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ABSTRACT
A collection of n − 2 idempotent symmetric quasigroups of order

n is called a golf design if all the quasigroups in the collection are

mutually disjoint. Two golf designs are said to be orthogonal if

any idempotent symmetric quasigroup from one golf design has

an orthogonal mate in the other golf design, and it is also called

an orthogonal golf design (OG(n)). The existence of orthogonal golf
designs is an open problem in combinatorial design theory. In this

paper, we describe a method for solving some open cases using

automated reasoning tools, employing both symmetry breaking and

heuristic decision. The experimental results show that our method

is highly efficient and it indeed allowed us to get some positive

results in reasonable time. In particular, we apply state-of-the-art

SAT solvers and constraint solvers to decide the non-existence of

some instances, which can produce a formal proof.
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1 INTRODUCTION
Combinatorial design [8] has long been the interest of both mathe-

maticians and computer scientists. With a number of new compu-

tational approaches appeared, some problems that used to be open
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have been solved in recent decades. The most notable of these com-

putational approaches is automated reasoning. Euler’s conjecture

about the existence of orthogonal Latin squares of order 10, which

used to be a famous open problem and failed at computer search in

1963 [20], can now be solved by the state-of-the-art automated rea-

soning tools in tens of seconds. At the end of the last century, many

open problems about quasigroups, such as QG2 to QG9, have been
solved by some finite-model generators such as MGTP, FINDER,
SEM, MACE4 and propositional satisfiability provers SATO, DDPP,
respectively [13, 23, 28–31]. In recent years, Marijn Heule et al.

solved the boolean pythagorean triples problem via a parallelized

SAT solver with 800 cores in about 2 days [15]. Curtis Bright et

al. developed a SAT+CAS paradigm of coupling SAT solvers with

computer algebra systems [2, 33], which is capable of enumerating

Williamson matrices of even order n < 65 [3] and all Golay pairs of

length up to 25 [4].

In this paper, we focus on some open problems about the large set
of quasigroups. The large set problem, which seeks to find a set of

combinatorial objects rather than one, is a classic and challenging

research topic in combinatorial design theory. The concept of large
set emerged in the 1850s [6] and the large set of idempotent quasi-

groups was proposed at the end of 1980s [25]. Due to its difficulty in

construction, any progress of the large set is something anticipated

[5, 27]. Establishing the existence of some cases of moderate order

via computer can provide support for mathematicians to further ex-

plore general issues. Sometimes a large object can be produced from

smaller ones via mathematical construction. Besides, many hard

combinatorial problems related to quasigroups also have potential

value in the field of cryptography [18, 22].

A collection of n− 2 idempotent symmetric quasigroups of order

n is called a large set if any two of them are disjoint. It is also

called a golf design. The existence of golf designs has been solved by

Teirlinck [24], Colbourn and Nonay [9], and Chang [7]. However,

the existence of orthogonal golf designs (OG) is an open problem.

And, it is strongly related to another open problem called Room
square [21, 26].

We attempt to further study the open cases of OG. These chal-
lenging problems are difficult to solve via automated reasoning

tools directly, such as SAT solvers, CSP solvers (Constraint Satis-

faction Problem solvers) and finite-model generators. Based on our

test, no instance can be solved in a week on a personal computer

when n ≥ 9. The tremendous computation burden promotes us to

eliminate isomorphic (symmetric) search spaces and seek a more

powerful heuristic decision.
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In order to avoid a lot of symmetric search spaces, we add some

symmetry breaking constraints to the model and reformulate the

problem. Designing disjoint quasigroups and orthogonal quasi-

groups are the crux of the problem. The added constraints can

reduce the isomorphic situations we identified in disjointness. For

orthogonality, we reformulate the orthogonal mate finding prob-

lem as the transversal finding problem. Euler originally used this

technique to investigate his conjecture in 1779. We modify the tech-

nique and make it adapt to the idempotent symmetric quasigroup.

We also design a heuristic search procedure which can explore

some areas with high priority.

The experimental results show that our method can greatly im-

prove the solving efficiency. Some open cases, which cannot be

solved in a week before, can now be solved within a day.

This paper is organized as follows: In Sect. 2, we introduce some

preliminaries about the orthogonal golf designs; In Sect. 3 and

4, we describe how to model the problem in logic language and

break symmetries; In Sect. 5, we illustrate the heuristic decision

and present the search framework; In Sect. 6 and 7, we present the

new results we found and the experimental evaluation; In the final

section, conclusions are drawn.

2 PRELIMINARIES
2.1 Basic Concepts
A quasigroup is denoted as an ordered pair (Q, ⊕), where Q is a

set and ⊕ is a binary operation on Q . For all constants a,b ∈ Q ,
equations a ⊕ x = b and y ⊕ a = b are uniquely solvable. |Q | is said
to be the order of (Q, ⊕).

For all x ∈ Q , if x ⊕ x = x (briefly x2 = x ), the quasigroup (Q, ⊕)
is idempotent.

A quasigroup is called symmetric if for any x ,y ∈ Q , x ⊕y = y⊕x
(briefly xy = yx ), We denote an idempotent symmetric quasigroup

of order n as ISQ(n).
Two idempotent symmetric quasigroups (Q, ⊕) and (Q, ⊙) are

called orthogonal if for any u,v ∈ Q , u , v , the equations

x ⊕ y = u,x ⊙ y = v

either have no solution, or have two solutions.

Two idempotent symmetric quasigroups (Q, ⊕) and (Q, ⊙) are
said to be disjoint if for all x ,y ∈ Q , x ⊕ y , x ⊙ y whenever x , y.

A large set of idempotent symmetric quasigroups is a collection

of idempotent symmetric quasigroups {(Q, ⊕k )|1 ≤ k ≤ n − 2)}, if
any two of them are disjoint. It is also called a golf design.

It is known that a pair of two orthogonal ISQ(n) is equivalent
to a Room square of side n. And for any odd n ≥ 1, n , 3, 5, there

exists a Room square of side n.

Definition 2.1. A collection of idempotent symmetric quasigroups

{(Q, ⊕k )|1 ≤ k ≤ d)} is called Room d-cube of side n if any two

idempotent symmetric quasigroups are orthogonal, where |Q | = n.

In general, for idempotent quasigroups, orthogonality implies

disjointness, but the reverse does not hold.

It is well-known that the multiplication table of a quasigroup

is a Latin square. Thus Latin squares and quasigroups are often

treated as synonyms. Figure 1 shows the multiplication table of two

idempotent symmetric quasigroups where Q = {0, 1, 2, 3, 4, 5, 6}.
They are orthogonal and disjoint.

Figure 1: Two orthogonal and disjoint ISQ(7)

2.2 The problem
There exists a golf design of order n for any odd n ≥ 3 with one

exception of n = 5. However, the existence of orthogonal golf

designs is still an open problem.

Definition 2.2. Two golf designs {(Q, ⊕k )|1 ≤ k ≤ n − 2)} and
{(Q, ⊙k )|1 ≤ k ≤ n − 2)} are called orthogonal if for any 1 ≤ k ≤
n − 2, (Q, ⊕k ) and (Q, ⊙k ) are orthogonal.

A pair of orthogonal golf designs of order n is denoted asOG(n),
and it can also be viewed as a large set of disjoint Room squares,

where the k-th Room square is corresponding to the orthogonal

symmetric quasigroups (Q, ⊕k ) and (Q, ⊙k ).
We use OG(n)_d to denote a pair of mutually orthogonal partial

golf designs {(Q, ⊕k )|1 ≤ k ≤ d)} and {(Q, ⊙k )|1 ≤ k ≤ d)}, where
d ≤ n − 2. It is easy to know that Room d-cube implies OG(n)_d .
Once the non-existence of someOG(n) is decided, it is still desirable
to know the greatest lower bound of d .

The research on Room d-cube has made a lot of progress over

the past decades, e.g. Room 4-cube of side 9 was first constructed

in 1985 [10] and lower bounds of some cases were summarized in

1992 [11]. However, the least upper bound of d and whether d can

reach n − 2 for many cases are still open problems.

Based on the known lower bounds of some Room cube instances,

which can be found in p590 of Handbook of Combinatorial Designs
[8], the lower bounds for OG(n)_d can be derived. Table 1 shows

the lower bounds for OG(n)_d of moderate sizes . ‘=’ indicates the

least upper bound. ‘≥’ means the best known result.

Table 1: Lower bounds for OG(n)_d (n ≤ 50)

n d n d n d n d

1 = 0 13 ≥ 5 25 ≥ 7 37 ≥ 15

3 = 0 15 ≥ 4 27 ≥ 13 39 ≥ 5

5 = 0 17 ≥ 5 29 ≥ 13 41 ≥ 9

7 ≥ 3 19 ≥ 9 31 ≥ 15 43 ≥ 21

9 ≥ 4 21 ≥ 5 33 ≥ 5 45 ≥ 5

11 ≥ 5 23 ≥ 11 35 ≥ 5 47 ≥ 23

n = 7 can be regarded as the real starting point for OG(n) prob-
lems. Our target is to improve the table and investigate whether d
can reach n − 2 for some instances.
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3 MODELING
In this section, we will introduce the method to model OG(n)_d
with logic language. Without loss of generality, we assume the

domain Q to be the set {0, 1, . . . ,n − 1}. ⊕k is actually a function

Lk : Q × Q 7→ Q . Similarly, ⊙k is a function L′k : Q × Q 7→ Q .

Lk (x ,y) denotes x ⊕k y and L′k (x ,y) denotes x ⊙k y. We also refer

to the cell in position (x ,y) of the Latin square Lk as Lk (x ,y).
Based on the definition of quasigroup, it is easy to know that:

∀x∀y∀z (y = z ∨ Lk (x ,y) , Lk (x , z))

∀x∀y∀z (x = z ∨ Lk (x ,y) , Lk (z,y))
(1)

and

∀x∀y∀z (y = z ∨ L′k (x ,y) , L′k (x , z))

∀x∀y∀z (x = z ∨ L′k (x ,y) , L′k (z,y))

The symmetric property (xy = yx ) can be encoded as:

∀x∀y (Lk (x ,y) = Lk (y,x)) (2)

and

∀x∀y (L′k (x ,y) = L′k (y,x))

The idempotent property (x2 = x ) can be encoded as:

∀x (Lk (x ,x) = x) (3)

and

∀x (L′k (x ,x) = x)

The disjoint property depicts that for any two Latin squares Lj
and Lk , Lj (x ,y) , Lk (x ,y) except for x = y (L′j and L

′
k as well). So

it can be written as:

∀x∀y (x = y ∨ Lk (x ,y) , Lj (x ,y)) (4)

and

∀x∀y (x = y ∨ L′k (x ,y) , L′j (x ,y))

(Q, ⊕k ) and (Q, ⊙k ) are orthogonal, based on the definition we

know that for all x1,y1,x2,y2 ∈ Q :

(x1 = x2 ∨ Lk (x1,y1) , Lk (x2,y2) ∨ L
′
k (x1,y1) , L′k (x2,y2))

(y1 = y2 ∨ Lk (x1,y1) , Lk (x2,y2) ∨ L
′
k (x1,y1) , L′k (x2,y2))

These formulas make up the basic model for the OG(n)_d prob-

lem. However, it is not that efficient for automated reasoning tools

and still has room for improvement.

4 IMPROVEMENTS IN MODELING
Arguably, many hard combinatorial problems allow isomorphic

solutions, and we say these problems have symmetries. Exploiting

symmetry can reduce the search time spent on revisiting equivalent

states over and over again when solving the problem. So, it is vital

for us to handle the symmetries of the problem at hand. It is common

to identify three main approaches to symmetry breaking.

(1) The first method is to add symmetry breaking constraints

before search starts, thereby making some symmetric so-

lutions unacceptable while leaving at least one solution in

each symmetric equivalence class.

(2) The second is to reformulate the problem so it has a reduced

amount of symmetries or make symmetries easy to identify.

(3) The final approach is to break symmetry dynamically during

search, adapting the search procedure appropriately.

Although symmetry breaking technique and automatic identifi-

cation of the symmetry have been concerned by researchers in the

past, some latent symmetries still need human intervention.

In this section, we will focus on improving the modeling and

reducing symmetries in it.

4.1 Symmetries in Disjointness
First, we examine the structure of the problem and identify sym-

metries in disjointness.

Lemma 4.1. If two idempotent symmetric quasigroups (Q, ⊕k )
and (Q, ⊙k ) are orthogonal, then they are also orthogonal after any
isomorphic permutation σ .

Lemma 4.2. If two idempotent symmetric quasigroups (Q, ⊕k ) and
(Q, ⊕j ) are disjoint, then they are also disjoint after any isomorphic
permutation σ .

Lemma 4.1 and 4.2 are quite easy to prove, so we will not detail

the proofs here.

Proposition 4.3. If there is anOG(n)_d consisting of {(Q, ⊕k )|1 ≤
k ≤ d)}, {(Q, ⊙k )|1 ≤ k ≤ d)}, then there exists an OG(n)_d such
that 0 ⊕k 1 = k + 1 (or Lk (0, 1) = k + 1).

Proof. According to x2 = x , we know that Lk (0, 0) = 0 and

Lk (1, 1) = 1. Since a ⊕k x = b and y ⊕k a = b are uniquely solvable,

Lk (0, 1) cannot be 0 or 1. All candidates for it include 2, 3, . . . ,n −
1 (n − 2 elements). Due to the property of disjoint, for any 1 ≤

k1,k2 ≤ d , Lk1 (0, 1) , Lk2 (0, 1). We denote the quasigroup (Q, ⊕k )

as L(j) which Lk (0, 1) = j + 1. Without loss of generality we assume

{(Q, ⊕k )|1 ≤ k ≤ d)} is {L(j1),L(j2), . . . ,L(jd )}where j1 < j2, . . . , <
jd . Then, we can construct a permutation σ in Cauchy form:

σ :

(
0 1 2 3 . . . d + 1 d + 2 . . . n − 1
0 1 j1 + 1 j2 + 1 . . . jd + 1 ∗ . . . ∗

)
The ‘*’ can be any legitimate number. Then we can perform σ−1

on {L(j1),L(j2), . . . ,L(jd )} and {(Q, ⊙k )|1 ≤ k ≤ d)}. Based on the

lemma 4.1 and 4.2, the orthogonality and disjointness still hold. It is

easy to know that {L(j1),L(j2), . . . ,L(jd )}σ
−1

= {L(1),L(2), . . . ,L(d )}.
□

Proposition 4.3 reveals that any d disjoint ISQ(n)s must be iso-

morphic to some {(Q, ⊕k )|1 ≤ k ≤ d)} where Lk (0, 1) = k + 1. So
we can take advantage of this property and add constraints to fix

Lk (0, 1):

Lk (0, 1) = k + 1 (5)

In this way, P(n − 2,d) − 1 isomorphic cases can be eliminated,

where P(n − 2,d) denotes d-permutations of n − 2.

4.2 Reformulation of Orthogonality
We know that finding a pair of orthogonal Latin squares is equiva-

lent to the transversal-finding phase[17, 19]. If one attempts to use

enumeration method searching an orthogonal mate, transversal-

finding paradigm will reduce a lot of computation compared with

direct finding method. As described by Donald Knuth in Volume 4A
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of TAOCP [17] transversal-finding paradigm will reduce a factor

of more than 10
12(!) when searching Euler’s conjecture of order

10. In [19], Feifei Ma et al. show that modeling an orthogonal mate

finding problem via transversal-finding paradigm can also improve

the efficiency of automated reasoning tools.

However, the original version of transversal-modeling cannot

be used directly for this problem, it needs some modification to

adapt the idempotent symmetric quasigroups. Wewill start with the

transversal-modeling for ordinary Latin squares and then clarify

how to migrate this paradigm to our problems.

Definition 4.4. A transversal in a Latin square is a collection of

positions, one from each row and one from each column, so that

the elements in these positions are all different.

A transversal in a Latin square L can be written as a vector, where
the i-th element records the row index of the cell that appears in

the i-th column. For example, in Figure 2, the positions marked

by ‘-’ (or ‘R’) make up a transversal of the Latin square L. The
transversal marked by ‘-’ is {(0, 0), (2, 1), (4, 2), (1, 3), (3, 4)} and it

can be abbreviated as a vector t =< 0, 2, 4, 1, 3 >. The indexes of t
represents the column.

Definition 4.5. Two transversals in a Latin square are said to be

disjoint, if their intersection is an empty set ∅ .

In the view of the transversal vector, two transversal vectors

t and t ′ are disjoint means for all i , t[i] , t ′[i]. In Figure 2, two

disjoint transversals of L are shown.

Definition 4.6. A matrix T is called a transversal matrix of Latin

square L, ifT is consisted of n mutually disjoint transversal vectors,

where |Q | = n.

In Figure 2, T is a transversal matrix of L. It is made up of five

disjoint transversal vectors. A transversal matrix is also a Latin

square, otherwise it will contradict definition 4.5.

Two ordinary Latin squares L and L′ are said to be othogonal,

if for all x1,x2,y1,y2 ∈ Q , the ordered pair (L(x1,y1),L
′(x2,y2)) is

unique.

Proposition 4.7. A Latin square L has an orthogonal mate, iff L
has a transversal matrix.

If L has a transversal matrix, that means it has n disjoint transver-

sals. For each transversal, we can assign a different element. Then,

we fill the assigned element in the position where the transversal

record and an othogonal mate L′ will be constructed. If L has an

othogonal mate L′, we can extract the positions from L′ which have

the same element and these will make up a transversal of L. For
each element we extract a transversal and these transversals will

form a transversal matrix.

Based on Proposition 4.7, finding an orthogonal mate for a Latin

square is equivalent to finding a transversal matrix for it.

Actually, transversal matrix can be seen an encoding matrix for

the othogonal mate. Since the transversal matrix focus on the po-

sitions information rather than the elements themselves, a cluster

of isomorphic othogonal mates can be decoded from a transver-

sal matrix. Figure 3 shows that we can generate L′ and L′′ based
on the transversal matrix T . If we assign elements (0, 1, 2, 3, 4) to

each transversal in order, we can decode L′. When we assign ele-

ments (2, 0, 4, 1, 3) to each transversal, we can decode L′′. They are

isomorphic to each other and orthogonal to L in Figure 2.

Figure 3: Decode two isomorphic orthogonalmates of L from
transversal matrix T

If we interpret the i-th row transversal vector corresponding to

the element i , then each transversal matrix can decode only one

orthogonal mate. Formally, we describe the relationship between a

Latin square L and the transversal matrixT with the logic language

as:

∀x∀y1∀y2 (y1 = y2 ∨ L(T (x ,y1),y1) , L(T (x ,y2),y2))

Furthermore, we know that after exchanging any two rows of

the transversal matrix, it remains to be a transversal matrix. So we

can arrange the transversal vectors in transversal matrix to be lexi-

cographically ordered (e.g. fix T (x , 0) = x ) and (n! − 1) isomorphic

situations can be avoided. The formula ∀xT (x , 0) = x is called a

lex-leader constraint.

Finding two orthogonal ISQs is slightly different with ordinary

Latin squares. Due to the symmetric property, the ordered pair

(L(x1,y1),L
′(x2,y2)) is required to be unique in the upper triangular

matrix (or the lower). So the concept of the transversal needs to be

extended. We call it an ISQ-transversal.

Definition 4.8. An ISQ-transversal in an ISQ(n) is a collection of

(n + 1)/2 positions which are located in upper triangular matrix (or

the lower), one from each row and one from each column, so that

the elements in these positions are all different.

The ISQ-transversal is a partial transversal of length (n + 1)/2.
We still use an n-dimensional vector to record it and just some

positions are empty. These blanks can be filled according to the

property of symmetry.

We assume that Tk is an ISQ-transversal matrix of Lk and it

can be decoded as L′k . We interpret the i-th row ISQ-transversal

vector corresponding to the element i . Since the L′k is an idempotent

(x2 = x ) quasigroup, we can fix the diagonal of Tk :

∀x (Tk (x ,x) = x) (6)

In this context, the lexicographic order of the ISQ-transversal

matrix is fixed.

For ISQ(n), the orthogonality only concerns the upper triangular
matrix. We know that the elements in the Tk represent ‘row’, so

the relationship between Lk and Tk is:

∀x∀y1∀y2 (Tk (x ,y1) > y1 ∨Tk (x ,y2) > y2∨

y1 = y2 ∨ Lk (Tk (x ,y1),y1) , Lk (T (x ,y2),y2))
(7)
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Figure 2: Transversal vectors and transversal matrix of Latin square L

Formula (7) means that ifTk (x ,y1) ≤ y1 andTk (x ,y2) ≤ y2 then
we havey1 = y2∨Lk (Tk (x ,y1),y1) , Lk (Tk (x ,y2),y2)).Tk (x ,y1) ≤
y1 andTk (x ,y2) ≤ y2 specify that the elements of interest are taken

from the upper triangular matrix.

L′k is symmetric and this property is embodied in Tk as:

∀x∀y Tk (x ,Tk (x ,y)) = y (8)

Formula (8) help us fill the blanks of each ISQ-transversal vector

in the Tk .
It is easy to know that Tk is also a Latin square, otherwise two

different elements will occur in the same position of L′k . So we

have:

∀x∀y∀z (y = z ∨Tk (x ,y) , Tk (x , z))

∀x∀y∀z (x = z ∨Tk (x ,y) , Tk (z,y))
(9)

In orthogonal golf designs problem, L′k and L′j are disjoint. We

can prove it is equivalent to that Tk and Tj are disjoint under the
fixed interpretation context. For some x ,y and x , y, if Tk (x ,y) =
Tj (x ,y) = v then we can deduce a conflict that Lk (v,y) = Lj (v,y) =
x and vice versa. So we have:

∀x∀y (x = y ∨Tk (x ,y) , Tj (x ,y)) (10)

5 THE SEARCH FRAMEWORK
We use formulas (1)∼(10) to model the OG(n)_d problems. The

formulas are in logical conjunction. This is the standard input form

for mainstream automated reasoning tools and the abbreviation

is called clause set. A clause set is a set of clauses and represents

a conjunction of the clauses in the set. A clause is a set of literals

(atoms or their negations) and represents a disjunction of the literals

in the set.

Even though a lot of isomorphic situations have been eliminated

in this model, few open instances can be solved directly by au-

tomated reasoning tools (e.g. SAT solvers, CSP solvers and finite

model generators) in a week. Since the search space is exponential,

the general search strategies often failed in giving a result within a

reasonable time on a personal computer.

In this case, we want to explore some subspaces with high pri-

ority. We know that an OG(n)_(d + 1) should be extended from a

knownOG(n)_d . So, once we find anOG(n)_d , we try to improve it

to OG(n)_(d + 1) at first and exhaust the subspaces expanded from

OG(n)_d .

Algorithm 1: The search framework for OG(n)

Input: n, lb
Output:Maxd ,MaxModel

1 for d ← lb to n − 2 do /* Initialization */
2 Fd ← Γd ;

3 Model(n)_d ← UNSAT ;

4 end
5 Maxd ← 0;

6 MaxModel ← UNSAT ;

7 while d ≥ lb do
8 Fd ← Fd ∪Model(n)_d ;

9 Model(n)_d ← ARsolver (Fd ) ;

10 if Model(n)_d , UNSAT then
11 if d > Maxd then
12 Maxd ← d ;

13 MaxModel ← Model(n)_d ;

14 end
15 Fd+1 ← Γd+1 ∪Model(n)_d ; /* Fix OG(n)_d */

d ← d + 1 ;

16 else
17 Fd ← Γd ;

18 d ← d − 1; /* Backtracking */

19 end
20 end
21 returnMaxd andMaxModel

Algorithm 1 is the search framework. The variable lb denotes the

greatest lower bound we know. The variable Maxd is the largest

d the process has found andMaxModel stores the corresponding
model. ARsolver () denotes an automated reasoning solver. IfMaxd
becomes greater than lb for some n in search process, it means that

we find a better lower bound for this instance. Γd denotes the initial

clause-set consisting of (1)∼(10). In logic, the model can also be

denoted as a clause-set, so we useModel(n)_d to denote the model

clause-set andModel(n)_d to represent its negation.UNSAT means

empty set or {False} andUNSAT is {True}. Fd ← Fd∪Model(n)_d
means we add the negation of model clause-set to Fd . It can remove

the model found by the solver in the previous iteration from the
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solution space of Fd . The operation Fd+1 ← Γd+1 ∪ Model(n)_d
generates the clause-set of OG(n)_d + 1 which is trying to expand

from the OG(n)_d found just now.

We choose the CSP solver as the core automated reasoning en-

gine, because formula (1) and (9) can be optimized as the global

constraint ‘Alldifferent’, and a lot of works are devoted to improving

the reasoning efficiency of ‘Alldifferent’ constraints for CSP solvers

[1, 12, 32].

In this framework, one can choose a state-of-the-art SAT solver

as a substitute for the CSP solver. Due to the finite domain Q ,
these formulas can also be translated to propositional logic (SAT)

formulas. The translation method can be found in [16] and it will

be omitted in this paper. Based on our experiments, there is no

essential difference between them for this problem. Nevertheless,

the SAT solver cannot help us get more results, and it is slightly

slower than the CSP solver in the solving process.

Actually, the search process hardly ever terminates in a reason-

able time on a personal computer. However, an improved Maxd
can be found in a reasonable time.

6 NEW RESULTS
With the help of symmetry breaking and search framework, the effi-

ciency for findingOG(n)_d is improved.We found some new results

and list them in Table 2. The details aboutOG(13)_6,OG(15)_7 and
OG(17)_7 are listed in (http://www.square16.org/automatedreasoning/

op/).

For n = 7, we prove that OG(7)_4 does not exist via SAT solver

and the greatest d is equal to 3. The state-of-the-art SAT solver

supports emission of a standard unsatisfiability proof which can be

verified by a checker [14, 15].

Table 2: New results

Order n Original results New results

7 d ≥ 3 d = 3

13 d ≥ 5 d ≥ 6

15 d ≥ 4 d ≥ 7

17 d ≥ 5 d ≥ 7

Some mathematicians conjecture that for every odd n ≥ 7, the

least upper bound of d is (n − 1)/2 for the Room d-cube problem.

One of the fact is Room d-cube of side n implies OG(n)_d . So we

also conjecture thatd = (n−1)/2 forOG(n) problems. The existence

of some OG(n)_(n − 1)/2 of small order such as OG(7)_3, OG(9)_4,
OG(11)_5, OG(13)_6, OG(15)_7 are consistent with the conjecture.

It is noteworthy that if one can prove the least upper bound of d
is (n − 1)/2 for OG problem, then one can conclude that it is also

the least upper bound for Room d-cube problem.

7 EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency of our method on a range

of OG problems. The experiments are performed on a Dell laptop

with Intel(R) Core (TM) i7-6700 CPU (3.40GHz), operating system

Ubuntu 16.04 and 16G memory.

The acceleration effect of adding symmetry breaking constraints

for disjointness is conclusive. So the experimental evaluation for it

will be omitted. Our experiments evaluate mainly the effectiveness

of the revised transversal-finding technique and heuristic decision.

7.1 The Benefit of Transversal Modeling
The transversal-finding paradigm is used to accelerate the orthogo-

nal mate finding. We compare it with the straightforward method.

Both methods add symmetry breaking constraints for disjointness,

and the only difference is that one uses the transversal modeling

while the other does not.

In the experiments, we try to find some OG(n)_d where d is not

large for the straightforward method. When d = 1, it is equivalent

to finding two mutually orthogonal ISQ(n)s. In order to eliminate

the effect of solvers, we conduct experiments on different kinds of

automated reasoning tools representing the state-of-the-art in their

own respective categories. Minizinc is a CSP solver, and Glucose is
a SAT solver which is based on Minisat and has won many awards

in recent SAT competitions. The results are shown in Table 3.

We can see that the transversal-finding paradigm significantly

improves the solving efficiency. It has obvious acceleration effect

for different kinds of solvers. With the increase of n and d , the
advantage of this method becomes more and more remarkable.

Based on the experiments, we found that the CSP solver is more

suitable for solving this problem. So we choose the CSP solver as

the core engine to tackle the open cases.

7.2 The Benefit of Search Framework
Without the help of the search framework, only OG(15)_6 and

OG(7)_4 can be solved in a day with the symmetry breaking tech-

nique. We failed in searching the other open instances in a week.

Algorithm 1 searches some subspaces with high priority and the

results show that it is really effective for these problems. Algorithm

1 never terminates within a week in our experiments except for

n = 7. But, once the variableMaxd is updated, it means that we find

a new result. We recorded the time interval between two successive

Maxd updates. The experimental data are listed in Table 4. The

total time to find OG(13)_6, OG(15)_7 and OG(17)_7 are shown in

the last column.

Table 4: The run time for updatingMaxd

n d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 Total

7 0.8s - - - - - -

9 - 8.7h >1w - - - -

11 - - 8.6h >1w - - -

13 - - 2.6m 1.6h >1w - 1.64h

15 - 33.2s 34.7m 1.6h 19.5h >1w 21.67h

17 - - 2.5h 10.2h 44.8m >1w 13.44h

The instances OG(13)_6, OG(15)_7 and OG(17)_7 which cannot

be solved in a week can now be tackled in a day, demonstrating the

effectiveness of the heuristic decision. Besides, the general trend is

that the closer the d is to (n − 1)/2, the harder it is to solve.
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Table 3: The run times of different methods in solving OG(n)_d

Instance

Minizinc Glucose 4.1 Glucose (Parallel)

Transversal Straightforward Transversal Straightforward Transversal Straightforward

OG(7)_1 0.23s 0.38s 0.02s 0.02s 0.01s 0.04s

OG(7)_2 0.34s 0.45s 0.03s 0.03s 0.03s 0.08s

OG(7)_3 0.35s 2.32s 0.19s 0.14s 0.35s 0.07s

OG(7)_4 114s 143.54s 35.98s 104.52s 10.97s 37.65s

OG(9)_1 0.26s 0.51s 0.12s 0.12s 0.08s 0.16s

OG(9)_2 0.36s 0.81s 0.25s 1.07s 0.19s 0.85s

OG(9)_3 12.20s 86.24s 6.48s 565.69s 1.62s 440.05s

OG(11)_1 0.44s 0.73s 0.49s 2.49s 0.40s 0.54s

OG(11)_2 0.60s 2.50s 1.33s 11683.45s 0.80s 6882.6

OG(11)_3 2.74s 10.37s 3384.58s >1 day 182.84s >1 day

OG(11)_4 2754.34s 10279.00s >1 day >1 day >1 day >1 day

OG(13)_1 1.91s 4.74s 1.90s 11.44s 2.13s 128.66s

OG(13)_2 2.31s 25.13s 209.84s >1 day 57.46s >1 day

OG(13)_3 4.72s 321.45s >1 day >1 day >1 day >1 day

8 CONCLUSIONS
This paper describes an application of automated reasoning tech-

niques and tools to an interesting problem in combinatorics: the

orthogonal golf designs (OG). The OG of moderate orders which

are difficult for mathematical methods can also be quite challenging

for computers. We present some effective solving strategies for this

problem: symmetry breaking and heuristic decision. As a result, we

find a number of new instances and prove the least upper bound of

OG(7). Beside, we conjecture that the least upper bound of OG(n)
is (n−1)/2, which is consistent with the conjecture of another open

problem with strong relevance called Room d-cube.
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