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Abstract—Conjunctive Normal Form (CNF) representation as Dual propagation allows reasoning over conflicts and solu-
used by most modern Quantified Boolean Formula (QBF) solvers tions to be done equally efficiently. It has been shown todyiel
is simple and powerful when reasoning about conflicts, but isiot great performance gains, often exponentially speedinghap t
efficient at dealing with solutions. To overcome this ineffiency L ’ . .

a number of specialized non-CNF solvers were created. Thesesearch..However, it is not yet common in QBF solving. One
solvers were shown to have great advantages. Unfortunately r€ason is that there are too few non-CNF benchmarks cuyrentl
non-CNF solvers cannot benefit from sophisticated CNF-base available. Another reason is that, until now, dual propagat

techniques developed over the years. was only employed in specialized non-CNF solvers, which had

This paper demonstrates how the power of non-CNF structure g sacrifice all specialized techniques, tools, and datettres

can be harvested without the need for specialized solversni . .
fact, it is easily incorporated into most existing CNF-basd QBF that were developed over the years of working with CNF.

solvers using a pre-existing mechanism of cube learning. We While the firs_t reason is inherent (_ef'ficie_nt QBF reasoning
demonstrate this using a state-of-the-art QBF solver DepQB  requires more information than available in CNF), we will

and experimentally show the effectiveness of our approach. show that a specialized non-CNF solver is not needed. The
mechanism for cube learning, which is already present it mos
I. INTRODUCTION modern QBF solvers, can, if initialized correctly, perfodomal

propagation exactly as done in non-CNF solvers. The regulti

Quantified Boolean Formulaatisfiability checking (QBF) solver combines the best of both worlds: the efficiency of mod
is the canonical PSPACE-complete problem. QBF providesegnh CNF-based reasoning, and the power of dual propagation.
powerful framework for encoding many important verificatio Our experiments confirm that dual propagation does indeed
and reasoning problems like model checking or schedulihg [#hake a huge impact on performance; also, the resultingsolve
QBF extends propositional logic with existential and ure&  outperforms the previous non-CNF approaches, demonsjrati
quantifiers, which allow a more compact representation f@fe benefit of well-engineered CNF-based data structures.
problems with adversarial knowledge, incomplete infoiorat  \whijle the idea of dual propagation is not new, this is, to our
or nondeterministic behavior, especially when the proposinowledge, the first time it is recognized that the mechasism
tional form becomes too large to be handled efficieritly [11]ajready present in most existing modern QBF solvers are

Most state-of-the-art QBF solvers adopt techniques efifficient for dual propagation, and that specialized sshage
propositional satisfiability checking (SAT), and have irhe not required. We define requirements on the input whichmetai
ited Conjunctive Normal Form(CNF) representation. CNF soundness and are weaker than in previous work. We show that
encoding, simple but powerful, is widely used in SAT. CNfmost state-of-the-art CNF-based preprocessing techsicare
allows efficient reasoning over conflicts, but conversion e soundly applied out-of-the-box. Unfortunately, suokygpo-
CNF involves a loss of structural information needed teessing seems to reduce the impact of dual propagation. An
efficiently reason over solutions. A SAT solver only needgteresting avenue for future work is to extend preprocessi

a single solution, so in SAT the benefits of CNF seem techniques to be not only sound, but also duality preserving
far outweigh the losses. However, a QBF solver encounters
many solutions for different values of universal variablEise Il. QBF AT A GLANCE

inability to efficiently reason over solutions has been tide In this paper, we only consider QBF in closed prenex form

as a major obstacle to efficient QBF solving [1]. A QBF has the structur@., where( is a quantifier prefix
Several approaches have been developed to take advaniage, is a propositional formula called theatrix. Q consists

of representations other than CNFE [S]. [13]. Some of thegy quantifier blocks which group together all consecutive

used the extra structure of non-CNF encodings to efficientlyjaples with the same quantifier. Tgantifier levelof a

reason over solutions|[8].[9]. [14]. The core techniquehiese \ariaple & is one plus the number of preceding quantifier

different approaches, though named differently, is abtube  piocks. A literal is a variable or its negation. Alauseis

same. In this paper we will refer to it as “dual propagation’y gisjunction of literals, aubeis a conjunction of literals.

This is a preliminary version of our DATE’13 paper. A formula is in CNF if it is a conjunction of clauses; it is in



Disjunctive Normal Form (DNF) if it is a disjunction of cuhes over original variables can support this, since unit pr@piag
A QBF is in CNF if its matrix is in CNF (similarly for DNF). could never set a universal variable in CNF.
Any formula can be converted to CNF (or, dually, to DNF) To avoid this kind of problemiQTest [14] used two repre-
in poly-time using Tseitin transformation, by introducingsentations of the same formula, one in CNF and one in DNF.
auxiliary variables for subformulas [12]. Propagation in the first part would set existential variaple
and propagation in the second would set universals. Thesolv
It will be our running example. It can be transformed to CNIgrQit2 [8] used a circuit representation of the inpu_t formula_\.
as 32¥ayJab. {a, b}, {~a, ¢}, {—a,y}, {~b, 2}, {-b, a}. It used two ch_annels to reason on th_e formula and its nega’qon
at the same time, propagating solutions on one and conflicts
Let var(P) be the set of variables occurring I, whether on the other. The non-CNF solv&hostQ [9] introduced
P is a clause, (sub)formula or (a part of) a quantifier prefixauxiliary universal variables, calleghost literals to allow the

Example 1. Consider a QBFy = 3zVzy.(x Ay) V (z A 2).

Decision treesare complete 3z @\ universal player to reason by propagation just as the etiate
binary trees where each level is . ) does. In reality these three approaches implement the same
associated with a variable (or- technique. The auxiliary variables in the DNF form of IQTest
dered by prefix). Each path rep- % @ , Q the dual channel in CirQit, and the ghost literals in GhostQ a

resents a (partial) assignment, yaue | 11 T 1T T play exactly the same role: pruning solutions by propagatio
the empty path represenfis In We note that the core of the algorithm of IQTest is modeled
our example (see Fi@l 1), a left after QDPLL. The DNF processing mechanism is dual to
branch at level 2 associated withadds—x to the assignment, clause learning, and mimics cube learning of QDPLL. The
while a right branch adds. So, each leaf corresponds to @nly drawback of QDPLL is that it starts with an empty
complete assignment, and is labeled with the value of thecube database. As we show below, any standard cube learning
formula underr. Nodes associated with existential variablesiechanism can be seeded with appropriate cubes to act as
act as OR-nodes, while universal nodes act as AND-nodesi@Test's DNF engine. Thus, most existing QDPLL solvers can
QBF is true iff its root is labeled withT. be easily adjusted to take advantage of non-CNF information

A QBF model}M is a subtree of the decision tree such that:
each node inV is T; for each universal (existential) node in IV. DUAL PROPAGATION IN SEARCH-BASED SOLVERS
M, both (one of) the children are if/; and the root of the ~ To make up for loss of structural information upon conver-
tree is in M. Obviously, only a true QBF can have a modelsion to CNF, a CNF-based solver would need extra information
A false QBF has at least one Q-countermodel, defined duall9:be fed through a different channel. We propose seeding the
each node is_, existential has both children and universal haglbe database with a dual representation of a @Bébtained
one. Fig[1 highlights one of possible Q-countermodelsyfor by negating the CNF-encodedi). This allows the modern
We will refer to Q-(counter)models simply as (counter)mede solver to behave similarly to 1QTest while retaining its own

The most common approach used to evaluate QBF henefits. Note that the cubes contain additional infornmatio
QDPLL [2]. The algorithm repeatedly performs variable ag2DPLL solver would be unable to learn these cubes from
signment, propagation, and forall reduction until it désea the CNF, because they contain additional universal vaggbl
conflict or a solution. Then, the solver performs analysjsr(g These auxiliary variables allow the cubes to be much smaller
Q-resolutionfor clauses, or its duakrm resolutionfor cubes) propagation can now detect solutions earlier and the lelarne
to learn a stronger clause or cube, then backtracks andtsepegiibes are much more useful in the learning process.

Conflicts are detected by finding a falsified clause. However,Our solver will take as input two CNF formulas, one
detecting a solution is difficult in CNF. The solver often igontaining information about conflicts, and the second one
unable to detect a solution until it assigns all the varigble about solutions. We will call this pair Bual CNF (DCNF).
that case, to obtain the starting cube for the learning phoee ~~ Before we formally define DCNF, we need a notion of com-
it gathers a subset of variables which satisfy all the clausgatibility for quantifier prefixes. We call two quantifier fisess
The resulting cube is usually very large and weak. @1 and Q> mergeableif (1) any z € var(Q1) Nvar(Q2) is

. on the same quantifier level i; and @, but its quantifier

E>_<§1mple 2. QDPLL _rmght solve_the CNF of as follows. is opposite; and (2) any € var(Q1) Uvar(Qs) — var(Q1) N
In|t|_ally no propagation Is p053|ble,_ an_d one by one th%a’f‘(Qg) is existential. If two prefixes are mergeable, it is
variables z,y, z,a are setT. A solution is found, and the

easy to show that the merged quantifige= ,
cube (z Ay A x) is learnt. The solver backtracks and add Y iy ged quantilipe= merge(Qs, Qz)

T . A . X Yefined below, is well defined and unique:
a new implication—2 while y remains assigned. This leads )
e var(Q) =var(Q1) Uvar(Q2);

to the implications—a, b, resulting in a conflict whed—b, z} For any variabler € var(Q;) with i € {1,2}, = has the

becomes falsified. Then the clause} is learnt, which, after o . L e
universal reduction, becomes an empty clause. same ggantnﬁer level n@.an.d' inQ;; its quantifier is the
same ifi = 1 and opposite ifi = 2.

I1l. RELATED WORK AND DUAL PROPAGATION Let (-=Q) denote the quantifier prefix that is identical @
Consider a formulada@.a V ¢. It is obvious that onlyl.  except all the quantifiers are flipped. Assu®e and Q- is
setting ofa should be considered. However, no CNF encodirggmergeable pair of quantifiers, and @t= merge(Q1, Q2).

Fig. 1: Decision tree foty



Then Q1.0 = Q.¢ and Q2.9 = (—Q).¢ for any formulag, gggg&r: — Degggzi GhostQ -~ @ - Dual DepQBF-

sinceQ is simply @, (—Q2) with additional variables inserted. ““gipe  « - quantors -~ o .. CirQit —~ - Dual DepQBF+
Definition 3. A DCNF representation of a QBB.¢ is a pair 288 ' { ' g @ ' ' 1
of CNF formulas@;.¢; and Qs.¢- such that: égg \ g 1
« Q; and Q. are mergeable 500 T g ]
o Q1.1 =0Q.9 300 T § 1
o If Q.¢ is false, then forQ’ = merge(Q1,Q-2), at least fgg ‘ ﬁ : 1
one counter-model @@’.¢, is also a model of=Q’).¢>. 0 = S ‘ ‘
0 50 100 150 200 250 300
To get a DCNF for a non-CNF formul@.¢, we separately Problems

convertQ.¢ and—(Q.¢) to CNF using existing transformation
tools. From the resulting DCNRQ;.¢1,Q2.¢2), we use

. . 10 T T T T T T T
merge(Q1,Q2).¢1 as the input formula, and add the negations e | NG ] | [Duphpositive -
of clauses ofp, as cubes into the cube database. b

Fig. 2: Number of problems solved within a time (in seconds)

Example 4. In our example;~y can be represented in CNF as
Vz3zyde.{—d}, {—e}, {d, ~z, -y}, {e,—~z,~x}. Then,@Q; =

{3FzVayTab} andQq = {Vz3zyde}, and the merged prefig’ i,
is {32Vzydedab}. Unit propagation can simplify the formula " N
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to Vz3zy.{—z, -y}, {—z, —«}. This simplification still satisfies cubes cubes

. . g
all our desired properties. In that casg)’ = {3zVay3ab}. Fig. 3: Comparison of cubes and clauses learnt after negatin

With the seeded database, as soonza$s selected as ;
' th blem. D BF (left) and Dual D BF (right
decision, the formula gets solved by propagation. Cubes se(t9 problem. DepQBF (left) and Dual DepQBF (right

-z, which leads to-a, —b, which falsifies the clauséa, b}. Fig.[2 shows the comparison of Dual DepQBF with state-
A clause{z} is learnt, which is universally reduced #. of-the-art CNF and non-CNF solvers. We used nonprenex non-
NF benchmark set from QBFEval'10/[6]. Non-CNF solvers
ere given the formulas in gpro format. We obtained CNF
d DCNF using Plaisted-Greenbaum transformation [12].
We evaluated the following solvers: Qube, a state-of-
the-art DPLL-based CNF solver (version 7.2) [7]; quantor,
: : n expansion-based CNF solvél [3]; and non-CNF solvers
Suppose thaQ).¢ is L. Then there is some counter-mode hostQ [9] and CirQit[[B]. The experiments were obtained

m of Q’'.¢1 which is also a model of —=Q’).¢>. So, the :
cube database is consistent. When a cube is created baosrgad:’1 cluster with Intel Core 2 Duo Quad Q9550 2.8-GHz

. . . . rocessors, 8-GB main memory, running Ubuntu Linux. We
on a variable assignment, the assignment must satisfy all . -y
. . . used the timeout of 900 seconds and memory limit of 7-GB.
clauses, and thus might not appeamin So, these cubes will

not violate consistency, and Q-resolution would nevervaeri F?T CNF solvers_, we sepgrately report solvmg_ t_|me on
an empty cube. Then the solver would never refiitn ~ m positive and negative polarities of problems (suffixing the
names with “+” and “-” respectively). Dual DepQBF took

A. Implementation and Experiments both representations. The entry “Dual DepQBF+" used the

We have equipped a CNF-based solver DepQBFE [10] wiBtpsitive versions as the problem and negative CNF as the cube
dual propagation, yielding Dual DepQBF. Dual DepQBF takelatabase, and vice versa for “Dual DepQBF-".
two CNF files as input, and adds the negations of the secondig. [ clearly shows that dual propagation is effective:
CNF’s clauses as cubes. These “original” cubes are exerfpte the substantial gap between the solvers that use dual
from deletion, just like original clauses. The merged préfix Propagation and those that do not. Also, the effectivenéss o
computed on the fly, and conflicting variables are renamdast CNF-based reasoning is reflected by the fact that Dual
This allows the solver to be used with any converter whidRepQBF is more efficient than the current structural solvers
does not change the levels or names of original input vaggabl The effect of Dual Propagation is visualized in Hig. 3. For

The changes broke a few common assumptions: nowthe same problem, we compare the number of cubes learned
variable might occur in the cubes but not the clauses, awthile solving the problem to the number of clauses learned
the last quantifier is no longer necessarily existential.aAswhile solving its negation. If the problem was not solved, we
quick work-around for some technical problems encounterdéke the number of cubes/clauses learnt within the timeout.
we have turned off pure literal detection, and switcheditdetr Theoretically, we would expect these numbers to be similar.
dependency scheme. These changes do not seem to deghdige all, any clause in a problem is a cube of its negation.
performance on this dataset. In the experiments below, tHewever, this is not the case for the original DepQBF. Beeaus
original version of DepQBF has both pure literals and thef the bias introduced by the formula representation, itrsa
standard dependency scheme; the dual version has neithesubstantially more cubes than clauses. Note that the plot is

clauses

3

s
2 R ey
clauses

We now sketch a proof that given a proper DCNF, a QDPL@
solver must produce a correct answer. Soundness of
(stronger) approach mentioned above follows as a corollary

Proof: A QDPLL solver only returnsl after deriving an
empty clause fronf)’.¢1. ThenQ'.¢; is L, and so isQ.¢.



and found that the duality is once again broken: the transfor
mations done by the preprocessor (especially the intramhuct
of new variables) limits the duality of the resulting forraal
Lastly, we note that the combination of DepQBF and
blogger is able to solve 469 of out 478 formulas (471 with
Dual Propagation). Similar trend occurs on all other nonFCN
formulas available to us. While problems that are hard for
blogger do exist, their non-CNF versions are not available.

value

(a) Valid DCNF from Ex[% (b) Not a valid DCNF, Ex[b
VI. CONCLUSIONS
We have shown that dual propagation does not require a

logarithmic, so the gap is many orders of magnitude. For tRgecialized solver, but can be combined with existing CNF-
dual version the plot is as one would expect. Our approaBgsed datastructures and techniques. We verified its igfect

Fig. 4: Truncated decision trees, (counter)models hidldid

has removed the bias that weakened cube learning. ness, both at improving runtime and at removing the bias
which forced CNF-based solvers to learn excessively many
V. PREPROCESSING of cubes. We experimentally verified that the result notitea

Our approach allows both input formulas to be prepr@utperforms existing solvers, both CNF and non-CNF.
cessed, as long as it is ensured that the properties of{Def. $ur approach decouples the encoding of the problem from
are retained. The nontrivial property is the third one. Tovsh dual propagation. We can use most existing CNF encoding
that a technique preserves the third property, it sufficstitov  methods out of the box, whereas specialized solvers such as
that it never destroys models or countermodels of the faamulQTest are limited to a single built-in method. Our relaxed
We found that all the techniques employed by the preproces§@nstraints guarantee soundness while applying sopdtistic
blogger[4] preserve both models and countermodBlecked ~Preprocessing techniques to the formulas, which has, to our
clause eliminationmight change a value on a node of a decknowledge, never been applied with dual propagation.
sion tree from.L to T. But, by properties of blocked clauses, An interesting direction for further research is to develop
it can be shown that the node must have an existential amces§téality-aware preprocessing tools, which would presenve d
whose other child iS". This means that the changed node muslity and perhaps yield stronger preprocessing techniques
not be a part of any countermodel. Similar and dual argume#tgother avenue to explore is the application to SAT, where
can be used to show thaure and unit literal elimination @ dual CNF can be used to produce partial models.
do not destroy any models or countermoddiguivalence
replacementis simply propositional transformations followed . _
by bl_ocked cla_use removai_lariable expansio_n can be_ seen WU g:fa g%SF'AT;(;,tfogclf"ACAfllapzésso??e;_'zaé‘f ggg5§elman. Thitles> heel
as simply setting both universal node’s children_toif at  [2] M. Benedetti and H. Mangassarian. QBF-based formalfication:
least one isL. Obviously, if the node changed value, it could  Experience and perspective3SAT 5(1-4):133-191, 2008.
not have been a part of a model or a countermodel. So, | é:)ﬂ'n”geBrfe;%bfesowe and expand. IRroc. SAT pages 238-246.
the techniques employed in blogger can be used with dugd Armin Biere, Florian Lonsing, and Martina Seidl. Blockeclause
propagation. However, that is not true in general. For examp . elimination for QBF. INCADE pages 101-115, 2011.

oo . . [5] Uwe Egly, Martina Seidl, and Stefan Woltran. A solver fQBFs in
it is unsound to apply blocked clause insertion. negation normal formConstraints 14(1):38-79, 2009.

. . . [6] E. Giunchiglia, M. Narizzano, and A. Tacchella. QuasetifiBoolean
Example S. Fig [4a shows the decision tree for the DCNF Formulas satisfiability library (QBFLIB), 200.1. www.qgbfldrg.

from Ex.[4. Each node is marked with two values, the leff7] Enrico Giunchiglia, Massimo Narizzano, and Armando Craila.
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