
Decomposition Strategies to
Count Integer Solutions over Linear Constraints

Cunjing Ge , Armin Biere
Johannes Kepler University Linz, Austria
cunjing.ge@jku.at , armin.biere@jku.at

Abstract
Counting integer solutions of linear constraints has
found interesting applications in various fields. It
is equivalent to the problem of counting integer
points inside a polytope. However, state-of-the-art
algorithms for this problem become too slow for
even a modest number of variables. In this paper,
we propose new decomposition techniques which
target both the elimination of variables as well as
inequalities using structural properties of counting
problems. Experiments on extensive benchmarks
show that our algorithm improves the performance
of state-of-the-art counting algorithms, while the
overhead is usually negligible compared to the run-
ning time of integer counting.

1 Introduction
As one of the most fundamental type of constraints, linear
constraints (LCs) have been studied thoroughly in many ar-
eas. Counting integer solutions over LCs has also many ap-
plications, such as counting-based search [Zanarini and Pe-
sant, 2007; Pesant, 2016], simple temporal planning [Huang
et al., 2018] and probabilistic program analysis [Geldenhuys
et al., 2012; Luckow et al., 2014]. Moreover, it can be in-
corporated into DPLL (T)-based #SMT (LA) counters [Ge et
al., 2018] as a core subroutine. As a set of LCs represents
a convex polytope, its integer solutions correspond to integer
points inside the polytope. Accordingly, we do not distin-
guish the concepts of polytopes and sets of LCs in this paper,
and call this counting problem integer counting for short.

Integer counting is proved to be #P-hard [Valiant, 1979]
and [Kannan and Vempala, 1997] proposed an algorithm for
sampling integer points in a polytope. It can be used to ap-
proximate the integer solution count but we are not aware of
any implementation.

The first practical tool for integer counting is LATTE [Lo-
era et al., 2004], which is an implementation of Barvinok’s al-
gorithm [Barvinok, 1993; Barvinok, 1994]. The tool BARVI-
NOK [Verdoolaege et al., 2007] is the successor of LATTE
and is also based on Barvinok’s algorithm, with an in general
better performance compared to LATTE. However, in prac-
tice, BARVINOK often still has difficulties when the number
of variables is greater than 15 (preventing many applications).

A more recent work [Ge et al., 2019] studied the relation
between the counts of integer points inside a polytope and the
volume of a polytope. Based on this, an approximate integer
counter was proposed. However, the approximation bounds
are sometimes far off from exact counts, which is inevitable.

The primary contributions of this paper are column and row
elimination techniques, which allow to apply decomposition
to a wider set of problems as follows:
• Inspired by component decomposition in propositional

model counting, using the DPLL algorithm, we propose
column elimination for linear integer constraints. It enu-
merates assignments for certain variables to reduce the
original problem to a problem with less variables and
could be decomposed further.
• We then investigate another direction of elimination, i.e.,

row elimination. It splits a row (a linear constraint) into
small pieces and introduces new auxiliary variables to
represent these pieces. Although the new problem con-
sists of more variables, it can be decomposed into much
smaller sub-problems. We argue that this kind of row
elimination is a novel idea in the literature of counting.

We implemented our exact integer counting algorithm into a
tool, INTCOUNT, based on BARVINOK and evaluated its per-
formance on an extensive set of randomly generated bench-
marks. We not only compared our tool with other integer
counters, but also with propositional model counters by trans-
lating linear constraints into propositional logic formulas. In
addition, we integrated INTCOUNT and BARVINOK into a
#SMT(LA) counter [Ge et al., 2018] to evaluate the perfor-
mance of our approach in real applications. The experimen-
tal results on random benchmarks and also application bench-
marks show that our approach is promising.

2 Motivation
In order to evaluate the state-of-the-art integer counting tech-
niques, we performed experiments with BARVINOK over ran-
dom benchmarks (generated as described in Section 5). In
Figures 1a and 1b we show the average running times and
the percentages of benchmarks which BARVINOK was able to
complete within one hour, with respect to the number of vari-
ables n. Note that the timeout is 3600s and there are some
simple benchmarks for each n. Although the curve in Fig-
ure 1a appears to converge for n ≥ 9, with larger timeouts it

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1389

(a) Average running time (b) Percentage solved instances.

Figure 1: Over different number of variables n.

would continue to increase. In general, the running time of
BARVINOK seems to grow exponentially with increasing n.
To reduce the number of variables, a rather straightforward
idea is to decompose the constraints into components with a
disjoint set of variables, which however is only possible if
the dependencies graph between variables in the given con-
straints is also decomposable. Our goal is to extend such a
decomposition technique to a larger class of problems.

The first effective exact model counter for SAT was REL-
SAT [Jr. and Pehoushek, 2000]. It identifies disconnected
components dynamically as the underlying DPLL procedure
attempts to extend a partial assignment. This technique is still
considered state-of-the-art for model counters [Sang et al.,
2004; Thurley, 2006; Sharma et al., 2019] and it inspired us to
decompose linear constraints after assigning values to some
variables. Note that each partial assignment corresponds to
a counting sub-problem, so there may be thousands of sub-
problems. Fortunately, as the experiments described in Fig-
ures 1a and 1b indicate, it is possible that BARVINOK takes
less time to compute thousands of smaller sub-problems than
the original problem. So we propose to apply this idea of cre-
ating decomposable problems to improve integer counting.

3 Preliminaries
Definition 1. A linear constraint is an inequality of the form
a1x1 + · · · + anxn op b, where xi are numeric variables, ai
are constant coefficients, and op ∈ {<,≤, >,≥,=}.

Without loss of generality, a set of linear constraints with
respect to the integer domain can be written in the form of:
Ax ≤ b, whereA is am×n coefficient matrix and b is a 1×n
constant vector. The m and n are the numbers of linear con-
straints and integer variables respectively. In the view of ge-
ometry, a linear constraint is a hyperplane in Euclidean space,
and a set of linear constraints is an n-dimensional polytope.
The number of integer models of the linear constraints is the
same as the number of integer points inside the corresponding
polytope. In this paper, we assume that the polytope contains
only finite integer points, otherwise, there exists at least one
integer variable with infinite domain, which can be easily de-
tected via Integer Linear Programming (ILP). Note that in our
experiments, the running time of ILP is negligible compared
to that of the integer counting.
Definition 2. Given a set of constraints P = {Ax ≤ b}.
• Let #P denote the integer count in P .
• Let P[xi=c] represent the sub-problem where xi has been

assigned the value c.

• LetRP denote the set of rows of P , where a row r ∈ RP

corresponds to a constraint in P , as well as a row of A.
• Let CP denote the set of columns of P , where a column
c ∈ CP corresponds to a variable of P , as well as a
column of A.
• Let A[R,C] represent the sub-matrix of A that is gen-

erated by extracting rows R and columns C. Note that
A[R,C] is an |R| × |C| matrix, and A = A[RP , CP].
• Let b[R] and x[C] similarly represent the sub-vectors of
b and x respectively.
• Let P [R,C] = {A[R,C]x[C] ≤ b[R]}. It is a sub-

problem of P that is generated by extracting rowsR and
columns C. Thus P [R,C] is a |C|-dimensional problem
that consists of |R| linear constraints. In particular, we
have P = P [RP , CP].

Definition 3. The Linear Constraint Graph (LCG) of a set of
linear constraints is constructed by the following rules:
• V = X , where X is the set of variables,
• for each pair of vertices (vi, vj), introduce an edge eij ∈
E and a weight wij on it, where wij equals the number
of times that xi and xj appear together in a constraint.

4 Algorithm
Let P = {Ax ≤ b} be a set of constraints with matrix

A =


D1 0 . . . 0
0 D2 . . . 0
...

...
...

0 0 . . . Dk

 . (1)

Then P can be trivially decomposed into k sub-problems:
{P1, . . . , Pk}, where Pi = Diγi ≤ βi, γi and βi are cor-
responding sub-vectors of x and b. Let #P and #Pi denote
the integer counts in polytope P and Pi. Naturally, we have

#P =
k∏

i=1

#Pi. (2)

To identify the sub-matricesDi inA, we introduce the Lin-
ear Constraint Graph (LCG) G(P) of P . If we remove edges
with weight zero in the G(P), the different connected com-
ponents (CCs) correspond to disjoint sets of variables.
Example 1. Consider a set of linear constraints

x1 + x3 ≤ 10,

x2 + x4 + x5 ≥ 0,

3x4 − 2x5 ≤ 10,

−8 ≤ xi ≤ 7, i ∈ [1, 5].

Figure 2: An example of LCG.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1390

Figure 2 is the LCG of this problem. There are two con-
nected components {v1, v3} and {v2, v4, v5} in this graph.
They correspond to two sets of variables {x1, x3} and
{x2, x4, x5} and two sets of constraints{
x1 + x3 ≤ 10,

−8 ≤ xi ≤ 7, i ∈ {1, 3},


x2 + x4 + x5 ≥ 0,

3x4 − 2x5 ≤ 10,

−8 ≤ xi ≤ 7, i ∈ {2, 4, 5}.
This direct decomposition method requires special struc-

tures of matrix A, which limits its usage. The goal of this
paper is to propose methods to create this kind of structure.

4.1 Column Elimination
When a variable is eliminated, the matrix A may turn into the
form of Equation (1), and thus the problem can be decom-
posed. In our approach, we eliminate a variable by enumerat-
ing all its values and substituting it by that constant. Note the
range of each integer variable xi should be finite and can be
extracted through ILP. Assume xi ∈ [Li, Ui] = Xi, then

#P =
∑

c∈[Li,Ui]

#P[xi=c]. (3)

Note that P[xi=c] may be suitable for decomposition like
Equation (1). Since eliminating a variable also causes the
elimination of a column from A. Thus we call this pro-
cess column elimination. This idea has already been used in
#SAT [Jr. and Pehoushek, 2000], #CSP [Ganian et al., 2020],
as well as counting linear extensions [Kangas et al., 2018],
but not in counting linear constraints yet.

Given a set of linear constraints P = {Ax ≤ b} and as-
sume the matrix A is in the form

A =

E1 D1 . . . 0
...

...
...

Ek 0 . . . Dk

 .
Let s denote the width of Ei and

P =


E1 D1 . . . 0

...
...

...
Ek 0 . . . Dk



γ0
γ1
...
γk

 ≤
β1

...
βk


 .

The column vectors γi and βi are the corresponding sub-
vectors of x and b. Further note that γ0 = (x1, . . . , xs)

T .
Then after assigning values to γ0, P can be decomposed into
k sub-problems:

#P[γ0=c] =
k∏

i=1

#PCi(c), (4)

where PCi(c) = Diγi ≤ βi − Eic. With Equation (3) we
obtain the following theorem.

Theorem 1. #P =
∑
c∈Γ0

∏k
i=1 #PCi(c), where Γ0 is the

domain of γ0.
Consider the range Xi of variable xi in γ0. We know that

Γ0 ⊆ X1×· · ·×Xs. However, since #PCi(c) = 0, for each
c ∈ (X ′1 × · · · ×X ′s) \ (X1 × · · · ×Xs), we further have the
following corollary.

Corollary 1. #P =
∑
c∈X1×···×Xs

∏k
i=1 #PCi(c), where

Xi is the range of variable xi in γ0.
We adopt Corollary 1 for convenience in our implementa-

tion. Note that in our implementation we check the satisfia-
bility of PCi(c) (if the count is 0) when an assignment c is
only partially assigned, to save computation.

4.2 Row Elimination
A row of the matrix A and vector b represents a linear con-
straint. Similar to our column elimination strategy, our new
proposed row elimination strategy will also turn A into the
form of Equation (1). However, the method to eliminate rows
is more involved than eliminating columns. Without loss of
generality, we assume that A has the form

A =


E1 E2 . . . Ek

D1 0 . . . 0
...

...
...

0 0 . . . Dk

 .
Let t denote the height of Ei. Further, let

P =



E1 E2 . . . Ek

D1 0 . . . 0
...

...
...

0 0 . . . Dk


γ1...
γk

 ≤

β0

β1

...
βk


 ,

where γi and βi are the corresponding sub-vectors of x and
b. Now we introduce (k − 1)× t new auxiliary variables y11 . . . y1t

...
...

y(k−1)1 . . . y(k−1)t

 .
Let yi = (yi1, . . . yit)

T = Eiγi, where 1 ≤ i ≤ k − 1. Then

P =



E1γ1 = y1,
. . .

Ek−1γk−1 = yk−1,

Ekγk ≤ β0 −
∑k−1

i=1 yi,
D1γ1 ≤ β1,

. . .
Dkγk ≤ βk.

If we assign values to the yi, then the problem can be decom-
posed into k sub-problems:

PRi(yi) =

{
Eiγi = yi
Diγi ≤ βi

1 ≤ i ≤ k − 1,

PRk(y1, . . . ,yk−1) =

{
Ekγk ≤ β0 −

∑k−1
i=1 yi

Dkγk ≤ βk
.

Since variables xi are bounded, yij are also bounded. So the
upper and lower bounds of yij are finite numbers. Similar to
the column elimination, we have the following results.

Theorem 2. #P =
∑
c∈Y

∏k
i=1 #PRi(c), where Y is the

domain of (y11, . . . , y(k−1)t).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1391

Algorithm 1: Row and Column Selection
1 Function SelectRowsAndColumns(P , DEPTH LIMIT,

SIZE LIMIT)
2 Compute a score for each element in

DP = RP ∪ CP ;
3 Sort DP according to the score;
4 R0, C0 ← ∅, depth← DEPTH LIMIT;
5 for each subset D ⊂ DP s.t. |D| ≤ depth do
6 Let R and C denote the rows and columns in

D respectively;
7 Q← P [RP \R,CP \C];
8 if CountCC (Q) > 1

and MaxCCSize(Q) ≤ SIZE LIMIT then
9 R0 ← R, C0 ← C, depth← |D|;

10 return R0, C0;

Corollary 2. #P =
∑
c∈Y11×···×Y(k−1)t

∏k
i=1 #PRi(c),

where Yij represents the range of yij .
Example 2. Consider a problem{

x1 + · · ·+ xn ≤ 10,

−8 ≤ xi ≤ 7, i ∈ [1, n].

Obviously, we can eliminate row x1 + · · · + xn ≤ 10 to
apply decomposition on the remaining constraints. First we
introduce a variable y to represent x1 + · · ·+ xk, where k =
bn/2c. Then the constraints are turned into

x1 + · · ·+ xk = y,

−8 ≤ xi ≤ 7, i ∈ [1, k],

xk+1 + · · ·+ xn ≤ 10− y,
−8 ≤ xi ≤ 7, i ∈ [k + 1, n].

Note that the range for y is [−8k, 7k]. Finally, the constraints
can be decomposed into two components with around n/2
variables each by assigning values in [−8k, 7k] to y.

4.3 Row and Column Selection
Now we consider the algorithm to identify the rows and
columns to be eliminated. Algorithm 1 presents our frame-
work of the row and column selection. The input consists of
the problem P and two constant parameters, DEPTH LIMIT
and SIZE LIMIT. Let DP denote the union of RP and CP .
The algorithm first computes a heuristic score for each ele-
ment in DP , and sorts them based on this score. Then it enu-
merates subsets of DP while minimizing the depth |D|. The
loop updates the remaining constraintsQ of P after removing
rows and columns inD. If the LCG of the updatedQ contains
more than one CC and the sizes of each CC stays below the
SIZE LIMIT, then a feasible selection has been found. In this
case, the feasible selection is saved and depth updated (actu-
ally decreased). Finally, the algorithm picks the next subset
D such that |D| ≤ depth according to the sequence of ele-
ments in DP . Note that depth starts from the input constant
DEPTH LIMIT. It then monotonically decreases each time
the algorithm finds a feasible selection. Note that the remain-
ing search space is reduced by decreasing depth.

Figure 3: Update the LCG after removing a row (Example 1).

Incremental update of the LCG. Recall the definition of
LCG, where a vertex corresponds to a variable, and the
weight of an edge represents the number of constraints that
contain both nodes (variables). When a row is removed
(added), then for each pair of nodes that appear in this row, the
LCG is updated by decreasing (increasing) the weight of the
corresponding edge. Then the resulting graph is the LCG of
the remaining constraints. Figure 3 demonstrates the update
procedure for row removal on Example 1. When a column is
removed, we simply remove the corresponding vertex. If the
weight of an edge becomes zero the edge is considered to be
removed. In this way, whenever a row or column is selected
or deselected the LCG is updated incrementally.

4.4 Combining the Row and Column Eliminations

We already introduced a method which determines selected
rows and columns in one pass. It is therefore natural to com-
bine row and column eliminations in one single decomposi-
tion algorithm too. Without loss of generality, we assume
matrix A to have the form

A =


F0 E1 E2 . . . Ek

F1 D1 0 . . . 0
...

...
...

...
Fk 0 0 . . . Dk

 ,
where the first t rows (F0, E1, . . . , Ek) and s columns
(F0, . . . , Fk) are selected to be eliminated. Further, let

P =



F0 E1 E2 . . . Ek

F1 D1 0 . . . 0
...

...
...

...
Fk 0 0 . . . Dk



γ0
γ1
...
γk

 ≤

β0

β1

...
βk


 ,

where the γi and βi are the corresponding sub-vectors of x
and b. Similar to the row elimination method, we first in-
troduce (k − 1)× t new auxiliary variables {y11 . . . yk−1,t}.
With yi = (yi1, . . . yit)

T = Eiγi, we can transform P into

P =


Eiγi = yi, 1 ≤ i ≤ k − 1,

Ekγk ≤ β0 −
∑k−1

i=1 yi − F0γ0,

Djγ1 ≤ βj − Fjγ0, 1 ≤ j ≤ k.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1392

Algorithm 2: Decomposition with Row and Column
Elimination

1 Function IntCount(P , DEPTH LIMIT, SIZE LIMIT)
2 C0, R0 ← SelectRowsAndColumns(P ,

DEPTH LIMIT, SIZE LIMIT);
3 s← |C0|, t← |R0|;
4 Q← P [RP \R0, CP \C0];
5 (γ1, D1,β1), . . . , (γk, Dk,βk)←

FindAndMergeCC(Q, SIZE LIMIT);
6 β0,γ0, E1, . . . , Ek, F0, . . . , Fk ← Process with

R0, C0 and CCs;
7 Introduce variables yij , 1≤i≤k−1, 1≤j≤t;
8 Let yi = (yi1, . . . , yit)

T ;

9 Pi←
{
Eiγi=yi
Diγi≤βi−Fiγ0

, 1≤i≤k − 1;

10 Pk←
{
Ekγk≤β0−

∑k−1
i=1 yi−F0γ0

Dkγk≤βk−Fkγ0
;

11 for each xi ∈ γ0 do
12 Employ ILP to compute xi’s bound Xi;
13 for each auxiliary variable yij do
14 Employ ILP to compute yij’s bound Yij ;
15 return∑

c∈X1×···×Xs×Y11×···×Y(k−1)t

∏k
i=1 #Pi(c);

If we assign values to γ0,y1, . . . ,yk−1, then the problem
can be decomposed into:

Pi(γ0,yi) =

{
Eiγi = yi
Diγi ≤ βi − Fiγ0

1 ≤ i ≤ k − 1,

Pk(γ0,y1, . . . ,yk−1) =

{
Ekγk≤β0−

∑k−1
i=1 yi−F0γ0

Dkγk≤βk−Fkγ0
.

Finally, we have the following results.

Theorem 3. #P =
∑
c∈D

∏k
i=1 #Pi(c), where D is the

domain of (x1, . . . , xs, y11, . . . , y(k−1)t).

Corollary 3. #P =
∑
c∈X1×...×Xs×Y11×...×Y(k−1)t

∏k
i=1

#Pi(c), where Xi represents the range of variable xi in γ0
and Yij represents the range of the auxiliary variable yij .

Our integer counting algorithm based on decomposition
with column eliminations and row eliminations is presented
in Algorithm 2. It first selects the columns and rows to be
eliminated and obtains the remaining constraints Q. Then it
determines all connected components (CCs) from the LCG
of Q. These CCs correspond to different sets of variables γi,
sub-matrices Di, and sub-vectors βi. Note that the number
of introduced variables yij is closely related to the number of
CCs. So the function “FindAndMergeCC” finds CCs first and
then merges some of them in order to limit the size of CCs (to
stay below SIZE LIMIT). Based on these CCs, the algorithm
then obtains sub-matrices Ei and γ0 from Cols . After that,
the problem P can be decomposed into k sub-problems Pk.
Our approach employs ILP to obtain the bounds Xi and Yij .

Figure 4: General comparison of running times among tools on ran-
dom polytope benchmarks.

Note that in our experiments, the running time of ILP is neg-
ligible compared to that of the integer counting subroutine.
Finally, it applies Theorem 3 and calls integer counting sub-
routines to compute #Pi(c) for each assignment c from the
domain X1 × · · · ×Xs × Y11 × . . . Y(k−1)t and sums up.

5 Evaluation
Based on Algorithm 2, we implemented a prototype tool
called INTCOUNT1 in C++. Furthermore, we integrated INT-
COUNT into a DPLL(T)-based #SMT(LA) counter [Ge et
al., 2018]. We used a timeout of 3600 seconds, and chose
SIZE LIMIT = dn/2e. Another parameter DEPTH LIMIT
was set to 4 if n ≥ 10, and 1 if n < 10. Experiments
were conducted on Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz
CPUs with a time limit of 3600 seconds and memory limit of
8 GB per benchmark. The benchmark set used in our experi-
ments consists of two parts:

• Random Polytopes: We generated 2840 random bench-
marks with three parameters (n,m, lmax), where n ∈
[5, 20] is the number of variables, m ∈ [1, n] is the num-
ber of constraints, and lmax ∈ [1, n] is the maximum
length (non-zero coefficients) of constraints. The do-
main of variables is [−8, 7].

• Application Instances: We adopted 3953 benchmarks
[Ge et al., 2019] from program analysis and simple tem-
poral planning. Since most of the above program anal-
ysis benchmarks can be trivially handled by direct de-
composition. We also generated 178 new and more chal-
lenging benchmarks by analyzing a Shell sort C program
with less simplifications (modeling each element in an
array and exploding a loop with more rounds). The do-
main of variables is [−32, 31].

We compared INTCOUNT with the state-of-the-art inte-
ger counter BARVINOK [Verdoolaege et al., 2007]. The tool
BARVINOK is an exact integer counter for linear constraints
and it is also used as the counting subroutine of our INT-
COUNT. On random polytopes, we further compared our ap-
proach with the state-of-the-art propositional model counters

1The source code and benchmarks can be found at “https://
github.com/bearben/intcount”.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1393

https://github.com/bearben/intcount
https://github.com/bearben/intcount

Avg. selection search time 0.0247 s
#Suitable for decomposition 1916 (1180 solved, 736

timeouts)
#Direct call of BARVINOK 924 (64 solved, 860 time-

outs)
#Total benchmarks 2840 (1244 solved, 1596

timeouts)
Avg. #sub-problems after de-
composition

1695

Avg. size of sub-problems m̄ = 8.202, n̄ = 3.011

Avg. size of original problems m̄ = 34.468, n̄ = 14.256

Table 1: Statistics on random polytope benchmarks

like CACHET [Sang et al., 2004], GANAK [Sharma et al.,
2019] and APPROXMC3 [Soos and Meel, 2019]. Note that
they require CNF formulas as inputs. Thus we generated ran-
dom polytopes not only with linear constraints, but also cor-
responding bit-vector formulas, which then were translated
into propositional CNF with BOOLECTOR [Niemetz et al.,
2018]. CNF translation time is not included in the running
times of CACHET, GANAK and APPROXMC3. On appli-
cation benchmarks, we only compared with BARVINOK. As
they are all SMT(LA) formulas and we only integrated INT-
COUNT and BARVINOK into a #SMT(LA) counter.

Figure 4 shows how many instances completed after a cer-
tain amount of time for INTCOUNT, BARVINOK, CACHET,
GANAK and APPROXMC3. Clearly INTCOUNT can handle
more cases than the other approaches. However, still more
than half of the benchmarks cannot be handled in a reason-
able time by any approaches. It indicates that there is a lot of
room for improvements of integer counting algorithms.

Note that domain of variables in these benchmarks is rather
small for BARVINOK. Moreover, in our algorithm, the vari-
able domain size is directly related to the size of the Cartesian
product of the components. Thus with increasing domain size
our algorithm will become much less effective. By that time,
INTCOUNT will give up decomposition and call BARVINOK
on P directly instead. On the other hand, when domain size
decreases, INTCOUNT will be more effective.

Table 1 summarizes the results of INTCOUNT over the ran-
dom polytope benchmarks. The average running time of se-
lection searching (Algorithm 1) is 0.0247s, which is usually
negligible compared with the running time of counting sub-
routines. There are 1916 problems that can be decomposed
by our approach. INTCOUNT solved 1180 of them. On these
1180 cases, Table 1 lists the average number of sub-problems
(#calls of BARVINOK) for each problem, average size of all
sub-problems and average size of these benchmarks. The re-
sults show that our decomposition techniques significantly re-
duce the size of problems for the counting subroutine.

Figure 5 shows results on application benchmarks. The
x-axis and y-axis are the running time of INTCOUNT and
BARVINOK respectively. We observe that BARVINOK is su-
perior on benchmarks that can be handled by BARVINOK in a
few seconds, while INTCOUNT wins on benchmarks that can-
not be handled by BARVINOK in 10s. Since after the decom-
position, our approach sometimes has to solve a large num-

Figure 5: Performance comparison between INTCOUNT and
BARVINOK on application benchmarks.

ber of sub-problems. Thus INTCOUNT may take more time.
It suggests us implementing a computational cost estimation
technique to determine if it is worth the decomposition. In
general, the results show that our approach is useful for ex-
tending the capability of state-of-the-art integer counters.

6 Related Works

There is a few related works which also utilize structural
properties of problem instances for decomposition. Ganian
et al. [Ganian et al., 2020] studied tree width and hyper-tree
width of CSP problems, in order to exploit decomposabil-
ity and guide dynamic programming methods for solving the
problem. The definition of tree and hyper-tree shares the sim-
ilar idea with column elimination in this paper. Tree nodes
are the sub-problems after decomposition. Similar tree de-
composition ideas are also used in algorithms for counting
linear extensions [Kangas et al., 2018]. A linear extension
of a partial order is a total order that is compatible with the
given partial order. Finding linear extensions can be modeled
by difference logic formulas, which is a special case of LC.

7 Conclusion

Motivated by decomposition techniques used in propositional
model counting, this paper introduces novel column and
row elimination techniques which allow to decompose inte-
ger counting problems for linear constraints into independent
sub-problems. Our experiments on an extensive set of bench-
marks show that our algorithm improves performance of the
state-of-the-art integer counting tools while the overhead for
finding decomposition is negligible. At this point, domain
size is still a limiting factor in our approach and we intend to
overcome this hurdle in the future.

Acknowledgments

This work is supported the Linz Institute of Technology (LIT)
AI Lab funded by the State of Upper Austria.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1394

References
[Barvinok, 1993] Alexander I. Barvinok. Computing the

volume, counting integral points, and exponential sums.
Discrete & Computational Geometry, 10:123–141, 1993.

[Barvinok, 1994] Alexander I. Barvinok. Computing the
ehrhart polynomial of a convex lattice polytope. Discrete
& Computational Geometry, 12:35–48, 1994.

[Ganian et al., 2020] Robert Ganian, André Schidler,
Manuel Sorge, and Stefan Szeider. Threshold treewidth
and hypertree width. In Christian Bessiere, editor, Proc.
of IJCAI, pages 1898–1904. ijcai.org, 2020.

[Ge et al., 2018] Cunjing Ge, Feifei Ma, Peng Zhang, and
Jian Zhang. Computing and estimating the volume of the
solution space of SMT(LA) constraints. Theor. Comput.
Sci., 743:110–129, 2018.

[Ge et al., 2019] Cunjing Ge, Feifei Ma, Xutong Ma, Fan
Zhang, Pei Huang, and Jian Zhang. Approximating in-
teger solution counting via space quantification for linear
constraints. In Sarit Kraus, editor, Proc. of IJCAI, pages
1697–1703. ijcai.org, 2019.

[Geldenhuys et al., 2012] Jaco Geldenhuys, Matthew B.
Dwyer, and Willem Visser. Probabilistic symbolic exe-
cution. In Proc. of ISSTA, pages 166–176, 2012.

[Huang et al., 2018] Amy Huang, Liam Lloyd, Mohamed
Omar, and James C. Boerkoel. New perspectives on flex-
ibility in simple temporal planning. In Proc. of ICAPS,
pages 123–131, 2018.

[Jr. and Pehoushek, 2000] Roberto J. Bayardo Jr. and
Joseph Daniel Pehoushek. Counting models using con-
nected components. In Henry A. Kautz and Bruce W.
Porter, editors, Proc. of AAAI, pages 157–162. AAAI
Press / The MIT Press, 2000.

[Kangas et al., 2018] Kustaa Kangas, Mikko Koivisto, and
Sami Salonen. A faster tree-decomposition based algo-
rithm for counting linear extensions. In Christophe Paul
and Michal Pilipczuk, editors, Proc. of IPEC, volume 115
of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[Kannan and Vempala, 1997] Ravi Kannan and Santosh
Vempala. Sampling lattice points. In Proc. of STOC, pages
696–700, 1997.

[Loera et al., 2004] Jesús A. De Loera, Raymond Hem-
mecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective
lattice point counting in rational convex polytopes. J.
Symb. Comput., 38(4):1273–1302, 2004.

[Luckow et al., 2014] Kasper Søe Luckow, Corina S. Pasare-
anu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and approximate probabilistic symbolic ex-
ecution for nondeterministic programs. In Proc. of ASE,
pages 575–586, 2014.

[Niemetz et al., 2018] Aina Niemetz, Mathias Preiner, Clif-
ford Wolf, and Armin Biere. Btor2, BtorMC and Boolector
3.0. In Hana Chockler and Georg Weissenbacher, editors,
Proc. of CAV, volume 10981 of Lecture Notes in Computer
Science, pages 587–595. Springer, 2018.

[Pesant, 2016] Gilles Pesant. Counting-based search for con-
straint optimization problems. In Proc. of AAAI, pages
3441–3448, 2016.

[Sang et al., 2004] Tian Sang, Fahiem Bacchus, Paul Beame,
Henry A. Kautz, and Toniann Pitassi. Combining com-
ponent caching and clause learning for effective model
counting. In Proc. of SAT, 2004.

[Sharma et al., 2019] Shubham Sharma, Subhajit Roy, Mate
Soos, and Kuldeep S. Meel. GANAK: A scalable proba-
bilistic exact model counter. In Sarit Kraus, editor, Proc.
of IJCAI, pages 1169–1176. ijcai.org, 2019.

[Soos and Meel, 2019] Mate Soos and Kuldeep S. Meel.
BIRD: engineering an efficient CNF-XOR SAT solver and
its applications to approximate model counting. In Proc.
of AAAI, pages 1592–1599. AAAI Press, 2019.

[Thurley, 2006] Marc Thurley. sharpSAT - counting models
with advanced component caching and implicit BCP. In
Armin Biere and Carla P. Gomes, editors, Proc. of SAT,
volume 4121 of Lecture Notes in Computer Science, pages
424–429. Springer, 2006.

[Valiant, 1979] Leslie G. Valiant. The complexity of enu-
meration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

[Verdoolaege et al., 2007] Sven Verdoolaege, Rachid
Seghir, Kristof Beyls, Vincent Loechner, and Maurice
Bruynooghe. Counting integer points in parametric poly-
topes using barvinok’s rational functions. Algorithmica,
48(1):37–66, 2007.

[Zanarini and Pesant, 2007] Alessandro Zanarini and Gilles
Pesant. Solution counting algorithms for constraint-
centered search heuristics. In Proc. of CP, pages 743–757,
2007.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1395

	Introduction
	Motivation
	Preliminaries
	Algorithm
	Column Elimination
	Row Elimination
	Row and Column Selection
	Combining the Row and Column Eliminations

	Evaluation
	Related Works
	Conclusion

