
Journal on Satisfiability, Boolean Modeling and Computation 1 (2014) XXX

QBF Gallery 2014:
The QBF Competition at the FLoC 2014 Olympic Games

Mikoláš Janota mikolas.janota@gmail.com

SAT Group
INESC-ID Lisboa, Portugal

Charles Jordan skip@ist.hokudai.ac.jp

Graduate School of Information Science and Technology
Hokkaido University, Japan

Will Klieber wklieber@cs.cmu.edu

Software Engineering Institute
Carnegie Mellon University, USA

Florian Lonsing florian.lonsing@tuwien.ac.at

Institute of Information Systems
TU Vienna, Austria

Martina Seidl martina.seidl@jku.at

Institute for Formal Models and Verification
JKU Linz, Austria

Allen Van Gelder http://www.cse.ucsc.edu/~avg

Jack Baskin School of Engineering

University of California at Santa Cruz, USA

Abstract

The QBF Gallery 2014 was a competitive evaluation for QBF solvers organized as
part of the FLoC 2014 Olympic Games during the Vienna Summer of Logic. The QBF
Gallery 2014 featured three different tracks on formulas in prenex conjunctive normal form
(PCNF) including more than 1200 formulas to be solved. Gold, silver, and bronze track
medals were awarded to the solvers that solved the most formulas in each of the three
tracks. Additionally, the three participants that were most successful over the complete
benchmark set were awarded with Kurt Gödel medals, the official prizes of the FLoC 2014
Olympic Games.

In this paper, we give an overview of the setup and rules of the competition, briefly
review the participating solvers, and finally report on the results of the QBF Gallery 2014.

Keywords: Quantified Boolean formulas, QBF solving, QBF competition

1. Introduction

Quantified Boolean formulas (QBF) are an extension of propositional logic with explicit
existential and universal quantification over the propositional variables [19]. QBF satis-
fiability checking is PSPACE-complete, and, therefore, many problems from application
domains such as model checking, formal verification, planning, or synthesis can be effi-
ciently encoded in QBF [1]. This motivates the effort to improve QBF solving technology,

c©2014 Delft University of Technology and the authors.

http://www.cse.ucsc.edu/~avg


Janota et al.

with the hope that QBF solvers become general purpose PSPACE solvers which can be used
as blackboxes for solving PSPACE reasoning tasks. In recent years, considerable progress
has been made in QBF solving by many different research groups resulting in a variety of
available tools.

As in other research communities which build tools for automated reasoning, the QBF
community has a long tradition of organizing competitive events. The goal is to obtain
an objective evaluation of the available tools and to help potential users identify the QBF
tools that are most suitable for their applications. Further, the competitive nature of
such evaluations is an important driving force for the solver developers. This is because
competitions acknowledge the important but often-overlooked work spent on implementing,
improving and tuning tools. In addition, competitions can produce standard benchmark
sets which then serve as a uniform basis for the empirical evaluation of novel approaches
presented in future papers. That is, competitions are uniquely valuable in several respects.

In this paper, we report on the organization and results of the QBF Gallery 2014.
Since the QBF Gallery 2014 is an evolution of previous competitions, we begin by tracing
the history of these events in Section 2. Then, we introduce the participating solvers in
Section 3 and give an overview of the considered benchmarks in Section 4, before focusing
on the various kinds of experiments and results in Section 5. Finally, we conclude with an
outlook on future work.

2. Short History of QBF Competitions

For almost ten years, the QBF competition called QBF Eval1. was organized either annually
or biannually. The details and rules of these events were decided by the organizing commit-
tee together with an expert jury, a common process that does not provide for community
participation.

The first QBF Gallery was organized in 2013 as a different kind of event. The over-
all goal, to assess the state of QBF tools (especially solvers), was similar to the previous
QBF Eval events. However, the QBF Gallery 2013 was organized as a non-competitive,
community-driven event, where tool developers and users made decisions on the organiza-
tion. They were not only invited to submit their tools and benchmarks, but also to decide
which experiments would be performed. The results of these experiments were communi-
cated immediately to the participants, who could then submit updated versions of their
tools. See the QBF Gallery 2013 technical report [28] for further details on this event.

The 2014 edition of the QBF Gallery was organized as a part of the FLoC 2014 Olympic
Games2. in the style of a traditional competition. In 2014, there was a strict submission
deadline and the results were publicly announced at the QBF workshop, the SAT conference
and the FLoC 2014 Olympic Games Award ceremony. No intermediate feedback was given.
The QBF Gallery 2014 consisted of three tracks and for each track, gold, silver and bronze
medals were awarded to the three solvers which successfully solved the most formulas within
a given time frame. The three solvers with the best solving performance over all three tracks
were also awarded with Kurt Gödel medals, the official prizes of the FLoC 2014 Olympic
Games.

1. http://www.qbflib.org/qbfeval/

2. http://vsl2014.at/olympics/

2

http://www.qbflib.org/qbfeval/
http://vsl2014.at/olympics/


QBF Gallery 2014

3. Participating Solvers

The field of participants of the QBF Gallery 2014 consisted of six solvers in 14 different
configurations. In general, different configurations of a given solver differ in preprocessing
techniques. Often the solvers use external preprocessors like Bloqqer,3. QxBF,4. or the QBF
variant of Coprocessor5. (called Qprocessor) before passing the formula to the actual solver.
Four of the six solvers were newly submitted to the QBF Gallery 2014 and are described
later in this section.

The developers of the other two solvers (QuBE7.2 and ooq) kindly allowed us to use the
versions submitted to the 2013 edition of the QBF Gallery for reference purposes. The solver
QuBE7.2 [9] in configuration sqube is a search-based QBF solver employing the preprocessor
SqueezeBF [10]. The solver ooq6. is a search-based solver which recovers structure from the
CNF in order to perform dual propagation [13]. It participated in the configurations ooq13,
where no structure reconstruction and dual propagation is performed, dual ooq13, where
dual propagation is performed after structure reconstruction, and pre dual ooq13, which
additionally applies the preprocessor SqueezeBF.

All solvers accept formulas in prenex conjunctive normal form in the QDIMACS format
as input. A formula is in prenex conjunctive normal form (PCNF) if it is of the form
Q1x1Q2x2 . . . Qnxn.φ for Qi ∈ {∃,∀} and φ in conjunctive normal form (CNF). In the rest
of this section, we briefly describe the solvers submitted to the QBF Gallery 2014.

DepQBF The search-based QBF solver DepQBF7. [25] implements conflict-driven clause
learning and solution-driven cube learning [38, 24, 11]. Prior to solving, DepQBF analyzes
the structure of the input formula and computes the standard dependency scheme Dstd [33].
During the solving process, the standard dependency schemeDstd is used to exploit potential
independence of variables. Two variables x and y are independent in a PCNF ψ if their
positions in the quantifier prefix can safely be swapped without changing the truth value of
ψ. Solving may benefit from independence of variables because the linear ordering of the
quantifier prefix of ψ is relaxed.

DepQBF has been equipped with clause learning by long-distance resolution [8, 37]. How-
ever, the version submitted to the QBF Gallery 2014 only learns non-tautological clauses by
traditional Q-resolution [4] based on lazy QBF pseudo unit propagation (QPUP) [27]. Addi-
tionally, it comes with an algorithmic optimization of the implementation of cube learning.
DepQBF was submitted in the following configurations to the QBF Gallery 2014:

• cbdepqbf: A formula is first simplified by Bloqqer (version 31) [3], before it is for-
warded to the preprocessor Qprocessor, and finally solved by DepQBF. Qprocessor,
implemented by Norbert Manthey, is a QBF preprocessing tool based on the SAT
preprocessor Coprocessor [29].

• xbdepqbf: QxBF [26] (version 1.2) is a preprocessor which implements failed literal
detection for QBF. It calls the SAT solver PicoSAT8. [2] (version 951) as a library.

3. http://fmv.jku.at/bloqqer/

4. http://fmv.jku.at/qxbf/

5. http://tools.computational-logic.org/content/riss3g.php

6. http://www.cs.utoronto.ca/~alexia/ooq/

7. http://lonsing.github.io/depqbf/

8. http://fmv.jku.at/picosat/

3

http://fmv.jku.at/bloqqer/
http://fmv.jku.at/qxbf/
http://tools.computational-logic.org/content/riss3g.php
http://www.cs.utoronto.ca/~alexia/ooq/
http://lonsing.github.io/depqbf/
http://fmv.jku.at/picosat/


Janota et al.

The formula preprocessed by QxBF is forwarded to Bloqqer, and finally handed over
to DepQBF.

• depqbf: the plain solver DepQBF as described above without any preprocessing.

GhostQ The solver GhostQ9. is a DPLL-based solver that uses ghost variables to achieve
a version of the Tseitin transformation that is symmetric with respect to the existential and
universal quantifiers, as described in [22] and [21]. A dual propagation technique similar to
ghost variables was independently and contemporaneously developed in [12]. GhostQ tries
to reverse-engineer its CNF input file into circuit form, from which it obtains a set of clauses
and cubes with ghost variables.

GhostQ also has a capability to perform a limited version of the CEGAR learning used
by RAReQS (described below). A detailed treatment of this capability can be found in
Section 5.4 of [20]. To illustrate the basic idea, consider a QBF of the form ∀X∃Y.φ,
where φ is a propositional formula. Let πcand be an assignment to the variables in X such
that in the solver’s clause/cube database, no clauses are falsified and no cubes are satisfied
(even under Boolean constraint propagation (BCP)). Let πcex be a counterexample to πcand;
i.e., let πcex be an assignment to the variables in Y such that φ evaluates to true under
πcand ∪ πcex. CEGAR learning produces a set of clauses and cubes such that if they are
added to the clause/cube database, then for every assignment π′cand to X for which πcex is
a counterexample, π′cand will satisfy a cube (under BCP). GhostQ was submitted in three
configurations:

• cghostq: CEGAR learning is enabled.

• bcghostq: Same as cghostq except that first Bloqqer [3] is run on the input file. If
Bloqqer sufficiently simplifies the problem, then its output is used. Otherwise its
output is discarded and the solver proceeds with the original input file, since the
reverse engineering code employed by GhostQ currently cannot handle the output of
Bloqqer which removes structural information for simplifying the formula.

• ghostq: Plain solver without CEGAR learning.

hiqqer The QBF solver hiqqer10. consists of a csh script that invokes two preprocessors,
plodder and eqxbf, then passes the resulting file to the complete solver stepqbf. Two versions
were entered in the QBF Gallery:

• hiqqer1: This version invokes plodder, then eqxbf, then plodder again, then stepqbf.

• hiqqer3: This version invokes (plodder, eqxbf) three times, then plodder again, then
stepqbf. The reason for following eqxbf by plodder is that eqxbf cannot detect that
a QBF formula is easily true, whereas plodder has this capability. If preprocessing
solves the instance, the script exits with the appropriate return code.

9. http://www.cs.cmu.edu/~wklieber/ghostq/

10. Scripts and binaries of hiqqer are available at http://www.cse.ucsc.edu/~avg/EFL/. Source files may
be obtained for research purposes from its authors.

4

http://www.cs.cmu.edu/~wklieber/ghostq/
http://www.cse.ucsc.edu/~avg/EFL/


QBF Gallery 2014

The authors of hiqqer made modifications of publicly available tools. The names were
changed slightly to avoid confusion with the official versions of those programs. The solver
stepqbf is mostly a version of DepQBF dating from about 2012. This version predates
the QPUP [27] and long-distance resolution strategies [8]. The preprocessor eqxbf is an
extensive modification of qxbf [26] based on the ideas in [36]. The submitted version has
several enhancements that are not yet reported.

The preprocessor plodder is a moderate modification of Bloqqer [3] (flip the first five
letters of Bloqqer and it becomes plodder). The modifications attempt to improve the
performance of Bloqqer by reducing operational count limits in the public version. To this
end, the count limits are tailored based on instance statistics, such as numbers of variables
and clauses, as well as a possible user-supplied time budget.

RAReQS The solver RAReQS11. (Recursive Abstraction Refinement QBF Solver) is a
QBF solver that implements the ideas of counterexample guided abstraction refinement
(CEGAR) for QBF [14]. The initial idea comes from the AReQS algorithm, which solves
2-level QBFs [15, 16] (with prefixes of type ∃∀ and ∀∃). AReQS gradually expands the given
formula into its abstraction. This is done by choosing assignments to the inner quantifier;
these assignments are selected by the counterexample scheme. RAReQS generalizes this al-
gorithm to an arbitrary number of quantification levels by calling AReQS recursively (hence
the “R” at the beginning of the name). RAReQS is implemented in C++ and a recursive
call corresponds to a creation of a new object of the solver class. Each object maintains
the abstraction in a child object. It creates another object for verifying that the solution of
the abstraction (called the candidate) is indeed a solution. The exception to this pattern
are the leaf objects, which invoke a SAT solver. The underlying SAT solver used in the
implementation is minisat 2.2 [7].

The implementation has several optimizations. In order to avoid repetition of counterex-
amples, abstractions are maintained from one recursive sub-call to another, similar to the
way SAT solvers provide incremental interfaces. This incremental approach, however, tends
to lead to unwieldy memory consumption and, therefore, it is used only when a formula
with less than 4 quantification blocks is to be solved.

Apart from the standard refinement, which strengthens the abstraction, a clause is
generated that blocks the last failed candidate. Pure literals and unit propagation are used
to simplify the generated subformulas; this must be done carefully to avoid losing possible
solutions to abstractions. RAReQS was submitted in two configurations:

• brareqs: First the formula is given to the preprocessor Bloqqer and then it is handed
over to RAReQS.

• rareqs: the plain solver RAReQS as described above without any preprocessing.

4. Benchmark Sets

The QBF Gallery 2014 featured three different tracks: (1) the QBFLib track, (2) the Pre-
processing track, and (3) the Application track. In total, 1254 different formulas were

11. http://sat.inesc-id.pt/~mikolas/sw/areqs/

5

http://sat.inesc-id.pt/~mikolas/sw/areqs/


Janota et al.

name #formulas vars∗ clauses∗ alt.∗ ∃∗ ∀∗

QBFLib 276 28702 67461 12 13459 789

Preprocessing 243 11481 42778 6 6305 814

bomb 132 3644 238191 3 3629 14
dungeon 107 44509 350115 3 44504 5
reduction finding 104 2336 10895 2 2281 54
qbf-hardness 114 2893 10834 27 2611 123
planning-CTE 147 3297 612209 5 3295 2
sauer-reimer 131 15087 44332 3 14815 271

Table 1. Formula characteristics of the different benchmark sets: number of formulas (#formu-
las), average variable number (vars), average clause number (clauses), average number of quanti-
fier alternations (alt.), average number of universals/existentials (∃/∀)

considered. Table 1 contains the aggregated characteristics of the formulas (for the Ap-
plication track a more fine-grained characterization w.r.t. formula families is given). 18
formulas have more than 50 quantifier alternations, 5 formulas (all from the Preprocessing
track) have no quantifier alternation. The number of variables ranges from 70 to 770K, and
the number of clauses ranges from 200 to 5000K. A superset of the formulas has been exten-
sively used in the QBF Gallery 2013 and was available to the solver developers. We decided
against removing formulas previously solved by all solvers participating in the QBF Gallery
2013, because these formulas are important for checking the correctness of the solvers. In
the following, the benchmarks of the different tracks are discussed.

QBFLib Track The benchmark set of the QBFLib track contains 276 formulas. The
formulas originate from a set of 345 formulas extracted from the QBFLib12. in the context
of the QBF Competition 2012r213., which was an unofficial repetition of the QBF Eval 2012.
In contrast to previous benchmark sets, the formulas of this benchmark set are selected in
such a manner that (1) no formula family is overrepresented, and (2) formulas which have
been solved by most solvers in previous competitions are removed. The resulting sample
was evaluated extensively in the first edition of the QBF Gallery (see [28] for a technical
report) and the experiments showed that this sample is representative for the entire formula
collection. As several solvers make use of the preprocessor Bloqqer, we removed the 69
formulas that were directly solved by Bloqqer and used the remaining 276 formulas for
the QBFLib track of the QBF Gallery 2014. We decided to remove the formulas solved
by Bloqqer because we employed the count of solved formulas as the ranking scheme. If
we had kept these formulas then the solvers employing Bloqqer would have been awarded
points which were earned by Bloqqer. Note that we did not preprocess these formulas. This
benchmark set is rather heterogeneous and covers most formula families collected in the
QBFLib—each family contributes less than 10 formulas.

Preprocessing Track The goal of the Preprocessing track is to evaluate the behavior of
solvers on extensively preprocessed formulas where much structural information available

12. http://www.qbflib.org

13. http://fmv.jku.at/seidl/qbfeval12r2/

6

http://www.qbflib.org
http://fmv.jku.at/seidl/qbfeval12r2/


QBF Gallery 2014

in a PCNF formula was already exploited by a preprocessor to perform simplifications. The
2013 edition of the QBF Gallery included an experiment where we repeatedly applied the
preprocessors Bloqqer, variants of hiqqer without calling a complete solver, and SqueezeBF
on the formula set S of the QBF Competition 2012r2 in two different execution strategies.
This results in two different formula sets—we refer to them as S ′ and S ′′. For each formula
f ∈ S, we selected the preprocessed variant randomly either from S ′ or S ′′. Then, with
probability one half, we also applied the preprocessor Qprocessor, which was submitted as
a new preprocessor to the QBF Gallery 2014. Qprocessor applies a QBF-specific variant
of bounded variable addition (BVA) [30] and extended resolution to reduce the number of
clauses in a formula. To this end, fresh existentially quantified variables are introduced and
added to the rightmost existential quantifier block in the quantifier prefix.

The resulting 243 formulas that were not solved by Bloqqer were then included in the
benchmark set of the QBF Gallery 2014 Preprocessing track. The preprocessor Qprocessor
was applied on 130 formulas.

Application Track The Application track consists of 735 formulas stemming from recent
QBF applications that were submitted to the 2013 edition of the QBF Gallery. These
applications include

• reduction finding: instances encoding searches for complexity-theoretic reductions be-
tween various decision problems in the complexity class NL (nondeterministic logspace),
contributed by Charles Jordan and  Lukasz Kaiser [6, 17, 18];

• bomb and dungeon: formulas from a planning domain with uncertainty in the initial
state, contributed by Martin Kronegger, Andreas Pfandler, and Reinhard Pichler [23];

• planning-CTE: encodings of planning problems, contributed by Michael Cashmore [5];

• sauer-reimer: instances from QBF-based test generation, contributed by Paolo Marin [34];

• qbf-hardness: instances from bounded model checking of incomplete designs, con-
tributed by Paolo Marin [31].

5. Results of the QBF Gallery 2014

All experiments of the QBF Gallery 2014 were performed on the StarExec14. cluster. It
provided not only a reliable infrastructure for running the experiments but also an archive
for storing the results of this competition as a reference for future experiments.

In the following, we report the details of the conducted solver evaluations. First, we
recapitulate the rules of the competition, then we discuss the individual tracks in detail,
and finally we summarize the overall results. All reported runtimes are wall-clock time and
the newly submitted solvers did not produce any contradicting results. Only dual ooq13
reported “unsat” on the formula p20-5.pddl planlen=41 (Application track, family bomb)
which was decided to be “sat” by 9 other solvers.

14. https://www.starexec.org/

7

https://www.starexec.org/


Janota et al.

Rules Each of the three tracks was evaluated and analysed individually. In each track, the
three solvers which solved the most formulas were awarded a medal (gold, silver, bronze).
For each formula a time limit of 900 seconds (wall-clock time) and a memory limit of 7GB
was set. No parallel solvers participated.

Each solver could receive at most one medal in each track, i.e., if multiple configurations
of the same solver were ranked among the first three solvers, the developer was awarded the
higher-valued medal. The other medal was given to the developer of the next best solver.
This is because most solver configurations differed only by using external tools (i.e., using a
third-party preprocessor). The use of such tools is allowed, however it seems unfair to award
multiple prizes to a developer for the same solver core. This also avoids the possibility of
rewarding developers multiple times per track for multiple identical submissions (although
there were no such submissions). The overall best three solvers were additionally awarded
Kurt Gödel medals of the FLoC 2014 Olympic Games. Therefore, we accumulated the
results of the three tracks discussed above weighted by their numbers of formulas such that
the results of each track contribute to the same extent.

QBFLib Track Figure 1 summarizes the results of the QBFLib track. Details are shown
in Table 4 in the Appendix. Overall, 67 formulas were solved by no solver, 32 formulas
were solved by all solvers. Further, 13 formulas were solved by only one solver (brareqs (3),
GhostQ (2), hiqqer1 (1), hiqqer3 (1), pre dual ooq13 (2), rareqs (2), sqube (2)). The solver
GhostQ solved the most formulas (143 of 276) in the configurations cghostq and bcghostq,
where the latter uses Bloqqer if the formula shrinks to at least a certain size. The runtimes
of these two configurations are almost identical, indicating that in most cases, bcghostq
solves the formula which has not been preprocessed. In both cases the formula is passed to
the cghostq configuration of GhostQ. From 158 formulas with two quantifier alternations,
cghostq solved 96. In second place was DepQBF in configuration xbdepqbf (138 formulas)
and in third place was RAReQS in configuration brareqs (134 formulas). From the formulas
with two quantifier alternations, the solvers xbdepqbf and brareqs solved 70 and 88 formulas,
respectively. Figure 2 compares the runtimes of these three solvers in a pairwise manner.
Recall that 67 formulas could not be solved by any solver. Further, 92 formulas could not
be solved by either xbdepqbf or cghostq, 115 formulas could not be solved by brareqs or
cghostq, and 124 could not be solved by brareqs or xbdepqbf. With an average runtime
of 20 seconds, brareqs performs especially well on satisfiable formulas, whereas cghostq has
an average runtime of 84 seconds and xbdepqbf has an average runtime of 57 seconds. On
unsatisfiable instances brareqs uses approximately two/three times the average running time
of GhostQ and xbdepqbf. Both rareqs and DepQBF perform much worse if no preprocessing
is applied, indicating (also confirmed through the success of GhostQ) that the structural
information of the formulas could be used to improve solving.

Preprocessing Track The Preprocessing track was similar to the QBFLib track dis-
cussed above. The formulas used are almost the same, with the difference that they have
been extensively preprocessed. Therefore, most of the structural information available in
the formulas is used for performing the simplifications. This leads to results different to the
results of the QBFLib track.

Figure 3 summarizes the results of the experiments, the details are shown in Table 5. In
the Preprocessing track, the best three solvers (hiqqer3 (109), xbdepqbf (108), and brareqs

8



QBF Gallery 2014

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120  140

R
u
n
ti

m
e
 (

se
c)

Number of solved formulas

cbdepqbf
depqbf

xbdepqbf
hiqqer1
hiqqer3

bcghostq
cghostq
ghostq

brareqs
rareqs

sqube
dual_ooq13

ooq13
pre_dual_ooq13

Figure 1. Runtimes (sec) of QBFLib track

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

x
b

d
e
p

q
b

f

cghostq

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

b
ra

re
q

s

cghostq

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

b
ra

re
q

s

xbdepqbf

Figure 2. Pairwise comparison of the top-ranked solvers of the QBFLib track (runtimes in sec-
onds)

(107)) are very close w.r.t. the number of solved formulas and differ on only one formula.
Now, 91 formulas were solved by no solver and 29 formulas were solved by all solvers. Three
formulas were solved by one solver only (DepQBF, ooq13, and sqube).

Not surprisingly, the preprocessing employed by the different solver configurations shows
less effect or even negatively impacts the runtimes. For example, rareqs is faster than
brareqs, DepQBF is faster than cbdepqbf, and ooq13 is faster than dual ooq13, because little
structural information is available for recovering the dual representation of the formula.
The configurations of hiqqer and also xbdepqbf apply not only Bloqqer (or variants thereof)
but also use failed literal probing. This seems to still be effective.

9



Janota et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120

R
u
n
ti

m
e
 (

se
c)

Number of solved formulas

cbdepqbf
depqbf

xbdepqbf
hiqqer1
hiqqer3

bcghostq
cghostq
ghostq

brareqs
rareqs

sqube
dual_ooq13

ooq13
pre_dual_ooq13

Figure 3. Runtimes (sec) of Preprocessing track

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

h
iq

q
e
r3

xbdepqbf

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

h
iq

q
e
r3

rareqs

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

x
b

d
e
p

q
b

f

rareqs

Figure 4. Pairwise comparison of the top-ranked solvers of the Preprocessing track (runtimes in
seconds)

In the pairwise comparison of the three top-ranked solvers shown in Figure 4 it is clear
that hiqqer and DepQBF have a common code base and implement similar techniques.
The solver RAReQS which implements a CEGAR-based approach, performs better on most
formulas which were solved by xbdepqbf or cghostq.

Application Track Figure 5 summarizes the results of the Application track. The details
are shown in Table 6. Of the entire set, 16 formulas were only solved by brareqs, 8 formulas
were only solved by rareqs, 2 formulas were only solved by hiqqer1. Further, xbdepqbf,
hiqqer3, and GhostQ each solved one formula that could not be solved by any other solver.
83 formulas were solved by no solver and 112 formulas were solved by all solvers. By far
the most successful solver was brareqs (544 formulas), which solved 93 more formulas than

10



QBF Gallery 2014

hiqqer3 (431 formulas). In third place was hiqqer1 (422 formulas) followed by xbdepqbf (418
formulas).

If analysed family-wise, then for family bomb, dual ooq13 was the most successful solver,
solving 100 formulas. Most of the other solvers solved roughly 80 formulas of this set,
and only DepQBF, ooq13, and sqube solved fewer than 70 formulas. This family has two
quantifier alternations.

The dungeon family also contains formulas with two quantifier alternations. This set
was best handled by xbdepqbf and both versions of hiqqer followed by brareqs. For the
sauer-reimer family (also two quantifier alternations), cghostq solved 14 more formulas than
the basic version GhostQ followed by the solvers employing preprocessing with Bloqqer.

In the reduction finding family (two or three quantifier alternations), brareqs solves 15
more formulas than rareqs and about 35 more formulas than the majority of the solvers.
The qbf-hardness family is very suited to the solvers based on DepQBF. Here both variants
of hiqqer (87 formulas) and the two versions of DepQBF solved the most formulas (80
formulas). The solver brareqs could solve 69 formulas. Formulas of this set have between 10
and 60 quantifier alternations, indicating that search-based QBF solving as implemented in
DepQBF can effectively handle many quantifier alternations.

Finally, brareqs and rareqs could solve almost all formulas (145 and 146 out of 147
formulas) of the planning-CTE family, whereas the next best solver DepQBF (without pre-
processing) could solve less than half of the formulas. These formulas have eight quantifier
alternations.

The detailed comparison of the top-ranked solvers are shown in Figure 6. As hiqqer1
and hiqqer3 are two configurations of hiqqer, we also included the next best solver xbdepqbf.
The configurations of hiqqer and xbdepqbf show very similar behavior, while brareqs solves
the majority of the formulas faster underpinning its dominance in this track.

Overall Results Of the 1254 formulas, approx. 18% were not solved by any solver and
14% were solved by all solvers. In total, approximately 2500 hours of computing time
was needed to finish the experiments. The winners of the three Kurt Gödel medals were
determined as follows. We accumulated the results of the three tracks discussed above
weighted by their numbers of formulas. In the official award ceremony, the medals were
given to RAReQS with configuration brareqs (2.81 points), hiqqer with configuration hiqqer3
(2.35 points), and DepQBF with configuration xbdepqbf (2.30 points). Note that these three
solvers were also the solvers which solved the most formulas overall. As we have seen above,
however, the ranking of the individual tracks partly gives a different picture.

Table 3 shows the ranking under a different ranking scheme, namely the State-of-the-
Art-Contribution (SOTAC) ranking scheme as used in the CADE ATP System Competi-
tion15. (CASC). SOTAC is calculated as follows: the SOTAC value of each formula is the
inverse of the number of solvers which solved the formula. Then, the SOTAC value of each
solver is the average SOTAC value of the problems it could solve [35].

In the SOTAC ranking, the two configurations of RAReQS, i.e., rareqs without any
preprocessing and brareqs, the version with preprocessing enabled, are ranked top, while
the plain version is ranked fifth in the solved instance count ranking. This indicates that
the CEGAR-based approach of RAReQS can be very efficient when other solving techniques

15. http://www.cs.miami.edu/~tptp/CASC/

11

http://www.cs.miami.edu/~tptp/CASC/


Janota et al.

QBFLib Prepro. App. sum weighted

brareqs 134 107 544 785 2.81
hiqqer3 133 109 431 673 2.35
xbdepqbf 138 108 418 664 2.30
hiqqer1 130 103 422 655 2.29
rareqs 79 107 414 600 2.20
cbdepqbf 125 101 361 587 2.02
bcghostq 143 61 352 556 1.86
cghostq 143 61 352 556 1.86
ghostq 124 62 333 519 1.76
pre dual ooq13∗ 117 63 318 498 1.70
depqbf 91 105 287 483 1.69
dual ooq13∗ 105 75 296 476 1.63
ooq13∗ 65 86 227 378 1.33
sqube∗ 94 61 209 364 1.21
∗hors concours

Table 2. Numbers of solved formulas for the three tracks QBFLib, Preprocessing (Prepro.) and
Applications (App.), the sum of solved instances over the three tracks (sum) and the sum weighted
w.r.t. formulas contained in the benchmark set of each track (weighted)

QBFLib Prepro. App. weighted overall

RAReQS 0,1451 0,1615 0,2153 0,5219 0,1759
brareqs 0,1517 0,1584 0,2030 0,5131 0,1665
dual ooq13∗ 0,0961 0,2217 0,1808 0,4985 0,1363
bcghostq 0,1588 0,0951 0,1175 0,3714 0,1096
cghostq 0,1588 0,0951 0,1175 0,3714 0,1096
hiqqer3 0,1222 0,1251 0,1194 0,3667 0,1009
hiqqer1 0,1200 0,1187 0,1188 0,3575 0,1000
GhostQ 0,1555 0,0890 0,1053 0,3499 0,0989
xbdepqbf 0,1143 0,1136 0,1125 0,3405 0,0951
cbdepqbf 0,1102 0,1100 0,1024 0,3226 0,0874
depqbf 0,1000 0,1197 0,0961 0,3158 0,0824
sqube∗ 0,1281 0,1002 0,0838 0,3120 0,0820
pre dual ooq13∗ 0,1235 0,0857 0,0932 0,3024 0,0812
ooq13∗ 0,0834 0,1242 0,0915 0,2991 0,0787
∗hors concours

Table 3. State-of-the-Art-Contribution (SOTAC) ranking for the three tracks QBFLib, Preprocess-
ing (Prepro.) and Applications (App.), the sum of the SOTAC for the three tracks (weighted), and
the SOTAC for the complete benchmark set (overall)

12



QBF Gallery 2014

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600

R
u
n
ti

m
e
 (

se
c)

Number of solved formulas

cbdepqbf
depqbf

xbdepqbf
hiqqer1
hiqqer3

bcghostq
cghostq
ghostq

brareqs
rareqs

sqube
dual_ooq13

ooq13
pre_dual_ooq13

Figure 5. Runtimes (sec) of Application track

are not. As we have seen above, RAReQS performs particularly well on the benchmarks of
the Application track.

In a virtual experiment, a portfolio approach using all 14 participating solvers each
running on its own core in parallel was evaluated. This virtual best solver (VBS) would
solve 1013 formulas (454 satisfiable, 559 unsatisfiable) with a total running time about half
shown by the best single solvers. The average runtime per formula (including timeouts) for
the VBS solver is 251 seconds, the average runtime per formula (including timeouts) for
brareqs, xbdepqbf, and hiqqer3 is 433 seconds, 476 seconds, and, respectively, 488 seconds.
When considering the minimal runtime for each formula, rareqs contributed about 25%
to the overall set of formulas solved by the VBS, brareqs contributed about 15%, and
depqbf, ooq13, hiqqer1, and dual ooq13 contributed around 10% each. The rest of the
solvers contributed between 1% and 5%. It is remarkable that all solvers contributed to
the VBS. This indicates that the various solving techniques are complementary in their
effectiveness and that portfolio solving, which has hardly been exploited for QBF solving
(one approach is the solver AQME [32], which is—to the best of our knowledge—currently
not being developed) could be a promising direction for future work.

6. Conclusion

The Olympic motto “The most important thing is not to win but to take part” also holds
for competitions like the QBF Gallery. Winning a prize is a good personal incentive for
the participating solver developers, but the overall contribution is much stronger. From
competitions we can learn what challenges the community has to tackle by considering
not the solved problems, but the problems that are currently out of scope for state-of-

13



Janota et al.

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

h
iq

q
e
r3

brareqs

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

h
iq

q
e
r1

brareqs

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

h
iq

q
e
r1

hiqqer3

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

x
b

d
e
p

q
b

f

brareqs

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

x
b

d
e
p

q
b

f

hiqqer3

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

x
b

d
e
p

q
b

f

hiqqer1

Figure 6. Pairwise comparison of the top-ranked solvers of the Application track

the-art solvers. Furthermore, we get a comparison of the current systems conducted in a
homogeneous environment.

In this paper, we presented the results of the QBF Gallery 2014, a competitive evalua-
tion of QBF solvers. The solvers competed in three different tracks for track medals and,
additionally, the overall best three solvers were awarded with a Kurt Gödel medal. As is
common in other competitions like the SAT competition, the ranking was based on the
number of solved formulas within a certain time. Interestingly, each track was won by a
different solver.

The benchmarks and logfiles of the competition are available at

http://qbf.satisfiability.org/gallery

In future editions of the QBF Gallery, more tracks should be considered. From a practi-
cal side, there is a strong interest in efficiently solving 2-QBF problems, i.e., formulas with
only one quantifier alternation. Further, several recent works underpin the conjecture that
the transformation to CNF is counterproductive for efficient QBF solving. Therefore, in
the context of the QBF Gallery, several people formulated a new format which is now avail-
able at the QBF Gallery website16.. This format is very simple to parse but also supports
non-prenex, non-CNF formulas with structure sharing. This makes it very attractive for
encoding application problems in QBF.

16. http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf

14

http://qbf.satisfiability.org/gallery
http://qbf.satisfiability.org/gallery/qcir-gallery14.pdf


QBF Gallery 2014

Acknowledgments

We would like to thank Aaron Stump and Cesare Tinelli for giving us resources on the
StarExec cluster and for providing us technical support with the cluster while running the
experiments. Further, we would like to thank our judges Daniel Le Berre, Horst Samu-
lowitz, and Christoph Wintersteiger and the contributors of benchmarks. Special thanks to
Norbert Manthey for providing Qprocessor. Martina Seidl was supported by the Austrian
Science Fund (FWF) under grant S11408-N23 and the Vienna Science and Technology Fund
(WWTF) under grant ICT10-018. Florian Lonsing was supported by the Austrian Science
Fund (FWF) under grant S11409-N23. Charles Jordan was supported by the Japan Society
for the Promotion of Science (JSPS) under grants 25106501 and 15H00847. Finally, we
would like to thank the anonymous referees for their valuable feedback on an earlier version
of this paper.

References

[1] Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience
and perspectives. Journal on Satisfiability, Boolean Modeling and Computation, 5(1-
4):133–191, 2008.

[2] Armin Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation, 4(2-4):75–97, 2008.

[3] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for QBF.
In Proc. of the 23rd Int. Conference on Automated Deduction (CADE 2011), volume
6803 of Lecture Notes in Computer Science, pages 101–115. Springer, 2011.

[4] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
Boolean formulas. Information and Computation, 117(1):12–18, 1995.

[5] Michael Cashmore, Maria Fox, and Enrico Giunchiglia. Planning as quantified Boolean
formula. In Proc. of the 20th European Conference on Artificial Intelligence (ECAI
2012), volume 242 of Frontiers in Artificial Intelligence and Applications, pages 217–
222. IOS Press, 2012.

[6] Michael Crouch, Neil Immerman, and J. Eliot B. Moss. Finding reductions automati-
cally. In Fields of Logic and Computation – Essays Dedicated to Yuri Gurevich on the
Occasion of His 70th Birthday, volume 6300 of Lecture Notes in Computer Science,
pages 181–200. Springer, 2010.

[7] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proc. of the 6th
Int. Conference on Theory and Applications of Satisfiability Testing Conference (SAT
2003), Selected Revised Papers, volume 2919 of Lecture Notes in Computer Science,
pages 502–518. Springer, 2003.

[8] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof gen-
eration and strategy extraction in search-based QBF solving. In Proc. of the 19th Int.
Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR

15



Janota et al.

2013), volume 8312 of Lecture Notes in Computer Science, pages 291–308. Springer,
2013.

[9] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Qube7.0. Journal on Sat-
isfiability, Boolean Modeling and Computation, 7(2-3):83–88, 2010.

[10] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. sQueezeBF: An Effective
Preprocessor for QBFs Based on Equivalence Reasoning. In Proc. of the 13th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2010), volume
6175 of Lecture Notes in Computer Science, pages 85–98. Springer, 2010.

[11] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term resolu-
tion and learning in the evaluation of quantified Boolean formulas. Journal of Artificial
Intelligence Research, 26:371–416, 2006.

[12] Alexandra Goultiaeva and Fahiem Bacchus. Exploiting QBF duality on a circuit rep-
resentation. In Proc. of the 24th AAAI Conference on Artificial Intelligence (AAAI
2010). AAAI Press, 2010.

[13] Alexandra Goultiaeva and Fahiem Bacchus. Recovering and utilizing partial duality in
QBF. In Proc. of the 16th Int. Conference on Theory and Applications of Satisfiability
Testing (SAT 2013), volume 7962 of Lecture Notes in Computer Science, pages 83–99.
Springer, 2013.

[14] Mikoláš Janota, William Klieber, Joao Marques-Silva, and Edmund Clarke. Solving
QBF with counterexample guided refinement. In Proc. of the 15th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2012), volume 7317 of Lecture
Notes in Computer Science, pages 114–128. Springer, 2012.

[15] Mikoláš Janota, Radu Grigore, and Joao Marques-Silva. Counterexample guided ab-
straction refinement algorithm for propositional circumscription. In Proc. of the 12th
European Conference on Logics in Artificial Intelligence (JELIA 2010), volume 6341
of Lecture Notes in Artificial Intelligence, pages 195–207. Springer, 2010.

[16] Mikoláš Janota and Joao Marques-Silva. Abstraction-based algorithm for 2QBF. In
Proc. of the 14th Int. Conference on Theory and Applications of Satisfiability Test-
ing (SAT 2011), volume 6695 of Lecture Notes in Computer Science, pages 230–244.
Springer, 2011.

[17] Charles Jordan and  Lukasz Kaiser. Benchmarks from reduction finding. In QBF
Workshop, 2013. http://fmv.jku.at/qbf2013/.

[18] Charles Jordan and  Lukasz Kaiser. Experiments with reduction finding. In Proc. of the
16th Int. Conference on Theory and Applications of Satisfiability Testing (SAT 2013),
volume 7962 of Lecture Notes in Computer Science, pages 192–207. Springer, 2013.

[19] Hans Kleine Büning and Uwe Bubeck. Theory of quantified Boolean formulas. In
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations, pages 735–760. IOS Press, 2009.

16

http://fmv.jku.at/qbf2013/


QBF Gallery 2014

[20] William Klieber. Formal Verification Using Quantified Boolean Formulas
(QBF). PhD thesis, Carnegie Mellon University, available at http://reports-
archive.adm.cs.cmu.edu/anon/2014/CMU-CS-14-117.pdf, 2014.

[21] William Klieber, Mikoláš Janota, Joao Marques-Silva, and Edmund Clarke. Solving
QBF with free variables. In Proc. of the 19th Int. Conference on Principles and Practice
of Constraint Programming (CP 2013), volume 8124 of Lecture Notes in Computer
Science, pages 415–431. Springer, 2013.

[22] William Klieber, Samir Sapra, Sicun Gao, and Edmund Clarke. A non-prenex, non-
clausal QBF solver with game-state learning. In Proc. of the 13th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2010), volume 6175 of Lecture
Notes in Computer Science, pages 128–142. Springer, 2010.

[23] Martin Kronegger, Andreas Pfandler, and Reinhard Pichler. Conformant planning as a
benchmark for QBF-solvers. In QBF Workshop, 2013. http://fmv.jku.at/qbf2013/.

[24] Reinhold Letz. Lemma and model caching in decision procedures for quantified Boolean
formulas. In Proc. of the Int. Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX 2002), volume 2381 of Lecture Notes in
Computer Science, pages 160–175. Springer, 2002.

[25] Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver. Journal
on Satisfiability, Boolean Modeling and Computation, 7(2-3):71–76, 2010.

[26] Florian Lonsing and Armin Biere. Failed literal detection for QBF. In Proc. of the
14th Int. Conference on Theory and Applications of Satisfiability Testing (SAT 2011),
volume 6695 of Lecture Notes in Computer Science, pages 259–272. Springer, 2011.

[27] Florian Lonsing, Uwe Egly, and Allen Van Gelder. Efficient clause learning for quan-
tified Boolean formulas via QBF pseudo unit propagation. In Proc. of the 16th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2013), volume
7962 of Lecture Notes in Computer Science, pages 100–115. Springer, 2013.

[28] Florian Lonsing, Martina Seidl, and Allen Van Gelder. The QBF Gallery: Behind
the Scenes. Accepted with subject to minor revisions by Artificial Intelligence; for a
preprint see CoRR, abs/1508.01045, 2015.

[29] Norbert Manthey. Coprocessor 2.0 - A flexible CNF simplifier. In Proc. of the 15th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2012), volume
7317 of Lecture Notes in Computer Science, pages 436–441. Springer, 2012.

[30] Norbert Manthey, Marijn J. H. Heule, and Armin Biere. Automated reencoding of
Boolean formulas. In Proc. of the 8th Int. Haifa Verification Conference (HVC 2012),
volume 7857 of Lecture Notes in Computer Science, pages 102–117. Springer, 2012.

[31] Christian Miller, Stefan Kupferschmid, Matthew D. T. Lewis, and Bernd Becker. En-
coding techniques, Craig interpolants and bounded model checking for incomplete de-
signs. In Proc. of the 13th Int. Conference on Theory and Applications of Satisfiability

17

http://fmv.jku.at/qbf2013/


Janota et al.

Testing (SAT 2010), volume 6175 of Lecture Notes in Computer Science, pages 194–
208. Springer, 2010.

[32] Luca Pulina and Armando Tacchella. AQME’10. Journal on Satisfiability, Boolean
Modeling and Computation, 7(2-3):65–70, 2010.

[33] Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean formulas. Jour-
nal of Automated Reasoning, 42(1):77–97, 2009.

[34] Matthias Sauer, Sven Reimer, Ilia Polian, Tobias Schubert, and Bernd Becker. Provably
optimal test cube generation using quantified Boolean formula solving. In Proc. of the
18th Asia and South Pacific Design Automation Conference, (ASP-DAC 2013), pages
533–539. IEEE, 2013.

[35] Geoff Sutcliffe. Proceedings of the 6th IJCAR ATP system competition (CASC-J6).
In CASC-J6, volume 11 of EPiC Series, pages 1–50. EasyChair, 2012.

[36] Allen Van Gelder, Samuel B. Wood, and Florian Lonsing. Extended failed-literal
preprocessing for quantified Boolean formulas. In Proc. of the 15th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2012), volume 7317 of Lecture
Notes in Computer Science, pages 86–99. Springer, 2012.

[37] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean
satisfiability solver. In Proc. of the 2002 IEEE/ACM Int. Conference on Computer-
aided Design (CAD 2002), pages 442–449. ACM, 2002.

[38] Lintao Zhang and Sharad Malik. Towards a symmetric treatment of satisfaction and
conflicts in quantified Boolean formula evaluation. In Proc. of the 8th Int. Conference
on Principles and Practice of Constraint Programming (CP 2002), volume 2470 of
Lecture Notes in Computer Science, pages 200–215. Springer, 2002.

18



QBF Gallery 2014

Appendix A. Detailed Results

solver #sat #unsat #total avg sat (s) avg unsat (s) time total (s)

cghostq 80 63 143 84.80 44.61 129294.94
bcghostq 80 63 143 88.28 47.79 129773.90
xbdepqbf 70 68 138 57.26 63.15 132502.62
brareqs 66 68 134 19.23 108.85 136472.02
hiqqer3 71 62 133 85.47 113.51 141806.63
hiqqer1 66 64 130 56.25 92.79 141051.90
cbdepqbf 63 62 125 68.97 81.58 145303.48
ghostq 68 56 124 72.52 52.16 144652.62
pre dual ooq13 64 53 117 92.15 49.11 151601.22
dual ooq13 60 45 105 81.06 51.09 161063.41
sqube 50 44 94 111.49 116.02 174479.85
depqbf 41 50 91 69.37 34.35 171062.03
rareqs 32 47 79 69.57 28.79 180879.88
ooq13 30 35 65 54.90 72.14 194072.36

Table 4. Details on results from the QBFLib track: number of solved satisfiable formulas (#sat),
number of solved unsatisfiable formulas (#unsat), total number of solved formulas (#total), average
runtime for satisfiable formulas in seconds (avg sat (s)), average runtime for unsatisfiable formulas
in seconds (avg unsat (s)), total runtime in seconds for all formulas

solver #sat #unsat #total avg sat (s) avg unsat (s) time total (s)

hiqqer3 63 46 109 138.93 116.85 134728.02
xbdepqbf 61 47 108 71.74 91.92 130197.09
rareqs 63 44 107 48.70 67.76 128450.44
brareqs 64 43 107 66.15 56.34 129056.86
depqbf 59 46 105 62.51 89.97 132027.15
hiqqer1 59 44 103 107.24 91.57 136356.71
cbdepqbf 59 42 101 79.24 86.34 136101.77
ooq13 50 36 86 57.24 87.18 147300.85
dual ooq13 49 26 75 42.94 108.10 156114.85
pre dual ooq13 44 19 63 68.80 181.84 168482.55
ghostq 46 16 62 60.59 155.25 168171.32
cghostq 43 18 61 51.26 120.72 168177.70
bcghostq 43 18 61 53.82 121.37 168299.07
sqube 40 21 61 67.99 71.52 168021.73

Table 5. Details on results from the Preprocessing track: number of solved satisfiable formulas
(#sat), number of solved unsatisfiable formulas (#unsat), total number of solved formulas (#total),
average runtime for satisfiable formulas in seconds (avg sat (s)), average runtime for unsatisfiable
formulas in seconds (avg unsat (s)), total runtime in seconds for all formulas

19



Janota et al.

solver #sat #unsat #total avg sat (s) avg unsat (s) time total (s)

brareqs 232 312 544 21.13 78.98 201446.67
hiqqer3 207 224 431 57.67 37.39 293913.56
hiqqer1 197 225 422 42.29 44.97 300152.10
xbdepqbf 199 219 418 44.81 51.74 305550.61
rareqs 142 272 414 14.30 48.41 304099.67
cbdepqbf 157 204 361 19.55 62.37 352394.35
cghostq 184 168 352 57.17 98.63 371791.52
bcghostq 184 168 352 58.48 99.68 372209.25
ghostq 182 151 333 63.34 104.28 389076.30
pre dual ooq13 151 167 318 50.24 103.95 400247.34
dual ooq13 87 209 296 34.61 131.90 425679.09
depqbf 157 130 287 61.49 60.55 420727.14
ooq13 92 135 227 37.15 138.42 479305.11
sqube 84 125 209 53.66 65.03 486036.72

Table 6. Details on results from the Application track: number of solved satisfiable formulas
(#sat), number of solved unsatisfiable formulas (#unsat), total number of solved formulas (#total),
average runtime for satisfiable formulas in seconds (avg sat (s)), average runtime for unsatisfiable
formulas in seconds (avg unsat (s)), total runtime in seconds for all formulas

20


	Introduction
	Short History of QBF Competitions
	Participating Solvers
	Benchmark Sets
	Results of the QBF Gallery 2014
	Conclusion
	Detailed Results

