
SDL versus C Equivalence Checking

Malek Haroud1 and Armin Biere2

1 STMicroelectronics NV
Advanced System Technology Group

Champ-des-filles 39, 1228 Geneva, Switzerland
2 Johannes Kepler University

Institute for Formal Models and Verification
Altenbergerstr. 69, 4040 Linz, Austria

Abstract. We present a tool that automatically checks the existence
of a bisimulation relation between an SDL specification and the corre-
sponding auto-generated C code. The tool has been used to verify part of
the C implementation of a WiFi Medium Access Controller (i.e.; IEEE
802.11) that has been derived from its original SDL specification using
the Telelogic CAdvanced Code Generator.

1 Introduction

In embedded SW design, especially in the telecommunication field, the developer
usually starts with a functional model written in SDL[19, 11, 15] or in any other
similar high-level executable language. This model is extensively simulated, re-
vised and sometimes model checked[18] until it becomes the golden reference
model. In a second phase, this model is translated into an optimized implemen-
tation model, usually written in C [11, 9]. The translation is usually automatic
using for instance compilers from SDL to C. Many companies still rely on manual
translation for efficiency reasons with respect to speed, power or other technical
issues.

Currently, the implementation model is simulated again and compared to
the reference model to look for discrepancies. Unfortunately, simulation requires
a great deal of time to set-up test benches. Additionally, simulation inputs are
necessarily redundant at times and incomplete at others especially when concur-
rency features of the system are at stake.

The inefficiencies of simulation can mean dramatically higher costs, longer
run times and persistent doubts [20]. As a direct consequence, verification be-
comes a very expensive process and is today swallowing up almost all resources
and manpower. Our goal is to have a more efficient validation procedure than
testing to assert the correctness of the implementation refinement. Moreover, ver-
ifying a code generator formally is very expensive since all the proofs have to be
conducted all over again when the code generator changes whereas the validation
we propose here occurs at each run of the compiler with a specific SDL program
at hand. We present a tool called SCEC (i.e.; SDL C Equivalence Checker) that
provides a fast and accurate validation of the C implementation derived from

SDL models. Currently our tool handles SDL’96 language constructs with few
exceptions and targets mainly the Telelogic CAdvanced Tau 3.5 code generator.
We argue that our approach is not limited to this version of SDL and to this
particular tool, but can be applied to a broad class of asynchronous languages
and compilers targeting imperative languages.

2 Related work

Originally applied to synchronous languages, the concept of translation vali-
dation was introduced by Pnueli, Siegel, and Shtrichman [16, 17] . Necula [14]
generalizes the work by applying it to the verification of optimizing compilers.
In the field of behavioral circuit description [4], C is verified against Verilog and
uses Bounded Model Checking to verify the consistency [2, 3] between the two
descriptions.

In the SDL context, [8] proposes a method to check refinements between SDL
models by translating them into a process algebra formalism called CCS[12]. The
main problem is that all the data part is abstracted away and the translation
leads to overly simplistic CCS models. Our approach is more general in the sense
that it addresses the implementation language and handles both the control
and data flows[10, 13]. Moreover, we propose a practical equivalence model for
asynchronous languages in general.

3 SCEC tool

SCEC is a tool that has been developed in ANSI C (18’000 lines) together with
Flex and Bison generators to produce the scanners and the parsers for C and
SDL. A WxWidgets based graphical user interface has been developed in order
to browse the intermediate representation of the programs. Starting from the
syntax tree, SCEC can record all the transformations that are applied on the
trees up to the final normal form. This feature was valuable to debug the tool
itself.

4 Flow

SCEC (cf. figure 1) generates the Abstract Syntax Tree for both SDL and C
programs and performs standard semantic analysis. For the C part, AST com-
prises data type definitions, global data declarations, and complete function
bodies,whereas for the SDL part, SCEC stores type definitions, signals and pro-
cess bodies. The ASTs are gradually transformed using rewrite rules. Some of
them are generic while others are specific to the CAdvanced code generator.

At the end of the rewrite process, we obtain on the one hand, a number of
state transition graphs representing the SDL processes and on the other hand,
the corresponding C functions (i.e.; yPADs) that implement them. All SCEC
has to do, is to compare the SDL processes and the yPADs pairwise.

.sdl .c

C ASTSDL AST

C2IR compilerSDL2IR compiler

C−Transition GraphSDL−Transition Graph

IR−Viewer

Verdict
Yes/No?

Counter example

C parserSDL parser

Path Matching

CAdvanced compiler

ICS solver

Fig. 1. SCEC Flow

process P process Q

A_S0

A_sig1(b)

b

A_sig2

A_S1 A_S2

(false) (true)

Path A1 Path A2

dcl boolean b;

Macro transition P1

Macro transition P2 (false) (true)

C_S0

C_S1 C_S2

C_sig2

dcl boolean d;

C_sig1(d)

d

Path C1 Path C2

Macro transition Q1

Macro transition Q2

Fig. 2. Path matching

5 Process and yPAD correspondence

A yPAD (cf. figure 3) is a C function that defines all the transitions of the re-
lated SDL process. The yPAD is called by the Telelogic CAdvanced scheduler
that controls the pseudo parallel execution of the communicating state machines.
When the head of the signal queue contains a signal instance that can be con-
sumed in the current state of the associated state machine, the scheduler fires
the associated yPAD that will run one selected transition completely. The exe-

Transmission Reception

Protocol_control_STA

Filter_MPDU

 (1,1)

Channel_State

(1,1)

 (1,1)

Defragment

Validate_MPDU

(1,1)

Block Reception

Scheduler

xPrsNodes

(xPrsNode VarP)

 ...
}

{

void
yPAD_Channel_State

System Station

O
ne

−
to

−
on

e
m

ap
pi

ng

C implementaion

Fig. 3. Process yPAD correspondence

cution control returns back to the scheduler after changing the state of the last
fired yPAD function.

6 Path matching concept

To grasp the concept of path matching, let us consider the two SDL processes P
and Q that are depicted in figure 2. Starting from state A S0, P can either exe-
cute the path A1: state(A S0), input(A sig1(b)), guard(¬b), state(A S1) or the
path A2: state(A S0), input(A sig1(b)), guard(b), output(A sig2), state(A S2).
A path represents one transition from one state to its successor. We refer in the
following to a path with the term micro transition. Moreover, a group of micro
transitions under the same signal input are structured further to form a macro
transition. Now, P and Q are considered to be equivalent if the paths A1 and
A2 can be matched with the paths C1 and C2 respectively. Basically, if P and Q
have an identical internal state and they both consume the same signal instance,
then, at the end of the matching paths, they will have modified their internal
state in the same way and they will have output the same signal instances. In
our case, we need to compare an SDL process to an yPAD function that is why
SCEC has to align the SDL and C internal representations by regenerating the
original SDL process from the yPAD function. To cope with the combinatorial
explosion of paths, cut points are introduced at four levels (cf. figure 4). These
cut points are used by our approach to establish a formal correspondence be-
tween two descriptions. By restricting the type, abstraction level and number
of cut points considered, we help the tool to establish the correspondence, since
fewer pairs of cut points have to be checked. On the other hand this implies less
verifiable but equivalent programs. However, no automatic tool can be expected

to be able to check all equivalent programs completely, since in general trans-
lation validation and software equivalence checking are undecidable problems.
One of our main contributions is to list those potential cut points that allow to
verify equivalence in practice.

7 Cut points

We assume that the compiler or the developer respects some naming convention
that will allow SCEC to establish correspondence between cut points in order
to prove equivalence of the two descriptions. There are four levels of cut points:

1. process name versus yPAD function names.
2. state and connection names.
3. label names defining termination points of control edges.
4. Macro transition names.

A macro transition start with one of the following:

– an input signal.
– an enabling condition.
– a continuous signal.

A free action identified by the SDL keyword connection allows to split the graph-
ical representation of an SDL process so that it can span over more than one
page. We use the label present in the in and out connector as a cut point. In
addition, we exploit the fact that any control edge that the user defines when
drawing the SDL process will appear in the form of a join statement to a label
defining the termination point of that control edge. This means that all the loops
are cut allowing SCEC to reduce loop equivalence problems to path equivalence
problems.

8 Code generator assumptions

A yPAD does not contain enough information needed for SCEC to regenerate the
finite state machine. In fact, we still need to understand the interface between
the yPAD and the scheduler. The scheduler needs to store the execution context
information (i.e.; xPrsNode) and may shift some information that lies originally
in the SDL process definition, out of the yPAD in order to avoid firing idle
processes. Therefore, SCEC needs to analyze the xPrsNode structure as well.
The xPrsNode contains:

– A list of input signals denoted xInputSignals.
– A list of states occurring in the SDL process denoted xStateIdStruct.

Each xStateIdStruct element contains the following:

– A macro transition type table yStaH.

Fig. 4. Modular verification using cut points

– A transition table called yStaI.
– A reference to enabling conditions denoted yEnab (optional).
– A reference to continuous signals denoted yCont (optional).

This concludes the list of information that has to be extracted by SCEC to
regenerate the original SDL process. In the next section we precisely define the
kind of equivalence we are referring to.

9 Equivalence Relation

We assume that both the SDL model and its C implementation can be compiled
into a normal form that we call a process network. Process networks can be
compared using an equivalence relation.

Proposition 1. Any process (i.e.; extended finite state machine) can be trans-
formed into a state transition graph such that each micro transition is repre-
sented by:

– a sequence of terms built over the local data.
– a path predicate defining under which control condition that path is followed.

Proposition 2. Each micro transition in the state transition graph is closed
with either a nextstate statement or with a join statement referring to a connec-
tion name.

9.1 Equivalence between two state transition graphs

Definition 1. Let f and g two terms in a micro transition (i.e.; path). We say
that f is equivalent to g written f ≡ g iff f is structurally identical to g.

Definition 2. Let ti and tj two micro transitions. We say that ti is equivalent
to tj written ti ≈ tj iff:

– ti and tj contain equivalent sequence of terms.
– the guards in ti and tj are logically equivalent.
– the data and control dependencies between terms and guards are preserved.

Definition 3. Let Gsdl = 〈Ssdl, ssdl
0

,−→〉 and Gc = 〈Sc, sc
0
,−→〉 two state tran-

sition graph. Gc simulates Gsdl if it exists a binary relation ∼⊆ Ssdl × Sc such
as:

– ∀ssdl ∈ Ssdl, ∃sc ∈ Sc : ssdl ∼ sc

– ssdl ∼ sc ∧ ssdl −−→
tsdl

s′sdl ⇒ ∃s′c ∈ Sc : sc −→
tc

s′c ∧ s′sdl ∼ s′c ∧ tsdl ≈ tc

if Gsdl simulates Gc via ∼−1 then ∼ is a bisimulation.

Proposition 3. If two state transition graphs can be reduced to the same state
transition graph S3 then S1 bisimulates S2

In fact, each rewrite rule performed by SCEC is a reduction. Therefore, if after
composing a number of reductions on the C state transition graph and on the
SDL state transition graph we can reach the same transition graph then we can
conclude using proposition 2 that there is a bisimulation between the C and the
SDL.

9.2 Process network equivalence

Definition 4. A process network is a set of processes that communicate with
each other and with the environment asynchronously using signals and queues.

Assume we have two isomorphic process networks PNSDL and PNC such that
related components are equivalent in the sense of definition 3. If we compose
components of PNSDL and PNC with the same deterministic scheduler and
with the same environment then we can conclude that PNSDL and PNC are
also equivalent. We are definitely in the case of bottom up compositionality
principle of components-based design defined in [5].

9.3 C to IR translation

Translating SDL into the intermediate form was straightforward, since by con-
struction IR was built in such way, that it subsumes a low level representation
of SDL models. For the C part it was less obvious. As a general principle, we
have chosen to unify the concepts of both languages instead of reducing them to
atomic statements that would have made the correspondence almost infeasible
[6].

 sig0 sig1 B0

B1

S0

’B0_code();’ ’B1_code();’

sig3

S1 S2 S3

S1

S2

sig2

Enabling conditionSaved signal Continuous signalNormal input

task a:=b;

a,b integer;

dcl

Fig. 5. SDL program fragment

Fig. 6. xPrsNode structure (cf. figure 5)

yStaH value Interpretation
0 unexpected signal
1 normal input
2 saved input
3 enabling condition

Table 1: yStaH interpretation

xInputAction yEnab_S0 (signal_id,yVarP)

if (signal_id == sig3)
{

if (yVarP−>B1)
 return 1;

return 2;
}

}

{

 return 2;

void yCont_S0(yVarP,*Addr)
{

{

 return;
}

*Addr=0;
return;

}

if (yVarP−>B0)

*Addr = 2 ;

B1_code();

B0_code();

/*Normal input*/
/*save the signal*/

/*save the signal*/

void yPAD (xPrsNode yVarP)
{

 ...

{
 ...

case 1 :

 ...
}

}

case 2:

case 3:

case 4:

SDL_next_state(yVarP,1);

SDL_next_state(yVarP,2);

SDL_next_state(yVarP,3);

 SDL_next_state(yVarP,2);

switch (yVarP−>TransitionNumber)

yVarP−>a=yVarP−>b;

Fig. 7. yPAD, yEnab and yCont correspondence

state event transition
S0 sig0 1
S0 B0 2
S0 sig3 3
S1 sig2 4

Table 2: Transition matrix

In the following, we present some elements describing how the SDL process
represented in figure 5 is regenerated from the components depicted in figure 6
and figure 7.

– Local data retrieval: SCEC dereferences a pointer to an xPrsNode (cf.
figure 6) passed as parameter to the yPAD and then extracts the integer
fields a and b representing local data definitions.

– Transition number resolution: This is done by looking up the yStaI
tables to determine to which state and macro transition it corresponds. For
example, the transition number 4 (cf. figure 6) occurs in the yStaI list that
belongs to the state S1. Moreover, the position of the transition number 4
in yStaI list corresponds to the position of sig2 in the xInputSignals list. At
last, to determine the macro transition type related to sig2, SCEC looks up
yStaH (cf. table 1) at the position of sig2 in xInputSignals list and infers that

it is a normal signal input. The complete transition matrix of the process
depicted in figure 5 is given in table 2.

– Next state name regeneration The name corresponds to the element of
xStateIdStruct list that is indexed by the second parameter passed to the
SDL next state function. For instance, SDL next state(yVarP,1) corresponds
to nextstate(S1).

– Input reconstruction: Figure 8 illustrates how an SDL input statement
is translated to C. In fact, the scheduler pass to the yPAD a pointer to
the received signal (i.e.; ySVarP) before firing the transition. This pointer is
converted to the type of the signal corresponding to the selected transition.
Signal parameters are then stored to the local data of the SDL process.

Fig. 8. SDL input statement translation

– Output reconstruction The sending process allocates the necessary stor-
age to hold the signal instance at the receiver input queue using the get signal
function. The returned pointer yOutputSignal is used then to build the ac-
tual parameters of the signal from the local data fields (cf. figure 9).

Fig. 9. SDL output statement translation

– Saved signal set reconstruction: Basically all the signals that have the
value 2 in the yStaH list are saved in the context state in which they appear.
For example, sig1 which is located at the second position in the xInputSignals
list is saved in state S0 (cf. figure 6).

– Enabling condition regeneration: By parsing the yEnab function refer-
enced in xPrsNode, SCEC extracts the guard associated to the signal. For
instance, sig3 is guarded by the expression B1 at state S0. When the guard
evaluates to false, the signal is saved.

– Continuous signal regeneration: The yCont function body referenced in
xPrsNode contains the boolean condition B0 and the transition number to
be fired in case the condition is fulfilled.

10 A concrete example

In the following subsections, we show how a concrete SDL example is translated
into C in order to figure out the kind of transformations that are applied by
SCEC to align the two internal representations.

10.1 SDL transition definition

The SDL process is represented in the yPAD function by a switch case statement
over the transition number. For instance, the state From LLC together with the
signal input MaUnitdata.request (i.e.; lines 1 and 2) is mapped onto transition
number 1(i.e.; line 102). The case statement is immediately followed by the
process local data update statements. In fact, all the parameters conveyed in
the input signal pointer are copied into the corresponding local data using the
reference yVarP that points to the xPrsNode structure (cf. figure 8).

1 state From_LLC;

2 input MaUnitdata.request(sa, da, rt, LLCdata, cf, srv);

100 switch(yVarP->TransitionNumber)

101 {

102 case 1:

103 yAss_z0A_octetstring (&(yVarP->z0017_sa),

104 ((yPDef_z02_MaUnitdatarequest *)

105 ySVarP)->Param1,0);

106 yAss_z0A_octetstring (&(yVarP->z0018_da),

107 ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param2,0);

108 yVarP->z0016_rt = ((yPDef_z02_MaUnitdatarequest *)ySVarP)->Param3;

109 yAss_z0A_octetstring (&(yVarP->z0015_LLCdata),

110 ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param4,0);

111 yVarP->z0014_cf = ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param5;

112 yVarP->z001A_srv = ((yPDef_z02_MaUnitdatarequest*)ySVarP)->Param6;

10.2 SDL conditional assignment

A transition contains typically a sequence of actions to be performed when it
is fired. The transition presented in subsection 8.1 is followed by a conditional
SDL assignment (i.e.; lines 3 to 9).

3 task stat :=

4 if rt /= null_rt then

5 nonNullSourceRouting

6 else if (length(LLCdata) > sMsduMaxLng)

7 or (length(LLCdata) < 0) then

8 excessiveDataLength

9 else successful fi fi;

The CAdvanced code generator preserves the structure of the assignment
(i.e.; lines 113 to 116) which allows SCEC to do a simple structural term com-
parison instead of adding another factor in the number of paths to be matched.
Note in passing that the SDL synonyms resolution rewrite is necessary before
unifying the two assignment terms.

113 yVarP->z001B_stat = ((yVarP->z0016_rt) != (0) ? 5 :

114 (((((z0M1M_length (yVarP->z0015_LLCdata)) > (5678)))

115 ||

116 ((((z0M1M_length (yVarP->z0015_LLCdata))<(0)))))?4:0));

10.3 SDL decision

The SDL decision (i.e.; lines 10 to 29) comprises four micro transitions closed
with a join statement.

10 decision stat = successful;

11 (true) :

12 decision srv;

13 (strictlyOrdered) :

14 decision

15 import(dot11PowerManagementMode);

16 (sta_active) :

17 else :

18 task stat := unavailableServiceClass;

19 join grst29;

20 enddecision;

21 (reorderable) :

22 join grst28;

23 else :

24 task stat := unsupportedServiceClass;

25 join grst29;

26 enddecision;

27 (false) :

28 join grst29;

29 enddecision;

In the generated C code, the translation reflects the same branching structure
as in the SDL code and simply converts join statements into goto statements.
In a manual translation, we would rather find a function call when the label
is referring to a free action or the introduction of an equivalent C iteration
statement in case of looping. In both cases, the cut points could still be derived
automatically.

117 if ((yVarP->z001B_stat) == (0))

118 {

119 yVarP->yDcn_z08_ServiceClass = yVarP->z001A_srv;

120 if ((yVarP->yDcn_z08_ServiceClass) == (1))

121 {

122 if (((*(z0O_PwrSave*)

123 xGetExportAddr(

124 &yReVR_z001H_dot11PowerManagementMode,

125 xSysD.SDL_NULL_Var, (int) 0,

126 VarP))) == (0))

127 {

128 }

129 else

130 {

131 yVarP->z001B_stat = 9;

132 goto L_grst29;

133 }

134 }

135 else if ((yVarP->yDcn_z08_ServiceClass) == (0))

136 goto L_grst28;

137 else

138 {

139 yVarP->z001B_stat = 8;

140 goto L_grst29;

141 }

142 }

143 else

144 goto L_grst29;

11 Path matching

To establish the correspondence between SDL and C paths, SCEC needs to
match terms structurally. For example, the SDL terms defined between line 10
and 12 can be matched with their corresponding C terms defined between line 23
and 25. A path contains also guards representing the chosen alternatives when
conditional statements are met along the macro transition. To cope with guards
and auxiliary variables, SCEC relies on an external solver to verify that the
conjunction of guards on both sides are indeed equivalent. An example of query
is given in the next subsection.

1 SDL_path_ns_RXC_Idle(

2 guard(or(ftype(pdu)=reasoc_rsp,ftype(pdu)=asoc_rsp,

3 ftype(pdu)=reasoc_req,ftype(pdu)=asoc_req,

4 ftype(pdu)=disasoc,ftype(pdu)=null_frame)),

5 guard(or(sau=1,sau=2)),

6 guard(or(ftype(pdu)=reasoc_rsp,ftype(pdu)=asoc_rsp,

7 ftype(pdu)=reasoc_req,ftype(pdu)=asoc_req,

8 ftype(pdu)=disasoc,ftype(pdu)=null_frame)),

9 guard(not(ftype(pdu)=null_frame)),

10 output(MmIndicate(pdu,endRx,strTs,0)),

11 label(grst50),

12 nextstate(RXC_Idle))

13 C_path_ns_RXC_Idle(

14 assign(z13_TypeSubtype,ftype(pdu)),

15 guard(or(or(or(or(or(z13_TypeSubtype=null_frame

16 ,z13_TypeSubtype=disasoc)

17 ,z13_TypeSubtype=asoc_req)

18 ,z13_TypeSubtype=reasoc_req)

19 ,z13_TypeSubtype=asoc_rsp)

20 ,z13_TypeSubtype=reasoc_rsp)),

21 guard(or(sau=1,sau=2)),

22 guard(not(ftype(pdu)=null_frame)),

23 output(MmIndicate(pdu,endRx,strTs,0)),

24 label(grst50),

25 nextstate(RXC_Idle))

12 Solver Invocation

The ICS [7] solver is particularly useful to cope with auxiliary variables added in the
generated C code(i.e.; SDL decision) and also to remove the redundant clauses that
are added by the path extractor algorithm. Basically, if ¬(Pathsdl ⇐⇒ PathC) is
unsatisfiable then Pathsdl ⇐⇒ PathC is valid. The following ICS code represents an
SCEC satisfiability query.

1 def z13_TypeSubtype := ftype(pdu).

2 prop c_path := [[[[[z13_TypeSubtype=null_frame

3 |z13_TypeSubtype=disasoc]

4 |[z13_TypeSubtype=asoc_req]]

5 |[z13_TypeSubtype=reasoc_req]]

6 |[z13_TypeSubtype=asoc_rsp]]

7 |[z13_TypeSubtype=reasoc_rsp]]

8 & ~[z13_TypeSubtype=null_frame]

9 & [sau=1 | sau=2].

10 prop sdl_path := [ftype(pdu)=reasoc_rsp|ftype(pdu)=asoc_rsp

11 |ftype(pdu)=reasoc_req |ftype(pdu)=asoc_req

12 |ftype(pdu)=disasoc|ftype(pdu)=null_frame]

13 &~[ftype(pdu)=null_frame]

14 & [sau=1 | sau=2]

15 & [ftype(pdu)=reasoc_rsp |ftype(pdu)=asoc_rsp

16 |ftype(pdu)=reasoc_req |ftype(pdu)=asoc_req

17 |ftype(pdu)=disasoc |ftype(pdu)=null_frame]

18 & ~[ftype(pdu)=null_frame].

19 prop path_eq:=[~c_path|sdl_path]&[~sdl_path|c_path].

20 sat ~path_eq.

13 Results

The 802.11 MAC layer is IEEE standardized. The original SDL diagrams (i.e.; 4’000
lines) came from the specification [1] and were automatically translated to C (i.e.;17’000
lines) using the CAdvanced 3.5 compiler. Using SCEC and ICS, the whole verification
process takes less than one minute on an Intel Centrino 1.5 GHz, since most of the

verification conditions turn out to be trivial after extracting the proper cut points.
Figure 10 shows statistics extracted from the intermediate representation. We can see
clearly that the number of micro transitions does not exceed one hundred paths for
the biggest process (i.e.; TX coordination). This is due to the fact that free action
cut points allowed to factor out all the paths that precedes the join statements and
therefore reduce drastically the number of paths to be matched. To check the soundness
of SCEC, we injected random defects into the correctly generated C code. Our tool
found these inconsistency instantly.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

M
SDU_to_LLC

M
SDU_from

_LLC

Prepare_M
PDU

PM
_Filter_STA

Rx_Coordination

Tx_Coordination_sta

Data_Pum
p

Backoff_Procedure

M
lm

e_Requests

Power_Save_M
onitor

AuthReqService_Sta

Channel_State

Validate_M
PDU

Filter_M
PDU

Defragm
ent

MacroTransitions
MicroTransitions

Fig. 10. Macro and micro transition statistics

14 Conclusion

We have described a practical method to check the equivalence between real world
SDL programs and their corresponding auto-generated C code. One key feature is
the full automation of the process. The SDL and C programs are translated into a
common intermediate representation for which we presented a bisimulation equivalence
argument. The translation into the intermediate form is done by applying specific
rewrite rules that capture the FSM encoding method and the optimizations done by
the compiler. Our method was successful in validating the translation of a commercial
compiler and should be certainly very useful for checking manually translated code.
Our plans for future include the integration of the Telelogic CMicro compiler which
targets embedded applications and also to provide the user with a better diagnosis
capability for failed proof attempts.

References

1. Wireless LAN Medium Access Control and Physical Layer specifications High-
speed Physical Layer in the 5 GHz band. IEEE specification, 1999.

2. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model Check-
ing, volume 58 of Advances in Computers. Academic Press, 2003.

3. E. Clarke, A. Beire, R. Raimi, and Y. Zhu. Bounded model checking using satisfi-
ability solving. Formal Methods in System Design (FMSD), 19(1), 2001.

4. E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and verilog pro-
grams using bounded model checking. In Proc. 40th Conf. on Design Automation
(DAC’03). ACM, 2003.

5. L. de Alfaro and T. Henzinger. Interface theories for component-based design. In
EMSOFT 01: Embedded Software, Lecture Notes in Computer Science 2211, pages
148–165. Springer-Verlag, 2001.

6. P. Ellervee, S. Kumar, A. Jantsch, B. Svantesson, T. Meincke, and A. Hemani.
IRSYD: An internal representation for heterogeneous embedded systems. In
Proc. 16th NORCHIP Conference, 1998.

7. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer and
Solver. Computer Aided Verification Conference, 2001.

8. M. C. Hai. Bisimulation Analysis of SDL-Expressed Protocols: A Case Study.
CASCON Conference, 2004.

9. Haroud, Blažević, and Biere. HW accelerated Ultra Wide Band MAC protocol
using SDL and SystemC. Radio And Wireless Conference, 2004.

10. S. Horwitz, J. Prins, and T. Reps. On the adequacy of program dependence graphs
for representing programs. In Proc. of 15th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL’88). ACM, 1988.

11. M. Hnnikinen, A. Takko, J. Knuutila, T. Hmlinen, and J. Saarinen. SDL-to-
C conversion for implementing embedded WLAN protocols. In Intl. Conf. on
Industrial Electronics, Control, and Instrumentation (IECON’00). IEEE, 2000.

12. R. Milner. A Calculus of Communicating Systems. Springer, 1980.
13. R. Namballa, N. Ranganathan, and A. Ejnioui. Control and data flow graph extrac-

tion for high-level synthesis. In Proc. IEEE Computer Society Annual Symp on
VLSI Emerging Trends in VLSI Systems Design (ISVLSI’04). IEEE Computer,
2004.

14. G. C. Necula. Translation validation for an optimizing compiler. In Proc. ACM
SIGPLAN 2000 Conf. on Programming Language Design and Implementation
(PLDI’00). ACM, 2000.

15. A. Olsen. Systems Engineering Using SDL-92. Elsevier, 1994.
16. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In

Proc. TACAS’98, volume 1384 of Lecture Notes in Computer Science, 1998.
17. A. Pnueli, O. Strichman, and M. Siegel. Translation validation: From SIGNAL to

C. In Correct System Design, Recent Insight and Advances, volume 1710 of Lecture
Notes in Computer Science, pages 231–255. Springer, 1999.

18. N. Sidorova and M. Steffen. Verifying large SDL-specifications using model check-
ing. In Proc. 10th Intl. SDL-Forum (SDL’01), volume 2078 of Lecture Notes in
Computer Science. Springer, 2001.

19. J. Sipilä and V. Luukkala. An SDL implementation framework for third generation
mobile communications system. In Proc. 10th Intl. SDL-Forum (SDL’01), volume
2078 of Lecture Notes in Computer Science. Springer, 2001.

20. J. A. Whittaker. What is software testing, and why is it so hard. IEEE Software,
17(1), 2000.

