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Abstract—We extend the well-established assumption-based
interface of incremental SAT solvers to clauses, allowing the
addition of a temporary clause that has the same lifespan as
literal assumptions. Our approach is efficient and easy to im-
plement in modern CDCL-based solvers. Compared to previous
approaches, it does not come with any memory overhead and does
not slow down the solver due to disabled activation literals, thus
eliminating the need for algorithms like IC3 to restart the SAT
solver. All clauses learned under literal and clause assumptions
are safe to keep and not implicitly invalidated for containing an
activation literal. These changes increase the quality of learned
clauses, resulting in better generalization for IC3. We implement
the extension in the SAT solver CaDiCaL and evaluate it with the
IC3 implementation in the model checker ABC. Our experiments
on the benchmarks from a recent hardware model checking
competition show a speedup for the average SAT call and a
reduction in number of calls per verification instance, resulting
in a substantial improvement in model checking time.

INTRODUCTION

Modern SAT solving is based on Conflict-Driven Clause
Learning (CDCL) [1]. Many applications require solving a
sequence of related SAT problems incrementally [2], [3],
making use of inprocessing techniques [4], [5], [6] that make
modern SAT solvers so efficient. Among those applications
is the symbolic model checking algorithm IC3. In contrast
to other incremental SAT-based techniques, such as bounded
model checking (BMC) [7], [8] and k-induction [9], [10],
IC3 does not rely on unrolling the transition function. As a
result the SAT queries that IC3 poses are significantly smaller
and faster to solve. However, the number of queries that IC3
makes over the course of one model checking procedure is
significantly higher. We illustrate the kind of queries that IC3
makes in the following example.
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Fig. 1. Transition system

Consider the transition system of a three-bit (b2b1b0)
counter, encoding integers up to seven, in Fig. 1. Non-
deterministically, the counter is incremented, remains un-
changed or is reset to zero after reaching five. Suppose we
want to ensure that starting at state zero, all states with

values greater than five are unreachable. A typical query asks
“is state six reachable from any other state?”, expressed as
SAT?[T ∧ (¬b2 ∨ ¬b1 ∨ b0) ∧ b′2 ∧ b′1 ∧ ¬b′0], where T
encodes the transition system for one step from b2b1b0 to
b′2b
′
1b
′
0. It is unsatisfiable, telling us that state six is in fact

unreachable. We can try to generalize this result to a set of
states by considering a cube – an assignment to a subset of
variables. The query SAT?[T ∧ (¬b1 ∨ b0) ∧ b′1 ∧ ¬b′0] is
satisfiable because state two can be reached from state one
and SAT?[T ∧ (¬b2 ∨ b0)∧ b′2 ∧¬b′0] is satisfiable due to the
transition from state three to state four. However, the query
SAT?[T ∧ (¬b2 ∨¬b1)∧ b′2 ∧ b′1] is unsatisfiable, allowing us
to conclude that all states in the cube b2∧b1 are not reachable
from outside the cube. We can use that insight to strengthen
T by adding ¬b′2∨¬b′1 to all future queries. This is in contrast
to the clauses we previously added for only one query.

The popular assumption-based interface pioneered by
MiniSat [2], [8] allows the user to specify a set of literals that
are assumed to be true and picked by the solver as the first
decisions. This allows us to add the assumption that a state
is within a certain cube after the transition (b′2 ∧ b′1), however
we still need to assume an additional clause encoding that the
state is currently not within said cube (¬b2 ∨ ¬b1). The most
common way to implement clause assumption, is to simulate
the desired behavior using activation literals [8], [11]. Let C
be a clause to add temporarily and a, the activation literal, a
free variable, i.e., it does not occur in the formula. By adding
C∨a to the formula and assuming ¬a, we achieve the same as
adding C to the formula. After a solution is found, the clause
a is added, effectively removing C from the formula.

The problem with IC3 specifically, is the large number of
queries made over the course of a single verification procedure.
After a few hundred calls the activation literals clutter up the
variable space and slow down the SAT solvers propagation.
The common solution to this problem is to fully restart the
SAT solver by replacing it with a fresh instance periodically,
thus also deleting all learned clauses and heuristic scores. How
to schedule these restarts in IC3 specifically, has been the topic
of a full journal paper [12]. Using the technique presented in
this paper, restarts are not necessary at all. Additionally learned
clauses are safe to keep and will not contain an activation
literal, which would make them useless for future calls.

Other approaches to clause assumption have been explored:
The logic solver Satire [13] supports pseudo-Boolean and
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other constraints. It records the dependencies of learned
constraints explicitly, thus allowing the deletion of arbitrary
clauses. In the SMT community, an interface based on pushing
and popping on the assertion stack is prevalent [14]. Since
constraints are removed in order, it is possible to mark a point
in the data structures that maintain learned knowledge and
remove everything past it, when a pop operation is executed.
The first implementation of IC3 [15] used the SAT solver
Zchaff [16]. It assigns an additional 32-bit integer to each
clause. When learning a clause the bits of all dependencies are
combined. The user can delete a group of clauses with a certain
bit. This approach mostly simulates the use of activation
literals and comes with a significant memory overhead.

This paper presents an extension of the prevalent assumption
mechanism to additionally allow the assumption of a single
clause, called constraint in the following. The extension can
be implemented by a simple modification to the decision
mechanism in a CDCL-based SAT solver. We implemented
it in under 100 lines of code in the state-of-the-art SAT solver
CaDiCaL. To evaluate our implementation we modify the IC3
engine in the model checker ABC to use CaDiCaL and clause
assumption. As a first result, the changes simplify SAT solver
usage and eliminate the need for restarts as well as some book-
keeping for activation literals. An empirical evaluation on the
2019 hardware model checking competition [17] benchmark
set shows that ABC spends less time outside of computing
SAT queries, the number of queries per verification is reduced
and the average SAT call is faster. Overall using clause
assumptions yields a substantial speedup in verification time.

INCREMENTAL SAT AND IC3
An incremental SAT solver solves a series of related formu-

las efficiently. It communicates with an application integrating
it through an interface such as IPASIR [11]. It is implemented
by all solvers participating in the incremental library track of
the SAT Competition since 2015. The popular solver MiniSat
along with all of its incremental descendants implement some-
thing very similar. We describe the relevant subset:
• add(lit) Add a literal to the current clause or if it

equals 0, add the clause to the formula.
• assume(lit) Assume the literal to be true for the next

solving attempt.
• solve() Return SAT if an assignment exists satisfying

the formula and all assumptions, otherwise UNSAT.
• val(lit) Valid in SAT-case. Return the truth value of

a literal in the satisfying assignment.
• failed(lit) Valid in UNSAT-case. Return true if the

literal was assumed and used to prove unsatisfiability.
A prominent applications of incremental SAT-solving is the
symbolic model checking algorithm IC3 by Bradley [15].
Given a transition system and a property P , IC3 tries to prove
that it is not possible to reach a state that violates the property.
It maintains a sequence of frames F0, F1, . . . Fk, each frame Fi

is a formula encoding an overapproximation of the set of states
reachable in at most i steps. The frames are refined by adding
additional clauses until one of the frames contains all reachable

states and none violates the property or a counterexample is
found. Each frame has its own SAT solver instance that is
initialized with an encoding of the transition function and
updated with the new frame clauses.

The solvers are used almost exclusively to answer queries
for predecessors of the form SAT?[T ∧ Fi ∧ ¬s ∧ s′], where
T is the transition function and s is a cube. To refine the
frames, a state s in the last frame that violates the property
is identified with the query SAT?[Fk ∧ ¬P ]. If no such state
exists, a new frame is appended, otherwise IC3 tries to prove
that the state is not actually reachable. The frames are queried
for predecessors until an initial state is reached, thus producing
a counterexample, or one of the frames returns unsat. In the
latter case failed can be used to generalize the unreachable
state to a cube, the negation of which is added to the frame.
IC3 is guaranteed to eventually terminate with two consecutive
frames containing the same set of states.

ASSUMING CLAUSES

Our main contribution is an extension to incremental SAT
solvers that allows the assumption of an additional clause,
called constraint, which is only valid during the next satisfia-
bility query. Two functions are added to the interface:
• constrain(lit) Adds a literal to constraint. If a

finalized constraint exists, delete it. If the literal equals
zero, finalizes the current constraint.

• constraint_failed() Valid in UNSAT case. Re-
turn whether constraint was used to prove unsatisfiability.

Our approach is similar to the idea of model elimination [18].
We modify the decision heuristic to restrict the search to
assignments that satisfy the constraint. The modified decision
procedure is outlined in Fig. 2. The function decide is called
initially at decision level 0. Decisions assigned to the trail
are propagated outside of the function to assign truth values.
Whenever a conflict arises, the decision level decreases and
the assignments are backtracked [1]. Every assumption has a
fixed decision level. In the case where an assumption is already
satisfied, a pseudo decision level is introduced. Otherwise if an
assumed literal is assigned to false at this point, the assignment
is the result of propagating other assumptions together with
original or learned clauses. Therefore the formula is proven
unsatisfiable under the current assumptions if line 4 is reached.

At the first decision level after all assumptions have been
assigned, three cases need to be considered: if one of the
literals in the constraint is already satisfied, the search is not
restricted. Otherwise one of the literals is picked as a decision
to satisfy the constraint. In line 13 a variable selection heuristic
can be used to pick the most promising literals first, similarly
to [19], [20]. In the case where all literals are assigned to false,
they are implied by the assumptions, thus cannot be assigned
differently. The formula is therefore declared unsatisfiable
under the assumptions and the constraint. This might only
happen after additional clauses have been learned.

This approach to handle assumptions was pioneered by
MiniSat [2]. It has been improved upon by collectively propa-
gating the assumptions, using trail saving between incremental
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decide ( )

1 if level < |assumptions|
2 ` = assumptions[level]
3 if val(`) = false

4 analyzeFinal()
5 else if val(`) = true

6 level++ // pseudo decision level

7 else trail[level++] = `

8 else if level = |assumptions|
9 unassignedLit = 0
10 for ` in constraint
11 if val(`) = true

12 level++ // pseudo decision level

13 else if val(`) = unassigned

14 unassigendLit = `

15 if unassigendLit = 0
16 analyzeFinalConstraint() // cannot be satisfied

17 else trail[level++] = unassigendLit
18 else
19 ` = literalSelectionHeuristic()
20 trail[level++] = `

Fig. 2. Algorithm decide picks the next decision to propagate.

calls [21] or factoring out assumptions [22]. These techniques
can be combined with the presented constraint mechanism.

Modern SAT solvers not only report unsatisfiability as a
result, but also allow the user to query whether a particular
assumption failed, i.e., was used to prove unsatisfiability. This
concept, introduced as analyzeFinal by MiniSat [23], is
essential for the efficiency of many applications. If an original
or learned clause is inconsistent with the assumptions, the
last assumption picked as a decision is already assigned to
false. Using a simple breadth-first search, the reasons for
this assignment can be traced back through the implication
graph [1]. The assumptions at the leaves of the search tree
are marked as failed. In line 16, a similar search is initialized
with the negation of every literal in the constraint. Thus, all as-
sumptions necessary to prove unsatisfiability of the constraint
in conjunction with the formula are marked as failed.

EXPERIMENTS

We implemented the constraint interface in CaDiCaL [24]
version 1.3.1. To increase confidence in the correctness of
the SAT solver and its new extension, we used the model-
based tester [25] that is integrated with CaDiCaL. It generates
random sequences of API calls including assumptions and
constraints together with random configurations for the solver.
The returned models and failed assumption sets are checked
for correctness. We ran the tester on 8 cores for multiple days
to validate 1.2 billion test runs.

To evaluate our approach, we integrated CaDiCaL into the
bit-level model checker ABC1 [26], replacing the integrated
version of MiniSat [2]. There are two places where acti-
vation literals are used in ABC. The first is an alternative
implementation of cube generalization, that is not used in the
default configuration. In fact, it seems to not work correctly
in the default version of ABC1. The other usage of activation
literals is in the function that implements the predecessor query
SAT?[T ∧ Fi ∧ ¬s ∧ s′]. The transition function T and the
frame Fi will only be extended with additional clauses, the
cube s however changes at each query. The next-step cube s′

is in conjunction with the rest of the formula and therefore
translates to a set of unit clauses that can be implemented
with assumptions. To combat the slowdown due to unused ac-
tivation literals cluttering up the variable space, ABC replaces
the SAT solver with a new instance after adding 300 activation
literals. Using the extended interface, the negated cube ¬s can
be added as a constraint, thus eliminating the restarts.

We tested five configurations: the original version of
ABC (Og), disabled SAT solver restarts (Di), a version with
CaDiCaL as backend using activation literals (Ca) and one
also using CaDiCaL but the new constraint interface instead
of activation literals (Co). As an additional result we present a
slight modification to the last configuration that defers model
reconstruction [6] in the SAT-case and failed literal collection
in the UNSAT-case until a model or a failed literal is queried
respectively (De). Using a heuristic to pick the literals from
the constraint has not been successful. ABC uses a priority
metric to order the literals of the cube s by default. Using
this order for the constraint turned out to be superior to the
heuristics available in CaDiCaL.

Our evaluation follows the principles laid out in SAT
manifesto v1.0. [27]. The source code used for the evaluation
and the generated log files are available on our website2. The
experiments are run in parallel on 32 nodes of our cluster.
Each node has access to two 8-core Intel Xeon E5-2620 v4
CPUs running at 2.10 GHz (turbo-mode disabled) and 128 GB
main memory. We allocate 4 instances of ABC to every node.
The time limit is set to 1 hour of wall-clock time, memory
is limited to 30GB per instance. The memory limit is the
only aspect that differs from the setup used in the hardware
model checking competition. However, the maximum memory
consumption was observed to be below 1.5GB.

The evaluation is based on the benchmark set used in
the 2019 model checking competition [17]. It contains 219
instances, 15 of which we removed because they were not
solved by any tested configuration. We use PAR-2 scoring
to compare the configurations. PAR-2 assigns the runtime in
seconds or twice the time limit (7200) if an instance was not
solved. The other columns list additional measurements for
the two configurations using CaDiCaL, one with activation
literals (Ca) and the other using constraints instead (Co).
The number of restarts is zero if constraints are used and

1commit f87c8b4
2http://fmv.jku.at/assumingclauses
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TABLE I
EXPERIMENTAL RESULTS.

PAR-2 Res. Calls TpC

Di Og Ca Co De Ca Ca Co Ca Co

Mean 80 46 16 8.93 8.21 61 19 15 0.61 0.51

beemTele6Int 136 7200 53 181 101 520 157 574 0.24 0.27
toyLock4 7200 483 1731 357 359 7459 2251 1098 0.42 0.25
visArraysField5 7200 1.6 0.58 51 34 1 1 113 0.53 0.41
nan 208 421 163 158 140 1381 420 423 0.29 0.32
beemColl6Int 241 258 322 133 108 398 123 91 2.31 1.24
cal110 213 168 130 110 122 191 59 42 1.96 2.39
cal109 179 197 102 117 86 110 34 44 2.71 2.44
cal93 186 136 121 118 140 206 63 58 1.69 1.8
cal94 127 160 115 95 131 171 52 41 1.94 2.1
cal100 112 42 67 67 54 148 45 44 1.23 1.29
cal131 46 44 77 58 60 136 42 35 1.58 1.41
cal146 47 39 71 42 38 131 41 23 1.51 1.55
cal136 34 46 59 43 35 100 31 23 1.62 1.59
cal128 52 38 46 37 40 99 31 25 1.29 1.27
beemExit5Int 51 17 26 16 15 357 110 86 0.18 0.15
cal134 38 47 50 48 36 79 25 26 1.72 1.57
cal132 39 36 48 42 32 83 26 24 1.57 1.54
cal144 30 34 41 33 42 64 20 17 1.7 1.64
beemLampNat5Int 26 23 23 35 31 193 61 102 0.28 0.3
cal89 16 14 32 33 25 68 22 18 1.23 1.6
beemRether4Bstep 13 4.29 16 7.16 6.99 91 29 13 0.42 0.49
beemBrp2Int 16 5.1 3.6 0.76 0.74 86 29 7 0.08 0.07
beemFrogs2Bstep 2.47 2.53 12 5.59 4.74 31 10 4 1.12 1.27
beemAdding5Int 1.78 3.9 2.07 1.12 1.09 53 17 11 0.08 0.07
visArraysTwo 1.35 2.89 3.89 0.57 0.55 99 30 5 0.09 0.07
Heap 2.02 1.9 3.38 1.68 1.63 57 22 13 0.11 0.09
Disable restarts, Original version of ABC, CaDiCaL backend, Constraint interface used, Defer model reconstruction

therefore not shown. Besides that, we list the number of SAT
calls (in thousands), along with the average time per call in
milliseconds. Table I presents the measured data for instances,
where at least one configuration took more than two seconds,
along with an average over all 204 instances.

Comparing the first two columns, it is evident that if
activation literals are used, solver restarts are necessary. It has
been suggested [12] that because the queries posed by IC3 are
small but numerous, IC3 implementations should prefer faster
SAT solvers to more powerful ones. Comparing the original
with the CaDiCaL version shows that while using MiniSat is
faster on a number of instances, using CaDiCaL seems to be
an advantage on the harder instances. In fact, using the newer
SAT solver, one additional instance can be verified. Over all
instances a speedup of 2.82 is observed.

With the version using CaDiCaL and activation literals as
a baseline, we observe a speedup of 1.84 when switching to
constraints. The time spend outside the SAT solver is reduced
to below 20%, by eliminating the actual SAT solver restarts
and the repeated loading of the transition relation [28]. Beyond
that, the average SAT call is 16% faster. This can partially be
explained by the solver not being slowed down by activation
literals. We conjecture that, more importantly, the “quality”
of the learned clauses in the solvers database is higher. Since
clauses are not deleted by restarts and none of the learned
clauses are implicitly disabled for containing an activation
literal, the solver can profit from shorter and more useful

clauses. Measuring this quality however, is outside the scope
of this paper. An additional effect is that these clauses allow
conflicts earlier in the search tree, resulting in fewer failed
literals and thus allows for better generalization in IC3. This
can explain why 21% fewer calls are made.

The last two columns listing PAR-2 scores reflect small
changes in the solver. Deferring the model reconstruction
results in an additional speedup of 9%, increasing the total
speedup compared to the original version to 5.64.

CONCLUSION

We present a simple extension to the commonly used
incremental SAT solver interface IPASIR that simplifies solver
usage and is easy to implement by modern SAT solvers. The
extension gives an alternative to the techniques described in
the journal paper [12] and partially implemented in ABC.
Our experiments using the new technique with ABC show
a substantial improvement in model checking time. Compared
to the original IC3 engine, our final implementation is more
than five times faster.

Handling more than one constraint can be achieved by using
a complete model elimination search over the constraints.
This would however increase the implementation effort. Addi-
tionally, inprocessing techniques cannot be applied, therefore
model elimination might be less effective than using activation
literals, if the number of temporary clauses is high. We leave
this investigation to future work.
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