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Abstract Bit-precise reasoning is important for many practical applications
of Satisfiability Modulo Theories (SMT). In recent years, efficient approaches
for solving fixed-size bit-vector formulas have been developed. From the theo-
retical point of view, only few results on the complexity of fixed-size bit-vector
logics have been published. Some of these results only hold if unary encoding
on the bit-width of bit-vectors is used.

In our previous work [41], we have already shown that binary encoding adds
more expressiveness to various fixed-size bit-vector logics with and without
quantification. In a follow-up work [30], we then gave additional complexity
results for several fragments of the quantifier-free case.

In this paper, we revisit our complexity results from [30,41] and go into
more detail when specifying the underlying logics and presenting the proofs.
We give a better insight in where the additional expressiveness of binary en-
coding comes from. In order to do this, we bring together our previous work
and propose several new complexity results for new fragments and extensions
of earlier bit-vector logics. We also discuss the expressiveness of various bit-
vector operations in more detail. Altogether, we provide the currently most
complete overview on the complexity of common bit-vector logics.
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1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical
applications of Satisfiability Modulo Theories (SMT), particularly for hard-
ware and software verification. Examples of state-of-the-art SMT solvers with
support for bit-precise reasoning are Boolector [9], MathSAT [12], STP [31],
Z3 [22], and Yices [25].

The theory of fixed-size bit-vector logics is investigated in several scientific
works [4,5,13,21,27], and even concrete formats for specifying such bit-vector
problems exist, e.g., the SMT-LIB format [3] or the BTOR format [10]. Work-
ing with non-fixed-size bit-vectors has been considered for instance in [1,5],
and more recently in [55,56], but is not further discussed in this paper. Most
industrial applications (and examples in the SMT-LIB 1) have fixed bit-width.

We investigate the complexity of solving fixed-size bit-vector formulas. Some
papers propose such complexity results, e.g., in [4], the authors consider the
common quantifier-free bit-vector logic and give an argument for NP-hardness
of its satisfiability problem. In [13], a sublogic of the previous one is claimed to
be NP-complete. Interestingly, in [14], there is a claim about the full quantifier-
free logic being NP-complete, however the proposed decision procedure justi-
fies this claim only if the bit-widths of the bit-vectors in the input formula are
written/encoded in unary format. In [59,60], the quantified case is addressed,
and the satisfiability problem for this logic with uninterpreted functions is
proved to be NExpTime-complete. However, the proof, similarly to the deci-
sion procedure in [14], only holds if we assume unary encoded bit-widths.

Parts of our paper already appeared as previous work [30,41]. Apart from
this, we are not aware of any work that investigates how the encoding of the
bit-widths in the input affects complexity (as an exception, see [19, Page 239,
Footnote 3]). In practice, the more natural and exponentially more succinct
logarithmic encoding is used, such as in the SMT-LIB [3] or the BTOR [10]
format. We investigate how complexity varies if we consider either a unary or
a binary encoding. Note that binary encoding, throughout the whole paper,
can be replaced with any other logarithmic encoding.

The present paper extends our previous work in several ways. After giv-
ing a motivation for the use of binary encoded bit-vector logics in Section 2,
we specify various fixed-size bit-vector logics in detail (Section 3). While our
previous papers were referring to the common syntax and semantics used in
other works, e.g., [4,5,10,13,21,27], but was never fully specified from the the-
oretical point of view, we now want to provide self-contained descriptions for
the bit-vector logics that we are considering. Therefore, we introduce syntax
and semantics for fixed-size bit-vector logics containing all common bit-vector
operations as used in the SMT-LIB format.

After these preliminary definitions, we give a short overview of the existing
complexity results for bit-vector logics with unary encoding in Section 4. We
then introduce the concept of scalar-boundedness for bit-vector logics with

1 http://www.smtlib.org/

http://www.smtlib.org/
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binary encoding in Section 5 and give improved versions of our complexity
proofs for quantifier-free bit-vector logics in Section 6. Although our previous
proofs from [30,41] are still valid, we modified and restructured our work to
present those proofs in a clearer, easier-to-read, way. In Section 7, we look at
the expressiveness of various bit-vector operations and analyze whether they
can be used to extend some of the previously defined fragments or to give an
alternative characterization of a given class.

We then revisit the quantified case in Section 8 and give new complexity
results for fragments with restrictions on operations and the bit-widths of
universal variables. Also, we provide a new complexity result for quantifier-free
logics extended with non-recursive macros, which are allowed, for example, in
the SMT-LIB format. Finally, we discuss practical considerations of our results
in Section 9. A brief overview of related work is presented in [29,42]. We then
explain how our theoretic contributions can help to improve practical SMT
solving.

The Appendix contains examples that make some definitions and proofs
easier to understand.

2 Motivation

In practice, state-of-the-art bit-vector solvers rely on rewriting and bit-blasting.
The latter is defined as the process of translating a bit-vector description (also
called word-level description) into a combinatorial circuit, as in hardware syn-
thesis. The result can then be checked by a (propositional) SAT solver.

Usually, numbers contained in a bit-vector description (e.g. the bit-widths
of bit-vector variables) are encoded in a logarithmic way. When translating the
original description into a circuit, all numbers are effectively replaced by their
unary encoding. Bit-blasting can therefore lead to an exponential growth, if
the numbers are not logarithmic in the original description size.

To illustrate this effect on a practical example, consider the following bit-
vector formula in SMT-LIB syntax [3]:

(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(declare-fun z () (_ BitVec 1000000))

(assert (= z (bvadd x y)))

(assert (= z (bvshl x (_ bv1 1000000))))

(assert (distinct x y))

The first line defines the logic to be the one of quantifier-free bit-vectors. The
following three lines introduce bit-vector variables x, y, and z of bit-width one
million. The last three lines enforce some constraints between the variables.
Basically, the formula verifies that, for an arbitrary bit-vector x of bit-width
one million, there exists no bit-vector y ‰ x with x` y “ x ! 1.

Written to a file, this formula can be encoded with 217 bytes. Using the
SMT solver Boolector (even with all rewritings switched on), bit-blasting pro-
duces a circuit of size 129 MB encoded in the actually rather compact AIGER
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format. Tseitin transformation results in a CNF in DIMACS format of size
843 MB. A bit-width of 10 million bits can be represented by four more bytes
in the original SMT-LIB input, but could not be bit-blasted anymore with our
tool-flow (due to integer overflow). As this example illustrates, checking sat-
isfiability of bit-vector formulas through bit-blasting can suffer dramatically
from the exponential growth caused by the implicit unary re-encoding of the
numbers.

Obviously, its exponential nature also disqualifies bit-blasting as a sound
way to prove that the satisfiability problem for (quantifier-free) bit-vector log-
ics is in NP. In [41], we showed that deciding bit-vector logics, even without
quantifiers, is much harder. It turned out to be NExpTime-complete. Infor-
mally speaking, we showed that moving from unary to binary encoding for
bit-widths increases complexity exponentially and that binary encoding has at
least as much expressive power as quantification. However, in [30,41], we also
proposed certain restrictions for bit-vector problems to remain in a “lower”
complexity class, when moving from unary to binary encoding.

These theoretical insights as well as later practical results from [29,42] give
reason to look into bit-vector logics more closely and to provide a comprehen-
sive framework for dealing with complexity of bit-vector logics, particularly
combined with the use of a binary encoding.

3 Preliminaries

N denotes the set of natural numbers t0, 1, 2, . . . u, while N` denotes Nzt0u.
B :“ t0, 1u is the Boolean domain, thus truth values false and true are repre-
sented by 0 and 1, respectively.

Given n P N`, let Ln denote the ceiling of the logarithm of n base 2 :
Ln :“ rlog2 ns.

3.1 SAT, QBF, and DQBF

Let V be a set of Boolean variables. Boolean formulas over V are defined
inductively as follows: (i) x is a Boolean formula where x P V ; (ii)  φ0,
pφ0 ^ φ1q, pφ0 _ φ1q, pφ0 ñ φ1q, and pφ0 ô φ1q are Boolean formulas where
φ0, φ1 are Boolean formulas. A Boolean formula φ is satisfiable iff there exists
an assignment α : V ÞÑ B to the variables, such that φ evaluates to 1 under α.
The Boolean satisfiability problem (SAT) is NP-complete.

The class of Quantified Boolean Formulas (QBF) is obtained by adding
quantifiers to Boolean formulas. Each QBF ψ can be written in prenex normal
form, i.e., as a closed formula Q.φ where Q is a quantifier prefix
DV0@V1DV2@V3 . . .@Vm´1DVm, the Vis are pairwise disjoint sets of variables,
and φ is a Boolean formula, which is called the matrix of ψ. A variable v P Vi
depends on a variable v1 P Vj iff i ą j. This defines a total order on the
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variables of ψ. A QBF is satisfiable iff there exist Skolem functions for its ex-
istential variables to make the formula evaluate to 1. The satisfiability problem
for QBF is PSpace-complete [48,57].

Instead of using totally ordered quantifiers, it is also possible to extend
Boolean formulas with Henkin quantifiers [34]. Henkin quantifiers specify vari-
able dependencies explicitly instead of using implicit dependencies defined by
the quantifier order. This allows to define more general dependency constraints
only requiring a partial order. Adding Henkin quantifiers to Boolean formulas
results in the class of Dependency Quantified Boolean Formulas (DQBF), as
first defined in [50]. Again, a DQBF can always be expressed in prenex normal
form, i.e., as a closed formula Q1.φ, where Q1 is a quantifier prefix

@u1, . . . , umDe1pu1,1, . . . , u1,m1
q, . . . , enpun,1, . . . , un,mn

q

where each ui,j is a universally quantified variable, mi P N, and the matrix φ is
a Boolean formula. In DQBF, existential variables can always be placed after
all universal variables in the quantifier prefix, since the dependencies of a cer-
tain variable are explicitly given and not implicitly defined by the order of the
prefix (in contrast to QBF). The more general quantifier order makes DQBF
more powerful than QBF and allows more succinct encodings. A DQBF is
satisfiable iff there exist Skolem functions for its existential variables to make
the formula evaluate to 1. In DQBF, the arguments for Skolem functions
of an existential variable are exactly the universal variables that are explic-
itly specified in its Henkin quantifier. The satisfiability problem for DQBF
is NExpTime-complete [49,50]. Although we did not formally specify the de-
pendencies of universal variables, this can be done by the use of Herbrand
functions [2].

Throughout our paper, we use SAT, QBF, and DQBF to give reductions
from or to certain bit-vector logics, showing inclusion or hardness for the corre-
sponding complexity class, respectively. While SAT and QBF are considered
to be prototypical complete problems for their complexity classes, DQBF is
used less frequently. Another NExpTime-complete logic used in reductions in
the context of unary encoded bit-vector logics [59] is Effectively Propositional
Logic (EPR) [45]. However, due to its simplicity, we consider DQBF to be a
better choice for our purposes.

3.2 Circuits

We distinguish between two kind of circuits: combinatorial circuits and se-
quential circuits. For both kinds of circuits, we stick closely to the definitions
in [55]:

A combinatorial circuit with ni inputs and no outputs is a finite acyclic
directed graph with exactly ni vertices of in-degree zero and no vertices of
out-degree zero. All vertices of a non-zero in-degree have a logical function
assigned to them and are called gates. All vertices of in-degree one represent
a NOT-gate and vertices of greater in-degrees are either AND- or OR-gates.
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Given boolean values for the inputs, each gate can be evaluated in the natural
way according to the logical function it represents. As already noted in the
introduction, this kind of representation of a bit-vector formula is created
during bit-blasting. For every combinatorial circuit, a corresponding set of no
SAT formulas with ni variables can be constructed naturally.

A (clocked) sequential circuit SC consists of a combinatorial circuit C and
a set of D-type flip-flops. The data input of each flip-flop is connected to a
unique output of C and the Q-output of each flip-flop is connected to a unique
input of C. Such a backward-connected output-input pair will be denoted as
a state variable. The circuit is assumed to work in clock pulses. In every clock
pulse, it takes the values of its inputs and computes the output values. Via
the flip-flops these values are routed back to the inputs for the use in the next
clock cycle. Inputs of C that do not receive their value from an output through
a flip-flop will be called the inputs of the sequential circuit SC and outputs
of C that do not pass their value to an input of a flip-flop will be called the
outputs of the sequential circuit SC.

All the state variables are assumed to be provided with initial values stored
in the flip-flops before the first clock cycle. The input variables need to be
provided values from outside the system at every clock cycle and the output
variables produce a new output at every clock cycle. A sequential circuit can
be used to recognize languages. A word w P pt0, 1uniq` is said to be accepted
by a sequential circuit SC with one output o, iff the value of o is 1 after the
last clock cycle when w is given as input, one letter each clock cycle.

Symbolic model checking for sequential circuits refers to the problem of
checking whether the language for a given sequential circuit is empty. It is
known to be PSpace-complete [51,52,54].

3.3 Fixed-Size Bit-Vector Logics

A bit-vector, or word, is a sequence of bits, i.e., Boolean values. Such a sequence
may be either infinite or of a fixed size n P N`, where n is called the bit-width
of the bit-vector. While non-fixed-size bit-vectors have been considered for
example in [1,5,55,56], working with fixed-size bit-vectors is the focus of this
paper.

Let Dn denote the set of all bit-vectors of bit-width n. Given d P Dn,
the ith bit of d is denoted by dris, where i P N and i ă n. Using vector
notation, d is written as

`

drn´ 1s, . . . , dr1s, dr0s
˘

, i.e., the most significant bit
standing on the left-hand side and the least significant bit on the right-hand
side. Sometimes we omit parentheses and commas.

Syntax and semantics of fixed-size bit-vector logics do not differ much in the
literature [4,5,13,21,27]. Concrete formats for specifying bit-vector problems
also exist, e.g., the SMT-LIB format [3] or the BTOR format [10]. In the
subsequent sections, we give the necessary definitions, in a more general way
than in the works cited above, in order to propose a uniform and general
framework using any set of bit-vector operations.
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3.3.1 Syntax

The main objective of this section is to define bit-vector formulas. As it turns
out in Definition 2 and 3, such a formula, informally speaking, is a combina-
tion of bit-vector operations on some atomic elements, each of which can be
represented either as a bit-vector or an integer, which we call a scalar. Let
us emphasize that scalars in formulas are not represented as bit-vectors. Note
that the bit-width of a bit-vector is also a scalar.

A bit-vector operator symbol (or operator for short) represents an opera-
tion that takes some bit-vector operands and scalar operands, and computes a
single bit-vector. Given an arbitrary operator set, one has to specify syntactic
rules for using the operators. Definition 1 of a signature captures these rules by
providing three properties for each operator: (1) An operator is given an arity,
which is a pair of numbers that specify the number of bit-vector operands
and the number of scalar operands, respectively. For instance, the arithmetic
operator addition has 2 bit-vector and 0 scalar operands, while extraction has
1 bit-vector and 2 scalar operands. (2) Since there usually exist restrictions
on what kind of operands are legal to use with an operator, a signature has
to specify a condition on the bit-widths and scalar values of operands. For
instance, the operands of addition must be of the same bit-width; the scalar
operands i, j of extraction must be less than the bit-width of the bit-vector
operand and i ě j. (3) A bit-width of the resulting bit-vector is assigned to
each legal combination of bit-widths and scalar values of operands.

Definition 1 (Signature) A signature for an operator set Op is defined as
a set ΣOp :“ txarityo, condo, widoy | o P Opu, where

– arityo P Nˆ N;
– condo : pN`qk ˆ Nl ÞÑ B where xk, ly :“ arityo;
– wido : Paro ÞÑ N` where

Paro :“
 

p P pN`qk ˆ Nl | xk, ly :“ arityo, condoppq
(

.

Table 1 shows the set of the most common operators provided by the SMT-
LIB format [3] and the literature [4,5,13,21,27], such as bitwise operators
(negation, and, or, xor, etc.), relational operators (equality, unsigned/signed
less than, unsigned/signed less than or equal, etc.), arithmetic operators (ad-
dition, subtraction, multiplication, unsigned/signed division, unsigned/signed
remainder, etc.), shifts (left shift, logical/arithmetic right shift), extraction,
concatenation, zero/sign extension, etc. Let Op denote the common operator
set given in Table 1. Op includes all bit-vector operators used in the SMT-LIB
providing a collection of the most common bit-vector operators in software and
hardware verification; other frameworks, like Boolector and Z3, provide addi-
tional useful operators, e.g., reduction operators and overflow operators. Let
ΣOp denote the common signature for Op. Note that Table 1 specifies some
of the syntactic properties provided by ΣOp in an implicit way: the arity is
completely, the condition is partly implicit.
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operation condition bit-width alternative syntax

negation: bvnot
`

trns
˘

n „ trns

and: bvand
`

t1rns, t2rns
˘

n
`

t1rns & t2rns
˘

or: bvor
`

t1rns, t2rns
˘

n
`

t1rns | t2rns
˘

xor: bvxor
`

t1rns, t2rns
˘

n
`

t1rns ‘ t2rns
˘

nand: bvnand
`

t1rns, t2rns
˘

n

nor: bvnor
`

t1rns, t2rns
˘

n

xnor: bvxnor
`

t1rns, t2rns
˘

n

if-then-else: ite
`

t1r1s, t2rns, t3rns
˘

n

equality: bvcomp
`

t1rns, t2rns
˘

1
`

t1rns “ t2rns
˘

unsigned (u.) less than: bvult
`

t1rns, t2rns
˘

1
`

t1rns ău t2rns
˘

u. less than or equal: bvule
`

t1rns, t2rns
˘

1

u. greater than: bvugt
`

t1rns, t2rns
˘

1

u. greater than or equal: bvuge
`

t1rns, t2rns
˘

1

signed (s.) less than: bvslt
`

t1rns, t2rns
˘

1

s. less than or equal: bvsle
`

t1rns, t2rns
˘

1

s. greater than: bvsgt
`

t1rns, t2rns
˘

1

s. greater than or equal: bvsge
`

t1rns, t2rns
˘

1

shift left: bvshl
`

t1rns, t2rns
˘

n
`

t1rns ! t2rns
˘

logical shift right: bvlshr
`

t1rns, t2rns
˘

n
`

t1rns "u t2rns
˘

arithmetic shift right: bvashr
`

t1rns, t2rns
˘

n
`

t1rns "s t2rns
˘

extraction: extract
`

trns, i, j
˘

n ą i ě j i´ j ` 1 trns ri : js

concatenation: concat
`

t1rms, t2rns
˘

m` n
`

t1rms ˝ t2rns
˘

zero extend: zero extend
`

trns, i
˘

n` i extu
`

trns, i
˘

sign extend: sign extend
`

trns, i
˘

n` i

rotate left: rotate left
`

trns, i
˘

n ą i ě 0 n

rotate right: rotate right
`

trns, i
˘

n ą i ě 0 n

repeat: repeat
`

trns, i
˘

i ą 0 n ¨ i

unary minus: bvneg
`

trns
˘

n ´trns

addition: bvadd
`

t1rns, t2rns
˘

n
`

t1rns ` t2rns
˘

subtraction: bvsub
`

t1rns, t2rns
˘

n
`

t1rns ´ t2rns
˘

multiplication: bvmul
`

t1rns, t2rns
˘

n
`

t1rns ¨ t2rns
˘

unsigned division: bvudiv
`

t1rns, t2rns
˘

n
`

t1rns {u t2rns
˘

u. remainder: bvurem
`

t1rns, t2rns
˘

n

continued on next page
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continued from previous page

signed division: bvsdiv
`

t1rns, t2rns
˘

n

s. remainder
with rounding to 0: bvsrem

`

t1rns, t2rns
˘

n

s. remainder
with rounding to ´8: bvsmod

`

t1rns, t2rns
˘

n

Table 1 Syntax (signature) for common bit-vector operators

The simplest bit-vector expressions, or terms, are the variables and con-
stants, as Definition 2 shows. Operators can be applied to bit-vector terms
which obey the syntactic rules given by the signature of the operator set.
While operators have a priori fixed syntax and semantics, uninterpreted func-
tions can be introduced on demand.

Definition 2 (Term) A bit-vector term t of bit-width n P N` is denoted by
trns. A term over a signature ΣOp is defined inductively as follows:

term condition bit-width

constant: crns c P N, 0 ď c ă 2n n

variable: xrns x is an identifier n

operation: o
`

t1rn1s, . . . , tk
rnks, i1, . . . , il

˘

o P Op, xk, ly :“ arityo
t1rn1s, . . . , tk

rnks are terms
i1, . . . , il P N

condopn1, . . . , nk, i1, . . . , ilq

widopn1, . . . , ilq

uninterpreted

function: f rns
`

t1rn1s, . . . , tk
rnks

˘ f is an identifier, k P N
t1rn1s, . . . , tk

rnks are terms
n

Let us emphasize that, in a term, bit-widths are specified explicitly only for
constants, variables, and uninterpreted functions. In all other cases, the bit-
width is implicit, i.e., it can be derived from the bit-widths of the operands of
operations. In the following, we may omit explicit bit-widths and parentheses
if they can be concluded from the context.

Definition 3 (Formula) A bit-vector formula is an expression Q.tr1s, where
tr1s is a bit-vector term, Q is a quantifier prefix Q0x0

rn0sQ1x1
rn1s . . . Qkxk

rnks,
each Qi P t@, Du, and each xi

rnis is a bit-vector variable. We call t the matrix
of the formula.

If only existential quantifiers appear in a formula, we may omit the quantifier
prefix and refer to this kind of formula as a quantifier-free one. In the same way,
we refer to a formula as being quantified, if it contains universal quantifiers.

Without loss of generality, we can assume that variables and uninterpreted
functions are identified by their unique names. In a formula, therefore, each
variable and each uninterpreted function must be used in a consistent way,
regarding its bit-width and the bit-widths of its arguments.
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In the literature, most of the approaches distinguish between a bit-vector
level and a Boolean level within a bit-vector formula, by allowing only re-
lational operators (i.e., operators with result of bit-width 1) at the Boolean
level [4,11,13,21,27]. Note that, in our definitions, there is no such explicit
distinction. Therefore, for example, relational operators are allowed to be em-
bedded in concatenations or arithmetic operations. However, by introducing
the so-called flat form in Definition 8, the same separation of a Boolean level
and a bit-vector level can be made in any bit-vector formula over ΣOp, as-
suming the common interpretation of ΣOp, defined in Section 3.3.2.

3.3.2 Semantics

Given a signature ΣOp and an operator o P Op where xk, ly :“ arityo, each
p :“ pn1, . . . , nk, i1, . . . , ilq P Paro can be mapped to a set of possible operands
(bit-vectors and scalars) and also to a set of possible results (bit-vectors). These
two sets, called the domain and the range of p, are defined as follows:

Domoppq :“ Dn1
ˆ ¨ ¨ ¨ ˆDnk

ˆ ti1u ˆ ¨ ¨ ¨ ˆ tilu

Rangeoppq :“ Dwidoppq

In order to evaluate a term or formula, it is first necessary to interpret all the
operators we use (Definition 4), and then to assign domain elements to free
variables and to interpret uninterpreted functions (Definition 5).

Definition 4 (Interpretation) An interpretation of a signature ΣOp is de-

fined as a set xOp of functions, consisting of an po for each o P Op, such that

po :
ď

pPParo

Domoppq ÞÑ
ď

pPParo

Rangeoppq

where

@p P Paro, d P Domoppq . popdq P Rangeoppq

Let yOp denote the common interpretation of ΣOp, detailed in Table 2, based
on [13,16,27] and the SMT-LIB. Note that Table 2 uses a notation that is
introduced by the following definitions.

Definition 5 (Model) M :“ xα, pF y is a model for a formula Φ where

– α is an assignment, i.e., it assigns an element of Dn to each free variable
xrns in Φ;

– pF is a set of interpretations pf : Dn1
ˆ ¨ ¨ ¨ ˆDnk

ÞÑ Dn of all uninterpreted
functions f rns

`

t1
rn1s, . . . , tk

rnks
˘

in Φ.

To facilitate the presentation, similar to [13,27], we define an auxiliary bijective
meta-function natn : Dn ÞÑ r0, 2n ´ 1s. Given a bit-vector d P Dn, natnpdq :“
řn´1
i“0 2idris. We also introduce the inverse meta-function bvn :“ nat´1

n .
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Definition 6 (Evaluation) Given a signature ΣOp, a formula Φ over ΣOp, an

interpretation xOp of ΣOp, and a model M :“ xα, pF y for Φ, Φ can be evaluated
to either 0 or 1, by using the inductive definition of the evaluation function

J¨K
yOp
M , as follows:

constant:
q
crns

yyOp

M
:“ bvn pcq

variable:
q
xrns

yyOp

M
:“ αpxq

operation:

q
o
`

t1rn1s, . . . , tk
rnks, i1, . . . , il

˘yyOp

M
:“

po

ˆq
t1rn1s

yyOp

M
, . . . ,

q
tk
rnks

yyOp

M
, i1, . . . , il

˙

uninterpreted

function:
q
f rns

`

t1rn1s, . . . , tk
rnks

˘yyOp

M
:“ pf

ˆq
t1rn1s

yyOp

M
, . . . ,

q
tk
rnks

yyOp

M

˙

quantifiers:

q
@xrns.Φ

yyOp

M
:“

ľ

dPDn

JΦK
yOp

xαYtxrns ÞÑdu, pFy

q
Dxrns.Φ

yyOp

M
:“

ł

dPDn

JΦK
yOp

xαYtxrns ÞÑdu, pFy

As mentioned before, the common interpretation yOp is given in Table 2.
In the table, we omit the interpretation and the model for evaluation. Fur-
thermore, we use two abbreviations:

msb
`

trns
˘

:“ JtKrn´ 1s

abs
`

trns
˘

:“

"

´t if msb ptq
t otherwise

bvnot:
q
„ trns

y
:“ bvn

´

řn´1
i“0 2i p JtKrisq

¯

bvand:
q
t1rns & t2rns

y
:“ bvn

´

řn´1
i“0 2i pJt1Kris ^ Jt2Krisq

¯

bvor:
q
t1rns | t2rns

y
:“ bvn

´

řn´1
i“0 2i pJt1Kris _ Jt2Krisq

¯

bvxor:
q
t1rns ‘ t2rns

y
:“ bvn

´

řn´1
i“0 2i p Jt1Kris ô Jt2Krisq

¯

bvnand:
q

bvnand
`

t1rns, t2rns
˘y

:“
q
„pt1rns & t2rnsq

y

bvnor:
q

bvnor
`

t1rns, t2rns
˘y

:“
q
„pt1rns | t2rnsq

y

bvxnor:
q

bvxnor
`

t1rns, t2rns
˘y

:“
q
„pt1rns ‘ t2rnsq

y

ite:
q

ite
`

t1r1s, t2rns, t3rns
˘y

:“

"

Jt2K if Jt1K
Jt3K otherwise

bvcomp:
q
t1rns “ t2rns

y
:“ bv1 pnatn pJt1Kq “ natn pJt2Kqq

bvult:
q
t1rns ău t2rns

y
:“ bv1 pnatn pJt1Kq ă natn pJt2Kqq

bvule:
q

bvule
`

t1rns, t2rns
˘y

:“ J„pt2 ău t1qK

bvugt:
q

bvugt
`

t1rns, t2rns
˘y

:“ Jt2 ău t1K
continued on next page
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continued from previous page

bvuge:
q

bvuge
`

t1rns, t2rns
˘y

:“ Jbvule pt2, t1qK

bvslt:
q

bvslt
`

t1rns, t2rns
˘y

:“ bv1

ˆ

pmsb pt1q ^  msb pt2qq_
ppmsb pt1q ô msb pt2qq ^ Jt1 ău t2Kq

˙

bvsle:
q

bvsle
`

t1rns, t2rns
˘y

:“ J„bvslt pt2, t1qK

bvsgt:
q

bvsgt
`

t1rns, t2rns
˘y

:“ Jbvslt pt2, t1qK

bvsge:
q

bvsge
`

t1rns, t2rns
˘y

:“ Jbvsle pt2, t1qK

bvshl:
q
t1rns ! t2rns

y
:“ bvn

`

natn pJt1Kq ¨ 2k mod 2n
˘

where k :“ natn pJt2Kq

bvlshr:
q
t1rns "u t2rns

y
:“ bvn

`X

natn pJt1Kq {2k
\˘

where k :“ natn pJt2Kq

bvashr:
q
t1rns "s t2rns

y
:“

"

J„p„ t1 "u t2qK if msb pt1q
Jt1 "u t2K otherwise

extract:
q
trns ri : js

y
:“ bvi´j`1

`X

natn pJtKq {2j
\

mod 2i
˘

concat:
q
t1rms ˝ t2rns

y
:“ bvm`n p2nnatm pJt1Kq ` natn pJt2Kqq

zero extend:
q

extu
`

trns, i
˘y

:“ bvn`i pnatn pJtKqq

sign extend:
q

sign extend
`

trns, i
˘y

:“

"

bvn`i
`

2n`i ´ 2n ` natn pJtKq
˘

if msb ptqq
extu

`

trns, i
˘y

otherwise

rotate left:
q

rotate left
`

trns, i
˘y

:“

"

JtK if n“1_ i“0
Jt rn´i´1 : 0s ˝ t rn´1 : n´isK otherwise

rotate right:
q

rotate right
`

trns, i
˘y

:“

"

JtK if n “ 1_ i “ 0
Jt ri´ 1 : 0s ˝ t rn´ 1 : isK otherwise

repeat:
q

repeat
`

trns, i
˘y

:“

"

JtK if i “ 1
Jt ˝ repeat pt, i´ 1qK otherwise

bvneg:
q
´trns

y
:“ bvn p2n ´ natn pJtKqq

bvadd:
q
t1rns ` t2rns

y
:“ bvn pnatn pJt1Kq ` natn pJt2Kq mod 2nq

bvsub:
q
t1rns ´ t2rns

y
:“ Jt1 ` p´t2qK

bvmul:
q
t1rns ¨ t2rns

y
:“ bvn pnatn pJt1Kq ¨ natn pJt2Kq mod 2nq

bvudiv:
q
t1rns {u t2rns

y
:“ bvn ptnatn pJt1Kq {natn pJt2Kquq

bvurem:
q

bvurem
`

t1rns, t2rns
˘y

:“ Jt1 ´ pt1 {u t2q ¨ t2K

bvsdiv:
q

bvsdiv
`

t1rns, t2rns
˘y

:“

"

Jabspt1q {u abspt2qK if msb pt1q “ msb pt2q
J´pabspt1q {u abspt2qqK otherwise

bvsrem:
q

bvsrem
`

t1rns, t2rns
˘y

:“

"

J´bvurem pabspt1q, abspt2qqK if msb pt1q
Jbvurem pabspt1q, abspt2qqK otherwise

bvsmod:
q

bvsmod
`

t1rns, t2rns
˘y

:“

$

&

%

Jbvsrem pt1, t2qK if Jbvsrem pt1, t2qK“0
_msb pt1q“msb pt2q

Jbvsrem pt1, t2q ` t2K otherwise

Table 2 Semantics (interpretation) for common bit-vector operators
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In the Appendix, we use the notation trns

K

“ d, where d P Dn, as an
alternative for

q
trns

y
“ d, assuming an appropriate model for t, implied by

the context.
A formula Φ (over ΣOp) is satisfiable over an interpretation xOp (of ΣOp)

iff there exists a model M for Φ such that JΦK
yOp
M “ 1. M is called a satisfying

model for Φ over xOp.

Definition 7 (Bit-blasting) Bit-blasting, or flattening [44], a bit-vector for-
mula Φ means to construct an equisatisfiable Boolean formula φ. Φ and φ are
equisatisfiable over an interpretation xOp iff the following condition holds: there
exists a satisfying model for Φ over xOp iff there exists a satisfying assignment
for φ.

Bit-blasting techniques represent bit-vector variables as strings of Boolean
variables and encode bit-vector operations as corresponding Boolean circuits.
It is a well-known fact that for all common operations, interpreted by yOp, a
corresponding polynomial-size (in the bit-widths of operands) Boolean circuit
can be constructed. This fact plays an important role in several of our proofs.

3.3.3 Logics and Encodings

For the rest of this paper, we fix the operator set we use to Op with the
signature ΣOp (Table 1) and the interpretation yOp (Table 2), and we refer to
this framework as the Common Operator Framework.

By considering bitwise operators in the Boolean case (i.e., for bit-width
1) as logical connectives, the same separation of a Boolean level and a bit-
vector level can be made in any bit-vector formula as in most approaches in
the literature [4,11,13,21,27]. Notice, however, that relational operations can
occur not only at the Boolean level, but even below that, due to Definition 2,
which allows any operations to be nested. In order to be compatible with
the above-mentioned two-level approaches, we introduce a normal form for
bit-vector formulas as follows:

Definition 8 (Flat Form) A bit-vector formula Φ is in flat form iff it does
not contain any nested relational operations.

It is easy to see that any bit-vector formula Φ can be translated into flat form
with only linear growth in formula size. For each nested relational operation in
Φ, iteratively replace the innermost one opt1

rn1s, . . . , tk
rnks, i1, . . . , ilq by intro-

ducing a new (Tseitin) variable tsr1s existentially quantified at the innermost
prefix position and adding the constraint tsr1s ô opt1

rn1s, . . . , tk
rnks, i1, . . . , ilq

to the formula (i.e., conjuncting it with the matrix).
In this paper, we investigate the following four common bit-vector logics,

as well as fragments and extensions thereof:

QF BV: quantifier-free bit-vector formulas without uninterpreted functions;
QF UFBV: quantifier-free formulas allowing uninterpreted functions;
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BV: formulas allowing quantification, but no uninterpreted functions;
UFBV: formulas allowing quantification and uninterpreted functions.

We distinguish between logics that use a unary or a binary encoding on
scalars appearing in formulas. Recall that binary encoding can be replaced
with any other logarithmic encoding. Note that a scalar can appear either as
a bit-width or a scalar operand. The value c of a bit-vector constant crns is
always encoded in binary format, since it represents a bit-vector.

Definition 9 (Logic with Unary and Binary Encoding) Given a bit-
vector logic L, let L1 and L2 denote the logic L using unary and binary
encoding on all the scalars in formulas, respectively.

In the rest of this paper, we investigate the complexity of the satisfiability
problem for QF BV1, QF UFBV1, BV1, UFBV1, QF BV2, QF UFBV2,
BV2, and UFBV2. For this, we define the size of a formula.

Definition 10 (Formula Size) Suppose we are given a bit-vector logic L
and a formula Φ P L, with Φ :“ Q0x0

rn0sQ1x1
rn1s . . . Qkxk

rnks.tr1s. The size of
Φ is defined as |Φ| :“

ˇ

ˇx0
rn0s

ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇxk
rnks

ˇ

ˇ`
ˇ

ˇtr1s
ˇ

ˇ.

The expression |trns| denotes the size of a term trns and is defined as follows:

expression size

constant:
ˇ

ˇcrns
ˇ

ˇ 1` Lpc` 1q ` encLpnq

variable:
ˇ

ˇvrns
ˇ

ˇ 1` encLpnq

operation:
ˇ

ˇo
`

t1rn1s, . . . , tk
rnks, i1, . . . , il

˘ˇ

ˇ

1`
ˇ

ˇt1rn1s
ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇtk
rnks

ˇ

ˇ

`

encLpi1q ` ¨ ¨ ¨ ` encLpilq

uninterpreted

function:
ˇ

ˇf rns
`

t1rn1s, . . . , tk
rnks

˘ˇ

ˇ

1` encLpnq
`

ˇ

ˇt1rn1s
ˇ

ˇ` ¨ ¨ ¨ `
ˇ

ˇtk
rnks

ˇ

ˇ

scalar: encLpnq

1` n, if L uses unary
encoding

1` Lpn` 1q, if L uses binary
encoding

4 Logics With Unary Encoding

First, we consider bit-vector logics with unary encoding. The results of this
section can also be found in our previous work [41].

Without uninterpreted functions nor quantification, i.e., for QF BV1, the
following complexity result can be shown (for partial results and related work
see also [4] and [13]):

Proposition 1 QF BV1 is NP-complete.2

2 This kind of result is often called unary NP-completeness [32].



Complexity of Fixed-Size Bit-Vector Logics 15

Proof Recall that QF BV1 uses the Common Operator Framework. There-
fore, by bit-blasting, QF BV1 can be (polynomially) reduced to Boolean for-
mulas, for which the satisfiability problem (SAT) is NP-complete. The other
direction follows from the fact that Boolean formulas are actually QF BV1
formulas with terms of bit-width 1. i.e., the class of Boolean formulas is a
subset of QF BV1.

Adding uninterpreted functions to QF BV1 does not increase complexity:

Proposition 2 QF UFBV1 is NP-complete.

Proof In a quantifier-free formula, uninterpreted functions can be eliminated
by replacing each occurrence with a new bit-vector variable and adding (at
most quadratic many) Ackermann constraints (see, e.g., [44, Chapter 3.3.1]).
Therefore, QF UFBV1 can be polynomially translated into QF BV1. The
other direction follows from the fact that QF BV1 Ă QF UFBV1.

Adding quantifiers to QF BV1 yields the following complexity (see also [19]):

Proposition 3 BV1 is PSpace-complete.

Proof By bit-blasting, BV1 can be reduced to Quantified Boolean Formu-
las (QBF), which is PSpace-complete. Hardness follows from the fact that
QBF Ă BV1 (following the same argument as in Proposition 1).

Adding quantifiers to QF UFBV1 increases complexity exponentially:

Proposition 4 UFBV1 is NExpTime-complete (see [59]).

Proof The Effectively Propositional Logic (EPR), is a common NExpTime-
complete [45] logic, and can be reduced to UFBV1 [59, Theorem 7]. For com-
pleting the other direction, apply the reduction in [59, Theorem 7] combined
with bit-blasting of the bit-vector operations.

5 Scalar-Bounded Problems

For some of our remaining complexity results, we apply the concept of re-
encoding scalars from binary to unary format. Due to the nature of these
encodings, this process can lead to an exponential growth in formula size for
the general case. However, this exponential growth can be avoided sometimes.

In [41], we introduced the concept of bit-width bounded bit-vector prob-
lems. In this section, we generalize this concept by introducing the concept of
scalar-boundedness, a sufficient condition for bit-vector problems to remain in
the “lower” complexity class, when re-encoding scalars from binary to unary
format. This condition tries to capture the bounded nature of scalars in certain
problems.
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Note that, in any bit-vector formula, there has to be at least one scalar, due
to the fact that there has to be at least one term with explicit specification of its
bit-width (as a scalar).3 Given a formula Φ, let maxscl pΦq denote the maximal
scalar in Φ and, furthermore, let cntscl pΦq denote the number of scalars in Φ.

Definition 11 (Scalar-Bounded Formula Set) An infinite set S of bit-
vector formulas is (polynomially) scalar-bounded, iff there exists a polynomial
function p : N ÞÑ N such that @Φ P S. maxscl pΦq ď ppcntscl pΦqq.

Proposition 5 Given a scalar-bounded set S of formulas with binary encoded
scalars, any Φ P S grows polynomially when re-encoding the scalars to unary
format.

Proof Let Φ1 denote the formula obtained through re-encoding scalars in Φ
to unary format. For the size of Φ1, the following upper bound holds:|Φ1| ď
cntscl pΦq ¨maxscl pΦq`|Φ|. Note that cntscl pΦq ¨maxscl pΦq is an upper bound on
the sum over the sizes of all the scalars in Φ1. The second term, |Φ|, represents
an upper bound for the part of Φ that does not contain any scalars. Since S
is scalar-bounded, it holds that

|Φ1| ď cntscl pΦq ¨maxscl pΦq ` |Φ|

ď cntscl pΦq ¨ ppcntscl pΦqq ` |Φ| ď |Φ| ¨ pp|Φ|q ` |Φ|

where p is a polynomial function. Therefore, the size of Φ1 is polynomial in the
size of Φ.

By applying this proposition to the logics of Section 3.3.3 together with
the results from Section 4, we get:

Corollary 1 Suppose we are given a scalar-bounded set S of bit-vector for-
mulas. If S Ď QF BV2 (and even if S Ď QF UFBV2), then S P NP. If
S Ď BV2, then S P PSpace. If S Ď UFBV2, then S P NExpTime.

6 Quantifier-Free Logics with Binary Encoding

Our main contribution in [30,41] was to give complexity results for bit-vector
logics with the more common binary encoding in the general case (i.e., for sets
of formulas that are not scalar-bounded). In this section, we present modified
versions of our proofs for the quantifier-free logics and restructured our results
in order to give a better overall picture.

First we introduce our main complexity results as theorems, starting with
the full logic of QF BV2 in Theorem 1, and continuing with three fragments
of QF BV2 in Theorem 2, 3, 4. All these theorems reference separate lemmas,
which we introduce afterwards.

3 Recall that only a variable, a constant, or an uninterpreted function can have explicit
bit-width.
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Theorem 1 QF BV2 is NExpTime-complete [41].

Proof It is easy to see that QF BV2 P NExpTime, since a QF BV2 formula
can be translated exponentially to QF BV1 P NP (Proposition 1), by applying
a simple unary re-encoding to all the scalars in the formula. NExpTime-
hardness of QF BV2 is a direct consequence of Lemma 1, in which a fragment
of QF BV2 is proved to be NExpTime-hard.

Note that UFBV1 and QF BV2 have the same complexity. This shows that,
informally speaking, binary encoding on scalars has the same expressive power
as quantification and uninterpreted functions altogether.

In [30], we investigated the complexity of the satisfiability problem for the
following three fragments of QF BV2, which only allow a restricted set of
bit-vector operations in formulas:

QF BV2!c: only bitwise operations, equality, and left shift by constant, i.e.,
trns ! crns where c is a constant, are allowed.

QF BV2!1: only bitwise operations, equality, and left shift by 1, i.e.,
trns ! 1rns, are allowed.

QF BV2bw: only bitwise operations and equality are allowed.

Theorem 2 QF BV2!c is NExpTime-complete [30].

Proof In Lemma 1, we give a reduction from DQBF (which is NExpTime-
complete) to QF BV2!c. This shows the NExpTime-hardness of QF BV2!c.
The fact that QF BV2!c P NExpTime directly follows from Theorem 1.

Theorem 3 QF BV2!1 is PSpace-complete [30].

Proof In Lemma 2, we give a reduction from QBF (which is PSpace-complete)
to QF BV2!1. This shows the PSpace-hardness of QF BV2!1. In Lemma 3,
we then prove PSpace-inclusion by giving a reduction from satisfiability for
QF BV2!1 to the model checking problem for sequential circuits. Symbolic
model checking for sequential circuits is PSpace-complete as well [51,52,54].

Also note that this theorem has an important practical aspect. It allows us
to use symbolic model checkers (see the hardware model checking competition)
for solving these restricted bit-vector problems instead of using SAT solvers
after an exponential explosion through bit-blasting. This is further discussed
in Section 9.

Theorem 4 QF BV2bw is NP-complete [30].

Proof Since Boolean formulas are a subset of QF BV2bw, NP-hardness follows
directly. To show that QF BV2bw P NP, we give a reduction from QF BV2bw
to a scalar-bounded set of formulas S Ă QF BV2 in Lemma 4. The claim then
follows from Corollary 1.

As already hinted in Proposition 2, adding uninterpreted functions to all
quantifier-free logics we discussed so far does not affect complexity. We for-
malize this in the following proposition:
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Proposition 6 QF UFBV2 and QF UFBV2!c are NExpTime-complete,
QF UFBV2!1 is PSpace-complete, and QF UFBV2bw is NP-complete [30,
41].

Proof Apply the same arguments as were used in Proposition 2.

As we outlined above, now we propose our main lemmas, referenced in the
previous theorems.

Lemma 1 DQBF can be reduced to QF BV2!c [30,41].

Proof The basic idea is to use bit-vector expressions to encode function tables
in an exponentially more succinct way, which then allows us to characterize
independence of an existential variable from a particular universal variable in
a polynomial way.

In the proof, we apply bit masks of the form

binmagic p2m, 2nq :“

2n
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

0 . . . 0
loomoon

2m

1 . . . 1
loomoon

2m

. . . 0 . . . 0
loomoon

2m

1 . . . 1
loomoon

2m

Note that these bit masks correspond to the so-called binary magic numbers
(or magic masks in [39, p. 141]), and can arithmetically be calculated in the
following way (actually as the result of a geometric sum):

binmagic p2m, 2nq :“
2p2

n
q ´ 1

2p2mq ` 1

In order to reformulate this definition in terms of bit-vectors, (i) the numerator
can be written as „ 0r2

n
s, (ii) 2p2

m
q as 1 ! 2m, and (iii) the resulting binary

magic number as a bit-vector variable br2
n
s:

br2
n
s “ „0r2

n
s {u

`

p1 ! 2mq ` 1
˘

b ¨
`

p1 ! 2mq ` 1
˘

“ „0r2
n
s

pb ! 2mq ` b “ „0r2
n
s

Addition can be eliminated easily as follows, by using two’s complement rep-
resentation for ´1 and ´b:

pb ! 2mq ` b “ ´1

b ! 2m “ ´1´ b

b ! 2m “ ´1` „b` 1

b ! 2m “ „b

We now use the binary magic numbers to create a certain set of fully-
specified exponential-size bit-vectors by using a polynomial expression, due
to binary encoding on scalars. Afterwards, we then formally point out the
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well-known fact that those bit-vectors correspond exactly to the set of all
assignments. By adding constraints on those bit-vectors, we can then use a
polynomial-size bit-vector formula for cofactoring Skolem-functions in order
to express independency constraints.

First, we describe the reduction, then we show that the reduction is polyno-
mial, and, finally, that it is correct. An example can be found in Appendix A.

The reduction. Let ψ :“ Q.φ denote a DQBF with quantifier prefix Q and
matrix φ. Further, let u0, . . . , un´1 and e0, . . . , en1´1 denote all the univer-
sal and existential variables that occur in Q, respectively. Translate ψ to a
QF BV2!c formula Φ by eliminating the quantifier prefix and translating the
matrix φ as follows:

Step 1. Replace all Boolean constants 0 and 1 with 0r2
n
s and „0r2

n
s, all Bool-

ean universal variables um and existential variables em1 with bit-vector
variables Um

r2ns and Em1
r2ns, and all logical connectives with correspond-

ing bitwise bit-vector operators (e.g., ^ with & ). Let tr2
n
s denote the

bit-vector term generated so far. Extend it to the formula t “ „0r2
n
s. We

refer to this as Φ0.
Step 2. We now construct Φ1 by adding new constraints to Φ0. For each um P
tu0, . . . , un´1u, in order to assign a binary magic number to Um, add the
following equality (i.e., conjunct it with the current formula):

Um ! 2m “ „Um

Step 3. Next, we construct Φ2 by adding another set of constraints to Φ1. For
each existential variable em1 P te0, . . . , en1´1u, depending on the universal
variables Depspem1q Ď tu0, . . . , un´1u, and for each um R Depspem1q, add
the following equality:

Em1 & „Um “ pEm1 ! 2mq & „Um (1)

Finally, we define Φ :“ Φ2.

Polynomiality. Note that all the scalars and constants in Φ are encoded in
binary form. Therefore, exponential bit-widths and constants (2n and 2m) are
encoded into linear many (n and m) binary digits. We now show that each
reduction step results only in polynomial growth of the formula size.

Step 1 may introduce additional bit-vector constants to the formula and

adds variables U
r2ns
m , E

r2ns
m1 . The total number of elements is bounded by the

size of the input. All bit-widths are 2n and, therefore, the resulting formula
is bounded quadratically in the input size. Step 2 adds n equalities as con-
straints. Again, all bit-widths are 2n. Thus, the size of the added constraints is
bounded quadratically in the input size. Step 3 adds at most n constraints for
each existential variable. All bit-widths are 2n. Therefore, the size is bounded
cubically in the input size.



20 Kovásznai, Fröhlich, Biere

Correctness. In order to show that the original DQBF ψ and the resulting bit-
vector formula Φ are equisatisfiable we consider the individual steps separately.

In Step 1, we used the matrix φ of ψ to create a bit-vector formula with
the same underlying structure which is true iff each row evaluates to 1. Since
all the bits of bit-vectors in Φ0 are independent of each other and there are
no additional constraints on the bit-vector variables, Φ0 is satisfiable iff the
Boolean formula φ is satisfiable.

Now consider the bit-vector variables Um after constructing Φ1 by adding
the constraints of Step 2. In the following, we formalize the well-known fact
that the combination of all the Ums corresponds exactly to all possible assign-
ments to the universal variables of ψ. By construction, all bits of Um are fixed
to some constant value. Additionally, for every bit-index bi P r0, 2

n´ 1s, there
exists a bit-index bj P r0, 2

n ´ 1s such that

JUmKrbis ‰ JUmKrbjs and (2a)

JUkKrbis “ JUkKrbjs , @k ‰ m. (2b)

Actually, we can define bj in the following way (considering the 0th bit the
least significant):

bj :“

"

bi ´ 2m if JUmKrbis “ 0
bi ` 2m if JUmKrbis “ 1

By defining bj this way, Eqn. (2a) and (2b) both hold, which can be seen
as follows. Let Rpc, lq be the bit-vector of length l with each bit set to the
Boolean constant c. Eqn. (2a) holds, since, due to construction, Um consists
of 2n´1´m concatenated bit-vector fragments 0 . . . 01 . . . 1 “ Rp0, 2mqRp1, 2mq
(with both 2m zeros and 2m ones). Therefore, it is easy to see that

JUmKrbis ‰ JUmKrbi ´ 2ms and JUmKrbis ‰ JUmKrbi ` 2ms holds if
JUmKrbis “ 0 and JUmKrbis “ 1, respectively.

With a similar argument, we can show that Eqn. (2b) holds:

JUkKrbis “ JUkKrbi ´ 2ms and JUkKrbis “ JUkKrbi ` 2ms holds if
JUkKrbis “ 0 and JUkKrbis “ 1, respectively,

since bi ´ 2m and bi ` 2m are located either still in the same half or already
in a concatenated copy of a Rp0, 2kqRp1, 2kq fragment, if k ‰ m.

Now, consider all possible assignments to the universal variables of our
original DQBF ψ. For a given assignment α P t0, 1un, the existence of such
a previously defined bj for every Um and bi allows us to iteratively find a bα
such that

`

JU0Krbαs , . . . , JUn´1Krbαs
˘

“ α. Thus, we have a bijective mapping
from the universal assignments α for ψ to the bit-indices bα for Φ1. Up to this
point, each bit-vector Em1 can basically still take 2p2

n
q different values in Φ1.

The value of each individual bit JEm1Krbαs corresponds to the value that em1

takes under a given universal assignment α P t0, 1un. Note that, without any
further restriction, there is no connection between the different bits of Em1

and, therefore, the bit-vector represents an arbitrary Skolem-function for em1 .
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It may have different values for all universal assignments and thus would allow
em1 to depend on all universal variables. Consequently, Φ1 is satisfiable iff the
QBF @u1, . . . , un´1De1, . . . , en1´1.φ is satisfiable.

In Step 3, we rule out all those assignments to the Em1s that correspond
to Skolem-functions which do not respect the dependency scheme of ψ. When-
ever em1 does not depend on a universal variable um, we add the constraint
of Eqn. (1). In DQBF, independence can be formalized in the following way:
em1 does not depend on um if em1 has to take the same value in the case of all
pairs of universal assignments α, β P t0, 1un where αrks “ βrks for all k ‰ m.
Exactly this is enforced by our constraint. Looking at the corresponding bit-
indices bα and bβ for α and β, respectively, our constraint for independence
ensures that JEKrbαs “ JEKrbβs. More precisely, Eqn. (1) ensures that the pos-
itive and negative cofactors of the Skolem-function for em1 with respect to an
independent variable um have the same value. Having added those constraints,
Φ2 is now respecting the dependency scheme and therefore Φ is satisfiable iff
the original DQBF ψ is satisfiable.

Lemma 2 QBF can be reduced to QF BV2!1 [30].

Proof To show the PSpace-hardness of QF BV2!1, we give a reduction from
QBF, similar to the one from DQBF to QF BV2!c that we used in Lemma 1.

For our reduction, we again use the binary magic numbers. Note that, in
Lemma 1, we used left shift by constant to construct the binary magic num-
bers. This is not permitted in QF BV2!1. We therefore give an alternative
construction of the binary magic numbers using only bitwise operations, equal-
ity, and left shift by 1.

Let b0
r2ns, . . . , bn´1

r2ns be n initially unconstrained bit-vector variables. By
adding certain constraints, we want to ensure that the only possible value the
variables can take are those of the binary magic numbers. For the following
argument, consider the bit-vector variables b0

r2ns, . . . , bn´1
r2ns as column vec-

tors in a matrix Br2
n
ˆns. Written next to each other in this way, the matrix

formed by the binary magic numbers would be uniquely determined by the
following property: If each row of B is interpreted as a number 0 ď c ă 2n in
binary representation, the next row is equal to c` 1. The rows of B therefore
represent a counter from 0 to 2n´1. We can capture this fact by adding the
following n constraints, with m P t0, . . . , n´ 1u:

´

ľ

0ďiăm

bi

¯

‘ bm “ bm ! 1

The left side of each constraint considers one specific column of B (i.e. one
index of the counter) and the value of each position will change iff all columns
to the right are equal to 1 (i.e. the lower indices of the counter generate an
overflow). In this sense, the left sides of all constraints increment the counter
value corresponding to a row of B. The right sides of all constraints ensure
that the incremented counter value is placed in the next row of B.

As already mentioned, we now give the reduction which is similiar to the
one in Lemma 1. An example can be found in Appendix B.
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The reduction. Let ψ :“ Q.φ denote a QBF with quantifier prefix Q and
matrix φ. Since ψ is a QBF (in contrast to DQBF in Lemma 1), we know that
Q defines a total order on the universal variables. We assume the universal
variables u0, . . . , un´1 of φ are ordered according to their appearance in Q,
with u0 and un´1 being the innermost and outermost variable, respectively.
Translate ψ to a QF BV2!1 formula Φ by eliminating the quantifier prefix
and translating the matrix as follows:

Step 1. Replace all Boolean constants 0 and 1 with 0r2
n
s and „0r2

n
s, all Bool-

ean universal variables um and existential variables em1 with bit-vector
variables Um

r2ns and Em1
r2ns, and all logical connectives with correspond-

ing bitwise bit-vector operators (e.g., ^ with & ). Let tr2
n
s denote the

bit-vector term generated so far. Extend it to the formula t “ „0r2
n
s. We

refer to this as Φ0.
Step 2. We now construct Φ1 by adding new constraints to Φ0. For each uni-

versal variable um P tu0, . . . , un´1u, in order to assign a binary magic

number to Um
r2ns, add the following equality (i.e., conjunct it with the

current formula):
´

ľ

0ďiăm

Ui

¯

‘ Um “ Um ! 1

Step 3. Next, we construct Φ2 by adding another set of constraints to Φ1. For
each existential variable em1 P te0, . . . , en1´1u depending on the univer-
sal variables Depspem1q “ tum, . . . , un´1u, with um being the innermost
universal variable that em1 depends on, check the following conditions:
if Depspem1q “ H, add the equality:

Em1 & „1 “ Em1 ! 1 (3)

otherwise, if m ‰ 0, add the two equalities:

U 1m “ „
`

pUm ! 1q ‘ Um
˘

(4)

Em1 & U 1m “ pEm1 ! 1q & U 1m (5)

Finally, we define Φ :“ Φ2.

Step 1 and Step 2 are equal to those of Lemma 1 apart from the fact that a
different construction for the binary magic numbers is used.

Again, each bit-index of Φ corresponds to the evaluation of ψ under a spe-
cific assignment to the universal variables u0, . . . , un´1, and, by construction
of U0

r2ns, . . . , Un´1
r2ns, all possible assignments are considered. Eqn. (4) cre-

ates a bit-vector U 1m
r2ns

for which each bit equals to 1 iff the corresponding
universal variable changes its value from one universal assignment to the next.
In contrast to Lemma 1, this can now only be done for neighbouring bit-indices
since we are only allowed to use left shift by 1 instead of arbitrary constants
in Step 3. For QBF, this is sufficient because Q defines a total order on the
universal variables.
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Of course, Eqn. (4) does not have to be added multiple times, if several ex-
istential variables depend on the same universal variable. Eqn. (5) and Eqn. (3)

ensure that the corresponding bits of Em1
r2ns satisfy the dependency scheme

of ψ by only allowing the value of em1 to change if an outer universal variable
takes a different value. If Depspem1q “ tu0, . . . , un´1u, i.e., if em1 depends on
all universal variables, Eqn. (4) evaluates to U 10 “ 0r2

n
s, and, as a consequence,

Eqn. (5) simplifies to true. Because of this, no constraints need to be added
for m “ 0.

A similar approach used for translating QBF to Symbolic Model Verifica-
tion (SMV) can be found in [23]. See also [51] for a translation from QBF to
sequential circuits.

Lemma 3 QF BV2!1 can be reduced to sequential circuits [30].

Proof In [55,56], the authors give a polynomial translation from quantifier-free
Presburger arithmetic with bitwise operations (QFPAbit [53]) to sequential
circuits. While they deal with non-fixed-size bit-vectors, we focus on fixed-size
bit-vectors but share the goal of avoiding the exponential explosion due to
explicit state representation as for example used in MONA [38]. We can adopt
their approach in order to construct a translation for QF BV2!1. Related
work, introducing an automata-based representation for Presburger Arith-
metic (without bitwise operations), can be found in [61].

For the most part, the basic structure as well as the arguments used
throughout the reduction are the same as in [55,56]. To keep the proof com-
pact, we therefore focus on pointing out the changes compared to their earlier
work and regularly refer to [55,56] for the technical details.

As mentioned, the main difference between QFPAbit and QF BV2!1 is
the fact that bit-vectors of arbitrary, non-fixed, size are allowed in QFPAbit
while all bit-vectors contained in QF BV2!1 have a fixed bit-width. We now
give the reduction.

Given Φ P QF BV2!1 in flat form, let xrns, yrns denote bit-vector variables,
crns a bit-vector constant, and t1

rns, t2
rns bit-vector terms only containing bit-

vector variables and bitwise operations. Following [55,56], we further assume
w.l.o.g that Φ only consists of logical combinations of three types of atomic
expressions: t1

rns “ t2
rns, xrns “ crns, and xrns “ yrns ! 1rns. Similar to

generating a formula in flat form (Definition 8), it is easy to see that any
QF BV2!1 formula can be written like this with only linear growth in size by
introducing Tseitin variables.

We then encode each equality in Φ into an individual sequential circuit sep-
arately. In the following, those are referred to as atomic sequentical circuits.
Compared to [55,56], two modifications for the construction of an atomic se-
quential circuits are needed. First, we need to give a translation of x “ y ! 1
to sequential circuits. This can be done, for example, by using the sequential
circuit for x “ 2 ¨ y in QFPAbit. The second modification relates to deal-
ing with fixed-size bit-vectors. Let n be the bit-width of all bit-vectors in a
given atomic expression. We extend each atomic sequential circuit to include
a counter (circuit). The counter initially is set to 0 and is incremented by 1
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in each clock cycle up to a value of n. When the counter reaches a value of n,
the counter as well as the original atomic sequential circuit keep their value
during all remaining cycles. In this way, their output also remains the same
during all following cycles.

Using D-type flip-flops, as in the definition of sequential circuits in Sec-
tion 3.2, this can be easily realized by adding a combinatorial part: Assume
that the counter consists of k bits, represented by flip-flops c0, . . . , ck´1 with
outputs o0, . . . , ok´1, respectively. Checking whether the counter has reached
a value of n can be realized by a Boolean function fpo0, . . . , ok´1q, represented
as a combinatorial circuit. Further, let c denote the flip-flop of the original
atomic sequential circuit and let o and i (which again can be an arbitrary
function) denote its output and its input, respectively. We now replace the
input i by a combinatorial circuit realizing the function

pfpo0, . . . , ok´1q ^ oq _ p fpo0, . . . , ok´1q ^ iq

This forces c to use its own output as its input if the counter has reached a
value of n, and use its regular input otherwise. The counter flip-flops c1, . . . , ck
will be forced to stabilize after n has been reached in the same way. Note that
a counter like this can be realized with Ln gates, i.e., polynomially in the size
of Φ. For a practical implementation, it is of course not necessary to introduce
separate counters for each atomic sequential circuit. Instead, one counter can
be used to address all atomic sequential circuits. However, concerning our
complexity result, this obviously makes no difference.

In contrast to the implementation described in [55], we further assume
that the input streams for all variables start with the least significant bit. As
already pointed out by the authors in [55], their choice was arbitrary and it is
no more complicated to construct the circuits the other way around.

Finally, after constructing all atomic sequential circuits, their outputs are
combined by logical gates following the Boolean structure of Φ, in the same
way as for non-fixed bit-width in [55,56]. Due to the counters being part of
the atomic sequential circuits, we ensure that for every input stream xi, that
represents a bit-vector variable of bit-width ni, only the first ni bits of xi
influence the result of the whole circuit.

Lemma 4 QF BV2bw P NP [30].

Proof To show that QF BV2bw P NP, we give a reduction from QF BV2bw to
a scalar-bounded set of formulas S. With S Ă QF BV2, the claim then follows
from Corollary 1. An example, that combines further results from Section 7.2,
can be found in Appendix C.

Suppose we are given a formula Φ P QF BV2bw in flat form (Defini-
tion 8). We assume that any inequality t1

rns ‰ t2
rns in Φ is expressed by

„
`

t1
rns “ t2

rns
˘

. If Φ contains any constants crms where c ‰ 0, we remove those

constants in a (polynomial) pre-processing step. Let cmax
rms :“ bk´1 . . . b1b0

be the largest constant in Φ denoted in binary representation with bk´1 “ 1
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and arbitrary bits bk´2, . . . , b0. We now replace each equality t1
rns “ t2

rns, in
Φ with

t1,0
r1s “ t2,0

r1s ^ . . . ^ t1,n´1
r1s “ t2,n´1

r1s,

if n ď k. Otherwise, if n ą k, we instead replace t1
rns “ t2

rns with

t1,0
r1s “ t2,0

r1s ^ . . . ^ t1,k´1
r1s “ t2,k´1

r1s ^ thi1
rn´ks “ thi2

rn´ks.

For 0 ď i ă mintn, ku, we use t1,i
r1s “ t2,i

r1s to express the ith row of the
original equality. For constructing the terms t1,i

r1s and t2,i
r1s, (i) replace each

occurrence of a variable xrns with the variable xi
r1s, and (ii) replace each

constant crns with 0r1s if the ith bit of c is 0, and with „0r1s otherwise.

In a similar way, if n ą k, thi1
rn´ks “ thi2

rn´ks represents the remaining
n´k rows of the original equality corresponding to the most significant bits. For
constructing thi1

rn´ks and thi2
rn´ks, (i) replace each occurrence of a variable

xrns with the variable xhirn´ks, and (ii) replace each constant crns with 0rn´ks.

Since this pre-processing step is logarithmic in the value of cmax, it is poly-
nomial in |Φ|. Without loss of generality, we now assume that Φ does not
contain any bit-vector constants different from 0rns.

We now construct a formula Φ1 by reducing the bit-widths of all bit-vector
terms in Φ. We use cnteq pΦq to denote the number of equalities in Φ. Each term

trns in Φ is then replaced with a term trn
1
s, with n1 :“ mintn, cnteq pΦqu ď |Φ|.

Apart from this, Φ1 is exactly the same as Φ. As a consequence, maxscl pΦ
1q ď

|Φ|. The set of formulas constructed in this way is scalar-bounded according
to Definition 11.

To complete our proof, we now have to show that the proposed reduc-
tion is sound, i.e., out of every satisfying assignment to the bit-vector vari-
ables x1

rn1s, . . . , xk
rnks for Φ we can also construct a satisfying assignment to

x1
rn11s, . . . , xk

rn1ks for Φ1 and vice versa.

It is easy to see that whenever we have a satisfying assignment α1 for Φ1,
we can construct a satisfying assignment α for Φ. This can be done by simply
setting all additional bits of all bit-vector variables to the same value as the
most significant bit of the corresponding original vector, i.e., by performing a
signed extension. Since all equalities still evaluate to the same value under the
extended assignment, αpF q “ α1pF 1q for all equalities F and F 1 of Φ and Φ1,
respectively. As a direct consequence, αpΦq “ α1pΦ1q “ 1.

The other direction needs slightly more reasoning. Given α, with αpΦq “ 1,
we need to construct α1, with α1pΦ1q “ 1. Again, we want to ensure that
α1pF 1q “ αpF q for all equalities F and F 1 in Φ and Φ1, respectively.

In each variable xi
rnis, i P t1, . . . , ku, we select some of the bits. For each

equality F with αpF q “ 0, we select a bit-index as a witness for its evaluation.
If αpF q “ 1, we select an arbitrary bit-index. We then mark the selected bit-
index in all bit-vector variables contained in F , as well as in all other bit-vector
variables of the same bit-width. Having done this for all equalities, we end up
with sets Mi of selected bit-indices, for all i P t1, . . . , ku, where
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|Mi| ď mintni, cnteq pΦqu

Mi “ Mj @j P t1, . . . , ku with ni “ nj

The selected indices contain a witness for the evaluation of each equality. We
now add arbitrary further bit-indices, again selecting the same indices in bit-
vector variables of the same bit-width, until |Mi| “ mintni, cnteq pΦqu @i P
t1, . . . , ku.

Finally, we can directly construct α1 using the selected indices and get
α1pΦ1q “ αpΦq “ 1 because of the fact that we included a witness for every
equality in our index-selection process. Note that we only had to choose a
specific witness for the case that αpF q “ 0. For αpF q “ 1, we were able to
choose an arbitrary bit-index because every satisfied equality is obviously still
satisfied when only a subset of all bit-indices is considered.

Remark 1 A similar proof can be found in [35,36]. While the focus of [35,36]
lies on improving the practical efficiency of SMT-solvers by reducing the bit-
width of a given formula before bit-blasting, the author does not investigate
its influence on the complexity of a given problem class. In fact, the author
claims that bit-vector theories with common operations are NP-complete. As
we have already shown, this only holds if unary encoding on scalars is used.
However, unary encoding leads to the fact that the given class of formulas
remains NP-complete, independent of whether a reduction of the bit-width
is possible. While the arguments on bit-width reduction given in [35,36] still
hold for binary encoded bit-vector formulas when only bitwise operations are
used, our proof considers the effect on the complexity of the problem class.

7 Fragment Extensions and Alternative Characterizations

In this section, we investigate possible extensions to the fragments we have
been dealing with so far and give alternative characterizations of specific log-
ics. We use the term base operations to refer to the operations that we previ-
ously selected to define a certain class of bit-vector problems. Considering the
complexity results from the previous section, we know that the specific sets of
base operations are sufficient to guarantee certain completeness results. This
leads towards two potential directions of analysis.

On the one hand, it is interesting to see which common operations could
be added to a fragment without increasing the complexity of the satisfiability
problem. With QF BV2!c being NExpTime-complete, any common opera-
tion can extend this fragment without increasing complexity; the full extension
is exactly the definition of QF BV2. It is more interesting to investigate which
operations can be added to QF BV2bw and QF BV2!1 while still remaining
in NP and PSpace, respectively. In order to check this, we present several
reductions of additional operations to base operations.
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On the other hand, it is also interesting to explore possible reductions of
base operations to additional ones. We showed that the satisfiability problem
for QF BV2bw, i.e., when bitwise operations and equality are used as base
operations, is NP-complete. Using left shift by 1 or left shift by constant as
an additional base operation makes the satisfiability problem PSpace-hard
(Lemma 2) or NExpTime-hard (Lemma 1), respectively. If it is possible to
show that any of these two base operations can be reduced to another operation
o (together with bitwise operations and equality), then o can be considered
as an alternative base operation, ensuring the satisfiability problem to remain
hard for the specific complexity class.

7.1 Notation

Note that, since binary encoding is used on scalars, all the translations of
operations must be logarithmic in the bit-widths of operands, in order to ensure
that a reduction is polynomial in the formula size.

For describing our reductions, we often use the following form:

term1

replace with: term2 ,

add assertion(s): formula1
...

formulak

By this description, we want to express that we replace a term term1 in a
formula Φ with term2, and simultaneously add all the quantifier-free formulas
formula1, . . . , formulak to Φ (i.e., conjunct each of them with the matrix of
Φ). We call formula1, . . . , formulak the assertions in the definition. All the
variables that do not occur in term1, but do occur in any of the expressions
term2, formula1, . . . , formulak are considered as Tseitin variables, i.e., they
are assumed to be added to Φ as new existential variables at the innermost
prefix position.

Let us note that, in our fragments, it is sufficient to use a minimal func-
tionally complete set of bitwise operations, e.g., bvnand alone.

By bitwise operations and equality, functional if-then-else (ite) can be ex-
pressed easily, as follows. Note that, in order to avoid exponential blowup, a
Tseitin variable x is introduced for the Boolean condition:

ite
`

t1
r1s , t2

rns , t3
rns

˘

replace with: yrns ,

add assertions: xr1s “ t1
x ñ y “ t2
 x ñ y “ t3
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7.2 QF BV2bw

Let us introduce the operation indexing trnsris, which is defined as t ri : is, i.e.,
a special case of extraction. Although, in Section 7.4, we show that adding
extraction makes the fragment NExpTime-hard, QF BV2bw can be extended
with indexing without growth in complexity.

Theorem 5 QF BV2bw extended by indexing is in NP.

Proof To show this, we extend the proof of Lemma 4 by an additional pre-
processing step even before removing the non-zero constants. Suppose we are
given a formula Φ P QF BV2bw, also containing expressions trnsris. Let

I :“ ti | trnsris appears in Φu

be the set of all indices that appear explicitly in the formula. Assume I “
ti1, . . . , imu with il ă il`1, @l P t1, . . . ,m ´ 1u. After extracting those bit-
indices from Φ, we explicitly encode the corresponding bits into Boolean vari-
ables, by translating Φ in a similar way as in Lemma 4. Consider three different
kinds of terms in the following order:

1. Terms trnsris are replaced by ti
r1s.

2. Terms tr1s remain in the formula as they are.
3. Any other term has a bit-width n ą 1. Therefore, we know that it can only

occur as part of an equality t1
rns “ t2

rns. We define

l1 :“ |tl P t1, . . . ,mu | il ă nu|

as the number of explicitly specified indices smaller than n. Now, similar
to Lemma 4, replace each equality t1

rns “ t2
rns with

pt1,0
r1s “ t2,0

r1sq ^ . . . ^ pt1,n´1
r1s “ t2,n´1

r1sq,

if n “ l1. Otherwise, if n ą l1, replace t1
rns “ t2

rns with
¨

˝

ľ

lPt1,...,l1u

pt1,il
r1s “ t2,il

r1sq

˛

‚^ trem1
rn´l1s “ trem2

rn´l1s.

As in Lemma 4, we use t1,i
r1s “ t2,i

r1s to express the ith row of the original
equality. In the same way, ti

r1s, being introduced for an indexing, represents
the ith bit of t. The new terms t1,i , t2,i , and ti are constructed in the same
way as in Lemma 4.

Similarly, if n ą l1, the expression trem1
rn´l1s “ trem2

rn´l1s represents the
remaining n´ l1 rows of the original equality corresponding to the indices that
have not been extracted explicitly. Those terms are again constructed in the
same way as in Lemma 4, except for the construction of new constants: each
constant crns is replaced with a new constant cremrn´l

1
s by setting the jth bit

of crem to the value of the kth bit of c, for k :“ min tk1 | |t1, . . . , k1u zI| “ ju.



Complexity of Fixed-Size Bit-Vector Logics 29

After this translation, the resulting formula Φ1 does not contain indexing
operations anymore and is equisatisfiable to the original one. Also, |Φ1| ď pp|Φ|q
for some polynomial p, since the growth in size is bounded by the number
of occurrences of the indexing operation in Φ. Note that this reduction is
only possible because there is no interaction between different bit-indices, i.e.,
because Φ only contains bitwise operations and equality, apart from indexing.

Similarly, extending QF BV2bw with additional relational operations from
Table 1 does not increase complexity, either.

Theorem 6 QF BV2bw extended by relational operations from Table 1 is in
NP.

Proof We give a reduction for the relational operation unsigned less than
(bvult). The remaining relational operations in Table 1 can be reduced in
a similar way. Given Φ P QF BV2bw (without indexing), additionally con-
taining expressions t1

rns ău t2
rns, we adopt the proof of Lemma 4 in three

ways.

First, the elimination of constants has to be modified. Again, let cmax :“
bk´1 . . . b1b0 be the largest constant in Φ denoted in binary representation with
bk´1 “ 1 and arbitrary bits bk´2, . . . , b0. Without loss of generality, assume
n ą k. We now replace each relation t1

rns ău t2
rns in Φ with

pthi1
rn´ks ău thi2

rn´ksq

_ pthi1
rn´ks “ thi2

rn´ksq ^ p t1,k´1
r1s ^ t2,k´1

r1sq

_ . . .

_ pthi1
rn´ks “ thi2

rn´ksq ^ pt1,k´1
r1s ô t2,k´1

r1sq ^ ¨ ¨ ¨ ^ p t1,0
r1s ^ t2,0

r1sq

All expressions t1,i
r1s, t2,i

r1s, thi1
rn´ks, and thi2

rn´ks are defined in the same
way as it was done in Lemma 4.

Second, we need to use the number of all the relational operations cntrel pΦq,
when reducing the bit-widths in Φ.

The third modification is needed for constructing a satisfying assignment
α1 for the bit-width reduced formula Φ1 out of the satisfying assignment α for
Φ. When selecting the bit-index which is used as a witness for the evaluation
of a given expression t1

rns ău t2
rns, we choose the index of the most significant

bit which is assigned to a different value in the two terms. As in Lemma 4,
an arbitrary bit-index can be chosen if both terms are assigned to the same
value.

Again, the reduction is only possible because there is no interaction be-
tween different bit-indices. While we only considered t1

rns ău t2
rns in our

proof, it is easy to see that it holds for all relational operations from Table 1.
All unsigned operations can be replaced by t1

rns ău t2
rns as in the definition

of Table 1. For signed operations, an additional if-then-else constraint on the
most significant bit is needed.
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So far, we only discussed extensions by indexing and relational operations
separately. However, using the same principles, it is indeed possible to show
that we can add both kind of operations at the same time without growth in
complexity. We only sketch the argument: As in the original proof for indexing,
we first remove all occurrences of the indexing operation from the formula.
This time, it is not sufficient to extract those bit-indices from the bit-vectors.
Instead, we have to split all bit-vectors at the corresponding bit-index. Let i
with 0 ă i ă n be an index that explicitly occurs at some point in the formula.
Replace t1

rns ău t2
rns with

pthi1
rn´i´1s ău thi2

rn´i´1sq

_ pthi1
rn´i´1s “ thi2

rn´i´1sq ^ p t1,i
r1s ^ t2,i

r1sq

_ pthi1
rn´i´1s “ thi2

rn´i´1sq ^ pt1,i
r1s ô t2,i

r1sq ^ ptlo1
ris ău tlo2

risq

For the more general case, with indices I “ ti1, . . . , imu, the bit-vectors need
to be split analogously at all bit-indices il. Apart from this, the reduction
works as already described. This leads to the following corollary:

Corollary 2 QF BV2bw extended by indexing together with relational opera-
tions from Table 1 is in NP.

See Appendix C for an example.

7.3 QF BV2!1

Figure 1 depicts our forthcoming results on extending QF BV2!1 with op-
erations. An edge po1, o2q means that o1 can be reduced to o2, together with
bitwise operations and equality. The vertex bvshl 1 represents left shift by 1,
and plays a central role as being a base operation in QF BV2!1. The vertex
bvmul c represents multiplication by constant, and the four vertices to the right
correspond to different kinds of unsigned and signed relational operations. All
the other vertices are self-explanatory. Note that each operation which is mu-
tually reachable with bvshl 1, namely bvlshr 1, bvadd, bvsub, and bvmul c, can
be used as an alternative base operation instead of bvshl 1.

First, we show that QF BV2!1 can be extended with indexing. Although a
similar result was proposed for QF BV2bw, the reduction we used there is not
appropriate for QF BV2!1, because of the presence of shifts in the formulas.

Theorem 7 QF BV2!1 extended by indexing is in PSpace.

Proof The counter we introduced in our translation from QF BV2!1 to se-
quential circuits (Lemma 3) can be used to return the value at a specific
bit-index of a bit-vector.

Instead of left shift by 1, we could also have used logical right shift by 1 to
define QF BV2!1.
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bvshl 1

bvlshr 1 bvashr 1

bvadd

bvsub

bvneg

bvmul c

indexing

bv˚lt bv˚le

bv˚gt bv˚ge

Fig. 1 Extending QF BV2!1 with operations

Theorem 8 left shift by 1 and logical right shift by 1 can be reduced to each
other.

Proof We give a direct translation:

trns ! 1rns

replace with: xrns

add assertions: x "u 1 “ t &
`

„0rns "u 1
˘

x & 1rns “ 0rns

trns "u 1rns

replace with: xrns ,

add assertions: x ! 1 “ t &
`

„0rns ! 1
˘

x & vrns “ 0rns

v ! 1 “ 0rns

v ‰ 0rns

Further, it is well-known that any arithmetic right shift t1
rns "s t2

rns can be re-
duced to logical right shift, as follows: ite pt1rn´ 1s , „p„ t1 "u t2q , t1 "u t2q.

We now look at arithmetic operations:

Theorem 9 QF BV2!1 extended with linear modular arithmetic is in PSpace.

Proof Addition can be expressed as follows:

t1
rns ` t2

rns

replace with: ts1 ‘ ts2 ‘ cin ,

add assertions: ts1
rns “ t1

ts2
rns “ t2

cinrns “ cout ! 1

coutrns “ pts1 & ts2q | pts1 & cinq | pts2 & cinq

Multiplication by constant can be splitted into several multiplications by 2, i.e.,
left shift by 1, and addition, similar to [55,56]. Given such a multiplication trns ¨
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crns, we introduce two sets of variables, si and xi, 0 ď i ď Lc. Each si represents
t ! i, and calculated by shifting si´1 by 1. Note that only logarithmic many
steps need to be performed. Each xi represents the subresult in the ith step.
By considering the individual bits of c, si either is or is not added to the
previous subresult xi´1. Finally, xLc provides the required product.

trns ¨ crns

replace with: xLc
rns

add assertions: s0
rns “ t

si
rns “ si´1 ! 1 , 0 ă i ď Lc

x0
rns “

"

s0 if JcKr0s “ 1
0 otherwise

xi
rns “

"

xi´1 ` si if JcKris “ 1
xi´1 otherwise

, 0 ă i ď Lc

Considering the opposite direction, t ! 1 can easily be expressed as t ¨ 2.
Consequently, it can also be expressed as ts ` ts where tsrns is a Tseitin
variable for t. This shows we could also have used addition instead of left shift
by 1 to define QF BV2!1.

Unary minus (bvneg) and subtraction (bvsub) can obviously be added to
QF BV2!1 by using two’s complement representation. Furthermore, it is easy
to see that addition and subtraction can be reduced to each other. Extending
QF BV2!1 with additional relational operations, such as unsigned less than
(bvult), does not increase complexity either. A term t1

rns ău t2
rns is the same

as checking whether t1´ t2 ău 0 holds, which can be replaced by constructing
an adder for t1 ` p„ t2q ` 1, analogously to the one above, and then check
whether overflow occurs, i.e., ts2 ‰ 0 &  coutrn´ 1s. Obviously, the common
unsigned or signed relational operations less than, greater than, less than or
equal, and greater than or equal are equally powerful.

7.4 QF BV2!c

Figure 2 depicts our forthcoming results on extending QF BV2!c with op-
erations. The vertex bvshl c represents left shift by constant, which is a base
operation. Since bvshl 1 is a special case of bvshl c, all the operations that can
extend QF BV2!1 (cf. the previous section), represented by the dashed seg-
ment in the upper left corner, can obviously be reduced to bvshl c. Actually,
as we have already mentioned before, any common operation can extend this
fragment, with QF BV2!c being NExpTime-complete. This explains why
bvshl c is reachable from all the vertices. We only give the most interesting
explicit reductions in this direction.

The other direction, i.e., presenting operations being reachable from bvshl c,
is more important from the theoretical point of view, since those ones can be
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used as alternative base operations instead of bvshl c. These operations are
extract, concat, bvmul, bvshl, bvlshr c, and bvlshr.

bvshl c

bvshl 1

extract

concat

bvshl

bvlshr c

bvlshr

bvashr c

bvashr

bvmul

Fig. 2 Extending QF BV2!c with operations

Theorem 10 bvshl c and bvlshr c can be reduced to each other.

Proof Given a term trns ! crns or trns "u crns, there are two boundary cases:
if c “ 0 then rewrite the term to t; if c ě n then to 0rns. Otherwise, i.e., when
0 ă c ă n, the following reductions can be applied:

trns ! crns

replace with: xrns ,

add assertions: x "u c “ t &
`

„0rns "u c
˘

x &
´

„0rns "u pn´ cq
rns

¯

“ 0rns

trns "u c
rns

replace with: xrns

add assertions: x ! c “ t &
`

„0rns ! c
˘

x &
´

„0rns ! pn´ cq
rns

¯

“ 0rns

Each kind of shift by constant is a special case of the respective general
shift.4 As mentioned in the previous section, arithmetic shift can be expressed
by logical shift.

Theorem 11 extraction, concatenation, and bvshl c can be reduced to each
other.

4 Although we do not intend the present a reduction of a general shift to the respective
shift by constant, it is worth to mention that a common approach for such a reduction is
the barrel shifter.
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Proof First, consider extraction and concatenation:

t1
rms ˝ t2

rns

replace with: xrm`ns

,
add assertions: t1 “ x rm` n´ 1 : ns

t2 “ x rn´ 1 : 0s

trns ri : js

replace with: xri´j`1s

add assertion:

$

’

’

&

’

’

%

t “ x if i “ n´ 1

t “ y1
rn´i´1s ˝ x otherwise

*

if j “ 0

t “ x ˝ y2
rjs if i “ n´ 1

t “ y1
rn´i´1s ˝ x ˝ y2

rjs otherwise

*

otherwise

The base operation bvshl c can then easily be expressed by extraction and
concatenation (and also by any of them alone, since they can be reduced to
each other). The boundary cases for bvshl c can be handled in the same way
as above, therefore we now assume that 0 ă c ă n, and rewrite the term
trns ! crns to t rn´ c´ 1 : 0s ˝ 0rcs.

The reduction in the other way around, i.e., extraction (or concatenation)
to bvshl c and bvlshr c, takes a special role. Given a term trns ri : js, extraction
produces a new term of bit-width i ´ j ` 1. This change in bit-width (which
also occurs for concatenation) cannot be captured by only applying rewriting
rules using shifts. However, we can find a reduction from bit-vector formulas
using only extraction, bitwise operations, and equality to ones using only shifts
by constant, bitwise operations, and equality, as follows.

Given a formula Φ with bit-vector variables x1
rn1s, . . . , xl

rnls, let us calcu-
late the maximal bit-width nmax :“ maxktnku. First, replace each extraction
trms ri : js in Φ with

`

t ! pnmax ´ 1´ iq
˘

"u pnmax ´ 1´ i` jq

Then, replace each bit-vector variable xk
rnks with a new bit-vector variable

x1k
rnmaxs. Finally, for each x1k , add the following assertion to the formula:

x1k
rnmaxs

“
`

x1k ! pnmax ´ nkq
˘

"u pnmax ´ nkq

In the resulting formula, all bit-vectors have the same bit-width, and each bit-
vector and each result of an extraction can take exactly those values it could
take in the original formula, apart from leading zeros.

We now take a closer look at multiplication:

Theorem 12 multiplication and bvshl c can be reduced to each other.

Proof First, we show how bvshl c can be expressed by bvmul. Again, assume
that 0 ă c ă n. In this case, trns ! crns can be expressed as t ¨ 2c. We can
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construct 2c, being an exponential number, as a bit-vector in Lc steps us-
ing exponentiation by squaring. We introduce two sets of variables, pi and xi,
0 ď i ď Lc. Each pi represents the number 2p2

i
q, and each xi the subresult

in the ith step. By considering the individual bits of c, the previous subresult
xi´1 either is or is not multiplied by pi. Finally, xLc provides the value 2c.

trns ! crns

replace with: t ¨ xLc
rns

add assertions: p0
rns “ 2

pi
rns “ pi´1 ¨ pi´1 , 0 ă i ď Lc

x0
rns “

"

2 if JcKr0s “ 1
1 otherwise

xi
rns “

"

xi´1 ¨ pi if JcKris “ 1
xi´1 otherwise

, 0 ă i ď Lc

Although we know, based on the complexity results, that even general
multiplication can be expressed in this fragment, it is still a non-trivial task to
give an explicit reduction. While everal polynomial multiplication algorithms
in the bit-width of operands exist, we cannot directly apply them since we
now need a logarithmic translation in the bit-width. Before showing how to
simulate the common “shift and add” algorithm, we first introduce four bit-
vector helper operations to make the presentation as transparent as possible:
binmagic, selfconcat, halfshuffle, and expand. Furthermore, let us introduce the
notation Pn for the nearest power of 2, and define it as follows: Pn :“ 2Ln.

For the helper operation binmagic, which is in fact about constructing a
binary magic number, we use the same notation and approach as in Lemma 1,
where m ă n:

binmagic p2m, 2nq

replace with: xr2
n
s ,

add assertion: x ! 2m “ „x

Selfconcat receives a bit-vector term tr2
m
s and concatenates it with itself

until constructing a bit-vector of bit-width 2n, as follows, where m ď n:

selfconcat
`

tr2
m
s, 2n

˘

replace with: xn
r2ns

add assertions: xm
r2ms “ t

xi
r2is “ xi´1 ˝ xi´1 , m ă i ď n

Halfshuffle applies a logarithmic translation, which is based on the gener-
alization of a bit-vector operation called half-shuffle [58, Chpt. 7]. This gener-
alized variant receives a bit-vector tr2

m
s and produces the following bit-vector
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of bit-width 2n:

0 . . . 0
loomoon

2n´m´1

tr2m ´ 1s 0 . . . 0
loomoon

2n´m´1

tr2m ´ 2s . . . 0 . . . 0
loomoon

2n´m´1

tr0s

In the initialization step, we apply zero extension to t. Then, in m steps, we
shuffle smaller and smaller bit groups in our bit-vector. In the 1st step, the
two halves (i.e., 2m´1-bit groups) are shuffled. In the 2nd step, the halves of
all the previously shuffled halves (i.e., 2m´2-bit groups), and so on. In the last
step, we shuffle single bits, and this is how to put each bit at its destination.
Assume again that m ď n.

halfshuffle
`

tr2
m
s, 2n

˘

replace with: xm
r2ns

add assertions: x0
r2ns “ extu pt, 2

n ´ 2mq

xi
r2ns “

¨

˝

xi´1 |
`

xi´1 ! p2
n´i ´ 2m´iq

˘

&
binmagic

`

2m´i, 2n
˘

˛

‚ , 0 ă i ď m

As it can be seen above, in the ith step we (i) shift our current bit-vector
left by the constant 2n´i ´ 2m´i, (ii) merge it with the original bit-vector, by
using bitwise or, (iii) and we mask some unnecessary bit groups out, by using
a binary magic number. For an example, see Appendix D.

Expand “multiplies” each bit of tr2
m
s into a bit group of size 2n´m. The

resulting bit-vector can be visualized as follows:

tr2m ´ 1s . . . tr2m ´ 1s
looooooooooooomooooooooooooon

2n´m

tr2m ´ 2s . . . tr2m ´ 2s
looooooooooooomooooooooooooon

2n´m

. . . tr0s . . . tr0s
looooomooooon

2n´m

In the initial step, we use halfshuffle. In the next n´m steps, we copy larger
and larger non-zero bit groups, by using left shift and bitwise or. Assume again
that m ď n.

expand
`

tr2
m
s, 2n

˘

replace with: xn´m
r2ns

add assertions: x0
r2ns “ halfshuffle pt, 2nq

xi
r2ns “ xi´1|

`

xi´1 ! 2i´1
˘

, 0 ă i ď n´m

Now we are ready to propose how to express multiplication by simulating
the common “shift and add” algorithm for integers. In a first step, one of the
operands is multiplied independently by each digit of the other operand. Using
base 2, this multiplication by a single digit can be expressed by a logical and-
operation. Afterwards the results of the single-digit multiplications are shifted
by the offset of the corresponding digit and finally added to give the result
of the full multiplication. While this approach is straightforward in a naive
implementation, we have to ensure only logarithmic many operations in the
bit-width are used in our encoding. To achieve this, we generate bit-vectors
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of quadratic bit-width pPnq2 out of our original operands of bit-width n, by
applying selfconcat to the first one and expand to the second one. Using bitwise
and on the two new bit-vectors, we directly get the results of all single-digit
multiplications in one step. More precisely, the resulting bit-vector consists
of Pn groups of Pn bits, each group representing the result of one single-
digit multiplication. To add all Pn partial results, a binary addition algorithm
is used. Iteratively pairs of neighbouring groups are shifted relative to each
others’ offsets and then added to form one new group. The number of groups
therefore is halved in each step, resulting in the final sum after log2pPnq “ Ln
steps. For a detailed example, see also Appendix E.

t1
rns ¨ t2

rns

replace with: xLn rn´ 1 : 0s

add assertions: x0
rpPnq2s “ selfconcat

`

extu pt1,Pn´ nq , pPnq
2
˘

& expand
`

extu pt2,Pn´ nq , pPnq
2
˘

bi
rpPnq2s

“ binmagic
`

2i ¨ Pn, pPnq2
˘

, 0 ď i ă
Ln

xi
rpPnq2s “

pxi´1 & bi´1q `

pxi´1 & „bi´1q "u

`

2i´1 ¨ pPn´ 1q
˘ , 0 ă i ď

Ln

8 Logics with Quantifiers and Binary Encoding

In this section, we look into the complexity of quantified bit-vector logics with
binary encoding. While we already gave some results for BV2 and UFBV2
in [41], we now extend our previous work by discussing some fragments of those
logics. Additionally, we also take a look at non-recursive macros (as allowed,
e.g., in the SMT-LIB format) for quantifier-free logics, which have a very
similar effect to restricting the bit-width of universal variables in quantified
logics. We give new complexity results for all fragments and extensions.

8.1 General Quantification

By allowing quantification and uninterpreted functions, and using binary en-
coding, we obtain UFBV2, the most expressive bit-vector logic considered in
this paper.

Theorem 13 UFBV2 is 2-NExpTime-complete [41].

Proof It is straightforward to see that UFBV2 P 2-NExpTime, since every
UFBV2 formula can be translated exponentially to a formula in UFBV1 P
NExpTime (Proposition 4), by applying a simple unary re-encoding to all the
scalars in the formula. 2-NExpTime-hardness directly follows from Lemma 5.

To prove that UFBV2 is 2-NExpTime-hard, we pick a 2-NExpTime-
hard problem and then reduce it to UFBV2. We can find a suitable problem
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among the so-called Domino Tiling problems [17]. First, we give a definition
of a domino system and then specify a 2-NExpTime-hard problem on this
kind of systems.

Definition 12 (Domino System) A domino system is a tuple xT,H, V, ny,
where

– T is a finite set of tile types, in our case, T “ r0, k ´ 1s, where k ě 1;
– H,V Ď T ˆ T are the horizontal and vertical matching conditions, respec-

tively;
– n ě 1, encoded in unary format.

Note that the above definition differs (but not substantially) from the classical
one in [17]. Without loss of generality, we use sub-sequential natural numbers
for identifying tiles. Similarly to [46,47], the size factor n, encoded in unary
form, is part of the input. However, while a start tile α and a terminal tile ω
is usually used, in our case the starting tile is denoted by 0 and the terminal
tile by k ´ 1, without loss of generality.

There are different Domino Tiling problems examined in the literature. In
[17], a classical tiling problem is introduced, namely the Square Tiling problem,
which can be defined as follows:

Definition 13 (Square Tiling) Given a domino system xT,H, V, ny, an
fpnq-square tiling is a mapping λ : r0, fpnq ´ 1s ˆ r0, fpnq ´ 1s ÞÑ T such
that

– the first row starts with the start tile: λp0, 0q “ 0
– the last row ends with the terminal tile: λpfpnq ´ 1, fpnq ´ 1q “ k ´ 1
– all horizontal matching conditions hold:

`

λpi, jq, λpi, j ` 1q
˘

P H @i ă fpnq, j ă fpnq ´ 1
– all vertical matching conditions hold:

`

λpi, jq, λpi` 1, jq
˘

P V @i ă fpnq ´ 1, j ă fpnq

In [17], a general theorem on the complexity of Domino Tiling problems is
proved. More precisely, the fpnq-square tiling problem can be shown to be
NTime pfpnqq-complete. In particular, this implies that the 2p2

n
q-square tiling

problem is 2-NExpTime-complete.

Lemma 5 The 2p2
n
q-square tiling problem can be reduced to UFBV2.

Proof Given a domino system xT “ r0, k ´ 1s, H, V, ny, let us introduce the
following notations which we intend to use in the resulting UFBV2 formula.

– Represent each tile in T with the corresponding bit-vector constant of bit-
width Lk.

– Represent the horizontal and vertical matching conditions with the uninter-
preted functions (actually predicates) hr1spt1

rLks, t2
rLksq and vr1spt1

rLks, t2
rLksq,

respectively.



Complexity of Fixed-Size Bit-Vector Logics 39

– Represent the tiling with an uninterpreted function λrLkspir2
n
s, jr2

n
sq. λ

returns the tile in the cell at the row index i and column index j. Notice
that the bit-width of i and j is exponential in the size of the domino system,
but due to binary encoding it can represented polynomially.

The resulting UFBV2 formula is as follows:

@ir2
n
s, jr2

n
s.

λp0, 0q “ 0 ^ λ
´

2p2
n
q ´ 1, 2p2

n
q ´ 1

¯

“ k ´ 1

^
ľ

pt1,t2qPH

hpt1, t2q ^
ľ

pt1,t2qPV

vpt1, t2q

^

´

j ‰ 2p2
n
q ´ 1 ñ h

`

λpi, jq, λpi, j ` 1q
˘

¯

^

´

i ‰ 2p2
n
q ´ 1 ñ v

`

λpi, jq, λpi` 1, jq
˘

¯

This formula contains four kinds of constants. Three can be encoded directly

(0r2
n
s, 0rLks, and pk ´ 1q

rLks
). The constant 2p2

n
q ´ 1 has to be encoded as

„0r2
n
s in order to avoid an exponential representation. The size of the resulting

formula, due to binary encoding on bit-widths, is polynomial in the size of the
domino system.

Similar to Section 6 and to our work in [30], we can now restrict the
set of operations in UFBV2 to allow only bitwise operations, equality and
left shift by constant (or left shift by 1 ). We refer to this logic as UFBV2!c
(or UFBV2!1, in the case of left shift by 1 ). From a different point of view, it
is also possible to consider this as an extension of QF BV2!c and QF BV2!1

by quantifiers and uninterpreted functions.
Since we can use bitwise operations, equality and left shift by constant to

express all common operations, UFBV2!c remains 2-NExpTime-complete.
However, in contrast to quantifier-free logics, we do not lose any expressiveness
in UFBV2!1, either. We can see this already from the fact that we only used
bitwise operations, equality and addition in Lemma 5. Since, as we pointed
out in Section 7.3, addition can be reduced to bitwise operations, equality and
left shift by 1, the following result follows immediately:

Corollary 3 UFBV2!1 is 2-NExpTime-complete.

Nevertheless, we want to formalize this in a proposition and give a constructive
proof by showing how UFBV2!c can be reduced to UFBV2!1.

Proposition 7 UFBV2!c can be reduced to UFBV2!1.

Proof Let Φ denote a bit-vector formula, xrns, yrns fresh bit-vector variables,
and fn

rns
p¨, ¨q a fresh uninterpreted function of arity 2, taking arguments of

bit-width n. Replace each expression trns ! crns in Φ with fn
rns

`

trns, crns
˘

,
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extend the quantifier prefix of Φ with @xrns, yrns, and add the following two
constraints to the matrix of Φ:

fn
rns
px, 0q “ x

fn
rns
px, y ` 1q “ fn

rns
px, yq ! 1

While the second constraint still contains addition to improve readability, this
can be replaced by using left shift by 1, as described in Section 7.3.

Remark 2 This result is not very surprising if we consider the alternative char-
acterizations of QF BV2!1 and QF BV2!c as given in Section 7. We showed
that addition is equally expressive as left shift by 1 and multiplication is equally
expressive as left shift by constant. In Peano arithmetic, multiplication is de-
fined by using addition, uninterpreted functions, and quantification. In the
context of bit-vectors, this definition of multiplication can be expressed by
introducing @xrns, yrns to the quantifier prefix and adding the following con-
straints:

fn
rns
px, 0q “ 0

fn
rns
px, y ` 1q “ fn

rns
px, yq ` x

With these two axioms, the multiplication t1
rns ¨ t2

rns of two elements in Peano
arithmetic is uniquely defined by the instance fn

rns
`

t1
rns, t2

rns
˘

of the unin-
terpreted function fn.

While we were also able to give some complexity results for BV2 in [41],
it remains unclear whether BV2 is complete for any complexity class.

Proposition 8 BV2 P ExpSpace and BV2 is NExpTime-hard [41].

Proof Given a BV2 formula, a simple unary re-encoding can be used to give
an exponential translation to BV1 P PSpace (Proposition 3). Therefore,
BV2 P ExpSpace. Because of QF BV2 Ă BV2, NExpTime-hardness fol-
lows trivially.

8.2 Restricting the Bit-Width of Universal Variables

We now show that a completeness result can be obtained when a certain
restriction to the bit-width of the universal variables is applied. For a given
formula Φ P BV2, let maxbwpDq pΦq and maxbwp@q pΦq denote the maximal bit-
width of all the existentially and universally quantified variables, respectively.
(We define maxbwpDq pΦq :“ 0 and maxbwp@q pΦq :“ 0 if Φ does not contain
any existential or universal variables respectively.) Now we give a definition,
similar to the one of scalar-boundedness in Definition 11:

Definition 14 (Universally Bit-Width Bounded Formula Set) An infi-
nite set S of quantified bit-vector formulas is universally bit-width bounded, iff
there exists a polynomial function p : N ÞÑ N such that @Φ P S. maxbwp@q pΦq ď

p
`

LmaxbwpDq pΦq
˘

.
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Theorem 14 If S Ă UFBV2 (or S Ă BV2) is universally bit-width bounded,
then S P NExpTime.

Proof Let S Ă UFBV2 be universally bit-width bounded and let p0 be the
polynomial function that exists according to Definition 14. For any Φ0 P S, let
n :“ |Φ0|. We can assume that Φ0 contains at most k ď n universal variables.
Also, let maxscl pΦ0q and cntscl pΦ0q be defined in the same way as it was done
in Section 5. This implies maxbwpDq pΦ0q ď maxscl pΦ0q ď 2n and cntscl pΦ0q ď n.

In order to prove that S P NExpTime, we now give a translation into
QF BV1 P NP which is only single-exponential in n “ |Φ0| for any Φ0 P

S. First, all universal variables are eliminated by universal expansion. This
produces a quantifier-free formula Φ1 P QF UFBV2 with

maxscl pΦ1q “ maxscl pΦ0q ď 2n

cntscl pΦ1q ď cntscl pΦ0q ¨ 2
k¨maxbwp@qpΦ0q

ď cntscl pΦ0q ¨ 2
n¨p0pLmaxbwpDqpΦ0qq

ď cntscl pΦ0q ¨ 2
p1pnq

for some polynomial function p1. Since Φ1 does not contain any (universal)
quantifiers, it can be polynomially translated to some Φ2 P QF BV2, by re-
placing all uninterpreted functions of Φ1 with bit-vector variables and adding
at most quadratic many Ackermann constraints (as in Proposition 2). There-
fore,

maxscl pΦ2q “ maxscl pΦ1q ď 2n

cntscl pΦ2q ď p2 pcntscl pΦ1qq ď p2

´

cntscl pΦ0q ¨ 2
p1pnq

¯

for some polynomial function p2. In a last step, a unary re-encoding is applied
to Φ2 (similar to Proposition 1), resulting in Φ3 P QF BV1. The size of Φ3 is
bounded by

|Φ3| ď maxscl pΦ2q ¨ cntscl pΦ2q ` c

ď 2n ¨ p2

´

cntscl pΦ0q ¨ 2
p1pnq

¯

` c ď 2p3pnq ` c

for some polynomial function p3. Therefore, Φ3 P QF BV1 is only single-
exponential in the size of Φ0. Together with QF BV1 P NP (Proposition 1),
this shows that S P NExpTime.

We now define BVlog Ă BV2 and UFBVlog Ă UFBV2 as the set of all Φ P
BV2 and Φ P UFBV2 with maxbwp@q pΦq ď LmaxbwpDq pΦq ` 1, respectively.
These fragments are of special practical interest, because they can be used
to express quantification over array indices if arrays are represented as bit-
vectors. Arrays play an important role in automated Software Model Checking
as, for example, done in the SAGE project by Microsoft [33]. Quantification
over array indices is also discussed in [7], where the so-called bounded array
property fragment is addressed.
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Theorem 15 BVlog and UFBVlog are NExpTime-complete.

Proof It is easy to see that BVlog and UFBVlog are NExpTime-hard since
both logics are an extension of QF BV2, which is already NExpTime-hard
(Proposition 6). The other direction is a consequence of Theorem 14, since
BVlog and UFBVlog are universally bit-width bounded by definition.

Note that this kind of proof only holds for bit-vector logics with binary
encoding. When a unary encoding is used, restricting the bit-width of universal
variables does not have any effect on the complexity of the given problem class.

8.3 Non-Recursive Macros

A very similar effect occurs when non-recursive macros are added to our logics.
For example, SMT-LIB allows the usage of non-recursive macros via the key-
words define-fun and let. In the general case, allowing macros can increase
the complexity of a given class. For instance, Boolean formulas extended by
non-recursive macros equal to the class of Boolean Programs or Nested Bool-
ean Functions (NBF), which is known to be PSpace-complete [15,20]. The
same obviously holds for QF BV1.

However, as shown in Theorem 16, extending QF UFBV2 (and even QF BV2)
with non-recursive macros does not give additional expressiveness, in terms
of complexity. Let the subscript M denote the fact that, additionally, non-
recursive macros can be used in our logic.

Definition 15 (Logic with Non-Recursive Macros) Given a bit-vector
logic L, let LM denote the set of all bit-vector formulas in the following form:

Q @u0
rn0s, . . . , uk

rnks . tr1s

^ f0
rw0spu0, . . . , uk0q “ d0

rw0s

^ . . .

^ fm
rwmspu0, . . . , ukmq “ dm

rwms

where (i) Q.tr1s P L, (ii) the universal variables ui
rnis do not appear in Q.tr1s,

(iii) the uninterpreted functions fi are called macros, (iv) the terms di
rwis are

called macro definitions, and (v) di contains no occurrence of fj if i ď j.
Note that t might contain occurrences of any fi. Expanding a macro fi

means to replace all occurrences fips0, . . . , skiq in t with diσ, where s0, . . . , ski
are terms and σ :“ tu0 ÞÑ s0, . . . , uki ÞÑ skiu is a term substitution.

We now introduce a normal form, similar to the flat form in Definition 16,
in order to obtain an upper bound for the growth in formula size when applying
macro expansion.

Definition 16 (Functional Flat Form) A bit-vector formula Φ is in func-
tion flat form iff every uninterpreted function in Φ has only variables as argu-
ments.
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It is easy to see that any Φ can be translated into functional flat form with
only linear growth in formula size. Given a term fpt1

rn1s, . . . , tk
rnksq in Φ,

where f is an uninterpreted function, check if ti is a variable: if it is, then
xi :“ ti; otherwise let xi

rnis be a new Tseitin variable existentially quantified
at the innermost prefix position, and add the constraint xi “ ti to the formula.
Then, replace the original term with fpx1, . . . , xkq.

Theorem 16 QF UFBV2M is NExpTime-complete.

Proof NExpTime-hardness is obvious, since QF UFBV2 Ă QF UFBV2M.
Inclusion can be shown in a similar way as it is done in Theorem 14.

Let Φ0 :“ @u0
rn0s, . . . , uk

rnks . t ^ tM be a QF UFBV2M formula of size
n :“ |Φ0|, where t P QF UFBV2 and tM consists of all the macro definitions.
Assume that t is in functional flat form. We now inductively expand all macros
in t, in the order of fm, fm´1, . . . , f0, and also, after each expansion step, we
translate the resulting formula into functional flat form again.

First, each macro occurrence fmpx0, . . . , xkmq in t is replaced by an instance
dmσ of the macro definition. Since each xi is a variable, we know that |dmσ| “
|dm| ď n. Because fm has at most n occurrences in t, expanding fm results
in a formula of size bounded by n2. Recall that we also translate the resulting
formula into functional flat form, resulting in formula size bounded linearly in
n2.

Then, we expand fm´1, which now has at most n2 occurrences. The re-
sulting formula is of size bounded linearly in n3. By continuing the expansion
process with fm´2, . . . , f0, we finally obtain from t a formula Φ1 P QF UFBV2
that contains no more macros. It holds that

maxscl pΦ1q “ maxscl pΦ0q ď 2n

cntscl pΦ1q ď l
`

nm`1
˘

ď l
`

nn
˘

ď l
`

2n¨Ln
˘

for some linear function l. We now apply a unary re-encoding to Φ1, yielding
Φ2 P QF UFBV1. The size of Φ2 is bounded by

|Φ2| ď maxscl pΦ1q ¨ cntscl pΦ1q ` c ď 2n ¨ l
`

2n¨Ln
˘

` c

which is only single exponential in the size of Φ0. This gives QF UFBV2M P

NExpTime.

9 Practical Considerations

As mentioned in Section 2, our original motivation for considering the complex-
ity of bit-vector logics comes from the fact that state-of-the-art SMT solvers
usually rely on bit-blasting when dealing with bit-vector formulas. Our in-
troductory example shows the effect that the exponential explosion caused
by bit-blasting can have on a bit-vector formula and, therefore, current SMT
solvers often are not able to deal efficiently with bit-vector formulas that are
not scalar-bounded.
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While our complexity results in Section 6 explain why this is the case from
a complexity-theoretic point of view, it is of high practical interest if and how
state-of-the-art SMT solvers can profit from this knowledge.

9.1 Alternative Approaches

Instead of using bit-blasting, we can try to find alternative approaches for
solving bit-vector formulas.

One possible approach is to polynomially translate bit-vector formulas
to some other logic in the same complexity class. For example, target log-
ics for QF BV2!c (or general QF BV2) are DQBF or EPR, which are
both NExpTime-complete [45,49,50]. For QF BV2!1, a translation to model
checking for sequential circuits as given in Lemma 3 can be used instead. In
both cases, we can profit from the performance of existing techniques for other
problem classes. While DQBF solvers have not been considered at all until
our recent work in [28], their performance does not nearly reach the one of
current EPR solvers as, e.g., iProver [40]. On the other hand, many efficient
model checkers for sequential circuits in SMV or AIGER format exist.

In [42], we therefore gave a polynomial translation from QF BV2 to EPR
(this is in contrast to existing translations in [26,37], which are not guaranteed
to be polynomial in the general case), and then did an experimental evaluation
using iProver to solve the resulting EPR formulas. The overall results were
rather mixed. While we were able to solve some formulas faster, SMT solvers
performed better by orders of magnitude on most other problems consider-
ing runtime. Looking at the space requirements, iProver performed better in
general. However, the gain was less significant than expected. An explanation
for this can be found in the way iProver deals with EPR formulas. By solv-
ing propositional overapproximations and iteratively applying instantiations
of predicates (the underlying concept is known as the Inst-Gen calculus), the
formula can also grow exponentially. Of course this is no flaw in iProver but
a direct consequence of the NExpTime-completeness of EPR and QF BV2.

A different situation occurs when we look at QF BV2!1. As seen in our
introductory example, bit-blasting can still be exponential for formulas of this
class. However, we know that it is possible to solve this kind of formulas in
polynomial space, since QF BV2!1 P PSpace. In [29], we therefore presented
a polynomial translation from QF BV2!1 to SMV. Since current model check-
ers usually expect input in AIGER format, we then also translated our outputs
to AIGER format using smv2aig, which is part of the AIGER library. Our ex-
periments showed that, with growing bit-width, BDD-based model checkers
(e.g., NuSMV [18] and IImc5, using techniques described in [6,8], with BDD-
engine enabled) outperformed state-of-the-art SMT solvers on almost all of
our benchmarks by orders of magnitude in runtime. Considering space require-
ments, the gain was even more significant. On the other hand, model checkers

5 http://ecee.colorado.edu/wpmu/iimc/

http://ecee.colorado.edu/wpmu/iimc/
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based on unrolling performed worse and comparable to SMT solvers on most
benchmarks. This is not surprising, since unrolling to the full bit-width turns
out to be the same as bit-blasting.

Altogether, our experiments show that the theoretical results given in [30,
41] and Section 6 can practically lead to improvements in state-of-the-art SMT
solving. It is an interesting open problem to look at these results more closely
and to integrate those concepts into SMT solvers in order to to increase their
overall performance.

9.2 Benchmark Problems

Another practical outcome of our theoretical work was the creation of several
different benchmark sets.

In [42], we proposed two new sets of QF BV2 benchmarks for our ex-
periments on evaluating the performance of EPR solvers for quantifier-free
bit-vector formulas. In connection with our experiments on using model check-
ers for efficiently solving restricted bit-vector formulas, we generated six more
benchmark sets for QF BV2!1 in [29].

Another family of benchmarks was directly derived from the discussion on
the expressiveness of bit-vector operations in this paper. As we know from
Section 6, all common bit-vector operations can be logarithmically expressed
(in bit-width) by bitwise operations and equality in combination with shift
by constant, multiplication, concatenation, or slicing. While we did not give
direct translations for all common bit-vector operations in this work, we en-
coded most of them into SMT-LIB instances and used Boolector to verify their
correctness for various bit-widths.

These benchmarks, together with those from [29,42], can be found on our
webpage6 and will be submitted to the SMT-LIB. All of our benchmark sets
are challenging for state-of-the-art SMT solvers (as well as for EPR solvers and
model checkers) due to the fact that they are not scalar-bounded. For better
solvers and future challenges, the difficulty of a problem can be adjusted by
simply increasing the bit-widths in the original SMT-LIB instance. Bit-blasted
versions of our benchmarks also turned out to be challenging for state-of-the-
art SAT solvers in the SAT Competition 20137 [43].

10 Conclusion

We discussed the complexity of deciding various quantified and quantifier-free
fixed-size bit-vector logics. In contrast to existing literature, where usually it is
not distinguished between unary and binary encoding on scalars in formulas,
we argued that it is important to make this distinction. Most of our results
apply to the actually much more natural binary encoding as it is also used

6 http://fmv.jku.at/
7 http://www.satcompetition.org/

http://fmv.jku.at/
http://www.satcompetition.org/
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in standard formats, e.g., in the SMT-LIB format. For this kind of logics, al-
ready the quantifier-free fragment without uninterpreted functions (QF BV2)
turned out to be NExpTime-complete [41].

In this paper, we extended our previous work from [30,41]. We first gave
a detailed formal framework for fixed-size bit-vector logics including defini-
tions for syntax and semantics. Our self-contained formalization is the first to
consider different encodings and to provide a concrete measure for the size of
bit-vector formulas as well as to provide the possibility to include arbitrary
bit-vector operations.

Regarding the Common Operator Framework, as used, e.g., in the SMT-
LIB format, we then revisited our previous complexity results from [30,41] and
extended those results in several ways. For quantifier-free logics, we combined
our earlier work and restructured it to present several of our proofs in a clearer,
easier-to-read way, with some small modifications in the proofs.

We then looked at several bit-vector operations and discussed their ex-
pressiveness, and checked if these operations can be logarithmically translated
to each other (in bit-width). This kind of analysis helps to understand the
complexity that is inherent in certain classes of bit-vector formulas and its
relation to the kind of encoding used for bit-widths. While this allows us to
check what kind of properties can be expressed in a given fragment, it also
enables us to identify easier subclasses of formulas, which then can be solved
more efficiently in practice by applying specialized algorithms.

Considering quantified logics, it is still an open question whether BV2 is
complete for any complexity class. However, we could give some new results for
quantified logics with a restriction on the bit-width of universal variables. We
introduced the notion of universally bit-width bounded problems and showed
that this kind of problems are in NExpTime. This then allowed us to prove
that BV2log is NExpTime-complete. Since bit-vector logics with arrays rep-
resented by bit-vectors are in this set if quantification is only allowed on array
indices, this class is of particular practical interest.

For a last complexity theoretical result, we looked into QF BV2M, the
class of quantifier-free bit-vector logics extended with non-recursive macros,
as allowed, e.g., in the SMT-LIB format. Again, we showed that this logic re-
mains NExpTime-complete. Altogether, we provide the currently most com-
plete overview on the complexity of common bit-vector logics.

To point out that our theoretical insights are also interesting from a prac-
tical point of view, we briefly discussed two approaches of solving bit-vector
formulas not by bit-blasting but by using translations based on our complexity
results. While bit-blasting is exponential in general, we proposed polynomial
translations into EPR and SMV in recent practical work [29,42], to show that
bit-vector solvers can indeed profit from our techniques. Several QF BV2
benchmark families that we created throughout our work turned out to be
challenging for state-of-the-art SMT and SAT solvers

For future work, it is still an interesting topic to consider our results in
the context of parametrized complexity [24]. In particular, our definitions of
(polynomially) scalar-bounded and universally bit-width bounded problem sets
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might be of relevance in this context. So far, mainly problems in NP are
considered in parametrized complexity. This is another reason why extending
our work in this direction is of special interest. Also, as already mentioned, the
complexity of BV2 is still another open problem. Finally, from the practical
side, it would be interesting to investigate how state-of-the-art SMT solvers
can profit most from our insights and techniques.
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19. Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. Rank-
ing function synthesis for bit-vector relations. In TACAS, volume 6015 of LNCS.
Springer, 2010.

20. Stephen Cook and Michael Soltys. Boolean programs and quantified propositional proof
systems. Bulletin of the Section of Logic, 1999.

21. David Cyrluk, Oliver Mller, and Harald Rue. An efficient decision procedure for a
theory of fixed-sized bitvectors with composition and extraction. In Computer-Aided
Verification (CAV 97), pages 60–71. Springer, 1997.



Complexity of Fixed-Size Bit-Vector Logics 49

22. Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceedings
of the Theory and practice of software, 14th international conference on Tools and
algorithms for the construction and analysis of systems, TACAS’08/ETAPS’08, pages
337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

23. Francesco M. Donini, Paolo Liberatore, Fabio Massacci, and Marco Schaerf. Solving
QBF with SMV. In Proc. KR’02, pages 578–589, 2002.

24. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
530 pp.

25. Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

26. Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov. En-
coding industrial hardware verification problems into effectively propositional logic. In
FMCAD’10, pages 137–144, 2010.

27. Anders Franzén. Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and
Some Extensions to SMT. PhD thesis, University of Trento, 2010.
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A Example: A Reduction of a DQBF to QF BV2!c

Consider the following DQBF:

@u0, u1, u2Dxpu0q, ypu1, u2q . px_ y _ u0 _ u1q ^

px_ y _ u0 _ u1 _ u2q ^

px_ y _ u0 _ u1 _ u2q ^

p x_ y _ u0 _ u2q ^

p x_ y _ u0 _ u1 _ u2q

This DQBF is unsatisfiable.
Using the reduction given in Lemma 1, this formula is translated to the following

QF BV2!c formula:
´

pX | Y |„U0 |„U1q & pX |„Y | U0 |„U1 |„U2q & pX |„Y |„U0 |„U1 | U2q &

p„X | Y |„U0 |„U2q & p„X |„Y | U0 | U1 |„U2q

¯

“ „0r8s ^
ľ

mPt0,1,2u

Um ! 2m “ „Um ^

X & „U1 “ pX ! 21q & „U1 ^

X & „U2 “ pX ! 22q & „U2 ^

Y & „U0 “ pY ! 20q & „U0

(6)

In the following, let us show that this formula is also unsatisfiable.

Recall that the notation trns

K

“ d is an alternative for
q
trns

y
“ d, assuming an appro-

priate model for t. By construction, U0

K

“ 01010101, U1

K

“ 00110011, and U2
K

“ 00001111.
First, we show how the bits of X get restricted by the constraints introduced above. Let

us denote the originally unrestricted bits of X with x7, x6, . . . , x0. Since the bit-vectors

X & „U1

K

“ px7, x6, 0, 0, x3, x2, 0, 0q

pX ! 21q & „U1

K

“ px5, x4, 0, 0, x1, x0, 0, 0q

are forced to be equal, some bits of X should coincide, as follows:

X

K

“ px5, x4, x5, x4, x1, x0, x1, x0q

Furthermore, considering also the equality

X & „U2

K

“ px7, x6, x5, x4, 0, 0, 0, 0q

pX ! 22q & „U2

K

“ px3, x2, x1, x0, 0, 0, 0, 0q

results in
X

K

“ px1, x0, x1, x0, x1, x0, x1, x0q

In a similar fashion, the bits of Y are constrained as follows:

Y

K

“ py6, y6, y4, y4, y2, y2, y0, y0q

In order to show that the formula (6) is unsatisfiable, let us evaluate the “clauses” in the
formula:

X | Y |„U0 |„U1

K

“ p1, 1, 1, x0_y4 , 1 , 1 , 1 , x0_y0 q

X |„Y | U0 |„U1 |„U2

K

“ p1, 1, 1, 1 , 1 , 1 , x1_ y0, 1 q

X |„Y |„U0 |„U1 | U2

K

“ p1, 1, 1, x0_ y4, 1 , 1 , 1 , 1 q

„X | Y |„U0 |„U2

K

“ p1, 1, 1, 1 , 1 ,  x0_y2, 1 ,  x0_y0q

„X |„Y | U0 | U1 |„U2

K

“ p1, 1, 1, 1 ,  x1_ y2, 1 , 1 , 1 q
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By applying bitwise and to them, we get the bit-vector constrained by the formula (6):

t

K

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1
1

px0_ y4q ^ px0_y4q
 x1_ y2
 x0_y2
x1_ y0

px0_y0q ^ p x0_y0q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1
1
x0

 x1_ y2
 x0_y2
x1_ y0

y0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

In order to check if t “„ 0r8s is satisfiable, it is sufficient to try to satisfy the set of the
above Boolean clauses. It is easy to see that this clause set is unsatisfiable, since, by unit
propagation, x1 and y2 must be assigned to 1, which contradicts with the clause  x1_ y2.

B Example: A Reduction of a QBF to QF BV2!1

Consider the following QBF:

Dx@u2Dy@u1u0Dz . pu2 _ u1 _ zq ^

pu2 _ x_ yq ^

pu0 _ x_ zq ^

pu1 _ y _ zq ^

pu0 _ u1 _ zq

This QBF is satisfiable.
Using the reduction given in Lemma 2, this formula is translated to the following

QF BV2!1 formula:
´

pU2 | U1 |„Zq & pU2 |„X | Y q & pU0 |„X |„Zq &

pU1 |„Y | Zq & pU0 |„U1 | Zq
¯

“ „0r8s ^

ľ

mPt0,1,2u

´

ľ

0ďiăm

Ui

¯

‘ Um “ Um ! 1 ^

X & „1 “ X ! 1 ^
´

U 12 “ „
`

pU2 ! 1q ‘ U2

˘

¯

^
`

Y & U 12 “ pY ! 1q & U 12
˘

(7)

In the following, let us show that this formula is also satisfiable. As in the previous

example, we have U0

K

“ 01010101, U1

K

“ 00110011, and U2

K

“ 00001111. However, this time
the binary magic numbers were created in a different way to ensure that only addition and
bitwise operations are used.

First, we show how the bits of X get restricted by the constraints introduced above. Let
us denote the originally unrestricted bits of X with x7, x6, . . . , x0. Since the bit-vectors

X & „1

K

“ px7, x6, x5, x4, x3, x2, x1, 0q

X ! 1

K

“ px6, x5, x4, x3, x2, x1, x0, 0q

must be equal, all bits of X are forced to be equal:

X

K

“ px0, x0, x0, x0, x0, x0, x0, x0q

Similarly, we get some constraints on Y . By using the mask

U 12 “ „
`

pU2 ! 1q ‘ U2

˘ K

“ 11101110
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the following bit-vectors

Y & U 12

K

“ py7, y6, y5, 0, y3, y2, y1, 0q

pY ! 1q & U 12

K

“ py6, y5, y4, 0, y2, y1, y0, 0q

are forced to be equal, putting restrictions on the individual bits of Y :

Y

K

“ py4, y4, y4, y4, y0, y0, y0, y0q

Finally, Z is not restricted in any way since u0 is the innermost universal variable that
z depends on, i.e., z depends on all universal variables.

Z

K

“ pz7, z6, z5, z4, z3, z2, z1, z0q

In order to show that the formula (7) is satisfiable, let us evaluate the “clauses” in the
formula:

U2 | U1 |„Z

K

“ p  z7 ,  z6 , 1 , 1 , 1 , 1 , 1 , 1q

U2 |„X | Y

K

“ p  x0_y4 ,  x0_y4,  x0_y4 ,  x0_y4, 1 , 1 , 1 , 1q

U0 |„X |„Z

K

“ p x0_ z7, 1 ,  x0_ z5, 1 ,  x0_ z3, 1 ,  x0_ z1, 1q

U1 |„Y | Z

K

“ p  y4_z7 ,  y4_z6 , 1 , 1 ,  y0_z4 ,  y0_z3, 1 , 1q

U0 |„U1 | Z

K

“ p 1 , 1 , z5 , 1 , 1 , 1 , z1 , 1q

By applying bitwise and to them, we get the bit-vector constrained by the formula (7):

t

K

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

 z7 ^ p x0_y4q ^ p x0_ z7q ^ p y4_z7q
 z6 ^ p x0_y4q ^ p y4_z6q
p x0_y4q ^ p x0_ z5q ^ z5

 x0_y4
p x0_ z3q ^ p y0_z4q

 y0_z3
p x0_ z1q ^ z1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

 z7 ^ y4
 z6
z5
 x0

 y0_z4
 y0_z3

z1
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

t “„0r8s can easily be satisfied, e.g., by setting

z7 “ z6 “ y4 “ y0 “ x0 “ 0

z5 “ z1 “ 1

Therefore,

U0

K

“ 01010101, U1

K

“ 00110011, U2

K

“ 00001111,

X

K

“ 00000000, Y

K

“ 00000000, Z

K

“ 00111111

is a possible satisfying assignment for the bit-vector formula.

C Example: Bit-Width Reduction of a QF BV2bw Formula with
Indexing and Relational Operations

Let

Φ0 :“
`

xr100s ău yr100s
˘

^
`

zr50s “ wr50s
˘

^
`

wr100sr38s “ yr100sr72s
˘

be a bit-vector formula with maximal bit-width 100. Note that we now use decimal encoding
on the scalars. The set of explicit indices in the formula is given by I :“ t38, 72u. We now gen-
erate Φ1 by splitting all bit-vectors at the corresponding bit-indices. First, xr100s ău yr100s

is therefore replaced by



54 Kovásznai, Fröhlich, Biere

`

x199:73
r27s

ău y199:73
r27s˘

_
`

x199:73
r27s

“ y199:73
r27s˘

^
`

 x172
r1s
^ y172

r1s˘

_
`

x199:73
r27s

“ y199:73
r27s˘

^
`

x172
r1s
ô y172

r1s˘
^

`

x171:39
r33s

ău y171:39
r33s˘

_
`

x199:73
r27s

“ y199:73
r27s˘

^
`

x172
r1s
ô y172

r1s˘

^
`

x171:39
r33s

“ y171:39
r33s˘

^
`

 x138
r1s
^ y138

r1s˘

_
`

x199:73
r27s

“ y199:73
r27s˘

^
`

x172
r1s
ô y172

r1s˘

^
`

x171:39
r33s

“ y171:39
r33s˘

^
`

x138
r1s
ô y138

r1s˘
^

`

x137:0
r38s

ău y137:0
r38s˘

Next, zr50s “ wr50s is replaced by

`

z149:39
r11s

“ w149:39
r11s˘

^
`

z138
r1s
ô w138

r1s˘
^

`

z137:0
r38s

“ w137:0
r38s˘

Finally, wr100sr38s “ yr100sr72s is replaced by

w138
r1s
ô y172

r1s

Since we only have 11 relational operations in Φ1, we can generate a bit-width reduced
formula Φ2 by replacing all bit-widths n in Φ1 with mint11, nu. We therefore replace the
variables

x199:73
r27s

, y199:73
r27s

, x171:39
r33s

, y171:39
r33s

,

x137:0
r38s

, y137:0
r38s

, z137:0
r38s

, w137:0
r38s

,

by

x299:73
r11s

, y299:73
r11s

, x271:39
r11s

, y271:39
r11s

,

x237:0
r11s

, y237:0
r11s

, z237:0
r11s

, w237:0
r11s

respectively.

D Example: Half-Shuffle and Expand Applied to a Bit-Vector

halfshuffle
`

tr4s
hkkikkj

1101 , 16
˘

can be replaced with x2r16s, by adding the following assertions. First,
zero extension is applied to the original vector:

x0
r16s “ extu

´

tr4s, 12
¯

K

“ 0000 0000 0000 1101

Now, in two iterations, the bits of tr4s are separated and moved to the distinct partitions of
the extended vector:

x1
r16s “

´

x0
r16s |

´

x0
r16s ! 6

¯¯

& binmagic p2, 16q

K

“ p0000 0000 0000 1101 | 0000 0011 0100 0000q & 0011 0011 0011 0011

“ 0000 0011 0000 0001

x2
r16s “

´

x1
r16s |

´

x1
r16s ! 3

¯¯

& binmagic p1, 16q

K

“ p0000 0011 0000 0001 | 0001 1000 0000 1000q & 0101 0101 0101 0101

“ 0001 0001 0000 0001
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The result now can be used for example in expand : expand
`

tr4s
hkkikkj

1101 , 16
˘

can be expressed as

x12
r16s, by adding the following assertions:

x10
r16s

“ halfshuffle
´

tr4s, 16
¯

K

“ 0001 0001 0000 0001

x11
r16s

“ x10
r16s

|

´

x10
r16s

! 1
¯

K

“ 0001 0001 0000 0001 | p0010 0010 0000 0010q “ 0011 0011 0000 0011

x12
r16s

“ x11
r16s

|

´

x11
r16s

! 2
¯

K

“ 0011 0011 0000 0011 | p1100 1100 0000 1100q “ 1111 1111 0000 1111

E Example: Multiplication of Two Bit-Vectors

The multiplication

t1
r4s

hkkikkj

0011 ¨

t2
r4s

hkkikkj

0101 can be expressed as x2r16s r3 : 0s, by adding the following
assertions. First, both bit-vectors are transformed by selfconcat and expand to quadratic
size in order to generate all single-digit multiplications in one step by using bitwise and :

xr16s “ selfconcat pt1, 16q & expand pt2, 16q

K

“ 0011 0011 0011 0011 & 0000 1111 0000 1111 “ 0000
loomoon

g3
r4s

0011
loomoon

g2
r4s

0000
loomoon

g1
r4s

0011
loomoon

g0
r4s

g3r4s, g2r4s, g1r4s, and g0r4s are the bit groups representing the bit-vector which is the result
of single-digit multiplication of t1r4s “ 0011 with the single bits of t2r4s “ 0101. Now, the
neighbouring groups have to be shifted to their relative offsets and are added:

b0
r16s “ binmagic p4, 16q

K

“ 0000 1111 0000 1111

x1
r16s “ px0 & b0q `

`

px0 & „b0q "u 3
˘

K

“ p0000 0011 0000 0011q ` p0000 0000 0000 0000 "u 3q

“ 0000 0011
looooomooooon

g32
r8s

0000 0011
looooomooooon

g10
r8s

g32r8s and g10r8s are the bit groups representing the bit-vectors which would be obtained by
adding the bit-vectors represented by g3r4s, g2r4s and g1r4s, g0r4s, respectively. This involves
respecting their relative offsets, i.e., g32 “ pg3 ! 1q ` g2 and g10 “ pg1 ! 1q ` g0.

Since we still have several partial results, we have to continue adding neighbouring
groups:

b1
r16s “ binmagic p8, 16q

K

“ 0000 0000 1111 1111

x2
r16s “ px1 & b1q `

`

px1 & „b1q "u 6
˘

K

“ p0000 0000 0000 0011q ` p0000 0011 0000 0000 "u 6q

“ 0000 0000 0000 1111
looooooooooooomooooooooooooon

g3210
r16s

After the last step, there is only one bit group left and the least significant bits of the

bit-vector x2r16s

K

“ 0000 0000 0000 1111 correspond to the solution of the multiplication,

i.e., 0011 ¨ 0101 “ x2r16s r3 : 0s

K

“ 1111.
Further examples for multiplication or for other operations can easily be generated by

feeding our benchmark family of bit-vector operations encoded in the SMT-LIB format into
an SMT solver.
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