
bv2epr: A Tool for Polynomially Translating
Quantifier-free Bit-Vector Formulas into EPR∗

Gergely Kovásznai, Andreas Fröhlich, and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract. Bit-precise reasoning is essential in many applications of Sat-
isfiability Modulo Theories (SMT). In recent years, efficient approaches
for solving fixed-size bit-vector formulas have been developed. Most of
these approaches rely on bit-blasting. In [1], we argued that bit-blasting
is not polynomial in general, and then showed that solving quantifier-free
bit-vector formulas (QF BV) is NExpTime-complete. In this paper, we
present a tool based on a new polynomial translation from QF BV into
Effectively Propositional Logic (EPR). This allows us to solve QF BV
problems using EPR solvers and avoids the exponential growth that
comes with bit-blasting. Additionally, our tool allows us to easily gener-
ate new challenging benchmarks for EPR solvers.

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical appli-
cations of Satisfiability Modulo Theories (SMT), particularly for hardware and
software verification. Examples of state-of-the-art SMT solvers with support for
fixed-sized bit-vector logics are Boolector, MathSAT, STP, Z3, and Yices. All
these solvers rely on bit-blasting in order to translate bit-vector formulas into
propositional logic (SAT). The result is then checked by a SAT solver.

In practice, e.g. in the SMT-LIB [2], the BTOR [3], and the Z3 format, the
bit-widths in bit-vector formulas are encoded as binary, decimal, or hexadecimal
numbers, i.e., a logarithmic encoding is used. In [1], we proved that the encoding
of bit-widths affects the complexity of the decision problem of bit-vector logics.
In particular, logarithmic encoding makes the quantifier-free fragment QF BV2
NExpTime-complete.1 Thus, bit-blasting is not polynomial in general. For a
polynomial reduction, the target logic has to be NExpTime-hard.

In this paper, we introduce our new tool bv2epr. bv2epr translates QF BV
formulas into Effectively Propositional Logic (EPR), which is NExpTime-
complete [4], by using a new (polynomial) reduction. This is in contrast to ex-
isting translations in [5,6], which produce exponential EPR formulas in general,
as we will point out in Sect. 2.1. We give some experimental results in Sect. 4
with the EPR solver iProver.
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1In [1], we introduced the notation QF BV1 resp. QF BV2 for QF BV using a

unary resp. a logarithmic, actually without loss of generality, binary encoding.



2 Preliminaries

We assume the usual syntax for QF BV. A bit-vector term t of bit-width n
(n P N, n ¥ 1) is denoted by trns. An atomic term can be either (a) a bit-
vector constant crns, where c P N, 0 ¤ c   2n; or (b) a bit-vector variable vrns.
Compound terms and formulas can contain the usual bit-vector operators (c.f.
SMT-LIB [2]), like e.g. bitwise operators, shifts, arithmetic operators, relational
operators, etc. The decision problem for QF BV is NExpTime-complete [1].

EPR, known as the Bernays-Schönfinkel class, is a NExpTime-complete
fragment of first-order logic [4]. It corresponds to the set of first-order formulas
that, written in prenex form, contain (a) no function symbol of arity greater
than 0; and (b) no existential quantifier within the scope of a universal quanti-
fier. After Skolemization, existential variables turn into constants (i.e., function
symbols of arity 0), and quantifiers can be omitted. Consequently, an EPR atom
can be defined as an expression of the form ppt1, . . . , tnq where p is a predicate
symbol of arity n and each ti is either a (universal) variable or a constant.

2.1 Existing Translations

In [5], encodings of hardware verification problems with bit-vectors into first-
order logic are proposed. In particular, an encoding into EPR is given and called
the relational encoding [6], since bit-vectors are modeled as unary predicates.
These predicates are over bit-indices, represented by dedicated constants. For
instance, the ith bit of a bit-vector xrns, 0 ¤ i   n, is represented by the
atom pxpbitIndiq, where bitIndi is a constant. Note that for QF BV2, such a
translation might introduce exponentially many constants, since bit-widths like n
are encoded logarithmically. The so-called range-aware relational encoding in [6],
furthermore, introduces exponentially many assertions into the EPR formula in
general, e.g., atoms lesskpbitIndiq for all 0 ¤ i   k. Finally, not all the QF BV
bit-vector operators are addressed by the relational encoding, but only equality2.
All the arithmetic operators are assumed to be synthesized/bit-blasted in the
verification front-end [6], potentially leading to an exponential blowup already
before the actual encoding. In [5], an abstraction of shifts is proposed, which is,
however, basically the same as bit-blasting. Consequently, the relational encoding
is exponential in general, in constrast with our translation in Sect. 3.1.

3 The Tool

bv2epr takes a QF BV formula in SMT2 format as input, and outputs an EPR
clause set in TPTP format. The tool is implemented in C and available at [7].
The architecture of bv2epr can be seen in Fig. 1, consisting of the following
modules:

Parser. The Parser is Boolector’s SMT2 parser.

2Bitwise operators could be handled in a similar way.
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Fig. 1. The architecture of bv2epr

Translator. The Translator provides an interface accessed by the Parser, in
order to deal with the SMT2 QF BV operators. This module builds a graph data
structure, in which each bit-vector operation is modeled by an EPR predicate.
Predicates are represented by shared nodes in the graph data structure. A node
for a predicate p stores, besides other data, the functional definition of p as an
EPR clause set. With each of these clauses, an argument list in�1, . . . , i0 for p is
stored, indicating that this clause is part of the functional definition of the EPR
atom ppin�1, . . . , i0q. Such a clause is realized as a list of EPR literals, each of
which contains a reference to a predicate p1 and an argument list for p1.

Simplifier. The graph constructed by the Translator is a good basis for var-
ious simplifications. Note that only polynomial simplification steps are accept-
able. Among others, we implemented two kinds of simplification, both proposed
in [8]: (a) unused definition elimination and (b) non-growing definition inlining.

Generator. Out of the (simplified) graph, this module generates a TPTP
clause set. Since the graph might contain cycles, the Generator detects and
avoids them. Due to the construction of the graph data structure, clauses can be
extracted directly, i.e., no additional approach for clause generation is needed.

3.1 The Translator

We briefly sketch the (polynomial) reduction of QF BV to EPR used by the
Translator, without striving for completeness. As it will turn out, the target logic
of this reduction is actually not general EPR, but rather its fragment which
uses only two constants, 0 and 1. We call this fragment EPR2.3 To each bit-
vector term of bit-width n, a dedicated rlog2 ns-ary EPR2 predicate is introduced
and assigned. For example, a term xr32s is represented by a 5-ary predicate px.
Since px is an EPR2 predicate, each of its arguments can be either 0, 1, or
a universal variable. For instance, the atom pxp1, 1, 0, 0, 1q represents the 25th
bit of x, since 2510 � 110012. Using universal variables as arguments makes it
possible to represent several bits by a single EPR2 formula; for instance, the
atom pxpi4, i3, i2, i1, 0q represents all even bits of x.

Bitwise Operators. Translating bitwise operators is quite natural. We
demonstrate the translation for bitwise or (denoted by |): Given a term
xr2ns | yr2

ns, where x and y are bit-vector terms, to which the predicates px
and py have already been assigned, respectively. We need to specify each bit of

3The Herbrand universe of EPR2 can be considered as the Boolean domain.



the resulting bit-vector as the disjunction of the corresponding bits of x and y.
We introduce a new predicate por, and give the following functional definition:

porpin�1, . . . , i0q ô pxpin�1, . . . , i0q _ pypin�1, . . . , i0q

Addition. Given a term xr2ns � yr2
ns, let us first rewrite it to the following

bit-vector equations, where ` denotes bitwise xor, & bitwise and, and ! left shift.

addr2
ns � xr2ns ` yr2

ns ` cinr2ns (1)

cinr2ns � coutr2
ns ! 1 (2)

coutr2
ns � pxr2ns & yr2

nsq | pxr2ns & cinr2nsq | pyr2
ns & cinr2nsq (3)

Note that Eqn. (1) and (3) only contain bitwise operators (and equality). There-
fore, both can be translated into EPR2 as introduced previously. Only Eqn. (2),
which contains shift by 1, has to be handled differently.

We introduce a helper predicate succ which will represent the fact that a bit-
index j is the successor of a bit-index i, i.e., j � i� 1. Since i is represented by
an EPR2 argument list in�1, . . . , i0 and, similarly, j by jn�1, . . . , j0, the 2n-ary
predicate succpin�1, . . . , i0, jn�1, . . . , j0q can be defined by n facts:

succpin�1, . . . , i3, i2, i1, 0, in�1, . . . , i3, i2, i1, 1q
succpin�1, . . . , i3, i2, 0, 1, in�1, . . . , i3, i2, 1, 0q
succpin�1, . . . , i3, 0, 1, 1, in�1, . . . , i3, 1, 0, 0q

...
succp0, 1, . . . , 1, 1, 0, . . . , 0q

Using this helper predicate, Eqn. (2) can be translated into EPR2 as follows:

 pcinp0, . . . , 0q
succpin�1, . . . , i0, jn�1, . . . , j0q ñ ppcinpjn�1, . . . , j0q ô pcoutpin�1, . . . , i0qq

This kind of adder can be adapted to represent other arithmetic operators like
unary minus and subtraction. In bv2epr, all the relational operators, like equal-
ity and unsigned less than, are also represented by such an adapted adder.

Shifts. Shifts are translated into EPR2 by applying barrel shift. For instance,
given a term xr2ns ! yr2

ns, for all bit-indices i, 0 ¤ i   n, the ith bit of y is
checked: if it is 1, then left shift by 2i has to be done.

 pyp0, . . . , 0q ñ
�
p0shlpin�1, . . . , i0q ô pxpin�1, . . . , i0q

�
�

pyp0, . . . , 0q ^
succpin�1, . . . , i0, jn�1, . . . , j0q



ñ

�
p0shlpjn�1, . . . , j0q ô pxpin�1, . . . , i0q

�

 pyp0, . . . , 0, 1q ñ
�
p1shlpin�1, . . . , i0q ô p0shlpin�1, . . . , i0q

�
�

pyp0, . . . , 0, 1q ^
succp0, in�1, . . . , i1, 0, jn�1, . . . , j1q



ñ

�
p1shlpjn�1, . . . , j1, i0q ô p0shlpin�1, . . . , i0q

�
...

Multiplication. The Translator applies a shift-and-add approach for trans-
lating a term xr2ns � yr2

ns. We generate 2n subproducts of bit-width 2n, and



represent all of them by a single 2n-ary predicate pmul: the ith bit of the jth
subproduct is represented by the atom pmulpjn�1, . . . , j0, in�1, . . . , i0q.

First, the p2n�1qth subproduct is computed, by checking the most significant
bit of y: if it is 0, this subproduct is set to 0; otherwise, it is set equal to x.

 pyp1, . . . , 1q ñ  pmulp1, . . . , 1, in�1, . . . , i0q

pyp1, . . . , 1q ñ ppmulp1, . . . , 1, in�1, . . . , i0q ô pxpin�1, . . . , i0qq

The jth subproduct, 0 ¤ j   2n � 1, is computed by checking the jth bit of y:
if it is 0, then the pj � 1qth subproduct has to be shifted left by 1 (represented
by the predicate pshl); otherwise, the shifted subproduct and x have to be added
(represented by padd).

�
 pypjn�1, . . . , j0q ^

succpjn�1, . . . , j0, j1n�1, . . . , j
1
0q



ñ

�
pmulpjn�1, . . . , j0, in�1, . . . , i0q ô
pshlpj

1
n�1, . . . , j

1
0, in�1, . . . , i0q



�

pypjn�1, . . . , j0q ^
succpjn�1, . . . , j0, j1n�1, . . . , j

1
0q



ñ

�
pmulpjn�1, . . . , j0, in�1, . . . , i0q ô
paddpj

1
n�1, . . . , j

1
0, in�1, . . . , i0q




The final product is given by pmulp0, . . . , 0, in�1, . . . , i0q.
Polynomiality and Correctness. All above translation steps are polyno-

mial in the input size since they are polynomial in the number of atoms and
logarithmic in their bit-width. Formally showing correctness exceeds the scope
of this paper and is part of future work. We also investigated correctness em-
pirically by exhaustively testing consistency of the solving results by Boolector
and bv2epr+iProver, for each bit-vector operation, up to a certain bit-width.

4 Benchmarks and Experiments

Solving QF BV formulas in general is NExpTime-complete [1]. However, cer-
tain families of QF BV formulas are in NP, under certain restrictions on the
bit-widths. We called this kind of families bit-width bounded [1]. Since solv-
ing EPR formulas is NExpTime-complete, our translation fits well to families
which are not bit-width bounded. In [1], two examples of this kind were given:
(a) QF BV/brummayerbiere3/mulhsbw represents instances of computing the
high-order half of product problem, parameterized by the bit-width of multipli-
cands (bw); (b) QF BV/bruttomesso/lfsr/lfsrt bw n formalizes the behaviour
of a linear feedback shift register [9]. We further propose two new benchmark
families that are not bit-width bounded : (a) add2nbw describes how bit-vectors
of bit-width 2bw can be added by using two adders for bit-vectors of bit-width
bw. (b) addmulbw checks, whether the sum of two bit-vectors of bit-width bw
can differ from their product.

In order to demonstrate the exponential blow-up of bit-blasting, in contrast
to our translation into EPR, we used the bit-blaster Synthebtor, part of the
Boolector distribution, to generate AIGER files and DIMACS (CNF) files out
of BTOR files. Tab. 1 summarizes these results, when word-level rewriting in



Boolector is switched off. We give the file sizes (in bytes) in all formats and
additionally provide the runtimes of Boolector (for SMT2), Lingeling (for CNF),
and iProver (for EPR), using a timeout of 10 minutes.

bmark bw smt2 btor Boolector aig cnf Lingeling epr iProver

m
ul

hs

8; 947 1K 10.3s 3K 44K 9.0s 45K 1m 44s

16; 959 1K TO 12K 205K TO 55K TO

64; 982 2K TO 221K 4M TO 78K TO

lfs
r

2
bw

16 63; 6K 9K 0.2s 64K 258K 0.7s 56K 18.0s

127; 7K 9K 1.2s 139K 545K 1.3s 61K 1m 14s
1023 7K 11K 5.1s 1M 5M 4.7s 74K TO
8191 7K 18K 2m 37s 11M 43M 3m 10s 89K TO

ad
d2

n 25 452 455 0.0s 3K 25K 0.1s 12K 1m 21s
26 456 671 0.1s 7K 53K 0.7s 13K TO

212 484 8K 3m 5s 549K 4M 1m 28s 21K TO

ad
dm

ul 27 149 99 0.2s 174K 3M 2.4s 8K 0.1s
29 149 99 2.7s 3M 58M 3m 22s 11K 0.1s

211 151 103 TO 48M 1G TO 13K 0.1s

Table 1. Evaluation for the original SMT2 file

In order to test the effect of word-level rewriting, we added a module to
Boolector which reads an SMT2 file, performs rewriting, and outputs the sim-
plified SMT2 file. In Tab. 2, we give the results for the simplified SMT2 files.

5 Conclusion

We presented bv2epr, a tool for polynomially translating QF BV into EPR.
The motivation for our tool lies in previous work [1], where we have shown
QF BV to be NExpTime-complete. Thus, bit-blasting QF BV to SAT, as it is
usually done in current SMT solvers, results in exponentially larger formulas in
general. Previous translations from QF BV into EPR also apply bit-blasting on
certain operators and introduce exponentially many constants resp. constraints
in the general case [5,6]. In contrast to this, the Translator used in bv2epr
always produces EPR formulas of polynomial size.

After discussing bv2epr, we evaluated the size of the formulas produced by
our tool and compared it to other commonly used formats. Our results show that
the overhead in size is rather small when translating QF BV into EPR, while all
other formats often suffer from exponential blow-up as soon as the bit-widths in
the input formula grow larger. However, our results also show that the runtime of
iProver on the generated EPR formulas is usually worse compared to the runtime
of Boolector on the original QF BV formula or the one of Lingeling after bit-
blasting has been applied. Nevertheless, the evaluation also shows that there exist



benchmarks where iProver is faster. While it is probably still possible to improve
EPR solvers on this kind of instances, formulas generated by bv2epr can also
help providing challenging benchmarks for current state-of-the-art solvers. The
tool bv2epr is available at [7].

bmark bw smt2 btor Boolector aig cnf Lingeling epr iProver

m
ul

hs

8; 2K 804 9.8s 3K 42K 8.1s 63K 1m 48s

16; 2K 956 TO 11K 197K TO 77K TO

64; 2K 1K TO 215K 4M TO 110K TO

lfs
r

2
bw

16 63; 126K 59K 0.5s 81K 254K 0.9s 156K 3.0s

127; 126K 59K 0.6s 174K 540K 1.4s 158K 9.5s
1023 126K 60K 7.0s 1M 5M 5.1s 165K 9m 21s
8191 126K 67K 46.1s 13M 43M TO 173K TO

ad
d2

n 25 1K 575 0.0s 4K 25K 0.1s 17K 23.6s
26 1K 671 0.1s 9K 53K 0.7s 18K 5m 0s

212 2K 9K 2m 42s 711K 4M 1m 16s 32K TO

ad
dm

ul 27 239 75 0.2s 174K 3M 2.5s 8K 0.1s
29 239 75 2.8s 3M 58M 1m 40s 11K 0.1s

211 241 79 TO 48M 1G TO 13K 0.1s

Table 2. Evaluation for the simplified SMT2 file
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