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Abstract. Dependency Quantified Boolean Formulas (DQBF) comprise
the set of propositional formulas which can be formulated by adding
Henkin quantifiers to Boolean logic. We are not aware of any published
attempt in solving this class of formulas in practice. However with DQBF
being NEXPTIME-complete, efficient ways of solving it would have many
practical applications. In this paper we describe a DPLL-style approach
(DQDPLL) for solving DQBF. We show how methods successfully ap-
plied in similar algorithms for SAT/QBF can be lifted to this richer logic.
This enables to reuse efficient SAT and QBF solving techniques.

1 Introduction

Dependency Quantified Boolean Formulas (DQBF), as first defined in [1], are
obtained by adding Henkin quantifiers [2] to Boolean formulas. In contrast to
QBF, the dependencies of a variable in DQBF are not implicitly defined by
the order of the quantifier prefix but are explicitly specified. The dependencies
therefore are not forced to represent a total order but only a partial one.

While QBF is PSPACE-complete [3], DQBF can be shown to be NEXPTIME-
complete [1,4]. Because of this, DQBF offers more succinct descriptions than
QBF, provided that the two classes do not collapse. Apart from DQBF, many
practical problems are known to be NEXPTIME-complete, e.g. partial infor-
mation non-cooperative games [4] or certain bit-vector logics [5,6] used in the
context of Satisfiability Modulo Theories (SMT).

There have been theoretical results on succinct formalizations using DQBF
and certain subclasses, e.g. DQBF-Horn has been shown to be solvable in poly-
nomial time [7]. However, we are not aware of any description on solving DQBF
problems in practice, nor any actual implementation of a decision procedure for
DQBF. More recently, formula expansion and transformations specific to QBF
have been discussed [8], which stayed on only the theoretical side but might yield
an expansion-based DQBF solver similar to those existing for QBF [9].

Effectively Propositional Logic (EPR) is another class of problems, for which
the decision problem is NEXPTIME-complete. Thus there exist polynomial re-
ductions from DQBF to EPR and vice versa. Consequently, it is also possible
to use EPR solvers, e.g. iProver [10] being the currently most successful one, to
solve DQBF, given some translation from DQBF to EPR. However, since EPR
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solvers in general have to reason with predicates and larger domains, solvers
directly working on the propositional level should have advantages when DQBF
formalizations of a problem are more natural.

Implementations of the DPLL algorithm [11], and improved variants, com-
monly known as CDCL solvers [12], are successfully used in many industrial
applications. Inspired by the success of effective techniques used in SAT-solving,
similar algorithms have been developed for QBF extending the algorithm by
quantifier-reasoning and new concepts like cube learning. Although modern QBF
solvers do not reach the performance of their SAT-counterparts yet, their capa-
bility also increased considerably in recent years.

This success of DPLL-style algorithms in the context of SAT and QBF gives
reason to investigate how a similar algorithm could be adapted to DQBF. In the
following we propose a DPLL-style [11] algorithm (DQDPLL) for solving DQBF.

2 Definitions

Let V be a set of propositional variables. A literal l is a variable x ∈ V or its
negation ¬x, and let x = var(l) denote its variable. A clause C is a disjunction
of literals. A propositional formula φ is in conjunctive normal form (CNF), if it
is a conjunction of clauses. A DQBF ψ can always be expressed as

ψ = Q.φ = ∀u1, . . . , um∃e1(u1,1, . . . , u1,m1
), . . . , en(un,1, . . . , un,mn

).φ

with Q being the quantifier prefix and φ being a propositional formula (matrix)
in CNF over the variables V := U ∪E and U = {u1, . . . , um}, E = {e1, . . . , en},
ui,j ∈ U ∀ i ∈ {1, . . . , n}, j ∈ {1, . . . ,mi}. In DQBF, existential variables can
always be placed after all universal variables in the quantifier prefix, since the
dependencies of a certain variable are explicitly given and not implicitly defined
by the order of the prefix (in contrast to QBF).

Given an existential variable ei, we use dep(ei) := {ui,1, . . . , ui,mi} to de-
note its dependencies. For universal variables u, we define dep(u) := ∅. We also
extend the notion of dependency to literals, definining dep(l) := dep(var(l))
for any literal l. An assignment is a mapping α : V → {true, false} from
the variables of a formula to truth values. A partial assignment is a mapping
β : V → {true, false, undef }. To simplify the notation we extend the definition
of assignments and partial assignments to literals, clauses and formulas in the
natural way. In the rest of the paper α(l) (resp. α(C), resp. α(F )) will denote
the truth value a literal l (resp. a clause C, resp. a formula F ) takes under the
assignment α. We extend the notation for partial assignments β in the same way
defining undef ∨ true := true, undef ∧ true := undef , undef ∨ false := undef ,
and undef ∧ false := false.

A propositional formula φ in CNF is satisfiable, iff all clauses in φ are satisfied
by at least one assignment α. We then call α a model of φ. In QBF and DQBF a
model can not be expressed by a single assignment. We use assignment trees [13]
instead, more precisely the variant of [14]. Given a DQBF ψ, an assigment tree
T is a tree with the following attributes: Every node N in T except the root



represents a truth assignment to a variable. A node has a sibling (exactly one
representing the opposite truth value) if and only if it assigns a truth value to a
universal variable.

Every path from the root to a leaf of T corresponds to an assignment α
for the variables in ψ. In the same way a path from the root to an internal
node corresponds to a partial assignment β. Compared with QBF there are two
differences on the restrictions for possible trees:

Property 1: For every existential variable e and every universal variable u
such that u ∈ dep(e), the node Nu for u must be an ancestor of the node
Ne for e. This ensures that for every possible path and every node Ne for
an existential variable, the variable is allowed to take different values for
different assignments to its dependencies, since the assignment tree splits in
the corresponding node Nu.

Property 2: For each pair of paths with corresponding assignments α1, α2,
it has to hold that α1(e) = α2(e), if α1(u) = α2(u) ∀ u ∈ dep(e). This
guarantees that an existential variable takes the same value in two distinct
paths whenever its dependencies were assigned the same values in both paths.

A model for a DQBF ψ = Q.φ therefore is an assignment tree that fulfills
both property 1 & 2 and at the same time for each path from the root to a leaf
the corresponding assignment is a model for φ.

Actually property 1 is not needed to make sure that ψ has a solution: There is
a model respecting property 1 & 2 iff there is a model respecting only property 2.
This follows from the fact that removing property 1 allows existential variables
to move up in the assignment tree and therefore to be assigned even before
all their dependencies are assigned, i.e. to remove some dependencies. However
removing dependencies makes a formula more difficult to satisfy, and therefore
it is enough to consider satisfiability given property 1 & 2. This already rules
out many assignment trees and yields a smaller search space.

3 DQDPLL Architecture

In the following we assume that the reader is familiar with the design of a DPLL
solver for SAT/QBF. Figure 1 shows the typical pseudo-code for a QBF solver
based on the DPLL algorithm. In Fig. 2 the pseudo-code of our adapted version
for DQBF is presented. We will now discuss the DQDPLL algorithm in detail and
point out the changes in specific methods compared to the original QBF-version.

The main underlying aspect when dealing with DQBF is the concept of
dependency. As described in the previous section, a model for a DQBF formula
exists iff there is an assignment tree where all paths satisfy the propositional
matrix and, at the same time, the tree respects the restrictions defined by the
underlying variable dependencies given in the prefix.

Instead of constructing arbitrary assignment trees and at the end checking
whether they fulfill the dependency restrictions (property 1 & 2), our algorithm
will only construct the subset of assignment trees that does.



QDPLL(F) {

while(true) {

state = checkState(beta);

if (state == STATE_UNSAT) {

level = analyseUNSAT();

if (level == 0) return UNSAT;

backtrack(level);

} else if (state == STATE_SAT) {

level = analyseSAT();

if (level == 0) return SAT;

backtrack(level);

} else {

literal = selectLiteral();

beta = updateAssignment(literal);

addDecision(literal);

}

}

}

Fig. 1. Main loop of QDPLL as pseudo-code

Given a partial assignment tree, selectLiteral decides on the next node to
branch on. An arbitrary selection heuristic can be used for doing so as long as
it preserves property 1 of our assignment tree. This means a universal variable
can be chosen at any time and an existential variable e can be chosen whenever
all u ∈ dep(e) are already assigned in the current path of our tree. Compared to
QDPLL this gives more possible decisions in each step, even given a QBF-formula
as an input since decisions on existential variables may always be “delayed”.

Now we have to ensure that the constructed assignment tree also fulfills
property 2 from the previous section. In our DQDPLL-approach it is possible
that an existential variable is set after a universal variable on which it does not
depend. This cannot be avoided since we enforce a total order on the variables
by our assignment tree whereas the dependency scheme of a DQBF-formula is
only partially ordered. To make sure that our assignment tree nevertheless fulfills
property 2 we therefore have to “remember” the choice for an existential variable
under a certain assignment of its dependencies. It will then be forced to take the
same value in all other branches of the tree which imply the same assignment to
those universals.

In our algorithm this happens in the addDecision method. While the
QDPLL algorithm only has to save the literal that was assigned during a deci-
sion, the DQDPLL algorithm additionally saves a Skolem clause Csk linked with
the branch on the literal of an existential variable on the decision stack. For a
decision on a universal variable no Skolem clause is added (i.e. Csk = true in the
context of our pseudo-code). The Skolem clause added for an existential decision
corresponds to the restriction implied for future branches due to property 2.



DQDPLL(F) {

while (true) {

state = checkState(beta);

if (state == STATE_UNSAT) {

level = analyseUNSAT();

if (level == 0) return UNSAT;

backtrack(level);

} else if (state == STATE_SAT) {

level = analyseSAT();

if (level == 0) return SAT;

restoreAssignment(level);

} else {

literal = selectLiteral();

skolemClause = generateSkolemClause(beta, literal);

beta = updateAssignment(literal);

addDecision(beta, skolemClause);

}

}

}

backtrack(level) {

while (stack.Size > level) popStack();

(beta, _) = stack.Element(level);

}

restoreAssignment(level) { (beta, _) = stack.Element(level); }

addDecision(beta, skolemClause) { pushStack(beta, skolemClause); }

Fig. 2. Main methods of DQDPLL as pseudo-code

Note that in our pseudo-code for DQDPLL we actually do not push the
branching literal on the decision stack but instead the current assignment β. Of
course we could at any point reconstruct the branching literal from two con-
secutive assignments or the other way round, reconstruct an assignment from
the sequence of branching literals. We have chosen to use the notation of stor-
ing assignments in our pseudo-code because this will simplify backTrack and
restoreAssignment. In a real implementation however a version saving only the
branching literals probably is a better choice since it reduces the memory re-
quirement by a factor corresponding to the number of variables.

The Skolem clause Csk linked with the decision can be constructed as follows:
Let β be the partial assignment corresponding to the path from the root to the
current branching node and let lei be the branching literal with var(lei) = ei,
dep(ei) = {ui,1, . . . , ui,mi

}. Then

Csk := (li,1, . . . , li,mi
, lei), li,j =

{
ui,j , if β(ui,j) = false

¬ui,j , if β(ui,j) = true



Since we only are allowed to branch on ei if all ui,j ∈ dep(ei) have already
been assigned, we know that β(ui,j) 6= undef , i.e. Csk is well-defined. Adding
this Csk to the formula ensures that ei will take the same value in all other paths
of the tree where all ui,j ∈ dep(ei) are assigned the same way as in the current
path, i.e. property 2 is preserved. We decided to name this a Skolem clause
because it corresponds to a partial definition of the Skolem function associated
with an existential variable.

It is important to note that in each step the current set of clauses consists of
the original matrix conjuncted with all Skolem clauses added so far. Depending
on whether checkState returns the current set of clauses to be satisfied, unsat-
isfied or undecided under the partial assignment corresponding to the current
path, the algorithm continues by conflict handling, solution handling or just
assigning further literals.

Whenever the current set of clauses is discovered to be UNSAT, a call to
analyseConflict returns an existental decision which can be flipped. In a naive
implementation this could be simply the last existential variable that was picked
by a call to selectLiteral. During the following call to backTrack all decisions up
to that point are undone and the corresponding Skolem clauses are removed.
The decision variable is set to the opposite value and a new Skolem clause
representing the neccessary constraint is introduced.

If, on the other hand, the current set of clauses is SAT at some point, anal-
yseSolution returns a previous decision on a universal variable that still has to
consider the second branch. Again in a naive implementation this could be just
the latest universal variable that was picked by a call to selectLiteral, for which
the second branch has not been checked yet. This condition should actually be
considered as part of β in the pseudo-code. This time, however, in contrast to
QDPLL, no backtracking takes place. Instead restoreAssignment is called. This
method restores the assignment to the one at the point of the decision but does
not undo any decisions or remove any Skolem clauses. This is important be-
cause it means we keep the Skolem clauses over different universal branches and
preserve property 2 of our assignment tree.

Note that after calling backTrack as well as after calling restoreAssignment
the second branch at the corresponding level has to be checked. This is not
explicitely specified in our pseudo-code but for simplicity just is assumed to be
part of selectLiteral.

Soundness and completeness of the algorithm can be checked easily:

Soundness: Altogether the given specifications of the methods guarantee that
every constructed assignment tree will fulfill property 1 and property 2.
Furthermore, the algorithm only returns SAT when all possible universal
branches have been visited. This shows soundness of the DQDPLL-approach.

Completeness: Backtracking occurs as long as an existential variable can take
a different value. The algorithm only returns UNSAT if no more backtrack-
ing is possible. Thus in the worst case all possible Skolem functions for all
existential variables are enumerated, which implies completeness.



Apart from this it is also easy to check runtime and space requirements of
the proposed algorithm. Due to the fact that all possible Skolem functions are
enumerated in the worst case, the runtime is double-exponential. This is no
surprise considering that DQBF is NEXPTIME-complete. The space required is
bounded exponentially. This corresponds to the size of the current assignment
tree being checked for whether it is a solution to the formula.

There are several optimizations one can consider when implementing the pro-
posed algorithm. E.g. as already mentioned it is not necessary to save the whole
assignment on the stack for each decision but instead one can only use the de-
cision literal and later reconstruct previous assignments during backTrack and
restoreAssignment. This is a bit more complicated as it is in QBF since some-
times several universal branches have to be considered and therefore variables
might first get unassigned and then reassigned again to exactly reconstruct the
assignment in a certain state. Still this is quite straightforward to implement but
was neglected here in order to keep the pseudo-code easier to read.

Further optimizations are possible which do not backtrack in a linear way,
but take advantage of the underlying tree-structure, instead of iterating through
the whole stack. This again is neglected here to improve readability. As a low
level optimization it is not the focus of this paper. In the next section we will
look at different concepts used in DPLL algorithms for SAT/QBF and describe
how they can be adapted to be used in the DQDPLL-framework.

4 Conversion of Concepts from SAT/QBF

Having described the general design of DQDPLL we now want to investigate
if and how several techniques used in DPLL algorithms for SAT/QBF can be
converted to the DQBF context. During the last decades many concepts have
been introduced to speed up DPLL algorithms for SAT, and many of those con-
cepts have later been adapted to QBF. Some of these are unit propagation, pure
literal reduction and clause learning. Additionally there were also concepts es-
pecially defined for QBF, e.g. universal reduction and cube learning. Apart from
these, selection heuristics and watched literal schemes also play an important
role in the performance of various solvers in those domains. In this section we
will describe how the abovementioned concepts can be used for DQBF.

Unit Propagation. As one of the most important techniques used in DPLL-
style algorithms for SAT and QBF, unit propagation is usually implemented
as part of checkState, which is then often referred to as Boolean Constraint
Propagation (BCP).

Consider a clause C = (l1, . . . , lk) and a partial assignment β, so that ∃!j ∈
{1, . . . , k} : β(lj) = undef , β(li) = false ∀ i ∈ {1, . . . , k}\{j}. For SAT, β(lj) can
then be set to true. For QBF, β(lj) can be set to true, if var(lj) is an existential
variable, and checkState returns STATE UNSAT otherwise. The latter one also
trivially holds for DQBF, following the arguments used in the QBF version.

However in the case of an existential variable being assigned because of unit
propagation, there are the following aspects we have to consider: In contrast



to selecting an existential variable e due to a decision, it is possible that not
all u ∈ dep(e) have been assigned yet when it gets propagated. Assigning e
before all u ∈ dep(e) are assigned actually violates property 1 defined in Sect. 2.
Nevertheless it is still sound to do so and will help pruning the search tree.

We already argued in Sect. 2 that property 1 only was added to prevent
the algorithm from constructing irrelevant assignment trees since an assignment
tree not respecting property 1 corresponds only to an under-approximation of
the original formula and does not preserve satisfiability. In the case of unit prop-
agation the last observation is not true any more. If unit propagation on e is
possible under a certain partial assignment β, then the same unit propagation
step is possible under all possible partial assignments β′ which can be con-
structed from β by assigning all remaining variables u ∈ dep(e), β(u) = undef .
This means that assigning a unit e earlier, i.e. before all the universals on which
it depends are assigned, does not violate any dependency restrictions of e. Ac-
tually the same effect occurs in QBF during propagation on an existential unit,
if not all universals in outer scopes are assigned yet.

In order to ensure property 2 of the assignment tree, a Skolem clause needs to
be added for all possible remaining assignments of {u ∈ dep(e) | β(u) = undef }.
Using resolution and subsumption, this can be expressed by adding only one
clause:

Csk := (li,1, . . . , li,mi , lei), li,j =


ui,j , if β(ui,j) = false

¬ui,j , if β(ui,j) = true

false, if β(ui,j) = undef ,

assuming var(lei) = ei, dep(ei) = {ui,1, . . . , ui,mi
}.

Pure Literal Reduction. For universal variables, pure literal reduction can
be implemented exactly as it is done for QBF. Whenever a pure universal literal
lu is found, it can be set to false. To see that this procedure is sound, one can
move the concerned universal variable outwards and expand it [8]. It is enough
to consider the part where the literal is set to false since it subsumes the other
part.

For existential variables this becomes more complicated and there is no dual
version as it is the case for QBF. The reason for this is the following: setting a
pure existential literal to true does not guarantee to preserve satisfiability since
it adds a new Skolem clause to the formula (i.e. restricts the solutions), which
might force the literal to the same value in some later branch of the assignment
tree, although the literal is not pure there anymore. In QBF this was possible
because all branches of the decision tree were independent of each other.

To guarantee that pure literal reduction on existential variables remains
sound for DQBF, it can only be applied under certain conditions: An existential
literal lei can be set to true if every clause containing ¬lei is already satisfied by at
least one lu, var(lu) ∈ dep(lei) or by an existential literal lej , dep(lej ) ⊆ dep(lei).
In this case we know that all clauses containing ¬lei are already satisfied when-
ever the newly added Skolem clause propagates lei . This means lei is still pure



whenever the Skolem clause propagates, and therefore the Skolem clause does
not put an additional restriction on the original formula.

Clause Learning. Adding clause learning to DPLL-based SAT algorithms is
responsible for a huge performance improvement of SAT solvers during the last
two decades, particularly in the combination with conflict driven clause learning
(CDCL) solvers [12]. Clause learning was then also applied to QBF [15,16,17].
In SAT as well as in QBF, it often allows to prune large parts of the search tree.

It turns out that conflict clauses in DQDPLL can be generated in the same
way as it was done for QBF, and originally for SAT. The simple reason is that
clause learning is based on (propositional) resolution and therefore can be applied
on the matrix level, totally ignoring variable dependencies. Any resolvent of two
clauses can be added to a formula without affecting satisfiability. In SAT/QBF
it is common to perform resolution with clauses on the decision stack while
backtracking. It can be shown that, like this, the conflict can be resolved and
the new clause is asserting under the current assignment after backtracking.

However if clause learning is applied in the same way in DQDPLL, it is
possible that Skolem clauses are used for resolution. The resulting resolvent
therefore is only valid as long as all Skolem clauses used to create it are still
part of the formula. Because of this, we need to differentiate between temporary
learned clauses and permanent learned clauses.

Any learned clause created by resolution with at least one Skolem clause or
with a temporary learned clause is only valid as long as all clauses participating in
the resolution steps are still part of the formula, and will be a temporary learned
clause itself. It therefore will be linked with the latest such clause and is removed
whenever the linked clause is. A permanent learned clause is created when no
Skolem clause and no temporary learned clause was part of the resolution process
applied during backtracking. A clause like this can be kept or removed at any
point in the same way as it is done in SAT/QBF.

Apart from this, it is also possible to create a permanent clause during back-
tracking if there are Skolem clauses or temporary learned clauses participating in
the conflict. The algorithm can just skip the resolution steps with those clauses
and, of course, ends up with a permanent clause. However in this case it is not
guaranteed that the resulting clause is asserting under the current assignment
after backtracking, and the permanent learned clause is less restrictive than the
corresponding temporary learned clause.

It is therefore reasonable to generate both types of clauses in order to profit
from the individual advantages. The temporary clause will prune larger parts of
the current search tree, while the permanent clause can still affect other parts
of the search tree whenever the temporary clause gets removed during further
backtracking. If the permanent learned clause is too weak and does not con-
tribute, it can be automatically deleted if removal schemes like those proposed
in [18] are used.

Universal Reduction. This can be adopted for DQBF in a straightforward
way. Consider a universal variable u and a clause C = (lu, l1, . . . , lk), and let



var(lu) = u, β(li) 6= true ∀ li ∈ C. If u /∈
⋃
β(li)=undef {dep(li)}, lu can be set

to false.
This can be seen when considering the universal expansion of C considering

u. Let Clu=v be the clause obtained from C by setting lu to v ∈ {true, false}. A
solution for F has to satisfy Clu=true and C

lu=false . Since all variables that are

contained in C and are still unassigned at the current node in the assignment
tree do not depend on u, they have to take the same value in both Clu=true and
C
lu=false . Since Clu=true is already satisfied by lu, only C

lu=false needs to be

considered instead of C, i.e. lu can be removed from C.

Cube Learning. Introduced for QBF in [15,16,19], cube (goods / solution)
learning is used to prune satisfied branches of the assignment tree. It can be
considered as the dual concept to clause (no goods) learning, creating so-called
cubes, i.e. a subset of literals already satisfying the formula. A cube therefore
is a conjunction of literals and is added to the formula by disjunction. Initial
cubes are created from a satisfying assignment by extracting a minimal sub-
set of literals necessary to satisfy it. Later further cubes can be generated by
using resolution on existing cubes, similar to the way new clauses are created
when a conflict occurs. The same principle can still be applied to DQBF since
all reasoning for creating cubes is done on the matrix level. However, similar
to the reasoning necessary for adapting clause learning, a cube in DQBF is not
permanent in a certain sense. When a Skolem clause is added during a deci-
sion, the set of satisfying assignments for the formula matrix shrinks. Because
of this, it is possible that a cube which was added to the DQBF in a previous
step does not represent a satisfying assignment for the formula matrix anymore
after adding additional Skolem clauses. Whenever a Skolem clause is added to
the formula, the algorithm therefore has to check whether it is satisfied by the
existing cubes. Cubes not satisfying the new clause are linked with the Skolem
clause and get flagged “inactive”. They are not removed from the formula be-
cause they can be flagged “active” again if the Skolem clause later gets removed
during backtracking.

An important point to note is that reasoning with cubes changes compared
to QBF. While unit propagation on universal variables in cubes is still sound,
a cube only consisting of existential variables cannot considered to be satisfied
in DQBF. The reasoning behind this is the same as for pure literal reduction.
Setting the remaining existential variables in a cube to true implies restricting
the formula by Skolem clauses, i.e. it might rule out solutions and therefore does
not preserve satisfiability.

Selection Heuristics. An important aspect determining the performance of a
SAT solver is given by its selection heuristic. A selection heuristic determines
the order of the variables getting assigned and the value they first get assigned
to. In SAT there is a huge choice of different heuristics. Recently the most
common heuristics are VSIDS [20] and phase saving [21]. QBF solvers suffer
from the fact that variable selection is much more restricted due to the total
order defined by the quantifier prefix. Only variables from the current quantifier



scope can be chosen. Sometimes this constraint can be reduced by explicitly
checking for dependencies between the different variables on the matrix level, as
done for example by DepQBF [22]. Note that this is a different concept. While
independence on the matrix level means that the result of the formula will be
the same no matter which ordering for the variables is chosen, independence in
the context of DQBF is a constraint forcing a variable to take consistent values
on different branches of the assignment tree.

Since variable dependencies in DQBF are less strict and the design of DQD-
PLL allows to “delay” decisions on existential variables, this offers more freedom
on the selection of variables compared to QBF. We therefore suggest that selec-
tion heuristics have more influence in the DQBF-case. For our implementation,
we used VSIDS [20] and phase saving [21] in the same way it is done in SAT,
but restricted to the set of possible candidates defined by the properties of our
assignment trees. It might however also be interesting to extend heuristics for
DQBF by incorporating information specified on the quantifier-level, e.g. prefer-
ing existential variables over universals or picking those existential variables with
dependencies most “similar” to the current universal assignment.

Watched Literal Schemes. The watched literal scheme, as a lazy data struc-
ture for unit literal detection, has proved itself to be efficient in SAT solv-
ing [23,20]. The basic idea is that the clauses are kept untouched (i.e., no literals
are ever removed), and furthermore, the data structure does not require any
update during backtracking. The watched literal scheme has been adapted also
to QBF [24,22]. In the two literal watching scheme, in each clause two literals l1
and l2 are watched, fulfilling the following invariant: l1 is existential, and if l2 is
universal then var(l2) ∈ dep(l1). Notice that in QBF this latter condition about
dependency only requires to check whether var(l2) is quantified before var(l1) in
the prefix. This can be adapted to DQBF in a straightforward way, by checking
the explicit dependencies of var(l1). It is important to initialize watchers on the
fly for each fresh clause (i.e. conflict clause or Skolem clause). The detection of
falsified, satisfied and unit clauses can be done in the same way just like in QBF.

However, a special situation, right after backtracking, has to be considered: l1
is assigned and l2 = undef is universal. In QBF solvers or even in DQBF solvers
respecting property 1 this situation cannot occur. However, when neglecting
property 1, backtracking to a previous path might result in such a situation.
Nevertheless, it is easy to improve the solver to avoid this situation: update the
watchers of all the literals which are assigned by β, provided by the backTrack
method. We would like to point out that this update could be highly optimized
by the implementation optimization mentioned in Sect. 3, namely that only the
branching literals should be saved on the decision stack instead of assignments.
Given the current node n and the node n′ to jump back to, let lca(n, n′) de-
note the lowest common ancestor of n and n′. During traversing the path from
lca(n, n′) to n′, update the watchers of the literals assigned by the touched nodes.



5 Preliminary Results

We implemented a prototype of our DQDPLL algorithm as introduced in Sect. 3
and added all the concepts described in Sect. 4. Testing was rather difficult since
there is no DQBF library yet nor any other DQBF solver to compare results with.

Since EPR is also NEXPTIME-complete, we used EPR formulas from the
TPTP and converted those formulas to DQBF. Unfortunately the conversion
caused a large blow-up in the formula size. Bit-blasting of the domain, intro-
duction of Ackermann constraints when removing predicates [25, Chapter 3.3.1],
inverse destructive equality reasoning [6] to remove dependencies on other exis-
tential variables (which are not defined in DQBF) and final transformation to
CNF led to an explosion in formula size. This blow-up though being polynomial
produced formulas which were too large for our algorithm to solve.

Using QBF benchmarks as an input we then compared our solver with De-
pQBF [22]. As expected DepQBF was faster by several orders of magnitude
since it is much more specialized while our solver has additional exponential
overhead dealing with the stack of Skolem clauses which are not necessary for
QBF. Nevertheless we could check that the returned satisfiability status of all
instances solved by our algorithm was equal to the one returned by DepQBF,
and therefore QBF seems to be solved correctly.

To check whether DQBF instances can be solved at all, we wrote a tool
for generating random DQBF with different parameters, including number of
clauses, number of existential variables, number of universal variables and ex-
pected number of dependencies per existential. We then used medium sized
instances (10-50 variables, 100-1000 clauses) generated by our tool to check that
our algorithm can deal with those problems and that it always produces consis-
tent results during several hundred randomized runs, as well as very small sized
instances (2-6 variables) to check correctness on this subset manually.

A further way to check correctness could be translating our randomly gen-
erated DQBF to EPR and then compare our results with the results of an EPR
solver on the converted benchmark as done for QBF in [26].

6 Future Work

At the moment our algorithm is not able to solve translated EPR instances and
therefore cannot compete with EPR solvers. One reason is that there is a huge
blow-up during conversion. A second explanation could be the fact that those
instances often were especially created using the properties of EPR. It might be
interesting to look for problems which have a natural representation as DQBF
instead. Maybe in domains that fit well to Boolean reasoning and do not directly
suggest the usage of predicates the use of a low level DPLL-style approach is
better suited and allows to profit from the well-established techniques already
successful in SAT/QBF.

Apart from this, our solver is still a prototype and there are many possi-
ble optimizations regarding data structures and implementational details of our



techniques we should consider in the future. We also do not use restarts yet.
Regarding the proposed concepts it will be interesting to analyze in detail, if
and how each of them improves the performance of a DQBF solver based on our
DQDPLL architecture.

It might also be of interest to create an expansion based solver for DQBF and
see how it would compare to a DPLL-style solver such as the one we proposed.
Additionally, expansion also could be used to construct a QBF out of a DQBF
by expanding universal variables until the quantifiers can be totally ordered. A
QBF generated this way can be given to any DPLL-based QBF solver to see if
our approach of applying the concepts directly on the more succinct DQBF level
gives any benefits over dealing with the less succinct QBF representation.

Finally, considering the increased complexity compared to QBF and SAT
solvers, it becomes even more important to verify results. While the Skolem
clauses on the decision stack after termination of our algorithm exactly define
a Skolem function representing a solution, it might be interesting to check if
certificates for conflicts can be generated similar to how it is done for QBF [27].

7 Conclusion

In this paper we described DQDPLL, a DPLL-style algorithm for DQBF. We
have formally defined necessary conditions for assignment trees representing so-
lutions for DQBF. Based on this, we have also shown what adaptations of the
DPLL-architecture to DQBF are necessary and how they could be implemented
by introducing a stack of Skolem clauses, representing partial definitions of the
Skolem functions defining the existential variables.

With the main reason for the success of DPLL algorithms in SAT and QBF
being found in various techniques such as unit propagation, pure literal reduction
and clause learning, universal reduction, cube learning, selection heuristics and
watched literal schemes, we also discussed how these can be translated to DQBF.

Our implementation shows that it is indeed possible to solve DQBF with this
approach, at the same time, however, it does not perform very well. We have
given reasons for why this is the case for EPR formulas, and suggested to find
problems which can be formalized in DQBF more naturally.

Since the introduction of DQBF in [1], this paper is the first detailed descrip-
tion of an algorithm to solve this class of problems. While still a lot of progress
has to be made in this field, we hope that our contribution helps getting a bet-
ter insight on the topic of DQBF, and possibilities and pitfalls on the way of
practically solving it.
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