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1 Introduction

Satisfiability (SAT) solvers have become powerful tools to solve a wide range
of applications. In case SAT problems are satisfiable, it is easy to validate a
witness. However, if SAT problems have no solutions, a proof of unsatisfiability is
required to validate that result. Apart from validation, proofs of unsatisfiability
are useful in several applications, such as interpolation [64] and extracting a
minimal unsatisfiable set (MUS) [49] and in tools that use SAT solvers such as
theorem provers [4,65,66,67].

Since the beginning of validating the results of SAT solvers, proof logging of
unsatisfiability claims was based on two approaches: resolution proofs and clausal
proofs. Resolution proofs, discussed in zChaff in 2003 [69], require for learned
clauses (lemmas) a list of antecedents. On the other hand, for clausal proofs, as
described in Berkmin in 2003 [32], the proof checker needs to find the antecedents
for lemmas. Consequently, resolution proofs are much larger than clausal proofs,
while resolution proofs are easier and faster to validate than clausal proofs.

Both proof approaches are used in different settings. Resolution proofs are
often required in applications like interpolation [47] or in advanced techniques for
MUS extraction [50]. Clausal proofs are more popular in the context of validating
results of SAT solvers, for example during the SAT Competitions or recently for
the proof of Erdős Discrepancy Theorem [41]. Recent works also use clausal
proofs for interpolation [33] and MUS extraction [11].

Proof logging support became widespread in state-of-the-art solvers, such
as Lingeling [13], Glucose [7], and CryptoMiniSAT [57], since SAT Compe-
tition 2013 made unsatisfiability proofs mandatory for solvers participating in
the unsatisfiability tracks. About half the solvers that participated in recent SAT
Competitions can emit clausal proofs, including the strongest solvers around, for
example the three solvers mentioned above. However, very few solvers support
emitting resolution proofs.

The lack of support for resolution proofs is due to the difficulty to repre-
sent some techniques used in contemporary SAT solvers in terms of resolution.
One such technique is conflict clause minimization [58], which requires several
modifications of the solver in order to express it using resolution steps [62]. In
contrast, emitting a clausal proof from SAT solvers such as MiniSAT [28] and
Glucose requires only small changes to the code3.

3 A patch that adds clausal proof logging support to MiniSAT and Glucose is available
on http://www.cs.utexas.edu/˜marijn/drup/.

http://www.cs.utexas.edu/~marijn/drup/


2 Proof Systems

2.1 Preliminaries and Notation

We briefly review necessary background concepts regarding the Boolean satis-
fiability (SAT) problem, one of the first problems that were proven to be NP-
complete [21]. For a Boolean (or propositional) variable x, there are two literals,
the positive literal, denoted by x, and the negative literal, denoted by x̄. A clause
is a finite disjunction of literals, and a CNF formula is a finite conjunction of
clauses. When appropriate we also interpret a clause as a set of literals and a
CNF formula as as set of clauses. A clause is a tautology if it contains both x
and x̄ for some variable x. The set of variable and literals occurring in a CNF
formula F is denoted by vars(F ) and lits(F ), respectively. A (truth) assignment
τ for a CNF formula F is a partial function that maps literals l ∈ lits(F ) to
{t, f}. If τ(l) = v, then τ(l̄) = ¬v, where ¬t = f and ¬f = t. An assignment can
also be thought of as a conjunction of literals. Furthermore, given an assignment
τ :

– A clause C is satisfied by τ if τ(l) = t for some l ∈ C.
– A clause C is falsified by τ if τ(l) = f for all l ∈ C.
– A formula F is satisfied by τ if τ(C) = t for all C ∈ F .
– A formula F is falsified by τ if τ(C) = f for some C ∈ F .

A CNF formula with no satisfying assignments is called unsatisfiable. A clause
C is logically implied by CNF formula F if adding C to F does not change the
set of satisfying assignments of F . The symbol ε refers to the unsatisfiable empty
clause. Any CNF formula that contains ε is unsatisfiable. A proof of unsatisfi-
ability shows why ε is redundant (i.e., its addition preserves satisfiability) with
respect to a given CNF formula.

2.2 Resolution

The resolution rule [52] states that, given two clauses C1 = (x ∨ a1 ∨ . . . ∨ an)
and C2 = (x̄∨ b1 ∨ . . .∨ bm) with a complementary pair of literals (in this case x
and x̄), the clause C = (a1∨ . . .∨an∨ b1∨ . . .∨ bm), can be inferred by resolving
on variable x. We say C is the resolvent of C1 and C2 and write C = C1 � C2.
C1 and C2 are called the antecedents of C. C is logically implied by any formula
containing C1 and C2. A resolution chain is a sequence of resolution operations
such that the result of the last operation is an antecedent of the next operation.
Resolution chains are computed from left to right. Notice that the resolution
operation is not associative. For example,

(
(a ∨ c) � (ā ∨ b)

)
� (ā ∨ b̄) = (ā ∨ c),

while (a ∨ c) �
(
(ā ∨ b) � (ā ∨ b̄)

)
= (c).

Throughout this chapter we will use the following formula E as example to
explain various concepts:

E := (b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)



A unit clause is a clause of length one. A unit clause forces its only literal
to be true. Unit propagation is an important technique used in SAT solvers and
works as follows: Given a formula F , repeat the following until fixpoint: If F
contains a unit clause (l), remove all clauses containing l and remove all literal
occurrences of l̄. If unit propagation on a formula F produces ε, denoted by
F `1 ε, F is unsatisfiable.

Let C := (l1 ∨ l2 ∨ · · · ∨ lk) be a clause. We denote with C̄ the set of clauses
(l̄1) ∧ (l̄2) ∧ · · · ∧ (l̄k). C is called a reverse unit propagation (RUP) clause with
respect to F , if F ∧ C̄ `1 ε [61]. The prototypical RUP clauses are the learned
clauses in CDCL solvers, the most common solvers, see [46] and Sect. 3. The
conventional procedure to show that these learned clauses are implied by the
formula applies unit propagations in the reverse order compared to deriving the
clauses in the CDCL solver. This procedure gave rise to the name RUP.

A RUP clause C with respect to F is logically implied by F and one can con-
struct a resolution chain for C using at most |vars(F )| resolutions. For example,
E ∧ (c̄) `1 (b̄) `1 (a) `1 ε uses the clauses (b̄ ∨ c), (a ∨ c), and (ā ∨ b). We can
convert this in a resolution chain (c) := (ā ∨ b) � (a ∨ c) � (b̄ ∨ c).

b̄ ∨ c
a ∨ c ā ∨ b

b ∨ c
c

ā ∨ b̄ a ∨ b̄
b̄ b ∨ c̄

c̄
ε

b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

b̄

ε

Fig. 1. A resolution derivation (left) and a resolution graph (right) for the ex-
ample CNF formula E.

2.3 Extended Resolution and Its Generalizations

For a given CNF formula F , the extension rule [59] allows one to iteratively add
definitions of the form x := a∧ b by adding clauses (x∨ ā∨ b̄)∧ (x̄∨ a)∧ (x̄∨ b)
to F , where x is a new variable and a and b are literals in the current formula.
Extended Resolution [59] is a proof system, whereby the extension rule is repeat-
edly applied to a CNF formula F , mixed with applications of the resolution rule.
This proof system can even polynomially simulate extended Frege systems [22],
which is considered to be one of the most powerful proof systems. For plain
resolution this is not the case. Several generalizations of extended resolution
have been proposed. Two important generalizations regarding proof systems are
blocked clause addition [42] and resolution asymmetric clause addition [40].



Blocked Clauses Given a CNF formula F , a clause C, and a literal l ∈ C,
the literal l blocks C with respect to F if (i) for each clause D ∈ F with l̄ ∈ D,
C �l D is a tautology, or (ii) l̄ ∈ C, i.e., C is itself a tautology. Given a CNF
formula F , a clause C is blocked with respect to F if there is a literal that
blocks C with respect to F . Addition and removal of blocked clauses results in
satisfiability-equivalent formulas [42].

Example 1. Recall the example formula E. Clause (b̄ ∨ c) is blocked on c with
respect to E, because resolution on the only clause containing c̄, results in a
tautology, i.e., (b̄ ∨ c) � (b ∨ c̄) = (b̄ ∨ b). Since we know that E is unsatisfiable,
E \ {(b̄ ∨ c)} must be unsatisfiable.

To see that blocked clause addition is a generalization of extended resolution,
consider a formula containing variables a and b, but without variable x. The three
clauses from the extension rule, i.e, (x∨ ā∨ b̄), (x̄∨a), and (x̄∨b), are all blocked
on x / x̄ regardless of the order in which they are added. Hence blocked clause
addition can add these three clauses, while preserving satisfiability.

In contrast to extended resolution, blocked clause addition can extend the
formula with clauses that are not logically implied by the formula and do not
contain a fresh variable. For example, consider the formula F := (a ∨ b). The
clause (ā ∨ b̄) is blocked on ā (and b̄) with respect to F and can thus be added
using blocked clause addition.

Resolution Asymmetric Tautologies Resolution asymmetric tautologies (or
RAT clauses) [40] are a generalization of both RUP clauses and blocked clauses
(and hence extended resolution). A clause C has RAT on l (referred to as the
pivot literal) with respect to a formula F if for all D ∈ F with l̄ ∈ D holds that

F ∧ C̄ ∧ (D̄ \ {(l)}) `1 ε.

Adding and removing RAT clauses results in a satisfiability-equivalent for-
mula [40]. Given a formula F and a clause C that has RAT on l ∈ C with respect
to F . Let τ be an assignment that satisfies F and falsifies C. The assignment
τ ′, which is a copy of τ with the exception that τ ′(l) = t, satisfies F ∧ C. This
observation can be used to reconstruct a satisfying assignment for the original
formula in case it is satisfiable.

To see that RAT clauses are a generalization of blocked clauses and RUP
clauses, observe the following. If a clause has RAT on some l ∈ C with respect
to a formula F , it also has RUP with respect to F because

F ∧ C̄ `1 ε =⇒ F ∧ C̄ ∧ (D̄ \ {(l)}) `1 ε.

Furthermore, if a clause C is blocked on l with respect to F , then for all D ∈ F
with l̄ ∈ D holds that C contains a literal k 6= l such that k̄ ∈ D. Now we have

F ∧ (k) ∧ (k̄) `1 ε =⇒ F ∧ C̄ ∧ (D̄ \ {(l)}) `1 ε.



3 Proof Search

The leading paradigm to solve satisfiability problems is the conflict-driven clause
learning (CDCL) approach [46]. In short, CDCL adds lemmas, typically referred
to as conflict clauses, to a given input formula until either it finds a satisfying
assignment or is able to learn (i.e., deduce) the empty clause (prove unsatisfia-
bility). We refer to a survey on the CDCL paradigm for details [46].

An alternative approach to solve satisfiability problems is the lookahead ap-
proach [38]. Lookahead solvers solve a problem via a binary search-tree. In each
node of the search-tree, the best splitting variable is selected using so-called
lookahead techniques. Although it is possible to extract unsatisfiability proofs
from lookahead solvers, it hardly happens in practice and hence we ignore looka-
head solvers in the remainder of this chapter.

CDCL solvers typically use a range of preprocessing techniques, such as
bounded variable elimination (also known as Davis-Putnam resolution) [25,26],
blocked clause elimination [39], subsumption, and hyper binary resolution [8].
Preprocessing techniques are frequently crucial to solve large formulas efficiently.
These preprocessing can also be used during the solving phase, which is known
as inprocessing [40]. Most preprocessing techniques can be expressed using a few
resolutions, such as bounded variable elimination and hyper binary resolution.
Other techniques can be ignored in the context of unsatisfiability proofs, because
they weaken the formula, such as blocked clause elimination and subsumption.
A few techniques can only be expressed in extended resolution or its generaliza-
tions, such as bounded variable addition [45] and blocked clause addition [40].

Some CDCL solvers use preprocessing techniques which are hard to represent
using existing proof formats. Examples of such techniques are Gaussian Elimina-
tion (GE), Cardinality Resolution (CR) [23] and Symmetry Breaking (SB) [1].
These techniques cannot be polynomially simulated using resolution: Certain
formulas based on expander graphs are hard for resolution [60], i.e., resolution
proofs are exponentially large, while GE can solve them efficiently. Similarly,
formulas arising from the pigeon hole principle are hard for resolution [34], but
they can be solved efficiently using either CR or SB. Consequently, resolution
proofs of solvers that use these techniques may be exponentially large in the size
of the solving time. At the moment, there is no solver that produces resolution
proofs for these techniques.

Techniques such as GE, CR, and SB, can be simulated polynomially using
extended resolution and its generalizations. However, it is not know how to
simulate these techniques efficiently / elegantly using extended resolution. One
method to translate GE into extended resolution proofs is to convert the GE
steps into BDDs and afterwards translate the BDDs to extended resolution [55].

4 Proof Formats

Unsatisfiability proofs come in two flavors: resolution proofs and clausal proofs.
A handful of formats have been designed for resolution proofs [69,28,12]. These



formats differ in several details, such as whether the input formula is stored in
the proof, whether resolution chains are allowed, and whether resolutions in the
proofs must be ordered. This section focusses on the TraceCheck format which
is the most widely used format for resolution proofs. The tracecheck [12] tool
can be used to validate TraceCheck files.

For clausal proofs, there is essentially only one format, called RUP (reverse
unit propagation) [61]. RUP can be extended with clause deletion informa-
tion [36], and with a generalization of extended resolution [37]. The format with
both extensions is known as DRAT [68] which is backward compatible with RUP.
The DRAT-trim [68] tool can efficiently validate clausal proofs in the various for-
mats.

4.1 Resolution Proofs

The proof checker TraceCheck can be used to check whether a trace represents
a piecewise regular input resolution proof. A regular input resolution proof is
also known as a trivial proof [10]. A trace is just a compact representation of
general resolution proofs. The TraceCheck format is more compact than other
resolution formats, because it uses resolution chains and the resulting resolvent
does not need to be stated explicitly. The parts of the proof which are regular
input resolution proofs are called chains in the following discussion. The whole
trace consists of original clauses and chains.

Note that input clauses in chains can still be arbitrary derived clauses with
respect to the overall proof and do not have to be original clauses. We distinguish
between original clauses of the CNF, which are usually just called input clauses,
and input clauses to the chains. Since a chain can be seen as new proof rule, we
call its input clauses antecedents and the final resolvent just resolvent.

The motivation for using this format is that learned clauses in a CDCL solver
can be derived by regular input resolution [10]. A unique feature of TraceCheck
is that the chains do not have to be sorted, neither between chains (globally) nor
their input clauses (locally). If possible the checker will sort them automatically.
This allows a simplified implementation of the trace generation.

Chains are simply represented by the list of their antecedents and the resol-
vent. Intermediate resolvents can be omitted which saves quite some space if the
proof generator can easily extract chains.

Chains can be used in the context of searched based CDCL to represent the
derivation of learned clauses. It is even more difficult to extract a resolution proof
directly, if more advanced learned clause optimizations are used. Examples are
shrinking or minimization of learned clauses [58]. The difficult part is to order
the antecedents correctly. The solver can leave this task to the trace checker,
instead of changing the minimization algorithm [62].

Furthermore, this format allows a simple encoding of hyper resolution proofs.
A hyper resolution step can be simulated by a chain. General resolution steps
can also be encoded in this format easily by a trivial chain consisting of the two
antecedents of the general resolution step. Finally, extended resolution proofs



can directly be encoded, since variables introduced in extended resolution can
be treated in the same way as the original variables.

The syntax of a trace is as follows:

〈trace〉 = {〈clause〉}
〈clause〉 = 〈pos〉〈literals〉〈antecedents〉
〈literals〉 = “ ∗ ” | {〈lit〉}“0”

〈antecedents〉 = {〈pos〉}“0”

〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | · · · | 〈maxidx〉
〈neg〉 = “− ”〈pos〉

where | means choice, {. . . } is equivalent to the Kleene star operation (that is a
finite number of repetitions including 0) and 〈maxidx〉 is 228 − 1 (originally).

The interpretation is as follows. Original clauses have an empty list of an-
tecedents and derived clauses have at least one antecedent. A clause definition
starts with its index and a zero terminated list of its literals. This part is similar
to the DIMACS format except that each clause is preceded by a unique positive
number, the index of the clause. Another zero terminated list of positive indices
of its antecedents is added, denoting the chain that is used to derive this clause
as resolvent from the antecedents. The order of the clauses and the order of the
literals and antecedents of a chain is arbitrary.

The list of antecedents of a clause should permit a regular input resolution
proof of the clause with exactly the antecedents as input clauses. A proof is
regular if variables are resolved at most once. It is an input resolution if each
resolution step resolves at most one non input clause. Therefore it is also linear
and has a degenerated graph structure of a binary tree, where each internal node
has at least one leaf as child.

As example consider the following trace

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0

7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

which consists of the six clauses from example CNF formula E. The correspond-
ing DIMACS formula is shown in Fig. 2 (left).



input formula (DIMACS)

p cnf 3 6
-2 3 0
1 3 0

-1 2 0
-1 -2 0
1 -2 0
2 -3 0

clausal proof (RUP)

-2 0
3 0
0

resolution proof (TraceCheck)

1 -2 3 0 0
2 1 3 0 0
3 -1 2 0 0
4 -1 -2 0 0
5 1 -2 0 0
6 2 -3 0 0
7 -2 0 4 5 0
8 3 0 1 2 3 0
9 0 6 7 8 0

Fig. 2. An input formula (left) in the classical DIMACS format which is sup-
ported by most SAT solvers. A clausal proof for the input formula in RUP for-
mat (middle). In both the DIMACS and RUP formats, each line ending with a
zero represents a clause, and each non-zero element represents a literal. Positive
numbers represent positive literals, while negative numbers represent negative
numbers. For example, -2 3 0 represents the clause (x̄2 ∨ x3). A TraceCheck
file (right) is a resolution graph that includes the formula and proof. Each line
begins with a clause identifier (bold), then contains the literals of the original
clause or lemma, and ends with a list of clause identifiers (bold).

The first derived clause with index 7 is the unary clause which consists of
the literal -2 alone. It is obtained by resolving the original clause 4 against the
original clause 5 on variable 1.

A chain for the last derived clause, which is the empty clause ε, can be
obtained by resolving the antecedents 6, 7 and 8, first 6 with 7 to obtain the
intermediate resolvent consisting of the literal -3 alone, which in turn can be
resolved with clause 8 to obtain ε.

As discussed above, the order of the clauses, that is the order of the lines
and the order of the antecedents indices is irrelevant. The checker will sort them
automatically. The last two lines of the example can for instance be replaced by:

9 0 6 7 8 0
8 3 0 1 2 3 0

Note that the clauses 7 and 8 cannot be resolved together because they do
not have a clashing literal. In this case the checker has to reorder the antecedents
as in the original example.

The main motivation for having antecedents in the proof for each learned
clause is to speed up checking the trace. While checking a learned clause, unit
propagation can focus on the list of specified antecedents. It can further ignore
all other clauses, particularly those that were already discarded at the point the
solver learned the clause. An alternative is to include deletion information.

It might be convenient to skip the literal part for derived clauses by specifying
a * instead of the literal list. The literals are then collected by the checker from



the antecedents. Since resolution is not associative, the checker assumes that the
antecedents are correctly sorted when * is used.

8 * 1 2 3 0
9 * 6 7 8 0

Furthermore, trivial clauses and clauses with multiple occurrences of the same
literal can not be resolved. The list of antecedents is not allowed to contain the
same index twice. All antecedents have to be used in the proof for the resolvent.

Beside these local restrictions the proof checker generates a global linear order
on the derived clauses making sure that there are no cyclic resolution steps. The
roots of the resulting DAG are the target resolvents.

4.2 Clausal Proofs

We appeal to the notion that lemmas are used to construct a proof of a theorem.
Here, lemmas represent the learned clauses and the theorem is the statement that
the formula is unsatisfiable. From now on, we will use the term clauses to refer
to input clauses, while lemmas will refer to added clauses.

〈proof〉 = {〈lemma〉}
〈lemma〉 = 〈delete〉{〈lit〉}“0”

〈delete〉 = “” | “d”

〈lit〉 = 〈pos〉 | 〈neg〉
〈pos〉 = “1” | “2” | · · · | 〈maxidx〉
〈neg〉 = “− ”〈pos〉

There exist four proof formats for clausal proofs which have mostly the same
syntax and all of them can be expressed using the grammar above.

The most basic format is RUP (reverse unit propagation) [61]. A RUP proof is
a sequence of lemmas, with each lemma being a list of positive and negative inte-
gers to express positive and negative literals, respectively, which are terminated
with a zero.

Given a formula F , and a clausal proof P := {L1, . . . , Lm}. P is a valid RUP
proof for F if Lm = ε and for all Li holds that

F ∧ L1 ∧ · · · ∧ Li−1 ∧ L̄i `1 ε
Recall the example CNF formula E. The proof PE := {(b̄), (c), ε} is a valid

proof for E, because PE terminates with ε and (with ε̄ being a tautlogy) we have

E ∧ (b) `1 ε

E ∧ (b̄) ∧ (c̄) `1 ε

E ∧ (b̄) ∧ (c) ∧ ε̄ `1 ε



The DRUP (delete reverse unit propagation) format [36] extends RUP by
integrating clause deletion information into proofs. The main reason to add
clause deletion information to a proof is to reduce the cost to validate a proof
which will be discussed in Section 6.2. Clause deletion information is expressed
using the prefix d.

4.3 Proofs with Extended Resolution

So far we only considered proof formats that validate techniques that can be
simulated using resolution. Some SAT solver use techniques that cannot be sim-
ulated using resolution, such as blocked clause addition [42]. To validate these
techniques, proof formats need to support a richer representation that includes
extended resolution or one of its generalizations.

Resolution proofs, as the name suggests, can only be used to check techniques
based on resolution. The TraceCheck format partially supports extended resolu-
tion in the sense that one can add the clauses from the extension rule using an
empty list of antecedents. Hence these clauses are considered to be input clauses
without actually validating them.

The RAT clausal proof format [37], which is syntactically the same as the
RUP format, supports expressing techniques based on extended resolution and
its generalizations. The difference between the RUP and RAT format is in the
redundancy check that is computed in the checker for proofs in that format.
A checker for RUP proofs validates whether a lemma is a RUP clause, while a
checker of RAT proofs check whether each lemma is a RAT clause. The DRAT
format [68] extends RAT by supporting clause deletion information.

Example 2. Consider the following CNF formula

G := (ā∨b̄∨c̄) ∧ (a∨d) ∧ (a∨e) ∧ (b∨d) ∧ (b∨e) ∧ (c∨d) ∧ (c∨e) ∧ (d̄∨ē)

Fig. 3 shows G in the DIMACS format (left) using the conventional mapping
from the alphabet to numbers, i.e., (a 1)(ā -1). . . (e 5)(ē -5) and a DRAT clausal
proof for G (middle). The proof for G uses a technique, called bounded variable
addition (BVA) [45], that cannot be expressed using resolution steps. BVA can
replace the first six binary clauses by five new binary clauses using a fresh variable
f : (f∨a), (f∨b), (f∨c), (f̄∨d), and (f̄∨e). These new binary clauses are RAT
clauses. Fig. 3 shows how easy it is to express BVA in the DRAT format: First add
the new binary clauses, followed by deleting the old ones. After the replacement,
the proof is short {(f), ε}.

It is not clear how bounded variable addition can be expressed in a resolution-
style format. Fig. 4 shows the main issue for the example formula G and the BVA
based proof. The clauses (f ∨a), (f ∨ b), and (f ∨ c) are trivially redundant with
respect to G, because G does not contain any clause with variable f . Assigning
f to t would satisfy these three clauses. However, (f̄ ∨ d) and (f̄ ∨ e) are not
trivially redundant with respect to G after the addition of (f ∨ a), (f ∨ b), and
(f ∨ c). There redundancy of (f̄ ∨ d) depends on the presence of (a∨ d), (b∨ d),



and (c∨d). One option to express BVA is adding the dependency relationship to
the proof, as suggested in recent work [68]. This results in a TraceCheck+ proof
for which each lemma has either a list of antecedents or a list of dependencies.
However, there exists no procedure yet to validate such a TraceCheck+ proof.

DIMACS formula

p cnf 5 8
-1 -2 -3 0

1 4 0
1 5 0
2 4 0
2 5 0
3 4 0
3 5 0

-4 -5 0

DRAT clausal proof

6 1 0
6 2 0
6 3 0

-6 4 0
-6 5 0

d 1 4 0
d 2 4 0
d 3 4 0
d 1 5 0
d 2 5 0
d 3 5 0

6 0
0

TraceCheck+ resolution proof

1 1 4 0 0
2 1 5 0 0
3 2 4 0 0
4 2 5 0 0
5 3 4 0 0
6 3 5 0 0
7 -1 -2 -3 0 0
8 -4 -5 0 0
9 6 1 0 0

10 6 2 0 0
11 6 3 0 0
12 -6 4 0 1 3 5 0
13 -6 5 0 2 4 6 0
14 6 0 1 9 10 11 0
15 0 8 12 13 14 0

Fig. 3. Example formula G in the classical DIMACS format (left). A clausal proof
for the input formula in DRAT format (middle). A TraceCheck+ file (right) is a
dependency graph that includes the formula and proof. Each line begins with a
clause identifier (bold), then contains the literals of the original clause or lemma,
and ends with a list of clause identifiers (bold).

4.4 Open Issues and Challenges in Proof Formats

It is common practice to store proofs on disk and we discussed various formats
for this purposes. However, in many applications where proofs have to be further
processed and are used subsequently or even iteratively, disk I/O is considered a
substantial overhead. There are only few publicly available SAT solvers, which
keep proofs in memory. Beside the question, whether these proofs are stored
as resolution or clausal proofs, and the technical challenge to reduce memory
usage, partially addressed in two papers in 2008 [12,6], there is also no common
understanding of what kind of API should be used to manipulate proofs.

Beside checking the proof online for testing and debugging, common oper-
ations might be, extracting a resolution proof from a clausal proof, generating
interpolants, minimizing proofs, or to determine a clausal or a variable core. A
generic API for traversing proof objects might also be useful. Last but not least
it should be possible to dump these proofs to disk.



ā∨b̄∨c̄ a∨d b∨d c∨d a∨e b∨e c∨e d̄∨ē

f∨a
f∨b

f∨c f̄∨d
f̄∨e

f

ε

Fig. 4. A resolution-dependency graph illustrating a proof of example formula G.
The clauses on bottom of the figure are the input clauses. The height of lemmas
indicates the time that they were added to the proof: lower means earlier. Solid
arrows represent resolution steps, while dashed lines represent a dependency
relationship.

Related to reducing the memory usage of storing proofs is the question of a
binary disk format for proofs, or specific compression techniques, as used in the
version of MiniSAT with proof trace support or PicoSAT.

Finally, as SAT solving is at the core of state-of-the-art SMT solving and
also used in theorem provers, producing and manipulating proofs for these more
expressive logics will need to incorporate techniques discussed in this chapter.
Interoperability, mixed formats, and APIs etc. are further open issues.

5 Proof Production

Proof logging of unsatisfiability results from SAT solvers started in 2003 of both
resolution proofs [69] and clausal proofs [32]. Resolution proofs are typically
hard to produce and tend to require lots of overhead in memory, which in turn
slows down a SAT solver. Emitting clausal proofs is easy and requires hardly
any overhead on memory. We will first describe how to produce resolution proofs
and afterwards how to produce clausal proofs.

5.1 Resolution Proofs

The main motivation for adding proof support to PicoSAT was to make testing
and debugging more efficient. In particular in combination with file based delta-
debugging [20], proof trace generation allows to reduce discrepancies much more
than without proof tracing.

The original idea was to use resolution traces. Originally it was however
unclear how to extract resolution proofs during a-posteriori clause minimiza-
tion [58]. This was the reason to use a trace format instead: clause minimization



is obviously compatible with RUP, since required clause antecedents can easily
be obtained. However, determining the right resolution order for a resolution
proof is hard to generate directly and probably needs a RUP style algorithm
anyhow. It was shown how clause minimization can be integrated into as DFS
search for the first unique implication point clause [62], which at the same time
can produce a resolution proof for the minimized learned clause. Currently it is
unsolved how to further extend this approach to work with on-the-fly subsump-
tion [35] as well. The solution is also not as easy to add to existing solvers as
tracing added and deleted clauses.

5.2 Reducing Memory Consumption

As already discussed above, memory consumption of proofs stored in memory
(or disk) can become a bottle neck. As pioneered by the (unpublished) disk
format for proof traces for MiniSAT, and extended in the in-memory format
for proof traces of PicoSAT, the antecedent clauses of a learned clause can be
sorted, as well as literals of learned clauses. After sorting, the antecedent lists
or literals can be stored as differences between literals or antecedent ids instead
of absolute values. Then these differences can be encoded efficiently in byte
sequences of variadic length. In practice this technique needs slightly more then
one byte on average per antecedent (or literal) [12]. Experience shows that other
classical compression techniques are also more effective after this byte-encoding,
such that in combination a large reduction can be achieved.

Another option to reduce space requirements for storing proofs in memory, is
to remove garbage clauses in the proof, which are not used anymore. This garbage
collection was implemented with saturating reference counters in PicoSAT [12].
It has been shown that full reference counting can result in substantial reduc-
tions [6]. In principle it might also be possible to use a simple mark and sweep
garbage collector, which should be faster, since it does not need to maintain and
update reference counters.

5.3 Clausal Proofs

For all clausal proof formats, SAT solvers emit proofs directly to disk. Conse-
quently, there is no memory overhead. In contrast to resolution proofs, it is easy
to emit clausal proofs. For the most simple clausal proof format, RUP, one only
needs to extend the proof with all added lemmas. This can be implemented by
a handful lines of code. Below we discuss how to produce clausal proof formats
that support deletion information and techniques based on generalized extended
resolution.

Clausal proofs need deletion information for efficient validation, see Sec-
tion 6.2 for details. Adding deletion information to a clausal proof is simple.
As soon as a clause is removed from the solver, the proof is extended by the
removed clause using a prefix expressing that it is a deletion step. If a solver
removes a literal l from a clause C, then C \ {l} is added as a lemma followed
by deleting C.



Most techniques based on extended resolution or its generalizations can easily
be expressed in clausal proofs. Similar to techniques based on resolution, for
most techniques, one simply adds the lemmas to the proof. The RAT and DRAT
formats only require that the pivot literal is the first literal of the lemma in the
proof. However, as discussed in Section 3, there exist some techniques for which
it is not known whether they can be elegantly be expressed in the DRAT format.
Especially Gaussian elimination, cardinality resolution and symmetry breaking
are hard to express in the current formats.

6 Proof Consumption

Although resolution proofs are harder to produce than clausal proofs, they are in
principle easy to check and actually needed for some applications, like generating
interpolants [47]. However, the large size of resolution proofs provides challenges,
particular with respect to memory usage. See [63] for a discussion on checking
large resolution proofs.

Clausal proofs are smaller, but validating clausal proofs is more complicated
and more costly. Proofs are checked with dedicated tools, such as stc (short for
simple tracecheck) for resolution proofs in TraceCheck format and DRAT-trim [68]
for clausal proofs in DRAT format (and consequently in RUP, DRUP, and RAT
formats due to backward compatibility).

6.1 Resolution Proofs

Resolution proofs can be checked in deterministic log space [61], a very low com-
plexity class. The tool stc can efficient check proofs in the TraceCheck format.
More details about the format and its use are discussed in Section 4.1.

Apart from validation, there exists a vast body of work on compression of
resolution proofs [2,9,24,29,53,54]. One technique to make proofs more compact is
RecycleUnits [9]: unit clauses in the proof are used to replace some clauses in the
proof that are subsumed by the units. The replacement typically makes the proof
illegal (i.e., some resolvents are no longer the result of resolving the antecedents).
However, the proof can be fixed with a few simple steps. Figure 5 illustrates the
RecycleUnits procedure on a derivation of the example CNF formula E. Notice
in the example that replacing a clause by a unit may strengthen the resolvent.

Two other proof compression techniques are LowerUnits and RecylcePivots.
LowerUnits uses the observation that one needs to resolve over a unit clause
only a single time. In case a unit clause is occurs multiple times in a proof, it is
lowered to ensure that it occurs only once. RecylcePivots reduces the irregularity
in resolution proofs. A proof is irregular if it contains a path on which resolution
is performed on the same pivot. Removing all irregularity in a proof may result in
an exponential blow-up of the proof [31]. Hence, techniques such as RecylcePivots
need to be restricted in the context of proof compression. The tool Skeptic [16]
can be used to remove redundancy from resolution proofs and includes most of
the compression techniques.
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ā
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Fig. 5. An example of the proof compression technique RecycleUnits.

6.2 Clausal Proofs

Clausal proofs are checked using unit propagation. Recall that a clausal proof
{L1, . . . , Lm} is valid for formula F , if Lm = ε and for i ∈ {1, . . . ,m} holds that

F ∧ L1 ∧ · · · ∧ Li−1 ∧ L̄i `1 ε

The most simple, but very costly method to validate clausal proofs is to check
for every i ∈ {1, . . . ,m} the above equation holds.

One can reduce the cost to validate clausal proofs by checking them back-
wards [32]: Initially, only Lm = ε is marked. Now we loop over the lemmas
in backwards order, i.e., Lm, . . . , L1. Before validating a lemma, we first check
whether it is marked. If a lemma is not marked, it can be skipped, thereby re-
ducing the computational costs. If a lemma is marked, we check whether the
clause satisfies the above equation. If the check fails, the proof is invalid. Other-
wise, we mark all clauses that were required to make the check succeed (using
conflict analysis). For most proofs, over half the lemmas can be skipped during
validation.

The main challenge regarding validating clausal proofs is efficiency. Validat-
ing a clausal proof is typically much more expensive than obtaining the proof
using a SAT solver, even if the implementation uses backwards checking and
the same data-structures as state-of-the-art solvers. Notice that for most other
logics, such as first order logic, checking a proof is typically cheaper than finding
a proof. There are two main reasons why checking unsatisfiability proofs is more
expensive than solving.



First, SAT solvers aggressively delete clauses during solving, which reduces
the cost of unit propagation. If the proof checker has no access to the clause dele-
tion information, then unit propagation is much more expensive in the checker
as compared to the solver. This was the main motivation why the proof formats
DRUP and DRAT have been developed. These formats support expressing clause
deletion information, thereby making the unit propagation costs between the
solver and checker similar.

Second, SAT solvers reuse propagations in between conflicts, while a proof
checker does not reuse propagations. Consider two consecutive lemmas Li and
Li+1 produced by a SAT solver. In the most extreme, but not unusual case,
the branch that resulted in Li and Li+1 may differ only in a single decision
(out of many decisions). Hence most propagations will be reused in the solver.
At the same time, it may be that the lemmas have no overlapping literals,
i.e., Li ∩ Li+1 = ∅. Consequently, the checker would not be able to reuse any
propagations. In case Li ∩Li+1 is nonempty, the checker could potentially reuse
propagations, although no clausal proof checker implementation exploits this.

While checking a clausal proof, one can easily produce an unsatisfiable core
and a resolution proof. The unsatisfiable core consists of the original clauses
that were marked during backwards checking. For most unsatisfiable formulas
that arise from applications, many clauses are redundant, i.e, are not marked
and thus not in the unsatisfiable core. The resolution proof has for each marked
lemma all the clauses that were required during its validation as antecedents.

The resolution proof that is produced by clausal proof checking might differ
significantly from the resolution proof that would correspond to the actions
of the SAT solver that emitted the clausal proof. For example, the resolution
proof for the example formula E might be equal to the resolution graph shown
in Fig. 1. On the other hand, the resolution proof produced by clausal proof
checking might be equal to Fig. 6. Notice that the resolution graph of Fig. 6
(right) does not use all original clauses. Clause (b̄∨ c) is redundant and not part
of the core of E.

a ∨ c
ā ∨ b ā ∨ b̄

ā
c

ā ∨ b̄ a ∨ b̄
b̄ b ∨ c̄

c̄
ε

b̄∨c a∨c ā∨b ā∨b̄ a∨b̄ b∨c̄

c

ε

Fig. 6. A resolution derivation (left) and a resolution graph (right) for an ex-
ample formula produce by checking a clausal proof.



7 Proof Applications

Proofs of unsatisfiability have been used to validate the results of SAT competi-
tions4. Initially, during the SAT competition of 2007, 2009, and 2011, a special
track was organized for which the unsatisfiability results were checked. For the
SAT competitions of 2013 and 2014, proof logging became mandatory for tracks
with only unsatisfiable benchmarks. The supported formats for SAT competition
2013 were TraceCheck and DRUP, but all solvers participating in these tracks
opted for the DRUP format. For SAT competition 2014, the only supported
format was DRAT, which is backwards compatible with DRUP.

As already mentioned above, one motivation for using proofs is to make
testing and debugging of SAT solvers more effective. Checking learned clauses
online with RUP allows to localize unsound implementation defects as soon they
lead to clauses, which are not implied by reverse unit propagation.

Testing with forward proof checking is particularly effective in combination
with fuzzing (generating easy formulas) and delta-debugging [19] (shrinking a
formula that triggers a bug). Otherwise failures produced by unsound reasoning
can only be observed if they turn a satisfiable instance into an unsatisfiable one.
This situation is not only difficult to produce, but also tends to lead to much
larger input files after delta-debugging.

However, model based testing [5] of the incremental API of a SAT solver is
in our experience at least as effective as file based fuzzing and delta-debugging.
More recently we added online proof checking capabilities to Lingeling [14],
which allows to combine these two methods (model based testing and proof
checking).

Probably the most important aspect of proof tracing is that it allows to gener-
ate a clausal (or variable) core (i.e., an unsatisfiable subset). These cores in turn
can be used in many applications, including MUS extraction [50], MaxSAT [48],
diagnosis [56,51], for abstraction refinement in model checking [27] or SMT [3,18].
Note that this list of references is very subjective and by far not complete. It
should only be considered as a starting point for investigating related work on
using cores.

Finally, extraction of interpolants is an important usage of resolution proofs,
particularly in the context of interpolation based model checking [47]. Since res-
olution proofs are large and not easy to obtain, there has been several recent
attempts to avoid proofs and obtain interpolants directly, see for instance [64].
Interpolation based model checking became the state-of-the-art until the inven-
tion of IC3 [17]. The IC3 algorithm is also based on SAT technology, and also
uses cores, but usually in a much more light weight way. Typical implementa-
tions use assumption based core techniques as introduced in MiniSAT [28] (see
also [44]) instead of proof based techniques.

4 see http://www.satcompetition.org for details.

http://www.satcompetition.org


8 Conclusions

Unsatisfiability proofs are useful for several applications, such as computing
interpolants and MUS extraction. These proofs can also be used to validate
results of the SAT solvers that produced them and for tools that use SAT solvers,
such as theorem provers.

There are two types of unsatisfiability proofs: resolution proofs and clausal
proofs. Resolution proofs are used for most applications, but they are hard to pro-
duce. Therefore very few SAT solvers support resolution proof logging. Clausal
proof logging is easy and therefore most state-of-the-art solvers support it. How-
ever, validating clausal proofs is costly, although recent advances significantly
improved performance of checkers.

There are several challenges regarding unsatisfiability proofs. How can one
store resolution proofs using much less space on disk and using much less memory
overhead? Can the costs of validating clausal proofs be further be reduced?
Last but not least, research is required to study how some techniques, such as
Gaussian elimination, cardinality resolution, and symmetry breaking, can be
expressed elegantly in unsatisfiability proofs.

References

1. Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry break-
ing for Boolean satisfiability. IEEE Trans. Computers, 55(5):549–558, 2006.

2. Hasan Amjad. Compressing propositional refutations. Electr. Notes Theor. Com-
put. Sci., 185:3–15, 2007.

3. Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Refinement strategies
for verification methods based on datapath abstraction. In Proc. ASP-DAC’06,
pages 19–24. IEEE, 2006.
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