a satisfying assignment α1 for Φ1. l

Remark 12.10. Note that we initially used the assumption that constants have been
removed from the formula in a preprocessing step. Having discussed the particular
effect of the increment operator on a sequence of bits, starting from the lowest
index, it is not difficult to see how this can be achieved. This is similar to the
removal of constants in Lemma 4.26, and, even more, to the treatment of constants
for inequality constraints in Theorem 4.29, by considering the least significant bits
seperately. For example, the least significant bit of an increment constraint

yrns � xrns�1

can be removed by splitting into

px0
r1s ��0r1sq Ñ

��
y0

r1s � 0r1s
	
^
�
yHIrn�1s � xHIrn�1s�1

		
^

192 CHAPTER 12. BEYOND PREVIOUS WORK

px0
r1s � 0r1sq Ñ

��
y0

r1s ��0r1s
	
^
�
yHIrn�1s � xHIrn�1s

		
,

using the notion of xHI and yHI from Lemma 4.26. Iterative application will re-
move further bits and, thus, all non-zero bits of any constants in the formula can be
removed (cf. Theorem 4.29).

12.6.6 Satisfiability of BVbwν , BV�1
ν and BV!1

ν

Bringing together the previous results, we already covered a broad range of opera-
tors and encodings. We showed how moving from a unary to a single-logarithmic
encoding affects complexity of bit-vector logics with certain sets of operators. We
want to provide a further unification by discussing the effect of multi-logarithmic
encodings on two restricted sets of operators that turned out to be easier for the
single-logarithmic case.

In particular, we know that BVbw0 , BVbw1 , BV�1
0 and BV�1

1 are NP-complete,
i.e., the complexity of the respective operator sets does not differ between unary
encodings and single-logarithmic encodings for scalars. It is not surprising that
this is still true for multi-logarithmic encodings. This directly follows from the
corresponding proofs, e.g., those for Lemma 4.26 and for Theorem 12.9. The
reader can easily check that the succinctness of the scalar encodings will have no
influence on the reductions used in both proofs.

In contrast to that, we know that the complexity increases from being NP-
complete to being PSPACE-complete, when moving from BV!1

0 to BV!1
1 —which

makes the situation less obvious for the specific operator set in combination with
multi-logarithmic encodings. Nevertheless, we conjecture that BV!1

ν will remain
PSPACE-complete for ν ¡ 1. While leaving a full formal proof to future work,
we will sketch our argument: Remember that we proved PSPACE-inclusion for
ν � 1 by providing a reduction to the model checking problem on sequential cir-
cuits, similar to a reduction for QFPAbit in [208, 209]. Note that the related proof
in [208, 209] already considered bit-vectors of infinite length, and we explicitly
extended our version by introducing a counter to check for fixed bit-widths up to
2n. While we cannot realize a counter for expνpnq, ν ¡ 1 as a polynomial size
sequential circuit, we actually conjecture that this is not necessary. Since there are
only exp1p|Φ|q � Op2nq possible combinations of input values and state values
for a sequential circuit representation of Φ (leaving aside the counter variables),
we can argue that the underlying structure has to be lasso shaped and it must be
possible to reach a loop after at most 2n steps. This is the same argument used
for the recurrence diameter in bounded model checking [28, 157]. Therefore, we
should be able to reduce any problem Φ P BV!1

ν to a problem with bit-widths in
Op2|Φ|q.

Interestingly, this consideration in the context of bounded model checking also
offers a further point of view on formulas in BV�1

ν . Since we know that BV�1
ν

is NP-complete, and that it is sufficient to consider corresponding formulas with
Oppp|Φ|qq bits, this should also hold when the problem is re-encoded as a model

12.6. UPGRADING SATISFIABILITY 193

Scalar EncodingÑ unary binary ν-logarithmic
Ó Operators ν � 0 ν � 1 ν ¡ 1

BVbwν ,BV�1
ν NP NP NP

BV�ν ,BV!1
ν NP PSPACE PSPACE 4

BV!cν NP NEXPTIME ?
BV!ν NP NEXPTIME ν-NEXPTIME

Table 12.1: Complexity classes for various operator sets in combination with dif-
ferent degrees of succinctness. All operator sets include bitwise operators and
equality. Additionally, the operator in the superscript is included (none, for bw).

checking problem in our common way. If we now used a bounced model checker,
it should be sufficient to consider polynomial bounds. This is related to the topic
of completeness thresholds, as discussed in [69, 157]. In general, completeness
thresholds are very difficult to obtain. Our results might help doing so for restricted
problem classes. This could improve the performance of bounded model checkers
on those problem classes. However, a more thorough problem discussion and a
more formal analysis are needed first—both are out of the scope of this thesis.
Therefore, this should only be considered as preliminary arguments and a proposal
for future work.

Table 12.1 depicts the conjectures from this section. Note that this is also re-
lated to the discussion about expressiveness of !c and !, depending on the degree
of the logarithm used of the scalar encoding (see Section 12.6.4). It seems that, the
more succinct the bit-width encoding is, the more “powerful” a shift (or addition)
operation has to be in order to profit from this succinctness. Whereas �1 is too
weak to increase complexity for any logarithmic encoding, � or !1 are sufficient
to lift complexity to being complete for PSPACE, but not for NEXPTIME, as it is
possible for !c. However, our proof of Theorem 12.5, for a general ν-logarithmic
encoding, actually required !, as discussed in Section 12.6.4. We would expect
that a general NEXPTIME-inclusion result could probably be obtained for the re-
stricted version with !c, also for all ν ¡ 1. This might be another topic for future
work.

12.6.7 Quantified BVΩ
ν with Uninterpreted Functions

Those preliminary results regarding operators lead us to a final consideration re-
garding quantified logics. In Chapter 2 and Chapter 4, we discussed several results
for quantified bit-vector logics with uninterpreted functions. The unary case was
already proved to be NEXPTIME-complete in [234, 233], and our results showed
2-NEXPTIME-completeness for binary encodings (see Theorem 4.37). Revisit-

4Only preliminary arguments were given so far. A formal proof is still required.

194 CHAPTER 12. BEYOND PREVIOUS WORK

ing these results in the context of multi-logarithmic encodings, it is easy to see
that all arguments in our reduction (see Lemma 4.40) still hold. This implies
pν�1q-NEXPTIME-completeness of ν-logarithmic encoded bit-vector logics with
quantifiers and uninterpreted functions, thus, for all ν ¡ 1, remaining exponen-
tially harder than their quantifier-free counterpart (for Ω � t&, |,�,�,!u).

Care has to be taken when considering the required operator sets. As shown in
Proposition 4.42, the hardness result for quantified bit-vector logics with uninter-
preted functions already holds for Ω � t&, |,�,�,!1u. We showed this by giving
a defintion similar to the one in Peano arithmetic. It is not difficult to see that this
can be further reduced to Ω � t&, |,�,�,�1u, in the same way.

Throughout our earlier work, we sometimes used phrases, such as “This shows
that, informally speaking, binary encoding on scalars has the same expressive
power as quantification and uninterpreted functions altogether.”—while this is true
for bit-vector logics with Ω � t&, |,�,�,!u, it does not fully capture the over-
all picture. Instead, one should also consider the fact that quantified bit-vector
logics with uninterpreted functions require a much weaker operator set, compared
to their quantifier-free counterparts with more succinct scalar encodings. In this
sense, quantification and uninterpreted functions can actually be considered to re-
main more expressive.

Finally, note that the complexity results for quantified bit-vector logics with un-
interpreted functions, thus, are very close to those for succinct bit-vector encodings
in [154]—both only require an increment operator �1, in addition to logical/bit-
wise operators and equality. Furthermore, for bit-vector logics with quantifiers and
uninterpreted functions, as also for the problem classes in [154], even �1 can be
removed when a unary encoding for the scalars is used.

Chapter 13

Conclusion

As already mentioned at several occasions, bit-vector logics are of central impor-
tance in many areas of computer science. With growing computational power and
with the development of more sophisticated algorithms, the general interest in bit-
vectors has steadily grown over the last decades. Considering that more and more
applications are getting into the reach of current solvers, this process will proba-
bly keep going on in the near future. In particular, the question of satisfiability is
of huge relevance for many applications. SAT solvers, over the last two decades,
have become incredibly efficient, solving industrial formulas with up to millions of
variables—an effect, that has not nearly been expected when research on SAT was
still at its beginning or when, in 1971, Cook presented his NP-completeness proof.
This huge success of SAT solvers was mainly due to the CDCL paradigm [170] and
related heuristics, such as variable scoring schemes [29], or restart schemes [30].
The increase in performance of SAT solvers paved the way to deal with even more
complex problems, such as quantified formulas or bit-vector logics. Research in
all those areas is still an ongoing process and solvers steadily improve further. In
this thesis, we discussed bit-vectors and related topics from several perspectives.
We contributed to scientific research areas related to theory as well as practice.

Regarding theory, we proved a large number of new complexity results for
several classes of bit-vector problems. In particular, we were the first to show
the effect of particular encodings used for all kind of scalars in bit-vector log-
ics [151, 101, 153, 154]. For example, quantifier-free bit-vector formulas turned
out to be NEXPTIME-complete, when using a binary encoding [151]. This expo-
nential growth, compared to the logic with unary encoding, also holds if quantifi-
cation and uninterpreted functions are used, resulting in a 2-NEXPTIME-complete
logic [151]. In the quantifier-free case, certain simple restrictions on operators can
also produce prototypical NP, PSPACE, and NEXPTIME-complete logics [101].
Equivalences between certain operators lead to several alternative characterizations
and, also for the quantified case, certain restrictions can be shown to decrease or
not decrease expressiveness [153].

As a side result, our theoretical work also lead to the construction of new
benchmarks for SMT and SAT solvers [152]. On the practical side, we presented

195

196 CHAPTER 13. CONCLUSION

new algorithms for several different problems, including general bit-vector formu-
las [98, 150], restricted classes thereof [100], and DQBF [99, 102]. In the general
case, quantifier-free bit-vector logics can either be solved by directly applying a
stochastic local search approach on the theory representation [98], or can be trans-
lated to EPR, then being solved by an EPR-solver [150]. For the more restricted
PSPACE class, a translation to SMV can allow model checkers to efficiently solve
certain bit-vector formulas [100]. To solve DQBF, we proposed as DPLL based
approach [99], similar to the one for SAT [78] and QBF [61], and an instantiation
based one [102], as also used for EPR [147, 148].

Aside from those results, which were presented in Chapters 2–10, we then
discussed the author’s individual contribution in Chapter 11 and extended previ-
ous work in Chapter 12, by putting it into relation to other recent developments,
and pointing to possible directions of future work. In regard to complexity, we
took a closer look at possible limits of quantification in bit-vector logics, related to
quantifier alternations. We also pointed out the importance of alternative solving
approaches for application problems, even in the light of recently shown para-NP-
completeness of many practical problems [177]. We then discussed new devel-
opments in actual DQBF solving [111], together with the importance of recently
developed preprocessing techniques for DQBF [232], and emphasized the need
for benchmark libraries. Concerning SLS for SMT, we briefly described the recent
concept of path propagation [181] and suggested possible directions for paralleliza-
tion of our SLS framework. On the complexity side, we also presented a way of
encoding of Turing machines into word-level model checking problems.

Moreover, Chapter 12 also contains several new theoretical results. In related
work [154], a generic upgrading theorem has been obtained, showing that succinct
representations by bit-vector formulas with multi-logarithmic scalar encodings in-
crease complexity of certain problems exponentially for each degree of succinct-
ness. We now showed a similar result for satisfiability of bit-vector formulas, prov-
ing that its complexity also increases exponentially for each degree of succinctness
of scalar encodings. From the theoretical perspective, those results are particularly
nice in the overall context of our work, since it further confirms the very general
nature of bit-vector representations.

Highlighting the difference in the operators required for the upgrading theo-
rem in [154] and our new results for satisfiability, we further analyzed the expres-
siveness of the involved operators. As a result, we were able to provide a new
NP-completeness results for a certain class of bit-vector logics, containing an in-
crement operator. This extended, e.g., previous fragments from [153], and allowed
us to emphasize the fundamental way, in which a restriction of addition and shifts
influences the underlying complexity of bit-vector formulas.

Aside from this, we think that research on bit-vectors and related topics still
offers many more possible directions for future work. We hope that our results
will also help other researchers in their work to continuously improve our under-
standing of those topics as well as our ability of solving practical problems in
applications.

Bibliography

[1] Rajeev Agrawal. Sample mean based index policies with o(log n) regret
for the multi-armed bandit problem. Advances in Applied Probability,
27(4):1054–1078, 1995.

[2] Alejandro Arbelaez and Youssef Hamadi. Improving parallel local search
for SAT. In Carlos A. Coello Coello, editor, Learning and Intelligent Op-
timization - 5th International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers, volume 6683 of Lecture Notes in Computer
Science, pages 46–60. Springer, 2011.

[3] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in
modern SAT solvers. In Boutilier [39], pages 399–404.

[4] Gilles Audemard and Laurent Simon. Refining restarts strategies for SAT
and UNSAT. In Michela Milano, editor, Principles and Practice of Con-
straint Programming - CP 2012 - 18th International Conference, CP 2012,
Québec City, QC, Canada, October 8-12, 2012. Proceedings, volume 7514
of Lecture Notes in Computer Science, pages 118–126. Springer, 2012.

[5] Gilles Audemard and Laurent Simon. Glucose 2.3 in the SAT 2013 Compe-
tition. In Balint et al. [12], pages 42–43.

[6] Abdelwaheb Ayari, David A. Basin, and Felix Klaedtke. Decision proce-
dures for inductive boolean functions based on alternating automata. In
E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verifica-
tion – 12th International Conference, CAV 2000, Chicago, IL, USA, July
15-19, 2000, Proceedings, volume 1855 of Lecture Notes in Computer Sci-
ence, pages 170–185. Springer, 2000.

[7] Salman Azhar, Gary Peterson, and John Reif. Lower bounds for multiplayer
non-cooperative games of incomplete information. Computers & Mathe-
matics with Applications, 41:957–992, 2001.

[8] Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong R. Jiang.
Henkin quantifiers and boolean formulae: A certification perspective of
DQBF. Theoretical Computer Science, 523:86–100, 2014.

197

198 BIBLIOGRAPHY

[9] Valeriy Balabanov, Hui-Ju Katherine Chiang, and Jie-Hong Roland Jiang.
Henkin quantifiers and boolean formulae. In Cimatti and Sebastiani [67],
pages 129–142.

[10] Valeriy Balabanov and Jie-Hong Roland Jiang. Reducing satisfiability and
reachability to DQBF, 2015. Presentation at 3rd International Workshop on
Quantified Boolean Formulas, QBF 2015, Affiliated to SAT 2015, Austin,
TX, USA, September 23, 2015.

[11] José L. Balcázar, Antoni Lozano, and Jacobo Torán. The complexity of
algorithmic problems on succinct instances. Computer Science, pages 351–
377, 1992.

[12] Adrian Balint, Anton Belov, Marijn J. H. Heule, and Matti Järvisalo, editors.
Proceedings SAT Competition 2013, Solver and Benchmark Descriptions,
volume B-2013-1 of Department of Computer Science Series of Publica-
tions B. University of Helsinki, 2013.

[13] Adrian Balint, Armin Biere, Andreas Fröhlich, and Uwe Schöning. Improv-
ing implementation of SLS solvers for SAT and new heuristics for k-SAT
with long clauses. In Sinz and Egly [204], pages 302–316.

[14] Adrian Balint and Andreas Fröhlich. Improving stochastic local search for
SAT with a new probability distribution. In Strichman and Szeider [217],
pages 10–15.

[15] Adrian Balint and Uwe Schöning. Choosing probability distributions for
stochastic local search and the role of make versus break. In Cimatti and
Sebastiani [67], pages 16–29.

[16] Tomáš Balyo, Andreas Fröhlich, Marijn Heule, and Armin Biere. Every-
thing you always wanted to know about blocked sets (but were afraid to
ask). In Sinz and Egly [204], pages 317–332.

[17] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability Modulo Theories, chapter 26, pages 825–885. Volume 185 of
Biere et al. [31], February 2009.

[18] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard:
Version 2.0. In Proceedings 8th International Workshop on Satisfiability
Modulo Theories, SMT 2010, Affiliated to CAV 2010 and SAT 2010, Edin-
burgh, UK, July 14–15, 2010. Informal Proceedings, 2010.

[19] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure
for bit-vector arithmetic. In M. J. Irwin, editor, Proceedings 35th Design
Automation Conference, DAC 1998, San Francisco, CA, USA, June 15-19,
1998, pages 522–527. ACM, 1998.

BIBLIOGRAPHY 199

[20] Anton Belov, Marijn J. H. Heule, and Matti Järvisalo, editors. Proceed-
ings SAT Competition 2014, Solver and Benchmark Descriptions, volume
B-2014-2 of Department of Computer Science Series of Publications B. Uni-
versity of Helsinki, 2014.

[21] Anton Belov, Matti Järvisalo, and Zbigniew Stachniak. Depth-driven
circuit-level stochastic local search for SAT. In Toby Walsh, editor, IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 504–509.
IJCAI/AAAI, 2011.

[22] Marco Benedetti. Evaluating QBFs via symbolic skolemization. In Franz
Baader and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning – 11th International Conference, LPAR 2004,
Montevideo, Uruguay, March 14-18, 2005, Proceedings, volume 3452 of
Lecture Notes in Computer Science, pages 285–300. Springer, 2005.

[23] Paul Bernays and Moses Schönfinkel. Zum entscheidungsproblem der math-
ematischen logik. Mathematische Annalen, 99(1):342–372, 1928.

[24] Armin Biere. Resolve and expand. In Hoos and Mitchell [126], pages 59–
70.

[25] Armin Biere. Adaptive restart strategies for conflict driven SAT solvers. In
Büning and Zhao [57], pages 28–33.

[26] Armin Biere. PicoSAT essentials. Journal on Satisfiability, 4(2-4):75–97,
2008.

[27] Armin Biere. Yet another local search solver and Lingeling and friends
entering the SAT Competition 2014. In Belov et al. [20], pages 39–40.

[28] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Rance Cleaveland, editor, Tools
and Algorithms for Construction and Analysis of Systems, 5th International
Conference, TACAS ’99, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’99, Amsterdam, The Nether-
lands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in
Computer Science, pages 193–207. Springer, 1999.

[29] Armin Biere and Andreas Fröhlich. Evaluating CDCL variable scoring
schemes. In Heule and Weaver [124], pages 405–422.

[30] Armin Biere and Andreas Fröhlich. Evaluating CDCL restart schemes. In
Proceedings 6th International Workshop on Pragmatics of SAT, POS 2015,
Affiliated to SAT 2015, Austin, TX, USA, September 23, 2015, EPiC Series.
EasyChair, 2016. to appear.

200 BIBLIOGRAPHY

[31] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, edi-
tors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intel-
ligence and Applications. IOS Press, February 2009.

[32] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimina-
tion for QBF. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, edi-
tors, Automated Deduction - CADE-23 - 23rd International Conference on
Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceed-
ings, volume 6803 of Lecture Notes in Computer Science, pages 101–115.
Springer, 2011.

[33] Per Bjesse. A practical approach to word level model checking of industrial
netlists. In Gupta and Malik [120], pages 446–458.

[34] Nikolaj Bjorner, Kenneth McMillan, and Andrey Rybalchenko. Program
verification as satisfiability modulo theories. In Fontaine and Goel [95],
pages 3–11.

[35] Nikolaj Bjørner and Mark C. Pichora. Deciding fixed and non-fixed size bit-
vectors. In Bernhard Steffen, editor, Tools and Algorithms for Construction
and Analysis of Systems - 4th International Conference, TACAS ’98, Held
as Part of the European Joint Conferences on the Theory and Practice of
Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceed-
ings, volume 1384 of Lecture Notes in Computer Science, pages 376–392.
Springer, 1998.

[36] Roderick Bloem, Robert Könighofer, and Martina Seidl. SAT-based syn-
thesis methods for safety specs. In Kenneth L. McMillan and Xavier Rival,
editors, Verification, Model Checking, and Abstract Interpretation - 15th In-
ternational Conference, VMCAI 2014, San Diego, CA, USA, January 19-21,
2014, Proceedings, volume 8318 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2014.

[37] Roderick Bloem and Natasha Sharygina, editors. Proceedings of 10th Inter-
national Conference on Formal Methods in Computer-Aided Design, FM-
CAD 2010, Lugano, Switzerland, October 20-23. IEEE, 2010.

[38] Bernd Borchert and Antoni Lozano. Succinct circuit representations and leaf
language classes are basically the same concept. Information Processing
Letters, 59(4):211–215, 1996.

[39] Craig Boutilier, editor. IJCAI 2009, Proceedings 21st International Joint
Conference on Artificial Intelligence, Pasadena, California, USA, July 11-
17, 2009. AAAI Press, 2009.

[40] Aaron R. Bradley. SAT-based model checking without unrolling. In Ranjit
Jhala and David A. Schmidt, editors, Verification, Model Checking, and Ab-
stract Interpretation - 12th International Conference, VMCAI 2011, Austin,

BIBLIOGRAPHY 201

TX, USA, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes
in Computer Science, pages 70–87. Springer, 2011.

[41] Aaron R. Bradley. Understanding IC3. In Cimatti and Sebastiani [67], pages
1–14.

[42] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In E. Allen Emerson and Kedar S. Namjoshi, editors, Ver-
ification, Model Checking, and Abstract Interpretation - 7th International
Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006, Pro-
ceedings, volume 3855 of Lecture Notes in Computer Science, pages 427–
442. Springer, 2006.

[43] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An in-
cremental approach to model checking progress properties. In Per Bjesse
and Anna Slobodová, editors, International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 -
November 02, 2011, pages 144–153. FMCAD Inc., 2011.

[44] Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-
strength verification tool. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Computer Aided Verification, 22nd International Conference, CAV
2010, Edinburgh, UK, July 15-19, 2010. Proceedings, volume 6174 of Lec-
ture Notes in Computer Science, pages 24–40. Springer, 2010.

[45] Raik Brinkmann and Rolf Drechsler. RTL-datapath verification using inte-
ger linear programming. In Proceedings of the ASPDAC 2002 / VLSI De-
sign 2002, CD-ROM, 7-11 January 2002, Bangalore, India, pages 741–746.
IEEE Computer Society, 2002.

[46] Ed Brinksma and Kim Guldstrand Larsen, editors. Computer Aided Verifi-
cation, 14th International Conference, CAV 2002, Copenhagen, Denmark,
July 27-31, 2002, Proceedings, volume 2404 of Lecture Notes in Computer
Science. Springer, 2002.

[47] Robert Brummayer and Armin Biere. Boolector: An efficient SMT solver
for bit-vectors and arrays. In Stefan Kowalewski and Anna Philippou, ed-
itors, Tools and Algorithms for the Construction and Analysis of Systems,
15th International Conference, TACAS 2009, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings, volume 5505 of Lecture Notes in
Computer Science, pages 174–177. Springer, 2009.

[48] Robert Brummayer, Armin Biere, and Florian Lonsing. BTOR: bit-precise
modelling of word-level problems for model checking. In Clark Barrett, ed-
itor, Proceedings of the Joint Workshops of the 6th International Workshop

202 BIBLIOGRAPHY

on Satisfiability Modulo Theories and 1st International Workshop on Bit-
Precise Reasoning, SMT/BPR 2008, Affiliated to CAV 2008, July 14, 2008,
Princeton, NJ, USA, pages 33–38. ACM, 2008.

[49] Roberto Bruttomesso. RTL Verification: From SAT to SMT(BV). PhD thesis,
University of Trento, 2008.

[50] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In Gupta and
Malik [120], pages 299–303.

[51] Roberto Bruttomesso and Natasha Sharygina. A scalable decision procedure
for fixed-width bit-vectors. In Jaijeet S. Roychowdhury, editor, 2009 Inter-
national Conference on Computer-Aided Design, ICCAD 2009, San Jose,
CA, USA, November 2-5, 2009, pages 13–20. ACM, 2009.

[52] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, and Bryan A. Brady. Deciding bit-vector arithmetic with abstrac-
tion. In Orna Grumberg and Michael Huth, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 13th International Conference,
TACAS 2007, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April
1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science,
pages 358–372. Springer, 2007.

[53] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling
and verifying systems using a logic of counter arithmetic with lambda ex-
pressions and uninterpreted functions. In Brinksma and Larsen [46], pages
78–92.

[54] Uwe Bubeck and Hans Kleine Büning. Encoding nested boolean functions
as quantified boolean formulas. Journal on Satisfiability, 8(1/2):101–116,
2012.

[55] Uwe Bubeck and Hans Kleine Büning. Dependency quantified horn formu-
las: Models and complexity. In Armin Biere and Carla P. Gomes, editors,
Theory and Applications of Satisfiability Testing - SAT 2006, 9th Interna-
tional Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings, vol-
ume 4121 of Lecture Notes in Computer Science, pages 198–211. Springer,
2006.

[56] Uwe Bubeck and Hans Kleine Büning. Nested boolean functions as models
for quantified boolean formulas. In Järvisalo and Gelder [138], pages 267–
275.

[57] Hans Kleine Büning and Xishun Zhao, editors. Theory and Applications of
Satisfiability Testing - SAT 2008 – 11th International Conference, SAT 2008,

BIBLIOGRAPHY 203

Guangzhou, China, May 12-15, 2008. Proceedings, volume 4996 of Lecture
Notes in Computer Science. Springer, 2008.

[58] Ricky W. Butler, Paul S. Miner, Mandayam K. Srivas, Dave A. Greve, and
Steven P. Miller. A bitvectors library for PVS. Technical report, NASA
Langley Research Center, Hampton, Virginia, USA, August 1996.

[59] Bv2epr project page. Website. http://fmv.jku.at/bv2epr/.

[60] Bv2smv project page. Website. http://fmv.jku.at/bv2smv/.

[61] Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An algorithm to
evaluate quantified boolean formulae. In Jack Mostow and Chuck Rich,
editors, Proceedings Fifteenth National Conference on Artificial Intelli-
gence and Tenth Innovative Applications of Artificial Intelligence Confer-
ence, AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA, pages
262–267. AAAI Press / The MIT Press, 1998.

[62] Shaowei Cai and Kaile Su. Configuration checking with aspiration in local
search for SAT. In Jörg Hoffmann and Bart Selman, editors, Proceedings
of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada. AAAI Press, 2012.

[63] Supratik Chakraborty, Zurab Khasidashvili, Carl-Johan H. Seger, Rajkumar
Gajavelly, Tanmay Haldankar, Dinesh Chhatani, and Rakesh Mistry. Word-
level symbolic trajectory evaluation. In Kroening and Pasareanu [156],
pages 128–143.

[64] Krishnendu Chatterjee, Thomas A. Henzinger, Jan Otop, and Andreas
Pavlogiannis. Distributed synthesis for LTL fragments. In Barbara Job-
stmann and Sandip Ray, editors, Formal Methods in Computer-Aided De-
sign, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 18–25.
IEEE, 2013.

[65] Bogdan S. Chlebus. From domino tilings to a new model of computation. In
Andrzej Skowron, editor, Computation Theory - Fifth Symposium, Zaborów,
Poland, December 3-8, 1984, Proceedings, volume 208 of Lecture Notes in
Computer Science, pages 24–33. Springer, 1984.

[66] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An opensource tool for symbolic model
checking. In Brinksma and Larsen [46], pages 359–364.

[67] Alessandro Cimatti and Roberto Sebastiani, editors. Theory and Applica-
tions of Satisfiability Testing - SAT 2012 - 15th International Conference,
Trento, Italy, June 17-20, 2012. Proceedings, volume 7317 of Lecture Notes
in Computer Science. Springer, 2012.

http://fmv.jku.at/bv2epr/
http://fmv.jku.at/bv2smv/

204 BIBLIOGRAPHY

[68] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model check-
ing. Journal of the ACM, 50(5):752–794, September 2003.

[69] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Completeness and complexity of bounded model checking. In Bernhard
Steffen and Giorgio Levi, editors, Verification, Model Checking, and Ab-
stract Interpretation, 5th International Conference, VMCAI 2004, Venice,
January 11-13, 2004, Proceedings, volume 2937 of Lecture Notes in Com-
puter Science, pages 85–96. Springer, 2004.

[70] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, Cambridge, MA, USA, 1999.

[71] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Winter-
steiger. Ranking function synthesis for bit-vector relations. In Esparza and
Majumdar [92], pages 236–250.

[72] Stephen Cook and Michael Soltys. Boolean programs and quantified propo-
sitional proof systems. Bulletin of the Section of Logic, 28(3):119–129,
1999.

[73] Stephen A. Cook. The complexity of theorem-proving procedures. In
Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Pro-
ceedings 3rd Annual ACM Symposium on Theory of Computing, May 3-5,
1971, Shaker Heights, Ohio, USA, pages 151–158. ACM, 1971.

[74] David Cyrluk, M. Oliver Möller, and Harald Rueß. An efficient decision
procedure for the theory of fixed-sized bit-vectors. In Orna Grumberg, ed-
itor, Computer Aided Verification, 9th International Conference, CAV ’97,
Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of Lecture Notes
in Computer Science, pages 60–71. Springer, 1997.

[75] William J. Dally and R. Curtis Harting. Digital Design, A Systems Approach.
Cambridge University Press, 2012.

[76] Werner Damm and Holger Hermanns, editors. Computer Aided Verification,
19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007,
Proceedings, volume 4590 of Lecture Notes in Computer Science. Springer,
2007.

[77] Bireswar Das, Patrick Scharpfenecker, and Jacobo Torán. Succinct encod-
ings of graph isomorphism. In Adrian Horia Dediu, Carlos Martín-Vide,
José Luis Sierra-Rodríguez, and Bianca Truthe, editors, Language and Au-
tomata Theory and Applications - 8th International Conference, LATA 2014,
Madrid, Spain, March 10-14, 2014. Proceedings, volume 8370 of Lecture
Notes in Computer Science, pages 285–296. Springer, 2014.

BIBLIOGRAPHY 205

[78] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–397,
1962.

[79] Martin Davis, Yuri Matijasevich, and Julia Robinson. Hilbert’s tenth prob-
lem: Diophantine equations: positive aspects of a negative solution. In
Proceedings of Symposia in Pure Mathematics: Vol.: 28. : Mathematical
Developments Arising from Hilbert : Problems, volume 28 of Proceedings
of Symposia in Pure Mathematics, pages 323–378. American Mathematical
Society, 1976.

[80] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

[81] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Al-
gorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29 - April 6, 2008. Proceedings, volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

[82] Leonardo Mendonça de Moura and Nikolaj Bjørner. Satisfiability modulo
theories: An appetizer. In Marcel Vinicius Medeiros Oliveira and Jim Wood-
cock, editors, Formal Methods: Foundations and Applications, 12th Brazil-
ian Symposium on Formal Methods, SBMF 2009, Gramado, Brazil, August
19-21, 2009, Revised Selected Papers, volume 5902 of Lecture Notes in
Computer Science, pages 23–36. Springer, 2009.

[83] Leonardo Mendonça de Moura and Dejan Jovanovic. Model-driven deci-
sion procedures for arithmetic. In Nikolaj Bjørner, Viorel Negru, Tetsuo
Ida, Tudor Jebelean, Dana Petcu, Stephen M. Watt, and Daniela Zaharie, ed-
itors, 15th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2013, Timisoara, Romania, September
23-26, 2013, page 11. IEEE Computer Society, 2013.

[84] Francesco M. Donini, Paolo Liberatore, Fabio Massacci, and Marco
Schaerf. Solving QBF by SMV. In Dieter Fensel, Fausto Giunchiglia, Deb-
orah L. McGuinness, and Mary-Anne Williams, editors, Proceedings of the
Eights International Conference on Principles and Knowledge Representa-
tion and Reasoning (KR-02), Toulouse, France, April 22-25, 2002, pages
578–592. Morgan Kaufmann, 2002.

[85] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer, 1999.

[86] Rolf Drechsler, Tommi Junttila, and Ilkka Niemelä. Non-Clausal SAT and

206 BIBLIOGRAPHY

ATPG, chapter 21, pages 655–693. Volume 185 of Biere et al. [31], February
2009.

[87] Bruno Dutertre and Leonardo Mendonça de Moura. The Yices SMT solver.
Technical report, SRI International, 2006.

[88] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4):543–560,
2003.

[89] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution:
Proof generation and strategy extraction in search-based QBF solving. In
McMillan et al. [173], pages 291–308.

[90] Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, and Andrei
Voronkov. Encoding industrial hardware verification problems into effec-
tively propositional logic. In Bloem and Sharygina [37], pages 137–144.

[91] Amit Erez and Alexander Nadel. Finding bounded path in graph using SMT
for automatic clock routing. In Kroening and Pasareanu [156], pages 20–36.

[92] Javier Esparza and Rupak Majumdar, editors. Tools and Algorithms for
the Construction and Analysis of Systems, 16th International Conference,
TACAS 2010, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6015 of Lecture Notes in Computer Science. Springer,
2010.

[93] Joan Feigenbaum, Sampath Kannan, Moshe Y. Vardi, and Mahesh
Viswanathan. Complexity of problems on graphs represented as OBDDs.
Chicago Journal of Theoretical Computer Science, 5(5), 1999.

[94] Bernd Finkbeiner and Leander Tentrup. Fast DQBF refutation. In Sinz and
Egly [204], pages 243–251.

[95] Pascal Fontaine and Amit Goel, editors. SMT 2012. 10th International
Workshop on Satisfiability Modulo Theories, SMT 2012, Affiliated to IJCAR
2012, Manchester, UK, June 30 - July 1, 2012, volume 20 of EPiC Series.
EasyChair, 2013.

[96] Anders Franzén. Efficient Solving of the Satisfiability Modulo Bit-Vectors
Problem and Some Extensions to SMT. PhD thesis, University of Trento,
2010.

[97] Edwin E. Freed. Binary magic numbers – some applications and algorithms.
Dr. Dobb’s Journal of Software Tools, 8(4):24–37, 1983.

[98] Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, and Youssef

BIBLIOGRAPHY 207

Hamadi. Stochastic local search for satisfiability modulo theories. In Blai
Bonet and Sven Koenig, editors, Proceedings Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA,
pages 1136–1143. AAAI Press, 2015.

[99] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. A DPLL algorithm
for solving DQBF. In Proceedings 3rd International Workshop on Pragmat-
ics of SAT, POS 2012, Affiliated to SAT 2012, Trento, Italy, June 16, 2012.
Informal Proceedings, 2012.

[100] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. Efficiently solving
bit-vector problems using model checkers. In Proceedings 11th Interna-
tional Workshop on Satisfiability Modulo Theories, SMT 2013, Affiliated to
SAT 2013, Helsinki, Finland, July 8-9, 2013, pages 6–15. Informal Proceed-
ings, 2013.

[101] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. More on the com-
plexity of quantifier-free fixed-size bit-vector logics with binary encoding.
In Andrei A. Bulatov and Arseny M. Shur, editors, Computer Science -
Theory and Applications - 8th International Computer Science Symposium
in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceed-
ings, volume 7913 of Lecture Notes in Computer Science, pages 378–390.
Springer, 2013.

[102] Andreas Fröhlich, Gergely Kovásznai, Armin Biere, and Helmut Veith.
iDQ: Instantiation-based DQBF solving. In Daniel Le Berre, editor, POS-
14. Fifth Pragmatics of SAT workshop, Affiliated to SAT 2014, part of FLoC
2014 during the Vienna Summer of Logic, July 13, 2014, Vienna, Austria,
volume 27 of EPiC Series, pages 103–116. EasyChair, 2014.

[103] Hana Galperin and Avi Wigderson. Succinct representations of graphs. In-
formation and Control, 56(3):183–198, 1983.

[104] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Damm and Hermanns [76], pages 519–531.

[105] Michael R. Garey and David S. Johnson. “Strong” NP-completeness results:
Motivation, examples, and implications. Journal of the ACM, 25(3):499–
508, July 1978.

[106] Michael R. Garey and David .S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[107] William I. Gasarch. Guest column: the second P =? NP poll. SIGACT News,
43(2):53–77, 2012.

[108] Ian P. Gent, Enrico Giunchiglia, Massimo Narizzano, Andrew G. D. Row-

208 BIBLIOGRAPHY

ley, and Armando Tacchella. Watched data structures for QBF solvers. In
Enrico Giunchiglia and Armando Tacchella, editors, Theory and Applica-
tions of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers, volume
2919 of Lecture Notes in Computer Science, pages 25–36. Springer, 2003.

[109] Karina Gitina, Sven Reimer, Matthias Sauer, Ralf Wimmer, Christoph
Scholl, and Bernd Becker. Equivalence checking for partial implementa-
tions revisited. In Christian Haubelt and Dirk Timmermann, editors, Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV), Warnemünde, Germany, March 12-14,
2013., pages 61–70. Institut für Angewandte Mikroelektronik und Daten-
technik, Fakultät für Informatik und Elektrotechnik, Universität Rostock,
2013.

[110] Karina Gitina, Sven Reimer, Matthias Sauer, Ralf Wimmer, Christoph
Scholl, and Bernd Becker. Equivalence checking of partial designs using
dependency quantified boolean formulae. In 2013 IEEE 31st International
Conference on Computer Design, ICCD 2013, Asheville, NC, USA, October
6-9, 2013, pages 396–403. IEEE Computer Society, 2013.

[111] Karina Gitina, Ralf Wimmer, Sven Reimer, Matthias Sauer, Christoph
Scholl, and Bernd Becker. Solving DQBF through quantifier elimination.
In Wolfgang Nebel and David Atienza, editors, Proceedings 2015 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2015, Greno-
ble, France, March 9-13, 2015, pages 1617–1622. ACM, 2015.

[112] E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. Quantified Bool-
ean Formulas satisfiability library (QBFLIB), 2005. www.qbflib.org.

[113] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. sQueezeBF:
An effective preprocessor for QBFs based on equivalence reasoning. In
Strichman and Szeider [217], pages 85–98.

[114] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Learning
for quantified boolean logic satisfiability. In Rina Dechter and Richard S.
Sutton, editors, Proceedings of the Eighteenth National Conference on Ar-
tificial Intelligence and Fourteenth Conference on Innovative Applications
of Artificial Intelligence, July 28 - August 1, 2002, Edmonton, Alberta,
Canada., pages 649–654. AAAI Press / The MIT Press, 2002.

[115] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
whitebox fuzz testing. In Proceedings of the Network and Distributed Sys-
tem Security Symposium, NDSS 2008, San Diego, California, USA, 10th
February - 13th February 2008. The Internet Society, 2008.

[116] Evguenii I. Goldberg and Yakov Novikov. Berkmin: A fast and robust sat-
solver. In 2002 Design, Automation and Test in Europe Conference and

www.qbflib.org

BIBLIOGRAPHY 209

Exposition (DATE 2002), 4-8 March 2002, Paris, France, pages 142–149.
IEEE Computer Society, 2002.

[117] Georg Gottlob, Nicola Leone, and Helmut Veith. Succinctness as a source
of complexity in logical formalisms. Annals of Pure and Applied Logic,
97(1):231–260, 1999.

[118] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. Bridging the gap
between dual propagation and CNF-based QBF solving. In Enrico Macii,
editor, Design, Automation and Test in Europe, DATE 13, Grenoble, France,
March 18-22, 2013, pages 811–814. EDA Consortium San Jose, CA, USA /
ACM DL, 2013.

[119] Alberto Griggio, Quoc-Sang Phan, Roberto Sebastiani, and Silvia Tomasi.
Stochastic local search for SMT: combining theory solvers with walksat. In
Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers of Com-
bining Systems, 8th International Symposium, FroCoS 2011, Saarbrücken,
Germany, October 5-7, 2011. Proceedings, volume 6989 of Lecture Notes
in Computer Science, pages 163–178. Springer, 2011.

[120] Aarti Gupta and Sharad Malik, editors. Computer Aided Verification, 20th
International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008,
Proceedings, volume 5123 of Lecture Notes in Computer Science. Springer,
2008.

[121] Pierre Hansen, Nenad Mladenović, and José A. Moreno Pérez. Variable
neighbourhood search: methods and applications. 4OR, 6(4):319–360,
2008.

[122] L. Henkin. Some remarks on infinitely long formulas. In Infinistic Methods,
pages 167–183. Pergamon Press, 1961.

[123] Marijn Heule, Martina Seidl, and Armin Biere. A unified proof system
for QBF preprocessing. In Stéphane Demri, Deepak Kapur, and Christoph
Weidenbach, editors, Automated Reasoning - 7th International Joint Confer-
ence, IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 19-22, 2014. Proceedings, volume 8562 of Lecture
Notes in Computer Science, pages 91–106. Springer, 2014.

[124] Marijn Heule and Sean Weaver, editors. Theory and Applications of Sat-
isfiability Testing - SAT 2015 – 18th International Conference, Austin, TX,
USA, September 24-27, 2015, Proceedings, volume 9340 of Lecture Notes
in Computer Science. Springer, 2015.

[125] Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin, and Andrei
Voronkov. Preprocessing techniques for first-order clausification. In Gi-
anpiero Cabodi and Satnam Singh, editors, Formal Methods in Computer-

210 BIBLIOGRAPHY

Aided Design, FMCAD 2012, Cambridge, UK, October 22-25, 2012, pages
44–51. IEEE, 2012.

[126] Holger H. Hoos and David G. Mitchell, editors. Theory and Applications of
Satisfiability Testing, 7th International Conference, SAT 2004, Vancouver,
BC, Canada, May 10-13, 2004, Revised Selected Papers, volume 3542 of
Lecture Notes in Computer Science. Springer, 2005.

[127] Holger H. Hoos and T. Stützle. SATLIB: An online resource for research on
SAT. In H. van Maaren I. P. Gent and T. Walsh, editors, SAT2000: High-
lights of Satisfiability Research in the Year 2000, pages 283–292. IOS Press,
2000.

[128] Holger H. Hoos and T. Stützle. Stochastic Local Search: Foundations and
Applications. The Morgan Kaufmann Series in Artificial Intelligence Series.
Morgan Kaufmann, 2005.

[129] Jinbo Huang. The effect of restarts on the efficiency of clause learning. In
Veloso [229], pages 2318–2323.

[130] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.
ParamILS: An automatic algorithm configuration framework. Journal of
Artificial Intelligence Research, 36(1):267–306, 2009.

[131] Neil Immerman. Languages that capture complexity classes. SIAM Journal
on Computing, 16(4):760–778, 1987.

[132] Neil Immerman. Descriptive complexity. Springer, 1999.

[133] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-SAT. In Pro-
ceedings of the 14th Annual IEEE Conference on Computational Complex-
ity, Atlanta, Georgia, USA, May 4-6, 1999, pages 237–240. IEEE Computer
Society, 1999.

[134] Mikoláš Janota, Radu Grigore, and João Marques-Silva. On QBF proofs
and preprocessing. In McMillan et al. [173], pages 473–489.

[135] Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke.
Solving QBF with counterexample guided refinement. In Cimatti and Se-
bastiani [67], pages 114–128.

[136] Mikoláš Janota and Joao Marques-Silva. On propositional QBF expansions
and Q-resolution. In Järvisalo and Gelder [138], pages 67–82.

[137] Matti Järvisalo, Armin Biere, and Marijn Heule. Blocked clause elimination.
In Esparza and Majumdar [92], pages 129–144.

[138] Matti Järvisalo and Allen Van Gelder, editors. Theory and Applications of

BIBLIOGRAPHY 211

Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki,
Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in
Computer Science. Springer, 2013.

[139] Matti Järvisalo, Tommi A. Junttila, and Ilkka Niemelä. Unrestricted vs re-
stricted cut in a tableau method for boolean circuits. Ann. Math. Artif. Intell.,
44(4):373–399, 2005.

[140] Peer Johannsen. Reducing bitvector satisfiability problems to scale down
design sizes for RTL property checking. In Proceedings of the Sixth IEEE
International High-Level Design Validation and Test Workshop 2001, Mon-
terey, California, USA, November 7-9, 2001, pages 123–128. IEEE Com-
puter Society, 2001.

[141] Peer Johannsen. Speeding Up Hardware Verification by Automated Data
Path Scaling. PhD thesis, CAU Kiel, Germany, 2002.

[142] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Proceedings a symposium
on the Complexity of Computer Computations, held March 20-22, 1972, at
the IBM Thomas J. Watson Research Center, Yorktown Heights, New York.,
The IBM Research Symposia Series, pages 85–103. Plenum Press, New
York, 1972.

[143] Zurab Khasidashvili, Mahmoud Kinanah, and Andrei Voronkov. Verifying
equivalence of memories using a first order logic theorem prover. In Pro-
ceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA,
pages 128–135. IEEE, 2009.

[144] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA im-
plementation secrets. In Sheng Yu and Andrei Paun, editors, Implementa-
tion and Application of Automata, 5th International Conference, CIAA 2000,
London, Ontario, Canada, July 24-25, 2000, Revised Papers, volume 2088
of Lecture Notes in Computer Science, pages 182–194. Springer, 2000.

[145] Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combi-
natorial Algorithms. Addison-Wesley, 2011.

[146] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle
6: Satisfiability. Addison-Wesley, 2015.

[147] Konstantin Korovin. iprover - an instantiation-based theorem prover for
first-order logic (system description). In Alessandro Armando, Peter Baum-
gartner, and Gilles Dowek, editors, Automated Reasoning, 4th International
Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Pro-
ceedings, volume 5195 of Lecture Notes in Computer Science, pages 292–
298. Springer, 2008.

212 BIBLIOGRAPHY

[148] Konstantin Korovin. Instantiation-based automated reasoning: From the-
ory to practice. In Renate A. Schmidt, editor, Automated Deduction -
CADE-22, 22nd International Conference on Automated Deduction, Mon-
treal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture
Notes in Computer Science, pages 163–166. Springer, 2009.

[149] Konstantin Korovin. Inst-gen - A modular approach to instantiation-based
automated reasoning. In Andrei Voronkov and Christoph Weidenbach, edi-
tors, Programming Logics - Essays in Memory of Harald Ganzinger, volume
7797 of Lecture Notes in Computer Science, pages 239–270. Springer, 2013.

[150] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. BV2EPR: A tool
for polynomially translating quantifier-free bit-vector formulas into epr. In
Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th In-
ternational Conference on Automated Deduction, Lake Placid, NY, USA,
June 9-14, 2013. Proceedings, volume 7898 of Lecture Notes in Computer
Science, pages 443–449. Springer, 2013.

[151] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. On the complexity
of fixed-size bit-vector logics with binary encoded bit-width. In Fontaine
and Goel [95], pages 44–55.

[152] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Quantifier-free
bit-vector formulas with binary encoding: Benchmark description. In Balint
et al. [12], pages 107–108.

[153] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of
fixed-size bit-vector logics. Theory of Computing Systems, pages 1–54,
2015.

[154] Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, and Armin Biere. On
the complexity of symbolic verification and decision problems in bit-vector
logic. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik,
editors, Mathematical Foundations of Computer Science 2014 - 39th Inter-
national Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014.
Proceedings, Part II, volume 8635 of Lecture Notes in Computer Science,
pages 481–492. Springer, 2014.

[155] Lukas Kroc, Ashish Sabharwal, Carla P. Gomes, and Bart Selman. Integrat-
ing systematic and local search paradigms: A new strategy for maxsat. In
Boutilier [39], pages 544–551.

[156] Daniel Kroening and Corina S. Pasareanu, editors. Computer Aided Ver-
ification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes
in Computer Science. Springer, 2015.

BIBLIOGRAPHY 213

[157] Daniel Kroening and Ofer Strichman. Efficient computation of recurrence
diameters. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik
Mukhopadhyay, editors, Verification, Model Checking, and Abstract Inter-
pretation, 4th International Conference, VMCAI 2003, New York, NY, USA,
January 9-11, 2002, Proceedings, volume 2575 of Lecture Notes in Com-
puter Science, pages 298–309. Springer, 2003.

[158] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic
Point of View. Texts in Theoretical Computer Science. An EATCS Series.
Springer, 2008.

[159] Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi. Circuit-based
boolean reasoning. In Proceedings 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pages 232–237. ACM,
2001.

[160] Reinhold Letz. Lemma and model caching in decision procedures for quan-
tified boolean formulas. In Uwe Egly and Christian G. Fermüller, editors,
Automated Reasoning with Analytic Tableaux and Related Methods, Inter-
national Conference, TABLEAUX 2002, Copenhagen, Denmark, July 30 -
August 1, 2002, Proceedings, volume 2381 of Lecture Notes in Computer
Science, pages 160–175. Springer, 2002.

[161] Harry R. Lewis. Complexity results for classes of quantificational formulas.
Journal of Computer and System Sciences, 21(3):317–353, 1980.

[162] Chengqian Li and Yi Fan. Cca2013. In Balint et al. [12].

[163] Chu Min Li and Yu Li. Satisfying versus falsifying in local search for satis-
fiability. In Cimatti and Sebastiani [67], pages 477–478.

[164] Florian Lonsing and Armin Biere. Nenofex: Expanding NNF for QBF solv-
ing. In Büning and Zhao [57], pages 196–210.

[165] Florian Lonsing and Armin Biere. Integrating dependency schemes in
search-based QBF solvers. In Strichman and Szeider [217], pages 158–171.

[166] Florian Lonsing and Armin Biere. Failed literal detection for QBF. In
Karem A. Sakallah and Laurent Simon, editors, Theory and Applications
of Satisfiability Testing - SAT 2011 - 14th International Conference, SAT
2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings, volume 6695 of
Lecture Notes in Computer Science, pages 259–272. Springer, 2011.

[167] Antoni Lozano and José L. Balcázar. The complexity of graph problems for
succinctly represented graphs. In Manfred Nagl, editor, Graph-Theoretic
Concepts in Computer Science, 15th International Workshop, WG ’89, Cas-
tle Rolduc, The Netherlands, June 14-16, 1989, Proceedings, volume 411 of
Lecture Notes in Computer Science, pages 277–286. Springer, 1989.

214 BIBLIOGRAPHY

[168] Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup
of Las Vegas algorithms. Information Processing Letters, 47(4):173–180,
1993.

[169] Panagiotis Manolios, Sudarshan K. Srinivasan, and Daron Vroon. BAT: the
bit-level analysis tool. In Damm and Hermanns [76], pages 303–306.

[170] João P. Marques-Silva and Karem A. Sakallah. Grasp: A search algorithm
for propositional satisfiability. IEEE Trans. on Computers, 48:506–521,
1999.

[171] Maarten Marx. Complexity of modal logic. In Handbook of Modal Logic,
volume 3 of Studies in Logic and Practical Reasoning, pages 139–179. El-
sevier, 2007.

[172] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[173] Kenneth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors.
Logic for Programming, Artificial Intelligence, and Reasoning - 19th Inter-
national Conference, LPAR-19, Stellenbosch, South Africa, December 14-
19, 2013. Proceedings, volume 8312 of Lecture Notes in Computer Science.
Springer, 2013.

[174] N. Mladenović. A variable neighborhood algorithm – a new metaheuristics
for combinatorial optimization. In Abstracts of Papers Presented at Opti-
mization Days. Montréal, page 112, 1995.

[175] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceed-
ings DAC’01, pages 530–535, 2001.

[176] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient SAT solver. In Proceedings
of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA,
June 18-22, 2001, pages 530–535. ACM, 2001.

[177] Alexander Nadel and Nachum Dershowitz. Is bit-vector reasoning as hard as
nexptime in practice? In Proceedings 13th International Workshop on Satis-
fiability Modulo Theories, SMT 2015, Affiliated to CAV 2015, San Francisco,
CA, USA, July 18-19, 2015. Informal Proceedings, 2015.

[178] Yehuda Naveh. Stochastic solver for constraint satisfaction problems with
learning of high-level characteristics of the problem topography. In Proceed-
ings 1st International Workshop on Local Search Techniques, LSCS 2004,
Affiliated to CP 2004, September 27, 2004, Toronto, Canada. Informal Pro-
ceedings, 2004.

BIBLIOGRAPHY 215

[179] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan
s Marcu, and Gil Shurek. Constraint-based random stimuli generation for
hardware verification. AI Magazine, 28(3):13–30, 2007.

[180] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0. Journal
on Satisfiability, 9:53–58, 2015.

[181] Aina Niemetz, Mathias Preiner, Andreas Fröhlich, and Armin Biere. Im-
proving local search for bit-vector logics in SMT with path propagation. In
Proceedings 4th International Workshop on Design and Implementation of
Formal Tools and Systems, DIFTS 2015, Affiliated to FMCAD 2015, Austin,
TX, USA, September 26-27, 2015. Informal Proceedings, 2015.

[182] Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin
Biere. Resolution-based certificate extraction for QBF - (tool presentation).
In Cimatti and Sebastiani [67], pages 430–435.

[183] Matthias Niewerth and Thomas Schwentick. Two-variable logic and key
constraints on data words. In Tova Milo, editor, Database Theory - ICDT
2011, 14th International Conference, Uppsala, Sweden, March 21-24, 2011,
Proceedings, pages 138–149. ACM, 2011.

[184] Chanseok Oh. MiniSat HACK 999ED, MiniSat HACK 1430ED and
SWDiA5BY. In Belov et al. [20], pages 46–47.

[185] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1994.

[186] Christos H Papadimitriou and Mihalis Yannakakis. A note on succinct rep-
resentations of graphs. Information and Control, 71(3):181–185, 1986.

[187] Gary L. Peterson and John H. Reif. Multiple-person alternation. In 20th
Annual Symposium on Foundations of Computer Science, San Juan, Puerto
Rico, 29-31 October 1979, pages 348–363. IEEE Computer Society, 1979.

[188] Gary L. Peterson, John H. Reif, and S. Azhar. Lower bounds for multiplayer
noncooperative games of incomplete information. Computers & Mathemat-
ics with Applications, 41(7-8):957–992, April 2001.

[189] Duc Nghia Pham, John Thornton, and Abdul Sattar. Building structure into
local search for SAT. In Veloso [229], pages 2359–2364.

[190] Anh-Dung Phan, Nikolaj Bjørner, and David Monniaux. Anatomy of alter-
nating quantifier satisfiability (work in progress). In Fontaine and Goel [95],
pages 120–130.

[191] Florian Pigorsch and Christoph Scholl. An aig-based qbf-solver using SAT
for preprocessing. In Sachin S. Sapatnekar, editor, Proceedings 47th Design

216 BIBLIOGRAPHY

Automation Conference, DAC 2010, Anaheim, California, USA, July 13-18,
2010, pages 170–175. ACM, 2010.

[192] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component caching
scheme for satisfiability solvers. In João Marques-Silva and Karem A.
Sakallah, editors, Theory and Applications of Satisfiability Testing - SAT
2007, 10th International Conference, Lisbon, Portugal, May 28-31, 2007,
Proceedings, volume 4501 of Lecture Notes in Computer Science, pages
294–299. Springer, 2007.

[193] David A. Plaisted. A decision procedure for combinations of propositional
temporal logic and other specialized theories. Journal of Automated Rea-
soning, 2(2):171–190, 1986.

[194] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent ad-
vances in SAT-based formal verification. Journal on Software Tools for
Technology Transfer, 7(2):156–173, 2005.

[195] Steven David Prestwich. Random walk with continuously smoothed vari-
able weights. In Fahiem Bacchus and Toby Walsh, editors, Theory and Ap-
plications of Satisfiability Testing, 8th International Conference, SAT 2005,
St. Andrews, UK, June 19-23, 2005, Proceedings, volume 3569 of Lecture
Notes in Computer Science, pages 203–215. Springer, 2005.

[196] Vadim Ryvchin and Ofer Strichman. Local restarts. In Büning and Zhao
[57], pages 271–276.

[197] Horst Samulowitz, Jessica Davies, and Fahiem Bacchus. Preprocessing
QBF. In Frédéric Benhamou, editor, Principles and Practice of Constraint
Programming - CP 2006, 12th International Conference, CP 2006, Nantes,
France, September 25-29, 2006, Proceedings, volume 4204 of Lecture Notes
in Computer Science, pages 514–529. Springer, 2006.

[198] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. Journal of Computer and System Sciences, 4(2):177–192,
April 1970.

[199] Christoph Scholl and Bernd Becker. Checking equivalence for partial im-
plementations. In Proceedings 38th Design Automation Conference, DAC
2001, Las Vegas, NV, USA, June 18-22, 2001, pages 238–243. ACM, 2001.

[200] Tobias Schüle and Klaus Schneider. Verification of data paths using un-
bounded integers: Automata strike back. In Eyal Bin, Avi Ziv, and Shmuel
Ur, editors, Hardware and Software, Verification and Testing, Second Inter-
national Haifa Verification Conference, HVC 2006, Haifa, Israel, October
23-26, 2006. Revised Selected Papers, volume 4383 of Lecture Notes in
Computer Science, pages 65–80. Springer, 2006.

BIBLIOGRAPHY 217

[201] Michael J. Schulte, Mustafa Gok, Pablo I. Balzola, and Robert W. Bro-
cato. Combined unsigned and two’s complement saturating multipliers. In
Franklin T. Luk, editor, Advanced Signal Processing Algorithms, Architec-
tures, and Implementations X, July 30, 2000, San Diego, CA, USA, volume
4116 of Proceedings of SPIE, pages 185–196. SPIE, July 2000.

[202] Martina Seidl, Florian Lonsing, and Armin Biere. qbf2epr: A tool for gener-
ating EPR formulas from QBF. In Pascal Fontaine, Renate A. Schmidt, and
Stephan Schulz, editors, PAAR-2012. Third Workshop on Practical Aspects
of Automated Reasoning, Affiliated to CADE 2012, Manchester, UK, June
30 - July 1, 2012, volume 21 of EPiC Series, pages 139–148. EasyChair,
2012.

[203] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for im-
proving local search. In Barbara Hayes-Roth and Richard E. Korf, editors,
Proceedings of the 12th National Conference on Artificial Intelligence, Seat-
tle, WA, USA, July 31 - August 4, 1994, Volume 1., pages 337–343. AAAI
Press / The MIT Press, 1994.

[204] Carsten Sinz and Uwe Egly, editors. Theory and Applications of Satisfia-
bility Testing - SAT 2014 - 17th International Conference, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science. Springer,
2014.

[205] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional
linear temporal logics. Journal of the ACM, 32(3):733–749, 1985.

[206] Friedrich Slivovsky and Stefan Szeider. Variable dependencies and Q-
resolution. In 1st International Workshop on Quantified Boolean Formu-
las, QBF 2013, Affiliated to SAT 2013, Helsinki, Finnland, June 9, 2013.,
page 22. Informal Workshop Report, 2013.

[207] Friedrich Slivovsky and Stefan Szeider. Variable dependencies and Q-
resolution. In Sinz and Egly [204], pages 269–284.

[208] Andrej Spielmann and Viktor Kuncak. On synthesis for unbounded bit-
vector arithmetic. Technical report, EPFL, Lausanne, Switzerland, February
2012.

[209] Andrej Spielmann and Viktor Kuncak. Synthesis for unbounded bit-vector
arithmetic. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, Auto-
mated Reasoning - 6th International Joint Conference, IJCAR 2012, Manch-
ester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in
Computer Science, pages 499–513. Springer, 2012.

[210] Iain A. Stewart. Complete problems involving boolean labelled structures

218 BIBLIOGRAPHY

and projection transactions. Journal of Logic and Computation, 1(6):861–
882, 1991.

[211] Iain A. Stewart. On completeness for NP via projection translations. In
Egon Börger, Gerhard Jäger, Hans Kleine Büning, and Michael M. Richter,
editors, Computer Science Logic, 5th Workshop, CSL ’91, Berne, Switzer-
land, October 7-11, 1991, Proceedings, volume 626 of Lecture Notes in
Computer Science, pages 353–366. Springer, 1991.

[212] Iain A. Stewart. Using the Hamiltonian path operator to capture NP. Journal
of Computer and System Sciences, 45(1):127–151, 1992.

[213] Iain A. Stewart. On completeness for NP via projection translations. Math-
ematical Systems Theory, 27(2):125–157, 1994.

[214] Iain A. Stewart. Complete problems for monotone NP. Theoretical Com-
puter Science, 145(1&2):147–157, 1995.

[215] Larry J. Stockmeyer. The polynomial-time hierarchy. Theorertical Com-
puter Science, 3(1):1–22, 1976.

[216] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring expo-
nential time: Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L.
Constable, Robert W. Floyd, Michael A. Harrison, Richard M. Karp, and
H. Raymond Strong, editors, Proceedings of the 5th Annual ACM Sympo-
sium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA,
pages 1–9. ACM, 1973.

[217] Ofer Strichman and Stefan Szeider, editors. Theory and Applications of
Satisfiability Testing - SAT 2010, 13th International Conference, SAT 2010,
Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6175 of Lecture
Notes in Computer Science. Springer, 2010.

[218] Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-clausal
formulas with DPLL search. In Mark Wallace, editor, Principles and Prac-
tice of Constraint Programming - CP 2004, 10th International Conference,
CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceed-
ings, volume 3258 of Lecture Notes in Computer Science, pages 663–678.
Springer, 2004.

[219] John Thornton, Duc Nghia Pham, Stuart Bain, and Valnir Ferreira Jr. Addi-
tive versus multiplicative clause weighting for SAT. In Deborah L. McGuin-
ness and George Ferguson, editors, Proceedings of the Nineteenth National
Conference on Artificial Intelligence, Sixteenth Conference on Innovative
Applications of Artificial Intelligence, July 25-29, 2004, San Jose, Califor-
nia, USA, pages 191–196. AAAI Press / The MIT Press, 2004.

BIBLIOGRAPHY 219

[220] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: an implementation
and experimentation environment for SLS algorithms for SAT and MAX-
SAT. In Hoos and Mitchell [126], pages 306–320.

[221] G. S. Tseitin. On the complexity of derivation in propositional calcu-
lus. Studies in Constructive Mathematics and Mathematical Logic, 2(115-
125):10–13, 1968.

[222] Alan M. Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings London Mathematical Society,
2(42):230–265, 1936.

[223] Peter van der Tak, Antonio Ramos, and Marijn Heule. Reusing the assign-
ment trail in CDCL solvers. Journal on Satisfiability, 7(4):133–138, 2011.

[224] Moshe Y. Vardi. Boolean satisfiability: Theory and engineering. Communi-
cations of the ACM, editor’s letter, 57(3):5, March 2014.

[225] Helmut Veith. Succinct representation, leaf languages, and projection re-
ductions. In Steven Homer and Jin-Yi Cai, editors, Proceedings of the
Eleveth Annual IEEE Conference on Computational Complexity, Philadel-
phia, Pennsylvania, USA, May 24-27, 1996, pages 118–126. IEEE Com-
puter Society, 1996.

[226] Helmut Veith. Languages represented by boolean formulas. Inf. Process.
Lett., 63(5):251–256, 1997.

[227] Helmut Veith. How to encode a logical structure by an OBDD. In Proceed-
ings of the 13th Annual IEEE Conference on Computational Complexity,
Buffalo, New York, USA, June 15-18, 1998, pages 122–131. IEEE Computer
Society, 1998.

[228] Helmut Veith. Succinct representation, leaf languages, and projection re-
ductions. Information and Computation, 142(2):207–236, 1998.

[229] Manuela M. Veloso, editor. IJCAI 2007, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, 2007.

[230] Klaus W. Wagner. The complexity of combinatorial problems with succinct
input representation. Acta Informatica, 23(3):325–356, 1986.

[231] Henry S. Warren. Hacker’s Delight. Addison-Wesley Longman, 2002.

[232] Ralf Wimmer, Karina Gitina, Jennifer Nist, Christoph Scholl, and Bernd
Becker. Preprocessing for DQBF. In Heule and Weaver [124], pages 173–
190.

[233] Christoph M. Wintersteiger. Termination Analysis for Bit-Vector Programs.
PhD thesis, ETH Zurich, Switzerland, 2011.

220 BIBLIOGRAPHY

[234] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça
de Moura. Efficiently solving quantified bit-vector formulas. In Bloem and
Sharygina [37], pages 239–246.

[235] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach to
presburger arithmetic constraints (extended abstract). In Alan Mycroft, ed-
itor, Static Analysis, Second International Symposium, SAS’95, Glasgow,
UK, September 25-27, 1995, Proceedings, volume 983 of Lecture Notes in
Computer Science, pages 21–32. Springer, 1995.

[236] Jun Yuan, Carl Pixley, and Adnan Aziz. Constraint-based verification.
Springer, 2006.

[237] Hantao Zhang. SATO: an efficient propositional prover. In William Mc-
Cune, editor, Automated Deduction - CADE-14, 14th International Con-
ference on Automated Deduction, Townsville, North Queensland, Australia,
July 13-17, 1997, Proceedings, volume 1249 of Lecture Notes in Computer
Science, pages 272–275. Springer, 1997.

[238] Lintao Zhang and Sharad Malik. Conflict driven learning in a quanti-
fied boolean satisfiability solver. In Lawrence T. Pileggi and Andreas
Kuehlmann, editors, Proceedings of the 2002 IEEE/ACM International Con-
ference on Computer-aided Design, ICCAD 2002, San Jose, California,
USA, November 10-14, 2002, pages 442–449. ACM / IEEE Computer Soci-
ety, 2002.

[239] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfac-
tion and conflicts in quantified boolean formula evaluation. In Pascal Van
Hentenryck, editor, Principles and Practice of Constraint Programming -
CP 2002, 8th International Conference, CP 2002, Ithaca, NY, USA, Septem-
ber 9-13, 2002, Proceedings, volume 2470 of Lecture Notes in Computer
Science, pages 200–215. Springer, 2002.

Appendix

Brief Biography

Personal Details

Name: Andreas Fröhlich

Private Address: Heckenweg 25, 86739 Ederheim, Germany

Date and Place of Birth: 16th June 1983 in Nördlingen, Germany

Research

Since Sep. 2011

Research and Teaching Assistant at the Institute
for Formal Models and Verification (FMV), Jo-
hannes Kepler Universität Linz, Austria.
Research Interests: Bit-Vectors, SAT, SMT, QBF,
DQBF, Formal Verification, Local Search.
Website: http://fmv.jku.at/froehlich/

Feb. 2014 – Apr. 2014 Internship at Microsoft Research, Cambridge, UK.

Education

Since Sep. 2011
Doctorate Computer Science,
Johannes Kepler Universität Linz, Austria

Sep. 2002 – Jul. 2010
Diplom Computer Science,
Universität Ulm, Germany

Sep. 1993 – Jun. 2002 Theodor Heuss Gymnasium Nördlingen, Germany

Sep. 1989 – Jul. 1993 Primary School in Ederheim, Germany

221

http://fmv.jku.at/froehlich/

222 APPENDIX . BRIEF BIOGRAPHY

