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Abstract. Satisfiability (SAT) is considered as one of the most im-
portant core technologies in formal verification and related areas. Even
though there is steady progress in improving practical SAT solving, there
are limits on scalability of SAT solvers. We address this issue and present
a new approach, called cube-and-conquer, targeted at reducing solving
time on hard instances. This two-phase approach partitions a problem
into many thousands (or millions) of cubes using lookahead techniques.
Afterwards, a conflict-driven solver tackles the problem, using the cubes
to guide the search. On several hard competition benchmarks, our hy-
brid approach outperforms both lookahead and conflict-driven solvers.
Moreover, because cube-and-conquer is natural to parallelize, it is a com-
petitive alternative for solving SAT problems in parallel.

1 Introduction

Satisfiability (SAT) solvers have become very powerful tools to tackle prob-
lems ranging from industrial formal verification [4] to hard combinatorial chal-
lenges [27]. The most successful tools are known as conflict-driven clause learning
(CDCL) solvers [24]. These solvers have data-structures optimized for huge in-
stances and focus reasoning on learning new clauses from emerging conflicts.
Although there exist several approaches to parallelize CDCL solvers [10], it ap-
pears hard to significantly improve performance on most industrial problems.

On the other hand, lookahead solvers [14] focus on small hard problems which
require sophisticated heuristics to solve them efficiently. These solvers can be
parallelized naturally and effectively. Yet, even with many cores at hand, they
cannot compete with single core CDCL solvers on industrial problems.

While developing a method for computing van der Waerden numbers, Kull-
mann observed that CDCL and lookahead solvers can be interleaved in such a
way that the combination outperforms both pure methods. In short, lookahead
is used to assign a certain fraction of the variables, and afterwards CDCL tackles
the reduced problem. For optimal performance the lookahead solver partitions
the original problem into thousands (sometimes millions) of cubes. The CDCL
solver iteratively assumes each cube to be true and solves the simplified instance.

In order to apply this method, called cube-and-conquer, on a large spectrum
of problems, we present a mechanism that determines dynamically when to cut
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off a branch in the search-tree of a lookahead solver to send it to a CDCL
solver. Using this mechanism, several hard industrial problems can be solved
more efficiently using the combination of solvers than with a stand-alone SAT
solver. Additionally, the combined solving method can be parallelized naturally
as well. Therefore, using a parallel implementation of our method, we are able
to solve some hard instances faster than alternative methods.

Our approach is based on the following intuition. Obviously the reduced
formulas, after applying some decisions, become easier to solve. Furthermore, at
least empirically, CDCL solvers are effective on solving instances which are rather
easy for their size, utilizing local heuristics including those based on variable
activities. On the other hand, lookahead solvers are considered to be better at
picking good decisions at the top-level, by using more global heuristics. There
has to be a transition between hard and easy subproblems. So we try to switch
from lookahead to CDCL solving when the subproblem seems to become easy.

The outline of this paper is as follows. After some preliminaries in Section 2,
an overview of the cube-and-conquer method is provided in Section 3 as well as
a description of both solver types. Section 4, discussing the above application to
Ramsey theory, offers a motivating study of the method. Then a general method-
ology is developed. The details of the first phase, the “cube”-phase (partitioning
the problem) are discussed in Section 5, and the details of the second phase, the
“conquer”-phase (solving the sub-problems) in Section 6. Experimental results
are presented in Section 7 and some conclusions are drawn in Section 8.

2 Preliminaries

For a Boolean variable x, there are two literals, the positive literal, denoted by x,
and the negative literal, denoted by ¬x. A clause is a disjunction of literals, and
a CNF formula is a conjunction of clauses. A clause can be seen as a finite set
of literals, and a CNF formula as a finite set of clauses. A unit clause contains
exactly one literal. A truth assignment for a CNF formula F is a function ϕ that
maps variables in F to {t, f}. If ϕ(x) = v, then ϕ(¬x) = ¬v, where ¬t = f and
¬f = t. A clause C is satisfied by ϕ if ϕ(l) = t for some l ∈ C. An assignment
ϕ satisfies F if it satisfies every clause in F . A cube is a conjunction of literals
and a DNF formula a disjunction of cubes. A cube can be seen as a finite set of
literals and a DNF formula as a finite set of cubes. If c = (l1 ∧ . . .∧ lk) is a cube,
then ¬c = (¬l1 ∨ . . .∨ ¬lk) is a clause. A truth assignment ϕ can be seen as the
cube of literals l for which ϕ(l) = t. A cube c is satisfied by ϕ if ϕ(l) = t for all
l ∈ c. An assignment ϕ satisfies DNF formula D if it satisfies some cube in D. A
DNF formula D is called a tautology if every full assignment ϕ satisfies D. For
a CNF formula F , Boolean constraint propagation (BCP) (or unit propagation)
propagates all unit clauses, i.e., repeats the following until fix-point: if there is
a unit clause (l) ∈ F , remove from F \ {(l)} all clauses that contain the literal l,
and remove the literal ¬l from all clauses in F . The resulting formula is referred
to as BCP(F ). If ∅ ∈ BCP(F ), we say that BCP derives a conflict.

3 Combining CDCL and Lookahead

The main complete SAT solver types are conflict-driven clause learning (CDCL)
solvers [24] and lookahead solvers [14]. In short, CDCL solvers are optimized for



3

x5

x7

t

x8

t

f

x2

t

t f

x9

f

t f

x2

f

x3

f

x7

t

f t

f

x8

t

x9

t

t f

f

F1 := F ∧ (x5 ∧ x7 ∧ ¬x8)

F2 := F ∧ (x5 ∧ x7 ∧ x8 ∧ x2)

F3 := F ∧ (x5 ∧ ¬x7 ∧ x9)

F4 := F ∧ (x5 ∧ ¬x7 ∧ ¬x9)

F5 := F ∧ (¬x5 ∧ ¬x2 ∧ ¬x3)

F6 := F ∧ (¬x5 ∧ x2 ∧ x8 ∧ x9)

F7 := F ∧ (¬x5 ∧ x2 ∧ x8 ∧ ¬x9)

cutoff leaf

refuted leaf

Fig. 1. A partition of a CNF formula F into seven subformulas Fi. The binary search
tree on the left is constructed by a lookahead solver. It shows in the internal nodes the
decision variable, and on the edges the truth value of a branch. Black leaves represent
refuted leaves, while white leaves are cutoff leafs. The decisions of cutoff leaves yield a
cube of assumptions that together with F forms a subformula Fi.

large industrial problems and consequently use inexpensive decision heuristics.
In contrast, lookahead solvers focus on small hard problems on which it pays
off to compute sophisticated decision heuristics. This section describes the main
features of these solvers, and how we want to combine both types.

Overview The central approach in this paper deals with a lookahead solver
that partitions a formula into many subformulas which in turn are solved by
a CDCL solver. The sophisticated decision heuristics of lookahead solvers are
used to compute important decision variables. These decisions are provided to
the CDCL solver to guide the search process.

Figure 1 illustrates this approach by an example. The left shows a binary
search tree produced by a lookahead solver. Internal nodes contain a decision
variable. On the edges the truth value is shown to which a decision variable is set
to reach a child node. There are two possible leaf nodes. Either the lookahead
solver refuted the branch because a conflict emerged, or the cutoff heuristic
suggests that this branch should be solved by a CDCL solver. This heuristic
(discussed in detail in Section 5) is crucial for the effectiveness of the approach.

The cutoff branches can be described as a cube of the decisions on the path
to the leaf. A CDCL solver can solve the branch by either adding the decisions
as unit clauses, or by adding them as assumptions (see the Incremental SAT
solving paragraph below). In case one of the branches is satisfiable, the original
formula is satisfiable (and hence remaining branches could be neglected). If all
cutoff branches are unsatisfiable, the original formula is unsatisfiable.

The use of lookahead heuristics to partition a formula have been proposed by
Hyvärinen et al. [15]. In [15] formulas are partitioned into dozens of subformulas
which are distributed on a grid to be solved in parallel. The starting point of this
paper is now the discovery, discussed in Section 4, that some hard combinatorial
problems can be efficiently solved by partitioning them into many thousands of
subformulas (millions for harder problems). Inspired by these results we focus
on the latter approach. We also use more sophisticated lookahead techniques as
employed in state-of-the-art lookahead solvers.
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Lookahead solvers Since CDCL is currently the dominant approach in prac-
tical SAT solving, we assume the reader already knows how CDCL solvers work,
and otherwise refer to [24] for more details.

Lookahead solvers combine the David-Putnam-Logemann-Loveland (DPLL)
algorithm [7] with lookaheads; for a general discussion see [14,19], while we de-
scribe here an exemplary scheme. Given a CNF formula F , a lookahead on literal
x works as follows: First, x is assigned to t, followed by BCP. Second, in case
there was no conflict, the difference between F and the reduced formula F ′ is
measured. The quality of lookahead techniques depends heavily on the used mea-
surement. A frequently used method weighs the clauses in F ′ \F (the ones that
are reduced but not satisfied). Third, all simplifications are reversed to get back
to F . If a conflict was detected during the lookahead, then x is forced to f and is
called a failed literal. The measurements are used to determine the decision vari-
able in each node of the search tree. In general a variable x is chosen for which
both the lookahead on x and ¬x result in a large reduction of the formula. We
remark that this scheme combines reduction (elimination of failed literals) and
lookahead (estimating the quality of a branch by considering its development in
the future), while in general these processes can be different.

State-of-the-art lookahead solvers are kcnfs [8], march [25], OKsolver [18],
and satz [23]. These solvers show strong performances on hard random k-SAT
formulas, but they cannot compete with CDCL solvers on large industrial in-
stances. Apart from random instances, lookahead techniques are also useful for
combinatorial problems; these problems have some form of structure to be ex-
ploited, and yield relatively small but typically very hard SAT problems.

While measuring the reduction of the formula F , most lookahead solvers also
perform local learning. In contrast to the learning in CDCL solvers, local learning
computes clauses (mostly unary and binary) that can be added to the formula
for further reduction, but that have to be removed again during backtracking
to the parent node in the search tree. An example of local learning is hyper bi-
nary resolution [2]. Current state-of-the-art lookahead solvers do not implement
conflict clause learning as in CDCL solvers, and mostly not even backjumping
(except of the OKsolver). For an overview of local learning we refer to [14].

Incremental SAT solving A frequently used feature of CDCL solvers is in-
cremental SAT solving [9]. The solver provides an interface to (i) add clauses to
the formula and (ii) to solve the formula under a cube of assumptions (decisions
at level 0). Both techniques are very useful for tools that integrate SAT solvers.
The input of an incremental solver can be seen as a sequence consisting of both
clauses and cubes, where each cube defines a job which is the conjunction of that
cube and all clauses preceding it in the sequence. In the context of cube-and-
conquer we solve one formula under a set of cubes, thus all clauses precede all
cubes in the solver input. A useful feature of incremental SAT solvers is that if a
formula has no solutions under a given cube c, then the solver returns a subset
c′ ⊆ c that was required to prove unsatisfiability. The clause ¬c′ can then be
added to the formula to improve performance on other cubes.

As an example of the above, let us return to Figure 1. Now, consider a CDCL
solver solving F2, which is F assuming cube (x5∧x7∧x8∧x2). If however actually
only (x8 ∧ x2) is required to proof unsatisfiability, then we can add (¬x8 ∨ ¬x2)
to the formula. This binary clause is conflicting with F6 and F7, so by adding
it, these cubes are immediately refuted.
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4 Creating Cubes: The basic method

In this section we describe cube-and-conquer in its simplest form, as it came out
of investigations into van-der-Waerden-like numbers ([21,1,22]). The principle
aim is to solve extremely hard instances, which would take many years on a single
machine. Thus a natural splitting of the problem into sub-problems is applied,
and since lookahead solvers are competitive on these instances, it is natural
to use lookahead for this task. The great surprise now is that on these (easy)
sub-problems, conflict-driven solvers are very fast, and via this collaboration
a total speed-up (regarding the total running time) of at least a factor of two
(compared always to the best single solver available) is achieved. So even on a
single machine the problems are solved at least twice as fast, and additionally the
splitting is ideal for parallelization (via clusters for example; no communication
is needed between the processes). This was the birth of “cube-and-conquer”.
The lookahead solver is the OKsolver, which participated successfully at the
SAT 2002 competition and aims at being as “theoretically clean” as possible;
see [18,19] for further information, and see the OKlibrary ([20]) for the renovated
source code. It uses complete elimination of failed literals, and autarky reduction
for the partial assignment at hand (see [17]). The distance along a branch is,
as discussed above, a weighted sum of the number of new clauses, while the
heuristics is the product of these values for the two branches (to be maximized);
again (as for the reduction), all variables are (always) considered.

Computing the cubes is rather simple: cubes are partial assignments, cor-
responding to initial parts of the paths from the root to leaves in the splitting
(branching) tree, and the task is to “cut off” these paths at the right place. Two
methods are implemented, interpreting a depth parameter D ≥ 0: either the
branches are cut off when exactly D decisions have been made (method A), or
when the total number of assigned variables (decisions, unit propagations, failed
literals, autarkies) is at least D (method B).

The interface to the sub-solver is here as simple as possible: a complete
decoupling is achieved by applying the partial assignments, and the sub-solver
just gets the results. So each sub-instance is solved completely independent of
each other, and the sub-solver only sees the sub-instance. For method A as well
as for method B, the partial assignments contain everything: the decisions, the
unit-propagation, the failed literals, the autarkies found (including pure literals).

On the implementation side, there are two simple data formats: either storing
each partial assignment in its own file in DIMACS format (this is used for the
experiments below), or creating an iCNF file5, which here is basically just the
concatenation of the instance and the partial assignments, put into one big file.
Processing runs through the partial assignments, applies them to the original
CNF, and calls the sub-solver on the sub-instance. Since only unsatisfiable in-
stances are considered in this section, and the sub-instances are independent of
each other, the order of the instances does not matter. All methods and all data
are available in the OKlibrary, see [20]. The cutoff (the above parameter D) is
determined ad-hoc such that sub-instances only take a few seconds (this seems
to be around the optimum, but with less overhead, as achieved by the system
discussed in Section 5, one can partition further — the more cubes the better).

5 http://users.ics.tkk.fi/swiering/icnf/
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We report here only on two instance classes, determining unsatisfiability of
van-der-Waerden (vdW) instances and palindromic vdW instances, using in both
cases two colors, and thus the instances have a canonical translation into boolean
CNF. Such problems are explained (resp. introduced in the palindromic case)
in [1], and they were also part of the SAT 2011 competition. The standard
(boolean) vdW-problems are given by equations vdw(k1, k2) = n, for natural
numbers k1 ≤ k2 ≤ n, meaning that whenever partitioning {1, . . . , n} into two
parts, it holds that the first part contains an arithmetic progression (ap for short)
of size k1 or the second part contains an ap of size k2 (and n is minimal with this
property). This gives a CNF with n variables v1, . . . , vn and with two clause-sizes
k1, k2, where the clauses of length k1 are all the ap’s of size k1, as positive clauses,
and the clauses of length k2 are all the ap’s of size k2, as negative clauses. The
palindromic (boolean) vdW-problems are given by equations vdwpd(k1, k2) =
(n1, n2) (n1 < n2), with a similar meaning, only that now only palindromic
partitions are allowed, thus regarding the partition as a bit-string of length n,
given by the values of v1, . . . , vn, and requiring that (v1, . . . , vn) = (vn, . . . , v1).
By these equations, the number of variables is halved, replacing vn by v1 and
so on, and shorter clauses are obtained. Subsumption elimination is performed
on the instances. There are now two unsatisfiable problems, one using n1+1

2
variables, with n = n1 + 1 as the smallest n with unsatisfiable problem, and
one with n2+1

2
variables, based on the smallest n = n2 such that all n′ ≥ n

yield unsatisfiable problems. For standard vdW-instances, lookahead solvers can
perform better than conflict-driven solvers, while for palindromic vdW-instances
conflict-driven solvers are much better (here we are not speaking about cube-
and-conquer, but about standard SAT solving). Method (B) for determining
the cutoff was vastly superior (diminishing the variability of the sub-instances
enormously), and is only considered here. As the sub-solver, minisat-2.2.0
performed very well here and is used throughout. All times are on a single core
with about 2 GHz (parallelization has not been used), and the times for the cube-
and-conquer approach is the total time, including all computations (writing each
sub-instance to file etc.). All solvers mentioned below for comparison seem best
performing (as ordinary SAT solvers, on the original (full) instances).

For vdw(3, 15) = 218 (yielding 13362 clauses) the lookahead solver satz
(version 215) needs about 20h, while with D = 35 (yielding 32331 cubes) it
is solved in about 4h. The maximal time per job is 5 seconds, enabling trivial
optimal parallelization with more than 2000 processors (by just distributing the
jobs for the sub-problems to the first available processor). For vdw(4, 8) = 146
(yielding 4930 clauses) picosat (version 913) takes 8h. Setting D = 20 (yielding
65270 cubes), it is solved in 4h, with maximal job-time of 22s. picosat for
vdw(5, 6) = 206 was aborted after a week, while with D = 20 (yielding 91001

cubes) it was solved in about one day. For vdwpd(3, 25) = (586, 607) (yielding
45779 resp. 49427 clauses), precosat (version 570) used in both cases about 13
days, while with D = 45 (yielding 9120 resp. 13462 cubes) the problems were

solved in about 6.5h resp. 2 days. For vdwpd(4, 12) = (387, 394) (yielding 15544
resp. 15889 clauses) minisat version 2.2.0, was aborted after 2 weeks, while
setting D = 30 resp. D = 34 (yielding 132131 resp. 147237 cubes) solved the

problems in 2 days resp. 8h. Finally, for vdwpd(5, 8) = (312, 323) (yielding 9121
resp. 9973 clauses), minisat used 3 1/2 days resp. 53 days, while setting D = 20
in both cases (yielding 22482 resp. 87667 cubes) solved it in 5h resp. 40h.
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5 Creating Cubes: a general methodology

This section shows how to modify a lookahead solver into a partitioning tool.
First, we explain where to modify the code, Section 5.1. Second, we present an
adaptive mechanism to cut off branches in Section 5.2. We conclude with some
important heuristics in Section 5.3. The automatic partitioning provided here
essentially is able to simulate the splitting characteristics from Section 4.

5.1 General framework

The procedure CreateCubes, a modified lookahead solver for partitioning, shown
in Figure 2, takes as input a CNF formula F and outputs two sets. The first set A
is a disjunction of cubes for which each cube represents a set of assumptions that
describe a cutoff branch in the DPLL tree. The cubes in A cover all subproblems
of F that have not been refuted during the partition procedure. The second set
C is a conjunction of clauses. Each of these (learnt) clauses are implied by F
and represent refuted branches in the DPLL tree. Hence the clauses in C can be
added to F to obtain a logically equivalent formula F ′ := F ∪ C.

The recursive procedure has five inputs. Besides F , A, and C, it passes on the
set of decision literals (denoted by ϕdec) and the set of implied literals (denoted
ϕimp). Implied literals are assignments that were forced by BCP or some form
of learning such as failed literal reasoning. Initially, CreateCubes is called with
the input formula F and all the other parameters as empty sets.

CreateCubes (CNF F , DNF A, CNF C, dec. lits. ϕdec, imp. lits. ϕimp)

1 〈F,ϕimp〉 := LAsimplify and learn (F , ϕdec, ϕimp)

2 if ϕdec ∪ ϕimp falsify a clause in F then return 〈A, C ∪ {¬ϕdec}〉

3 if cutoff heuristic is triggered then return 〈A ∪ {ϕdec}, C〉

4 ldec := LAdecide (F , ϕdec, ϕimp)

5 〈A, C〉 := CreateCubes (F,A, C, ϕdec ∪ {ldec}, ϕimp)

6 return CreateCubes (F,A, C, ϕdec ∪ {¬ldec}, ϕimp)

Fig. 2. The general framework of the recursive procedure CreateCubes.

In line 1 of the procedure, the method LAsimplify and learn is called. This
method simplifies the formula by BCP and lookaheads, forcing some variables
to certain truth values. All assigned variables are added to ϕimp. Additionally,
it produces local learnt clauses which are added to F . In case the current as-
signment falsifies F then a conflict clause is learnt. This clause consists of the
complements of the decisions and is added to C (line 2). Line 3 deals with cutting
off branching which is further discussed in the next subsection. The procedure
LAdecide on line 4 determines the next decision variable and preferred truth
value based on lookaheads. There exists a vast body of work on these decision
heuristics [19]. Section 5.3 offers the details of this produce.

After CreateCubes is terminated, A and C are optimized. First, the clauses in
C are reduced in size by applying self-subsumption resolution. For instance, back
to the example in Figure 1 with (x5 ∨ x2 ∨¬x3 ∨ x7), (x5 ∨ x2 ∨ ¬x3 ∨ ¬x7) ∈ C,
then the resolvent (x5 ∨ x2 ∨ ¬x3) replaces both antecedent clauses. When C is
fully optimized, this set of conflict clauses is used to remove assumptions in A.
For instance if (¬x5 ∧ x2 ∧ x8 ∧ x9) ∈ A, and (x5 ∨ ¬x2 ∨ x8) ∈ C, then x8 is
removed as an assumption because it will be forced by BCP after C is added to
F . After these optimizations until fix-point, A is a tautology.
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5.2 Cutoff heuristic

The heuristic that triggers the cutoff of a branch is of crucial importance to create
an effective partition. Ideally, this heuristic partitions the original problem into
several subproblems such that 1) the runtimes to solve each of the subproblems
are comparable and 2) the sum of these runtimes (at least) does not exceed the
runtime of solving the original instance.

A (simplifying) interpretation of the results discussed in Section 4 is that for
some hard combinatorial problems both objectives can be achieved by cutting
off a branch if a certain fraction (say 10%) of the variables is assigned — this
measure is much easier to handle than the solution time for the sub-instances,
which for the experiments reported in Section 4 was determined in an ad-hoc
manner. There actually the total solution time for the subproblems was not just
not bigger than the original solution time, but much smaller. So this metric is
very useful for several small hard problems. However, for the larger industrial
instances, the number of decisions appears to be also of important to determine
the hardness of a subproblem. Additionally, for these formulas sometimes a single
decision assigns 10% of the variables, while for other formulas it requires over
100 decisions. In the former case the number of partitions becomes too small,
while in the latter case the number of partitions becomes too large.

An alternative approach by Hyvärinen et al. [15] cuts off a branch after k
decisions have been made (this was called method A in Section 4). The advantage
of this approach is that one can clearly upper-bound the number of partitions
in advance. However, branches with the same number of decisions are rarely
equally hard to solve. It is often the case, that assigning a decision literal x to t
results in significantly more implied literals than assigning x to f or vice versa.

We combine both approaches by using the product of the number of decisions
and the number of assigned variables, |ϕdec| · |ϕdec ∪ ϕimp|, as the cutoff metric.
Furthermore, the refined procedure CreateCubes∗, Figure 3, includes a dynamic
cutoff mechanism. It implements the cutoff of a branch (with the cutoff heuristic
discussed above) as shown in line 5 using a threshold parameter θ. Two lines
update the value of θ. The first, the increment rule on line 1, raises the value
by 5% without a condition. This rule aims to restore the value in case it was
reduced too much. The second, the decrement rule on line 3, lowers the value by
30%. This rule tries to avoid two unfavorable situations described below.

First and most importantly, the value is decreased if the lookahead solver
hits a conflict, meaning that the current node is a refuted branch. The rationale
of this update is as follows. If the lookahead solver was able to show that the
current node is conflicting, then probably a CDCL solver could have found the
conflict faster. Additionally, if the CDCL solver would have found the conflict,
then it could have analyzed it and possibly computed a smaller reason of this
conflict (than all decisions as computed by the lookahead solver). By lowering θ,
the mechanism tries to cut off neighboring branches before a conflict emerges.

Secondly, the mechanism prevents the recursive procedure from going too
deep into the DPLL tree. For most interesting instances, it appeared useful to
decrease θ for all nodes with a depth larger than 20. In case one wants the
mechanism to finish creating cubes within a few seconds, then the condition
should be dependent on the size of the formula, such as |ϕdec|+ log2(|F |) > 30.
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Initially, θ should be large enough to ensure that the mechanism will cut off
the tree at a reasonable depth. We used θ := 1000 as initial value. Using a value
which is a factor 10 larger or smaller hardly influences the resulting partition.
Using this initial value, θ will first be decreased before cutting off a branch.

CreateCubes∗ (CNF F , DNF A, CNF C, dec. lits. ϕdec, imp. lits. ϕimp)
1 θ := 1.05 · θ
2 〈F,ϕimp〉 := LAsimplify and learn (F , ϕdec, ϕimp)
3 if ϕdec ∪ ϕimp falsify a clause in F or |ϕdec| > 20 then θ := 0.7 · θ
4 if ϕdec ∪ ϕimp falsify a clause in F then return 〈A, C ∪ {¬ϕdec}〉
5 if |ϕdec| · |ϕdec ∪ ϕimp| > θ · |vars(F )| then return 〈A ∪ {ϕdec}, C〉
6 ldec := LAdecide (F , ϕdec, ϕimp)
7 〈A, C〉 := CreateCubes∗ (F,A, C, ϕdec ∪ {ldec}, ϕimp)
8 return CreateCubes∗ (F,A, C, ϕdec ∪ {¬ldec}, ϕimp)

Fig. 3. The recursive procedure CreateCubes∗ with the cutoff mechanism.

5.3 Heuristics for splitting

Besides the development of the cutoff mechanism, the standard heuristics for
lookahead solvers had to be tweaked in order to realize fast performance.

Decision heuristics. The default and costly lookahead evaluation heuris-
tic (measurement) in most lookahead solvers is based on the clauses that are
reduced, but not satisfied during a lookahead. These clauses are weighted de-
pending on their (new) length. In general, a clause of length k has a weight which
is a factor five times larger compared to a clause of length k+1. A more cheaply
heuristic counts the number of variables that are assigned during the lookahead.

For an example of both heuristics, consider the formula F below. Because the
longest clauses have length 3, all “new” clauses have length 2, so no weights are
required. Let evalcls(xi) denote the clause based heuristic being the (weighted)
sum of the reduced, not satisfied clauses and evalvar(xi) the variable based heuris-
tic being the number of assigned variables during the lookahead on xi = 1. E.g.,
evalvar(¬x6) = 1 and evalcls(¬x6) = 2 because the lookahead on x6 = 0 reduces
two clauses from ternary to binary, and only x6 is assigned. Notice that the
values of the two heuristics are not necessarily related. evalcls(xi) may be much
smaller than evalvar(xi). For instance evalcls(¬x2) = 1, while evalvar(¬x2) = 4.

F = (¬x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ x3 ∨ x6) ∧

(¬x1 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ ¬x6) ∧ (x4 ∨ x5 ∨ x6) ∧ (x5 ∨ ¬x6)

In general, lookahead solvers rank variables xi by eval(xi) · eval(¬xi). Ties are
broken by eval(xi) + eval(¬xi). The decision heuristics select in each node of the
DPLL tree the variable with the highest rank.

The default heuristics evalcls appeared to be quite effective on instances that
had none or few binary clauses. This is frequently the case for random and crafted
instances used in the SAT competitions. However, we noticed that evalvar was
more effective on industrial instances. An advantage of evalvar is that it does
not require the eager data-structures used in lookahead SAT solvers. Hence, this
heuristic can relatively easy be implemented in CDCL solvers.
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Direction heuristics. Given a decision variable x, direction heuristics de-
cide which branch (x to t or x to f) to explore first; see Section 5.3.2 in [14] for
more information. Direction heuristics in lookahead solvers aim to improve per-
formance on satisfiable formulas. Therefore, the solver prefers the branch that is
most “likely” to be satisfiable. For methods how to estimate such probabilities
see Section 7.9 in [19], and see Subsection 4.6.2 in [3] for some discussions in
the CSP context. As a cheap approximation one can take the least constraint
branch first. This is the complementary strategy of the first fail principle [12]
which is often used in Constraint Satisfaction. In case eval(x) < eval(¬x), x to t
is explored first. Otherwise x to f is preferred. For a certain node with decision
variable x, we refer to the branch with eval(x) < eval(¬x) as its left branch. The
other branch we call its right branch.

The partition mechanism as described in Section 5.2 seems to be quite ro-
bust regarding the direction heuristics. The number of cubes and the average
size of the cubes is hardly influenced by exploring the left or the right branch
first. However the order in which partitions are visited has a clear impact on
performance related to the left and right branches, when considering how the
sub-problems are solved; see Section 6.1.

6 Solving Cubes

A CDCL solver deals with the second phase of the cube-and-conquer method.
The solver takes as input the original formula F , optionally extended with the
learnt clauses C, and the set of assumption cubes A. The latter is ordered based
on some heuristic. For each cube c ∈ A based on this order, the CDCL solver
solves F ∧ c (∧C). First, we present how to solve the cubes sequentially (Sec-
tion 6.1). Second, we discuss a parallel solving approach (Section 6.2).

6.1 Sequential solving

The sequential solving procedure is rather straightforward and shown in Figure 4.
Iteratively, a cube c ∈ A is selected (line 3) and assumed to be true followed
by solving the simplified formula (line 4). In case the result is satisfiable, the
original formula is satisfiable and hence the procedure ends. After all cubes have
been refuted, the formula is found to be unsatisfiable.

After refuting a cube, most CDCL solvers provide a technique, known as
AnalyzeFinal , to extract a subset of the cube that was required to proof unsat-
isfiability. It can be useful to add the clause –the complement of this subset– to
the formula (line 5). Adding it can help refuting another cube more easily and
the CDCL solver cannot remove it (in contrast to learnt clauses). However, if |A|
is much larger than |F |, the addition may significantly slow down performance.

Last, but not least, we observed that removing some learnt clauses after
refuting a cube can significantly improve performance of cube-and-conquer. This
can be explained by the intuition that the subproblems are relatively independent
and hence the learnt clauses of one subproblem can hardly be reused for another
subproblem. Removal of learnt clauses is realized by reseting the clause deletion
policy after solving a cube (line 6). So the size of the clause database is reduced
to its initial size and the least important clauses are kicked out.
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SolveCubes (CDCL solver S, CNF F , DNF A)

1 S.Load (F )

2 while A is not empty do

3 get a cube c from A and remove c from A

4 if S.SolveWithAssumptions (c) = satisfiable then return satisfiable

5 S.AnalyzeFinal () // optional

6 S.ResetClauseDeletionPolicy ()

7 return unsatisfiable

Fig. 4. The pseudo-code of the sequential solver using the partition.

Describing the cubes. In the partition procedure CreateCubes, the cube
consists only of all decisions (ϕdec) from the root to the cutoff. Alternatively, one
could describe a cube by all the assigned variables (ϕdec∪ϕimp). The latter may
include several assignments that a CDCL solver cannot reconstruct by BCP, for
instance the failed literals. Recall that this approach is used is Section 4 and by
Hyvärinen et al. [15,16]. However, it seems that communicating implied variables
to a CDCL solver does not improve runtime. Throughout our experiments, using
cubes consisting of only decision literals resulted in stronger performance.

The order in which the decision literals are assumed in the CDCL solver
influence the size of conflict clauses. The natural order –the order in which the
decisions were made– appears to be the best alternative.

Ordering the cubes. During the experiments, we observed a relation be-
tween the time it requires to refute a cube and the number of right branches
between the root and the cutoff of that cube: the more right branches (also
known as discrepancies), the easier the corresponding subformula. On the other
hand, for satisfiable formulas, cubes that cover a solution tend to have few right
branches. Although we focused mostly on unsatisfiable formulas, we observed
that for satisfiable benchmarks it pays off to solve the cubes with few right
branches first. This strategy is known as limited discrepancy search [13].

There is also another reasoning for preferring this order, namely when solving
cubes in parallel (see Section 6.2). In case CreateCubes produces an unbalanced
tree, then frequently one or a few cubes will consume most of the computation
costs to solve a formula. Therefore, one should solve the hard cubes first: a few
cores attack these cubes, while others solve the easy ones. Otherwise, if a hard
cube needs to be solved in the end, there would no cubes left for the other cores.

6.2 Parallel solving

A natural extension of the approach in the prior section is to consider solving
the partitions in parallel. In existing work on parallel SAT solving [10] two main
approaches are distinguishable. The first aims to partition the formula in an
attempt to divide the total workload evenly over multiple computation nodes,
the second are so called portfolio approaches [11]. Rather than partitioning the
formula, portfolio systems run multiple solvers in parallel, each attempting to
solve the same formula, and the system finishes whenever the fastest solver
finishes. Often such portfolios consist simply of multiple instances of the same
CDCL solver, as those can be made to all traverse the search space in a different
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order by as little as using different random seeds. Such parallel solvers thus
mostly exploit the lack of robustness of SAT solvers, and can be surprisingly
effective. Parallel SAT solvers of both types can be extended with exchange of
learnt clauses between computation nodes.

In the solving phase of cube-and-conquer many partitions are independently
solved and thus it can be easily parallelized. However as we make use of in-
cremental SAT, so one can also think of this phase as one single incremental
problem. In [26] two different job assignment strategies for parallel incremental
SAT were discussed and implemented in a tool called Tarmo. That work was
focused on Bounded Model Checking (BMC) but it can be seen as a general
framework for parallel incremental SAT solving with clause sharing. The first
strategy implemented is the multijob approach in which an idle node is assigned
the first job that is not already assigned to any other node. When two nodes
are idle at the same time the job assignment order is undefined but it is guaran-
teed that no two nodes ever work on the same job. The second strategy called
multiconv is inspired by portfolio solvers, and it simply runs a conventional in-
cremental SAT solver on all jobs on all nodes. The latter can be effective for
BMC where jobs are difficult and job order is relevant. For cube-and-conquer
however we deal with a huge number of jobs, most of which are very easy, which
means there are no large deviations in single job run times for the multiconv
strategy to exploit. For this application multijob is a natural choice, although it
is not ideal. If the partitioning is uneven a small number of the jobs may make
up a large fraction of the run time. Thus using multijob nodes given only easy
jobs may end up sitting idle waiting for a small number of nodes with hard jobs
to finish. In Tarmo we experimented also with an extended strategy, multijob+,
which is like multijob except that it will assign a job that is already being solved
by some node to nodes that would otherwise become idle. This modified strategy
appeared to beneficial for performance of the cube-and-conquer solving phase.

Another feature of Tarmo is its ability to share learnt clauses between solver
threads. As discussed in [26] different settings are possible for the amount of
clauses shared. Tarmo’s default setting which shares learnt clauses that have a
length which is below average appeared the most effective for this application.

After studying the parallelization of cube-and-conquer’s solving phase using
various versions of Tarmo, a special purpose multithreaded version of the fast
SAT solver lingeling was created, which uses the basic multijob strategy. This
special purpose solver called iLingeling is faster than Tarmo for this application
although it does not use clause sharing or the multijob+ strategy yet.

7 Experimental Results

The experiments focus on the strength of cube-and-conquer on hard application
benchmarks. For this paper we used instances from the SAT 09 application cat-
egory that were not solved during the competition (within the given timeout of
10,000 seconds) – the same set as used in [16]. We modified two existing SAT
solvers according to the general method of cube-and-conquer. First, the look-
ahead SAT solver march [25] was converted into a splitting tool called march cc.
Second, the CDCL solver lingeling was extended to deal with iCNF files. This
version called iLingeling also supports solving cubes in parallel. The sources
of both tools are available on http://fmv.jku.at/cnc/.

http://fmv.jku.at/cnc/
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Phase I of our cube-and-conquer implementation consists of A) simplify-
ing the formula using the preprocessor of lingeling (option -s) and B) calling
march cc on the result. The cutoff mechanism in march cc is implemented as
shown in Figure 3. Three benchmarks in the SAT09 suite (9dlx* and sortnet*)
remained too large after simplifying and caused memory problems for march cc.
Therefore, we replaced |ϕdec| > 20 by |ϕdec| > 10 in the decrement rule for these
instances. We used the cheap evalvar lookahead evaluation, because it resulted
in improved performance compared to evalcls. The reported runtimes in Table 1
for phase I include both preprocessing and partitioning – the latter consuming
most of the time. Notice that partitioning is based on lookahead. Hence, this
part can relatively easy be parallelized. Since solving cubes requires more time
than creating them, this optimization is left for future work. march cc outputs
an iCNF file which concatenates the simplified formula and a line for each cube.

For phase II of cube-and-conquer, the iCNF file is provided to iLingeling.
We used a 12-core-machine during this phase. On such a machine, iLingeling
starts 12 worker threads using separate lingeling solvers. Idle threads ask for
the first cube that has not been dealt with by another thread. After receiving a
cube, lingeling solves the reduced formula of the first phase with the cube as
assumptions. After a cube is refuted, the clause database of the corresponding
lingeling is reduced as discussed in Section 6.1. A thread terminates either
when a solution is found by one of the 12 solvers or when no new cube is available.
iLingeling terminates when all threads are terminated.

Table 1 shows the results of our cube-and-conquer implementation on hard
SAT 2009 application instances. The experiments are run on a two 6-core AMD
Opteron 2435 machine from 2009. This machine, part of a cluster, has 32GB
main memory and each job had a memory limit of 2.5GB per core. Additionally
it shows the results of three alternative solvers, which we obtained from [16]:
– Plingeling 276, a multi-core portfolio solver using 12 cores [5].
– ManySAT 1.5, multi-core portfolio solver using 4 cores [11].
– PT-Learn, an iterative partitioning solver with learning running on a grid [16].

The portfolio solvers Plingeling and ManySAT were run on exactly the same
hardware as our implementation, while PT-Learn was run on the M-grid envi-
ronment consisting of nine clusters with CPU’s from 2006 to 2009.

When we compare our approach with the two portfolio solvers Plingeling
and ManySAT, then cube-and-conquer solves several more of these hard instances.
Portfolio solvers are stronger on the three huge instances 9dlx* and sortnet*.
A possible explanation could be that these instances must be “easy” relative to
their size. Therefore, lookahead techniques can not really help the CDCL solvers.

The PT-Learn solver shows on most instances comparable performance to
cube-and-conquer – although the latter is an order of magnitude faster on the
eq.atree.braun* and gss* benchmarks. The comparison of both solvers in Table 1
however is biased towards PT-Learn: the experiments are run on similar hard-
ware, but PT-Learn runs up to 60 jobs at the same time, while cube-and-conquer
runs at most 12 jobs. PT-Learn suffers a bit from delays, while our solver runs
on one machine. So, the presented results are suggesting that cube-and-conquer
is actually the strongest solver on these hard application benchmarks.

Additional experiments suggest that our current implementation of cube-and-
conquer is not optimal yet. For several instances, we observed improved real time
using less than 12 cores. E.g., our 4 core cube-and-conquer experiments dated-5-
19-u in 901 seconds. Also, total-10-17-u was solved in 2632 seconds using a single
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Table 1. Results on benchmarks of the SAT 2009 application suite that were not solved
during that competition. S denotes satisfiable, U denotes unsatisfiable. Phase I uses
lingeling for preprocessing and march cc for partitioning. The column I shows the
total time (in seconds) of both tools on a single core. Phase II uses iLingeling to solve
the cubes. Both the total time (sum of all threads) and the real time are listed. For
the other solvers only the real time is provided which originate from [16]. — denotes
that the timeout of 4 hours (14400 seconds) was reached.

S number I II II Plingeling ManySAT PT-Learn

Benchmark U of cubes total total real real real real
9dlx vliw at b iq8 U 84 284 — — 3256 2750 —
9dlx vliw at b iq9 U 40 314 — — 5164 3731 —
AProVE07-25 U 98320 168 81513 6858 — — 9967
dated-5-19-u U 28547 478 5601 2538 4465 18080 2522
eq.atree.braun.12 U 86583 115 3218 269 — — 4691
eq.atree.braun.13 U 83079 106 17546 1466 — — 9972
gss-24-s100 S 339398 1853 14265 1191 2930 6575 3492
gss-26-s100 S 493870 1517 66489 5547 18173 — 10347
gus-md5-14 U 78488 649 — — — — 13890
ndhf xits 09 UNS U 39351 128 — — — — 9583
rbcl xits 09 UNK U 61653 210 132788 16900 — — 9819
rpoc xits 09 UNS U 36733 255 104552 20665 — — 8635
sortnet-8-ipc5-h19 S 583 271 48147 4023 2700 79010 4304
total-10-17-u U 19773 948 5927 5561 3672 10755 4447
total-5-15-u U 7865 192 — — — — 18670

core. This time is almost half the 12 core real time and faster than the other
parallel SAT solvers. Notice that for both instances the real time is relatively
close to the total time, indicating that solving a certain cube requires most of
the computational cost.

8 Conclusions

We presented the novel SAT solving approach cube-and-conquer which is a very
powerful method to solve hard CNF formulas. Our approach combines sophisti-
cated lookahead decision heuristics with the efficiency of CDCL solvers. Results
on hard van der Waerden benchmarks using our basic method show reduced com-
putational costs up to a factor 20 compared to the fastest “pure” SAT solver.
Moreover, using our cutoff mechanism, we were able to apply cube-and-conquer
on hard application instances of the SAT competition. As a result, we outperform
on most of these benchmarks the state-of-the-art parallel SAT solvers.

While this paper focused on the offline version of cube-and-conquer (i.e., a
strict separation between both phases), we plan to implement an online version
in the future. By integrating the method into a single solver, the phases can
communicate with each other. For instance, the cube creation phase may select
more effective decision literals if it knows which variables were frequently part
of AnalyzeFinal . Also, if a cube appears hard to solve, the conquer phase can
request additional assumptions.
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16. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Grid-based SAT solving with iterative

partitioning and clause learning. In: CP 2011. LNCS, vol. 6876 (2011)
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