
Truth Assignments as Conditional Autarkies

Benjamin Kiesl1, Marijn J.H. Heule2, and Armin Biere3

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
2 Computer Science Department, CMU, Pittsburgh, United States
3 Institute for Formal Models and Verification, JKU Linz, Austria

Abstract. An autarky for a formula in propositional logic is a truth
assignment that satisfies every clause it touches, i.e., every clause for
which the autarky assigns at least one variable. In this paper, we present
how conditional autarkies, a generalization of autarkies, give rise to novel
preprocessing techniques for SAT solving. We show that conditional au-
tarkies correspond to a new type of redundant clauses, termed globally-
blocked clauses, and that the elimination of these clauses can simulate
existing circuit-simplification techniques on the CNF level.

1 Introduction

Satisfiability (SAT) solvers have been successfully used for a broad spectrum
of applications ranging from formal verification [1] over security [2] to classical
mathematics [3,4]. This success came as a slight surprise because the translation
of problem instances from application domains into propositional logic can lead
to a loss of domain-specific information. However, this loss of information is of-
ten harmless since many domain-specific reasoning techniques (e.g., for Boolean
circuits or number theory) can be simulated by SAT-preprocessing techniques
such as blocked-clause elimination [5]. In this paper, we present further evidence
of this observation by introducing a new propositional reasoning technique that
simulates the removal of redundant inputs from Boolean circuits.

Our reasoning technique, which we call globally-blocked-clause elimination,
is strongly related to the concept of conditional autarkies [6]—a generalization
of autarkies [7,8]. Given a propositional formula in conjunctive normal form, an
autarky is a truth assignment that satisfies every clause it touches, that is, it
satisfies every clause of which it assigns at least one variable. For example, given
the formula (a∨ b)∧ (a∨ b∨ c∨ d)∧ (c∨ d), the (partial) assignment that makes
both a and b true is an autarky. In contrast, neither the assignment that makes
only a true nor the assignment that makes only b true are autarkies because
they touch clauses without satisfying them.

A conditional autarky is an assignment that can be split into two parts—the
conditional part and the autarky part—such that the autarky part becomes an
autarky after applying the conditional part to the formula. For example, after
making a true in the formula (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ c) ∧ (a ∨ d) we
obtain the formula (b ∨ d) ∧ (b ∨ c) ∧ (d) for which the assignment that makes b
and c true is an autarky. Hence, the assignment that makes a, b, and c true is a

conditional autarky with conditional part a although it is not an autarky. In fact,
every truth assignment is a conditional autarky with an empty autarky part, but
we are particularly interested in conditional autarkies with non-empty autarky
parts. We show that such conditional autarkies help us find redundant clauses
(i.e., clauses that can be removed from a formula without affecting satisfiability).
More specifically, we present globally-blocked clauses, a novel type of redundant
clauses that is strongly related to the conditional-autarky concept.

Globally-blocked clauses are a strict generalization of set-blocked clauses [9],
which themselves are a strict generalization of blocked clauses [10]. This means
that every set-blocked clause (and thus every blocked clause) is a globally-blocked
clause but not vice versa. The elimination of blocked clauses can improve the
efficiency of SAT solvers [11], first-order theorem provers [12], and solvers for
quantified Boolean formulas (QBF) [13,14]. Moreover, it can simulate several
reasoning techniques for Boolean circuits on the propositional level. Set-blocked
clauses form the basis of the satisfaction-driven clause learning [6] paradigm for
SAT solving, which can lead to exponential speed-ups on hard formulas compared
to traditional conflict-driven clause learning [15].

We show how the elimination of globally-blocked clauses simulates circuit-
reasoning techniques that could not be performed by SAT solvers so far. In a
preprocessing step for the actual solving, our approach takes a formula and tries
to find conditional autarkies with large autarky parts. It then uses the resulting
conditional autarkies to identify and eliminate globally-blocked clauses from the
formula, which results in a simplified formula that is easier to solve. In a more
theoretic part of the paper, we present several properties of conditional autarkies
and pin down their relationship with globally-blocked clauses and other existing
types of redundant clauses.

The main purpose of this invited paper is to discuss the concept of globally-
blocked clauses and relate it to conditional autarkies [6]. This concept was par-
tially described in section 2.2.4 of the PhD thesis of the first author [16]. In this
paper, we provide more details and also describe an algorithm for fast compu-
tation of multiple globally-blocked clauses from one arbitrary total assignment.
This algorithm has also been implemented in the SAT solver CaDiCaL. The
second purpose of this paper is to describe the history and applications of such
notions of redundancy as well as how these are used in clausal proofs.

2 Preprocessing, Redundancy, and Proofs

Preprocessing (simplifying a formula before search) and inprocessing (simplify-
ing a formula during search) [17] are crucial techniques in state-of-the-art SAT
solvers. This line of research started with bounded variable elimination, which al-
lows to significantly reduce the size of large industrial verification problems [18].
Bounded variable elimination removes variables from a formula—by combining
the variable elimination with substitution—if this removal does not increase the
size of the formula. More recently, some solvers even allow a small increase of
the formula size.

Another popular approach to preprocessing and inprocessing are so-called
clause-elimination techniques, which remove clauses from a formula without
affecting satisfiability. Examples are the two particularly well-known clause-
elimination techniques of subsumed-clause elimination [18] and blocked-clause
elimination [11]. Blocked-clause elimination simulates many circuit simplifica-
tion techniques on the CNF level and it allows the simulation of other high-level
reasoning techniques, such as the elimination of redundant Pythagorean triples,
which was crucial to solving the Pythagorean triples problem [19]. Several gener-
alizations of subsumed clauses and blocked clauses have been proposed to further
reduce the size of propositional formulas [20,21,22]. Moreover, clause-elimination
techniques boost the effectiveness of variable-elimination techniques since the re-
moval of clauses often enables further variable-elimination steps.

Although preprocessing techniques have contributed significantly to the im-
provement of SAT solvers in the last decade, they can also be expensive. To deal
with this issue, SAT solvers have shifted their focus from preprocessing to inpro-
cessing, meaning that only limited preprocessing is done initially and that later
on the solver interleaves additional variable and clause-elimination techniques
with the search process. One advantage of this is that inprocessing can simplify
a formula after important clauses have been learned, allowing for further sim-
plifications compared to preprocessing. As a matter of fact, inprocessing solvers
have been dominating the SAT competitions since 2013.

As a drawback, the incorporation of inprocessing has made SAT solvers
more complex and thus more prone to implementation errors and conceptual
errors [17]. Various communities that use SAT solvers have therefore expressed
interest in verifiable SAT solver output. For example, SAT solvers are used in
industry to show the correctness of safety-critical hardware and software, or in
mathematics to solve long-standing open problems. In both cases, it is crucial
that a SAT solver not just returns a simple yes/no answer but instead produces
verifiable output that certifies the correctness of its result—a so-called proof.

Constructing such proofs is a non-trivial issue as several inprocessing tech-
niques cannot be expressed succinctly in the resolution proof system, which was
commonly used in the past. This led to the search for stronger proof systems
that are well-suited for practical SAT solving, and it turned out that clause-
redundancy notions that form the theoretical foundation of clause-elimination
techniques can also act as ideal building blocks for stronger proof systems. The
DRAT proof system [23], which is based on the notion of resolution asymmetric
tautologies, has since become the de-facto standard proof system in SAT solv-
ing. DRAT is now supported by all state-of-the-art SAT solvers and there exist
formally-verified tools—in ACL2, Coq, and Isabelle [24,25]—that check the cor-
rectness of DRAT proofs. Such tools have not only been used for validating the
unsatisfiability results of recent SAT competitions [26] but also for verifying the
solutions of some long-standing math problems, including the Erdős discrepancy
conjecture, the Pythagorean triples problem, and Schur number five [3,19,4].

To strengthen the DRAT proof system even further, proof systems based
on stronger redundancy notions than resolution asymmetric tautologies have

been proposed, leading to the Propagation Redundancy (PR) proof system [27].
This proof system is surprisingly strong even without the introduction of new
variables, which usually is a key technique to obtaining short proofs. As has
been shown, there exist short PR proofs without new variables for pigeon hole
formulas, Tseitin formulas, and mutilated chessboard problems [28,29]—these
problem families are notorious for admitting only resolution proofs of exponential
size. Moreover, the PR proofs for these problems can be found automatically
using the satisfaction-driven clause learning paradigm (SDCL) [6,30], which is
a generalization of conflict-driven clause learning.

As DRAT has been shown to polynomially simulate the PR [28] proof system,
it is possible to transform PR proofs into DRAT proofs and then check their
correctness using a formally-verified checker, meaning that one can have high
confidence in the correctness of results obtained by SDCL.

Research on preprocessing, clause redundancy, and proofs has also expanded
beyond propositional logic. When solving quantified Boolean formulas, QBF
generalizations of blocked-clause elimination have been used successfully [13].
Also, the QRAT proof system [31] (a generalization of DRAT) allows the succinct
expression of virtually all QBF inprocessing techniques, and QRAT has given
rise to various new QBF preprocessing techniques, such as the elimination of
blocked literals [32] as well as of QRAT clauses and their generalizations [33,34].
The research on generalizing redundancy notions has also been extended to first-
order logic [35], where especially the elimination of blocked clauses has proven
to be a valuable preprocessing technique [12].

In the following, we present globally-blocked clauses, a new kind of redundant
clauses that generalizes existing notions of redundancy in propositional logic.

3 Motivating Example

Consider a single-output circuit F (I) (where I is a set of inputs) that can be
decomposed syntactically into F (I) = G(J,H(K)), where both G and H are
single output sub-circuits, and J and K partition the inputs I. If we want to
solve the satisfiability problem for F , i.e., the problem of deciding if there exists
a set of inputs such that F produces a 1 as its output (CIRCUIT-SAT), we can
proceed as follows: We show that G(J, x) is satisfiable, where x is a new variable,
and that H(K) can produce both 0 and 1 as its output. In many situations, if the
sub-circuit H is given, the second requirement can be shown easily using random
simulation. Checking satisfiability of G remains to be shown, but is hopefully
easier, since G is smaller than F .

This circuit-level technique is also called “unique sensitization” in the FAN
algorithm [36] and H would be called a “headline”. However, if we are only given
a CNF encoding of F , previously known CNF preprocessing techniques are in
general not able to perform such a simplification, whereas globally-blocked-clause
elimination in essence allows to remove all clauses of the CNF encoding of H.

To continue the example, assume for simplicity that the top-level gate of H
is an AND gate (the same arguments apply to arbitrary top gates of H). After

introducing Tseitin variables x for H, y and z for the AND gate inputs, etc., the
Tseitin encoding F ′ of F has the following structure

F ′(I, S, T, x, y, z) = G′(J, S, x) ∧H ′(K,x, y, z, T) with

H ′(K,x, y, z, T) = (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ y ∨ z)︸ ︷︷ ︸
Tseitin encoding of top AND gate in H

∧H ′′(K, y, z, T)

where S ∪ T ∪ {x, y, z} are new Tseitin variables. Note that F ′, G′, H ′ and H ′′

are in CNF. Further assume we find two assignments α and β over the variables
of H ′, which both satisfy H ′, i.e., α(H ′) = β(H ′) = 1, and α(x) = 1, β(x) = 0.

It is not that hard to find such assignments through local search or random
decisions and unit propagation. Actually, one can also start with a total as-
signment with these properties, which will then—by our algorithms—be pruned
down to range only over variables in H ′. These assignments are conditional
autarkies where the conditional part consists of the assignment to x and the
autarky part consists of the assignments to the other variables of H ′.

It turns out that the first two binary clauses encoding the top AND gate of
H contain the negation x of the condition in α, and the last ternary clause of
the AND gate contains the negation x of the condition in β. Moreover, these
three clauses are satisfied by the autarky parts of α and β. As we are going to
prove, this situation allows to deduce that the clauses are globally blocked and
thus redundant. After removing the three AND gate clauses, both conditional
autarkies α and β become autarkies, allowing to remove H ′ too.

Alternatively, blocked-clause elimination [11] or bounded variable elimina-
tion [18] would also remove H ′, since after removing the clauses of the top gate of
H cone-of-influence reduction applies, which is simulated by both techniques [5].
Thus, for this example the key aspect of globally-blocked-clause elimination is
that it allows to the remove the clauses of the headline gate connecting the two
parts of the CNF, in fact simulating unique sensitization on the CNF level.

4 Preliminaries

Here, we present the background necessary for understanding the rest of the
paper. We consider propositional formulas in conjunctive normal form (CNF),
which are made up of variables, literals, and clauses, as defined in the following.
A literal is either a variable x (a positive literal) or the negation x of a variable x
(a negative literal). The complement l of a literal l is defined as l = x if l = x
and as l = x if l = x. For a literal l, we denote the variable of l by var(l). A
clause is a finite disjunction of the form (l1∨· · ·∨ ln) where l1, . . . , ln are literals.
A tautology is a clause that contains both a literal and its complement. If not
stated otherwise, we assume that clauses are not tautologies. A formula is a finite
conjunction of the form C1∧· · ·∧Cm where C1, . . . , Cm are clauses. Clauses can
be viewed as sets of literals and formulas can be viewed as sets of clauses. For
a set L of literals and a formula F , we define FL = {C ∈ F | C ∩ L 6= ∅}. We
sometimes write Fl for F{l}.

A truth assignment (or short, assignment) is a function from a set of variables
to the truth values 1 (true) and 0 (false). An assignment is total with respect to
a formula if it assigns a truth value to all variables occurring in the formula. If
not stated otherwise, we do not require assignments to be total. We denote the
domain of an assignment α by var(α). A literal l is satisfied by an assignment α
if l is positive and α(var(l)) = 1 or if it is negative and α(var(l)) = 0. A literal
is falsified by an assignment if its complement is satisfied by the assignment.
An assignment touches a clause if it assigns a truth value to at least one of
its literals. A clause is satisfied by an assignment α if it contains a literal that
is satisfied by α. Finally, a formula is satisfied by an assignment α if all its
clauses are satisfied by α. A formula is satisfiable if there exists an assignment
that satisfies it. Two formulas are logically equivalent if they are satisfied by
the same total assignments; they are satisfiability-equivalent if they are either
both satisfiable or both unsatisfiable. We often view assignments as the sets of
literals they satisfy and denote them as sequences of literals. For instance, given
an assignment α that makes x true and y false, we would denote α by x y and
write things like x ∈ α.

We denote the empty clause by ⊥ and the satisfied clause by >. Given an
assignment α and a clause C, we define C |α = > if α satisfies C, otherwise C |α
denotes the result of removing from C all the literals falsified by α. Moreover,
for a formula F , we define F |α = {C |α | C ∈ F and C |α 6= >}.

We consider a clause to be redundant with respect to a formula if the clause
can be removed from the formula without affecting the formula’s satisfiability
or unsatisfiability:

Definition 1. A clause C is redundant with respect to a formula F if F and
F ∧ C are satisfiability-equivalent.

For instance, the clause C = (a ∨ b) is redundant with respect to the formula
F = (a ∨ b) since F and F ∧ C are satisfiability-equivalent (although they are
not logically equivalent).

5 Conditional Autarkies

In the following, we discuss the notions of autarkies and conditional autarkies
from the literature. We then present new theoretical results for conditional au-
tarkies and use these results to develop an algorithm that identifies particular
conditional autarkies. This section provides the basis for our SAT-preprocessing
approach. We start with autarkies (remember that we do not require assignments
to be total) [7,8]:

Definition 2. An assignment α is an autarky for a formula F if α satisfies
every clause C ∈ F for which var(α) ∩ var(C) 6= ∅.

In other words, an autarky satisfies every clause it touches.

Example 3. Let F = (a ∨ b ∨ c) ∧ (b ∨ c ∨ d) ∧ (a ∨ d) and let α = bc. Then, α
touches only the first two clauses. Since it satisfies them, it is an autarky for F .

One crucial property of autarkies, which follows easily from the definition, is that
they can be applied to a formula without affecting the formula’s satisfiability:

Theorem 4. If an assignment α is an autarky for a formula F , then F and
F |α are satisfiability-equivalent.

Theorem 4 can be viewed as follows: If α = l1 . . . ln is an autarky for F , then
F and F ∧ (l1) ∧ · · · ∧ (ln) are satisfiability-equivalent. This view is useful in
the context of conditional autarkies [6]. Informally, a conditional autarky is an
assignment that can be partitioned into two parts such that one part becomes
an autarky after the other part has been applied to the formula:

Definition 5. An assignment αc∪αa (with αc∩αa = ∅) is a conditional autarky
for a formula F if αa is an autarky for F |αc.

We call αc the conditional part and αa the autarky part of αc ∪ αa. Observe that
every assignment is a conditional autarky with an empty autarky part. We are
mainly interested in conditional autarkies with non-empty autarky parts:

Example 6. Consider the formula F = (a∨ b∨ c)∧ (a∨ b∨d)∧ (a∨ b∨ c)∧ (a∨d)
and the assignments αc = a and αa = bc. The assignment αc∪αa is a conditional
autarky for F since αa is an autarky for F |αc = (b ∨ d) ∧ (b ∨ c) ∧ (d). Notice
that neither αa alone nor abc (or any subset) are autarkies for F .

Theorem 4 above tells us that the application of an autarky to a formula does
not affect the formula’s satisfiability. The following statement, which is a simple
consequence of Theorem 4 and the fact that αa is an autarky for F |αc, generalizes
this statement for conditional autarkies:

Corollary 7. Let F be a formula and αc ∪ αa a conditional autarky for F
with conditional part αc and autarky part αa. Then, F |αc and F |αa ∪ αc are
satisfiability-equivalent.

As for ordinary autarkies, where we can add all unit clauses l ∈ α of an autarky
α to a formula F , we get a similar result for conditional autarkies:

Given a conditional autarky c1 . . . cma1 . . . an (with conditional part c1 . . . cm)
for a formula F , we can safely add to F the clause form of the implication

c1 ∧ · · · ∧ cm → a1 ∧ · · · ∧ an.

This will later allow us to prove the redundancy of globally-blocked clauses:

Theorem 8. Let c1 . . . cm a1 . . . an be a conditional autarky (with conditional
part c1 . . . cm) for a formula F . Then, F and F ∧

∧
1≤i≤n(c1 ∨ · · · ∨ cm ∨ ai) are

satisfiability-equivalent.

Proof. We have to show that the satisfiability of F implies the satisfiability of
F∧

∧
1≤i≤n(c1∨· · ·∨cm∨ai). Assume that F is satisfiable and let τ be a satisfying

assignment of F . If τ falsifies one of the literals c1, . . . , cm, the statement trivially
holds. Assume thus that τ satisfies all of c1, . . . , cm and define τ ′(ai) = 1 for
1 ≤ i ≤ n and τ ′(l) = τ(l) for each remaining literal l. Since c1 . . . cm a1 . . . an is
a conditional autarky for F with conditional part c1 . . . cm, we know that a1 . . . an
is an autarky for F |c1 . . . cm. Hence, since τ satisfies F and all of c1 . . . cm, the
clauses that were affected by making a1, . . . , an true must also be satisfied by τ ′.
We conclude that τ ′ satisfies F ∧

∧
1≤i≤n(c1 ∨ · · · ∨ cm ∨ ai).

We already mentioned that we are interested in conditional autarkies with non-
empty autarky parts. In fact, for our preprocessing approach, we try to find the
smallest conditional parts (and thus the largest autarky parts) for given assign-
ments. As we show next, the smallest conditional part of a given assignment is
unique and we can find it efficiently. For this, we need the notion of the least
conditional part of an assignment:

Definition 9. Given an assignment α and a formula F , the least conditional
part of α on F is the assignment αc such that (1) α is a conditional autarky
for F with conditional part αc and (2) for all assignments α′c such that α is a
conditional autarky for F with conditional part α′c, it holds that αc ⊆ α′c.

The least conditional part of an assignment is unique. To see this, assume α1

and α2 are least conditional parts for α on a formula F . Then, α1 ⊆ α2 and
α2 ⊆ α1 and thus α1 = α2.

The algorithm LeastConditionalPart in Fig. 1 computes the least conditional
part of a given assignment for a formula. In a greedy fashion, the algorithm
iterates over all clauses of the formula and whenever it encouters a clause that is
touched but not satisfied by the given assignment, it adds all the touched literals
of the clause to the conditional part.

LeastConditionalPart(assignment α, formula F)
1 αc := ∅
2 for C ∈ F do
3 if α touches C without satisfying C then
4 αc := αc ∪ (α ∩ C)
5 return αc

Fig. 1. Compute the least conditional part of an assignment.

Theorem 10. Let αc = LeastConditionalPart(α, F) given a CNF formula F and
an assignment α. Then, αc is the least conditional part of α on F .

Proof. Clearly, α is a conditional autarky for F with conditional part αc: When-
ever α touches a clause without satisfying it, all the touched literals are added
to αc (in line 4). Thus a clause in F |αc touched by α \ αc is also satisfied by it.

It remains to show that for every assignment α′c such that α is a conditional
autarky with conditional part α′c, it holds that αc ⊆ α′c. Let l ∈ αc. Then, l
occurs in a clause C that is touched but not satisfied by α. Now, assume that l
is not contained in α′c. It follows that l ∈ α \ α′c. But then α \ α′c touches C |α′c
without satisfying it and so it is not an autarky for F |α′c. It follows that αc ⊆ α′c.

6 Globally-Blocked Clauses

We now have an algorithm that identifies the least conditional part of a given
conditional autarky. In the following, we use this algorithm to find redundant
clauses in a propositional formula. To this end, we introduce globally-blocked
clauses—a type of redundant clauses that generalizes the existing notion of
blocked clauses [10] (note that in our notation, the set operators have prece-
dence over logical operators, i.e., D \ {l} ∨ C means (D \ {l}) ∨ C):

Definition 11. A clause C is blocked by a literal l ∈ C in a formula F if for
every clause D ∈ Fl, the clause D \ {l} ∨ C is a tautology.

Example 12. Let F = (a∨b)∧(a∨c)∧(b∨a) and C = a∨b. The literal b blocks C
in F since the only clause in Fb is the clause D = b∨a, and D\{b}∨C = a∨a∨b
is a tautology.

Blocked clauses are redundant clauses and according to [6] are related to condi-
tional autarkies as follows:

Theorem 13. A clause (c1 ∨ · · · ∨ cn ∨ l) is blocked by l in F iff the assignment
c1 . . . cnl is a conditional autarky (with conditional part c1 . . . cn) for F .

Globally-blocked clauses generalize blocked clauses by not only considering a
single literal l, but a set L of literals:

Definition 14. A clause C is globally blocked by a set L of literals in a formula
F if L ∩ C 6= ∅ and all D ∈ FL \ FL, the clause D \ L ∨ C is a tautology.

We say a clause is globally blocked if there exists some set L of literals by which
the clause is globally blocked.

Example 15. Consider F = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ b ∨ c) ∧ (a ∨ d) from
Example 6. The clause C = (a∨ c) is globally blocked in F . To see this, consider
the set L = {b, c} and the formulas FL = (a∨ b∨ c)∧ (a∨ b∨ d)∧ (a∨ b∨ c) and
FL = (a∨ b∨d)∧ (a∨ b∨ c). We then have FL \FL = (a∨ b). Let D = (a∨ b∨ c).
Then, D \L∨C = (a∨ a∨ c) is a tautology and so C is globally blocked by L in
F . Note, C is not blocked in F . In a similar manner (a ∨ b) is globally blocked.

Remember that we showed in the previous section (Example 6) that abc is a
conditional autarky for F with conditional part a and autarky part bc. Now in
Example 15, to demonstrate that C is globally blocked, we used the literals of
the autarky part as the set L and we could observe that the literal a of the
conditional part together with its complement a caused the clause D \L ∨C to
be a tautology. This is a consequence of the following statement, which will help
us with finding globally-blocked clauses using conditional autarkies:

Theorem 16. Let F be a formula, let C be a clause, let L be a set of literals
such that L ∩C 6= ∅, and define the assignments αc = C \ L and αa = L. Then,
C is globally blocked by L in F if and only if αc ∪ αa is a conditional autarky
(with conditional part αc) for F .

Proof. For the “only if” direction, assume C is globally blocked by L in F . We
show that αa is an autarky for F |αc. Let D |αc ∈ F |αc. Then, D is not satisfied
by αc. Since αc falsifies exactly the literals of C \ L, it follows that D cannot
contain the complement of a literal in C \L. This implies that C cannot contain
the complement of a literal in D \ L and so D \ L ∨ C is not a tautology. But
then D cannot be contained in FL \ FL, meaning that if D is touched by αa

(which satisfies exactly the literals of L), D is also satisfied by αa. Hence, since
αa assigns only variables that are not assigned by αc, it cannot be the case that
αa touches D |αc without satisfying it. We thus conclude that αa is an autarky
for F |αc.

For the “if” direction, assume αc ∪ αa is a conditional autarky for F with
conditional part αc. We show that for every clause D ∈ FL \ FL, the clause
D \ L ∨ C is a tautology. Let D ∈ FL \ FL. Then, D is a clause that is touched
but not satisfied by αa. Hence, αc must satisfy a literal l of D, for otherwise
D |αc would be touched but not satisfied by αa. Moreover, since αc assigns no
literals of L, it must actually be the case that l ∈ D \ L. But then, since αc

falsifies only literals of C, it follows that l ∈ C and so C ∨D \ L is a tautology.
It follows that C is globally blocked by L in F .

Before we focus on finding and removing globally-blocked clauses, we have to
show that they are indeed redundant:

Theorem 17. If a clause C is globally blocked in a formula F , it is redundant
with respect to F .

Proof. Assume that C is globally blocked by some set L = {l1, . . . , ln} in F and
that F is satisfiable. We show that the formula F ∧C is satisfiable. First, observe
that C is of the form (c1∨ . . . cm∨ l1∨· · ·∨ lk) where {l1, . . . , lk} ⊆ L and k ≥ 1.
By Theorem 16, we know that the assignment αc ∪ αa, with αc = c1 . . . cm and
αa = l1 . . . ln, is a conditional autarky (with conditional part αc) for F . Hence,
by Theorem 8, F and F ′ = F ∧

∧
1≤i≤n(c1 ∨ · · · ∨ cm ∨ li) are satisfiability-

equivalent and so F ′ must be satisfiable. But then, as C is subsumed by each
clause (c1 ∨ · · · ∨ cm ∨ li) with i ∈ 1, . . . , k, every satisfying assignment of F ′

must also satisfy F ∧ C. It follows that C is redundant with respect to F .

Finally, we note that globally-blocked clauses are a subclass of propagation-
redundant clauses (for details, see [27]) but we omit the proof here [16]:

Theorem 18. If a clause C is globally blocked in a formula F , it is propagation-
redundant with respect to F .

7 Detecting Globally-Blocked Clauses

We have seen that globally-blocked clauses are redundant and that they corre-
spond closely to conditional autarkies. In the next step, we use this correspon-
dence to find globally-blocked clauses in a formula. The idea is as follows: We
take an assignment (we will see later how this assignment can be obtained) and
then check for all clauses whether the assignment witnesses that the clause is
globally blocked. We start with a formal notion of a witness:

Definition 19. Given a clause C and a formula F , a conditional autarky αc∪αa

(with conditional part αc) for F witnesses that C is globally blocked in F if
αa ∩ C 6= ∅ and αc ⊆ C.

Suppose we have a conditional autarky αc ∪ αa with conditional part αc for F
and we want to use it for checking if a clause C is globally blocked. We know
from Theorem 16 that C is globally blocked by L = αa in F if αa ∩ C 6= ∅ and
αc = C \ L. However, a closer look reveals that the requirement αc = C \ L is
needlessly restrictive for our purpose: Theorem 20 below implies that it suffices
if αc is a subset of C \ L (and thus of C, since αc assigns no variables of L = αa)
to guarantee that C is globally blocked. Hence, if we have a conditional autarky
which witnesses (as defined above) that C is globally blocked, we can be sure
that the clause is indeed globally blocked.

Theorem 20. Let F be a formula, α a conditional autarky for F with autarky
part αa, and τ an assignment such that α ⊆ τ . Then, τ is a conditional autarky
for F with autarky part αa.

Proof. Let αc = α\αa and τc = τ \αa. We know that αa is an autarky for F |αc.
Since α ⊆ τ , it follows that αc ⊆ τc. Now, let D |τc ∈ F |τc. If D is not satisfied
by τc, then it is also not satisfied by αc. Thus, if D |τc is touched by αa, then it
must be satisfied by αa, for otherwise αa is not an autarky for F |αc. It follows
that αa is an autarky for F |τc.

We can now present the algorithm (Fig. 2) for finding globally-blocked clauses.
The algorithm repeatedly computes the least conditional part αc of the given
assignment (line 1) and then removes from αc all literals that are not in C (line
2) because of the requirement αc ⊆ C. If the algorithm finally reaches a fixpoint,
meaning that αc ⊆ C, it returns whether the autarky part has a non-empty
intersection with C (line 3), which is necessary to guarantee that the assignment
witnesses that C is globally blocked.

Theorem 21. Let C be a clause, F a formula, and α an assignment. Then,
IsGloballyBlocked(C,F, α) = TRUE if and only if a subassignment of α witnesses
that C is globally blocked in F .

Proof. In the rest of the proof, we denote by αi the assignment passed to
IsGloballyBlocked at the i-th recursive call (we denote the initial call as the 0-th
recursive call, i.e., α0 = α). The assignments αic and αia are defined accordingly.

IsGloballyBlocked(clause C, formula F , assignment α)
1 αc := LeastConditionalPart(α, F), αa := α \ αc

2 α′ := αa ∪ (αc ∩ C)
3 if (α′ = α) then return αa ∩ C 6= ∅
4 return IsGloballyBlocked(C,F, α′)

Fig. 2. Algorithm for detecting globally-blocked clauses.

For the “only if” direction, assume that IsGloballyBlocked(C,F, α) = TRUE
and let αn be the assignment to the last recursive call (i.e., αn is the assignment
for which the algorithm returns if αna ∩ C 6= ∅). Then, since the algorithm only
modifies the initial assignment α by unassigning variables, αn is a subassign-
ment of α. Now, since αnc = LeastConditionalPart(α, F), we know that αn is a
conditional autarky for F with (least) conditional part αnc . Moreover, all literals
of αnc are contained in C due to line 2 of the algorithm. Finally, since αna and C
have a non-empty intersection, αn witnesses that C is globally blocked in F .

For the “if” direction, suppose some subassignment τ = τc∪τα of α witnesses
that C is globally blocked in F . Below, we show by induction on i that τ ⊆ αi

and τa ⊆ αia. From this, the statement follows then easily: Denote by αn the
assignment passed to the final recursive call (it can be easily seen that the
algorithm terminates). Since τa ⊆ αna and since τa ∩ C 6= ∅, it must then be the
case that αa ∩ C 6= ∅. We conclude with the induction proof of the mentioned
statement:

Induction start (i = 0): In this case, α0 = α. By assumption τ ⊆ α. Thus,
by Theorem 20, we know that τa is an autarky for F |α \ τa. Hence, as αc is the
least conditional part of α, it follows that αc ⊆ α \ τa and thus τa ⊆ α \αc = αa.

Induction step (i > 0): We assume that τ ⊆ αi−1 and τa ⊆ αi−1a . We first show
that τ ⊆ αi. The assignment αi is obtained as α′ = αi−1a ∪ {l | l ∈ αi−1c and l ∈
C} in the (i− 1)-th recursive call. Thus, since τa ⊆ αi−1a , we know that τa ⊆ αi.
Therefore, the only literals that are contained in αi but not in αi−1 are literals of
αi−1c that are not in C. But such literals cannot be contained in τc since τc ⊆ C.
It follows that τ ⊆ αi. Hence, by Theorem 20, it follows that τa ⊆ αia.

8 Implementation

The abstract algorithm presented in the previous section connects well to the
presented theory of globally-blocked clauses, but is hard to implement efficiently.
Figure 3 describes a refinement of the algorithm and further discusses implemen-
tation details which are crucial for efficiency. Without giving a detailed analysis,
it is easy to see that for each candidate clause, the running time of the algo-
rithm is similar and thus bounded by the time it would take to propagate all
conditional variables obtained during the first step of the algorithm.

1. Split the assignment into a conditional part αc and an autarky part αa (one
initial call to LeastConditionalPart in Fig. 1). Mark the resulting literals of
αc and save them on a conditional stack, gather candidate clauses (those
with a literal that is true but not yet in the conditional part) and watch a
true literal in all clauses with a true literal.

2. For each candidate clause C:
3. If C contains no literal from αa, continue with next clause (goto 2).
4. Watch one literal la of αa in C and mark all literals in C to be part of C.

Actually have a variable pointing to the literal la.
5. For each unprocessed literal lc on the conditional stack:
6. If lc ∈ C (cheap check since literals in C are marked) continue (goto 5).
7. Unassign lc ∈ C and push it on an unassigned stack.
8. For each unassigned literal u on the unassigned stack not processed yet:
9. For each clause D watched by u (through watches initialized in step 1):

10. Search for a replacement literal r ∈ D which satisfies D. If such r is found,
stop watching D with u, watch it with r instead, and continue with next
clause D watched by u (goto 9).

11. Otherwise no replacement is found.
12. If there is no literal k ∈ αa with k ∈ D, continue with next clause D

watched by u (goto 9).
13. For each literal k ∈ αa with k ∈ D:
14. Put k into the conditional part αc by using another mark bit and push it

onto the conditional stack.
15. If k is different from the watched literal la ∈ C (see step 4), continue with

the next unassigned and unprocessed literal u on the unassigned stack.
16. Otherwise, search for a replacement of la in C.
17. If no replacement is found, C is not a globally-blocked clause; continue

with next candidate clause (goto 2 – thus jump out of four loops).
18. If there are no unprocessed literals, neither on the conditional nor on the

unassigned stack, and we still watch a literal of αa in the candidate clause
C, then we now reached a fix-point and C is globally blocked.

19. Eliminate C and put the autarky part as witness (found by traversing the
assignment trail) and C on the extension stack for witness reconstruction.

20. Pop literals from unassigned stack and reassign them to their original value.
21. Pop literals from conditional stack pushed after initialization in step 1 and

unmark their conditional bit.
22. Now we are back to the initial assignment after step 1, with the initial

literals of the conditional part αc marked as such and the literals of αa

unmarked.
23. Unmark literals marked in step 4 and continue with next clause (goto 2).

Fig. 3. Algorithm to extract globally-blocked clauses from a given assignment.

This variant has been implemented in C++ in CaDiCaL [37] and is available
at http://fmv.jku.at/globalblocking (see ”condition.cpp”). We experi-
mented on SAT Competition benchmarks and also in an incremental bounded
model checking setting [38]. Our algorithm in Fig. 3 does find non-trivial globally
blocked clauses, but at this point we have not found an instance or application
where the removal of globally-blocked clauses results in an overall improvement
in running time. It thus remains to be seen whether or not the idea of removing
globally-blocked clauses can be beneficial in practice.

One issue is particularly problematic: For some instances with many globally-
blocked clauses, the large number of literals on the reconstruction stack requires
too much memory, particularly if the autarky part—which serves as witness—
contains a substantial fraction of all variables.

9 Conclusion

We introduced globally-blocked clauses, a new kind of redundant clauses that
generalizes the existing notions of blocked clauses and set-blocked clauses. As we
have shown, globally-blocked clauses correspond closely to conditional autarkies,
which are special assignments that can be partitioned into two parts such that
one part becomes an autarky once the other part has been applied to the formula.

Since finding globally-blocked clauses is non-trivial, we presented an algo-
rithm that takes as input a formula and a clause together with a candidate
assignment and then checks if the assignment (or a subassignment thereof) can
witness that the clause is globally blocked in the formula.

Our algorithm simulates a well-known circuit preprocessing technique, known
as unique sensitization, on the CNF level. Although our algorithm is conceptually
simple, implementing it efficiently is far from straight-forward. We thus presented
an implementation of our algorithm, which we ran on a range of formulas to
evaluate its effectiveness in practice.

Acknowledgment This work has been supported by the National Science
Foundation under grant CCF-1618574 and by the Austrian Science Fund (FWF)
under project W1255 (LogiCS) and S11409-N23 (RiSE).

We want to thank Oliver Kullmann, who explained to the second author an
(as far as we know unpublished) algorithm to compute the maximal autarky of
a total assignment, which is a special case of LeastConditionalPart in Fig. 1.

This work was triggered by Gianpiero Cabodi who asked the last author
whether there is a CNF level version of unique sensitization as explained in
Sect. 3 with potential applications in SAT-based model checking.

We would finally also like to thank the organizers of ATVA’19 for inviting
the last author to present these ideas as invited talk and include this invited
paper in the proceedings.

http://fmv.jku.at/globalblocking

References

1. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods in System Design 19(1) (2001) 7–34

2. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first
collision for full SHA-1. In: Proc. of the 37th International Cryptology Conference
(CRYPTO 2017), Springer (2017) 570–596

3. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Proc.
of the 17th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2014). Volume 8561 of LNCS., Springer (2014) 219–226

4. Heule, M.J.H.: Schur number five. In: Proc. of the 32nd AAAI Conference on
Artificial Intelligence (AAAI 2018), AAAI Press (2018)

5. Järvisalo, M., Biere, A., Heule, M.J.H.: Simulating circuit-level simplifications on
CNF. Journal on Automated Reasoning 49(4) (2012) 583–619

6. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In:
Proc. of the 13th International Haifa Verification Conference (HVC 2017). Volume
10629 of LNCS., Springer (2017) 179–194

7. Monien, B., Speckenmeyer, E.: Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics 10(3) (1985) 287 – 295

8. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In Biere,
A., Heule, M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS
Press (2009) 339–401

9. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Proc. of the
8th Int. Joint Conference on Automated Reasoning (IJCAR 2016). Volume 9706
of LNCS., Springer (2016) 45–61

10. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Math-
ematics 96-97 (1999) 149–176

11. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Proc. of
the 16th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2010). Volume 6015 of LNCS., Springer (2010) 129–144

12. Kiesl, B., Suda, M., Seidl, M., Tompits, H., Biere, A.: Blocked clauses in first-order
logic. In: Proc. of the 21st Int. Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR-21). Volume 46 of EPiC Series in Computing.,
EasyChair (2017) 31–48

13. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Proc. of
the 23rd Int. Conf. on Automated Deduction (CADE-23). Volume 6803 of LNCS.,
Springer (2011) 101–115

14. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Proc. of the 20th Int.
Conf. on Logic for Programming, Artificial Intelligence (LPAR-20). Volume 9450
of LNCS., Springer (2015) 418–433

15. Marques Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5) (1999) 506–521

16. Kiesl, B.: Structural Reasoning Methods for Satisfiability Solving and Beyond.
PhD thesis, TU Wien (2019)

17. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proc. of the 6th Int.
Joint Conference on Automated Reasoning (IJCAR 2012). Volume 7364 of LNCS.,
Springer (2012) 355–370

18. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Proc. of the 8th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2005). Volume 3569 of LNCS., Springer (2005)
61–75

19. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean Triples problem via Cube-and-Conquer. In: Proc. of the 19th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2016). Vol-
ume 9710 of LNCS., Springer (2016) 228–245

20. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF for-
mulas. In: Proc. of the 17th Int. Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-17). Volume 6397 of LNCS., Springer (2010)
357–371

21. Heule, M., Järvisalo, M., Biere, A.: Covered clause elimination. In: Short papers for
the 17th Int. Conf. on Logic for Programming, Artificial intelligence, and Reasoning
(LPAR-17-short). Volume 13 of EPiC Series., EasyChair (2010) 41–46

22. Heule, M.J.H., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination
for SAT and QSAT. Journal of Artifical Intelligence Research 53 (2015) 127–168

23. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proc. of the 17th Int. Conference
on Theory and Applications of Satisfiability Testing (SAT 2014). Volume 8561 of
LNCS., Springer (2014) 422–429

24. Cruz-Filipe, L., Heule, M.J.H., Jr., W.A.H., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In de Moura, L., ed.: Proc. of the 26th Int. Con-
ference on Automated Deduction (CADE-26). Volume 10395 of LNCS., Springer
(2017) 220–236

25. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: Proc. of the 26th
Int. Conference on Automated Deduction (CADE-26). Volume 10395 of LNCS.,
Springer (2017) 237–254

26. Heule, M.J.H., Järvisalo, M., Suda, M.: SAT competition 2018. (2019)
27. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: Proc.

of the 26th Int. Conference on Automated Deduction (CADE-26). Volume 10395
of LNCS., Springer (2017) 130–147

28. Heule, M.J.H., Biere, A.: What a difference a variable makes. In: Proc. of the
24th Int. Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2018). Volume 10806 of LNCS., Springer (2018) 75–92

29. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In:
Proc. of the 11th Int. NASA Formal Methods Symposium (NFM 2019). Volume
11460 of LNCS., Springer (2019) 204–210

30. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven
clause learning. In: Proc. of the 25th Int. Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2019). Volume 11427 of
LNCS., Springer (2019) 41–58

31. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF
preprocessing. Journal of Automated Reasoning (2016) 1–29

32. Heule, M., Seidl, M., Biere, A.: Blocked literals are universal. In: Proc. of the
7th Int. NASA Formal Methods Symposium (NFM 2015). Volume 9058 of LNCS.,
Springer (2015) 436–442

33. Lonsing, F., Egly, U.: QRAT+: generalizing QRAT by a more powerful QBF
redundancy property. In: Proc. of the 9th Int. Joint Conference on Automated
Reasoning (IJCAR 2018). Volume 10900 of LNCS., Springer (2018) 161–177

34. Lonsing, F., Egly, U.: QRATPre+: Effective QBF preprocessing via strong redun-
dancy properties. In: Proc. of the 22nd Int. Conference on Theory and Applications
of Satisfiability Testing (SAT 2019). Volume 11628 of LNCS., Springer (2019) 203–
210

35. Kiesl, B., Suda, M.: A unifying principle for clause elimination in first-order logic.
In: Proc. of the 26th Int. Conference on Automated Deduction (CADE-26). Volume
10395 of LNCS., Springer (2017) 274–290

36. Fujiwara, H.: FAN: A fanout-oriented test pattern generation algorithm. In: Proc.
of the IEEE Int. Symposium on Circuits and Systems (ISCAS 85). (1985) 671–674

37. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the
SAT Competition 2018. In Heule, M., Järvisalo, M., Suda, M., eds.: Proc. of
SAT Competition 2018 – Solver and Benchmark Descriptions. Volume B-2018-1 of
Department of Computer Science Series of Publications B., University of Helsinki
(2018) 13–14

38. Fazekas, K., Biere, A., Scholl, C.: Incremental inprocessing in SAT solving. In:
Proc. of the 22nd Int. Conference on Theory and Applications of Satisfiability
Testing (SAT 2019). Volume 11628 of LNCS., Springer (2019) 136–154

