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Abstract. We study the complexity of decision problems encoded in
bit-vector logic. This class of problems includes word-level model check-
ing, i.e., the reachability problem for transition systems encoded by bit-
vector formulas. Our main result is a generic theorem which determines
the complexity of a bit-vector encoded problem from the complexity
of the problem in explicit encoding. In particular, NL-completeness of
graph reachability directly implies PSpace-completeness and ExpSpace-
completeness for word-level model checking with unary and binary arity
encoding, respectively. In general, problems complete for a complexity
class C are shown to be complete for an exponentially harder complexity
class than C when represented by bit-vector formulas with unary en-
coded scalars, and further complete for a double exponentially harder
complexity class than C with binary encoded scalars. We also show that
multi-logarithmic succinct encodings of the scalars result in complete-
ness for multi-exponentially harder complexity classes. Technically, our
results are based on concepts from descriptive complexity theory and
related techniques for OBDDs and Boolean encodings.

1 Introduction

Symbolic encodings of decision problems by Boolean formalisms are well-known
to increase the problem complexity [1,2,3,4,5,6,7,8,9,10,11,12]. In particular, the
literature has studied graph problems and other relational problems whose adja-
cency relation is given by a Boolean formula, circuit or BDD. As Tab. 1 shows,
the complexity of these problems typically rises by an exponential, e.g., from NL
to PSpace, from NP to NExpTime, etc. In this paper, we show that symbolic
encodings by quantifier-free bit-vector logic (QF BV) will in general also lead
to a complexity increase which ranges from exponential to multi-exponential.
Interestingly, the increase depends on a single factor, namely how the bit-width
of bit-vectors is encoded. For unary encoding, bit-vector logic shows the same
complexity behavior as Boolean logic, and for binary encoding, the complexity
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increase is double exponential. We can generalize the latter encoding, and call

it “ν-logarithmic”: encode the bit-width 22
...2c

as c in binary form, where the
degree of exponentiation is ν − 2. We achieve a ν-exponential increase in this
case. Importantly, hardness already holds for bit-vector logics with the simple
operators ∧,∨,∼,=, and the increment operator +1. Membership holds for all
bit-vector operators which allow log-space computable bit-blasting. Note that
∧,∨,∼,=,+1 defines a very weak logic: ∧,∨,∼,= are contained in all reasonable
logics, and the increment operator +1 can be defined from other operators eas-
ily [13]. Therefore, our results determine the complexity of decision problems for
a large class of bit-vector logics.

Encoding → explicit Boolean unary binary ν-logarithmic
circ./formula, QF BV QF BV QF BV

↓ Problem BDD

Word-Level MC,
Reachability NL PSpace PSpace ExpSpace (ν−1)-ExpSpace

Circuit Value,
Alternating P ExpTime ExpTime 2-ExpTime ν-ExpTime
Reachability

Clique, 3-SAT, NP NExpTime NExpTime 2-NExpTime ν-NExpTime
SAT, Knapsack

k-QBF ΣP
k NEΣ

P
k NE

ΣP
k 2-NEΣP

k ν-NEΣ
P
k

Table 1. Examples of complexity increase by symbolic encoding. New results are
indicated in boldface. All membership results hold for logics whose operators allow
log-space computable bit-blasting. Hardness requires the operators ∧,∨,∼,=,+1. The
column with ν holds for all ν > 1.

Bit-Vector Logic. The theory of fixed-width bit-vector logics (i.e., logics where
each bit-vector has a given fixed bit-width) is investigated in several scientific
works [14,15,16,17,18], and even concrete formats for specifying such bit-vector
problems exist, e.g., the SMT-LIB format [19] or the BTOR format [20]. In this
paper, we restrict ourselves to quantifier-free bit-vector (QF BV [19]) logics.

As discussed below, bit-vector logics have attracted significant interest in
computer-aided verification and SMT solvers. From a theory perspective, bit-
vector logics are very succinct logics to express Boolean functions. In contrast
to Boolean logic, BDDs, and QBF, they are based on variables for bit-vectors
rather than variables for individual bits. Thus, for instance x[32] = y[32] expresses
that two bit-vectors x and y of bit-width 32 are equal. Bit-vector operators are
therefore defined for arbitrary bit-width n, for instance bitwise and/or/xor, shift
operators, etc. This has important consequences: (1) a bit-vector logic is given
by a list of operators, (2) there is an infinite number of bit-vector logics, and
(3) there is no finite functionally complete set of operators from which all other
operators can be defined. Moreover, it is evident that the encoding of scalars



such as the number 32 in the above simple example is related to the complexity
of bit-vector logic.

In previous work by some of the authors [21,13], we investigated the com-
plexity of satisfiability checking of bit-vector formulas. For instance, we showed
in [21] that satisfiability checking of QF BV is NP-complete resp. NExpTime-
complete if unary resp. binary encoding of scalars is used and any standard op-
erator of the SMT-LIB [19] is allowed. (All these operators allow log-space com-
putable bit-blasting.) In the binary case, we further analyzed what happened if
we restricted the operator set; e.g., if only bitwise operators, equality, and left shift
by one are allowed, then the complexity turns out to be PSpace-complete [13].
In fact, it is easy to see that also the logic of the operators ∧,∨,∼,=,+1 has a
satisfiability problem in PSpace.

Word-Level Model Checking and Decision Problems. In hardware and software
verification, bit-vector logics are a natural framework for word-level system de-
scriptions; e.g., registers in digital circuits and variables in software can be rep-
resented by bit-vectors, and word-level operators, such as bitwise ones and arith-
metic ones, can be applied to them. The main practical motivation for our work
is word-level model checking, a bit-vector encoded problem that is of importance
in practice. With word-level model checking, we refer to the problem of reacha-
bility in a transition system where a state is given by a valuation of one or more
bit-vectors, and the transition relation over the states is expressed as a bit-vector
formula. Such a representation provides a natural encoding for design informa-
tion captured at a higher level than that of individual wires and primitive gates.
In the past, there has been lots of research on bit-level model checking [22] as
well as bit-vector formula decision procedures [23,24]. Comparatively few work
has yet been published on word-level model checking. However, with increasing
performance of state-of-the-art model checkers [25] and SMT solvers [26,27], also
the interest in word-level model checking is growing [28,20,29]. While there are
some practical approaches to attack word-level model checking [28,20,29], we
are not aware of any work that is dealing with the complexity of the underlying
decision problem. Row 1 of Tab. 1 shows that we determine the complexity of
word-level model checking for a large class of operators and scalar encodings.

Beyond word-level model checking, we also address the complexity of other
decision problems. Rows 2-4 of Tab. 1 give examples of the complexity results
for well-known decision problems in bit-vector encoding.

Technical Contribution. Instead of individual complexity results, the paper
presents a generic technique to lift known complexity results for explicit en-
codings to the case of bit-vector encodings. Similar techniques were previously
developed for symbolic encodings by circuits [7,8,9], Boolean formulas [10], and
OBDDs [30]. Lifting membership for a complexity class is the easier part, for
which we give a general result in Thm. 1. Lifting hardness requires more effort.
Similarly as in [10,30], our method assumes that the problems in explicit encod-
ing are hard under quantifier-free reductions, a notion of reduction introduced in
descriptive complexity theory [31]. Note that the problems in Tab. 1 fulfill this



requirement. The key theorem is Thm. 2, from which a general hardness result
is implied in Corr. 2.

Discussion. The results of this paper show that the complexity of bit-vector
encoded problems depends crucially on the formalism to represent the bit-width
of the bit-vectors. At first sight, these results may seem unexpected, e.g., a small
part of the formalism clearly dominates the complexity. From an algorithmic per-
spective, however, this is not surprising: executing a for-loop from 0 to INT MAX

on architectures with bit-width 16, 216 or 22
16

will result in drastically different
runtimes!

It may also be surprising that QF BV fragments with PSpace satisfiability
and fragments with NExpTime satisfiability have the same complexity, e.g., for
word-level model checking. This is however a common phenomenon: Boolean
logic has an NP satisfiability problem, while satisfiability of BDDs is constant
time. Nevertheless, the model checking problem for both of them is PSpace-
complete [10,30].

Using unary and binary encodings for scalars draws a connection to previous
work [21]. Intuitively, results for the unary case measure complexity in terms
of bit-widths, and those for the binary case measure complexity in the classical
sense, i.e., in terms of formula size. The ν-logarithmic encoding also manifests
itself in practice, such as the one in the SMB-LIB to declare arrays by writing
(Array idx elem), where idx is the sort for array indexes, and elem is the sort
for array elements. If idx is a bit-vector sort (_ BitVec n), where n is encoded
w.l.o.g. in binary form, the size of the array is double exponential in the length
of the binary encoding of n.

We finally note that hardness for the unary case can also be concluded from
an analysis of the proofs in [10] using the definitions of symbolic encodings in [30].
The current paper gives a direct proof for the unary case which is independent
of the predecessor papers.

2 Preliminaries

Let N be the set of natural numbers {0, 1, 2, . . . }, while N+ denotes N\{0}.
B = {0, 1} is the Boolean domain. Given i ∈ N, let us define the repeated
exponentiation function expi : N 7→ N as follows: exp0 (n) = n and expi+1 (n) =

2expi(n). Given a logical formula φ (in either bit-vector, first-order, or Boolean
logic), if x1, . . . , xk are all the free variables that occur in φ, we indicate this by
writing φ(x1, . . . , xk).

Complexity Classes. We assume that the reader is familiar with standard com-
plexity classes such as NL, P, ExpTime, etc., as listed in Tab 1. For simplicity,
we will refer to these complexity classes as “standard complexity classes”. For
a standard complexity class, it is natural to define the exponentially harder com-
plexity class: Exp1 (L) = Exp1 (NL) = PSpace, Exp2 (NL) = Exp1 (PSpace) =
ExpSpace, etc. Similarly, Exp1 (P) = ExpTime, Exp2 (P) = Exp1 (ExpTime) =



2-ExpTime, etc., and analogously for other standard complexity classes. For a
formal definition of this concept (which is beyond the scope and goal of this
paper) one can use the concept of leaf languages [9,2].

Computational Problems in Descriptive Complexity Theory. A relational sig-
nature is a tuple τ = (P a11 , . . . , P akk ) of relation symbols of arity a1, . . . , ak,

respectively. A finite structure over τ is a tuple A = (U, P̂ a11 , . . . , P̂ akk ) where

U is a nonempty finite set (called the universe of A) and each P̂ aii ⊆ Uai is a
relation over U . The class of all finite structures over τ is denoted by Struct (τ).
A computational problem over τ is a class A ⊆ Struct (τ), such that A is closed
under isomorphism. In this paper, we assume convex problems, as introduced
in [30], and similarly in [32]. A problem is convex if adding isolated elements
to the universe of a structure does not change membership in the problem. In
Sec. 4 we will show that the model checking problem is naturally presented in
this framework. For background on descriptive complexity see [33].

3 Bit-Vector Logic

A bit-vector, or word, is a sequence of bits (i.e. 0 or 1). In this paper, we consider
bit-vectors of a fixed size n ∈ N+, where n is called the bit-width of the bit-
vector. We assume the usual syntax and semantics for quantifier-free bit-vector
logic (QF BV), cf. the SMT-LIB format [19] and the literature [14,15,16,17,18].
Basically, a bit-vector formula contains bit-vector variables and bit-vector con-
stants, each of which is of a certain bit-width specified next to the variable resp.
constant, and uses certain bit-vector operators whose semantics is a priori de-
fined. For example, x[16] 6= y[16] ∧

(
u[32] + v[32] = (x[16] ◦ y[16]) � 1[32]

)
is a

bit-vector formula with variables x and y of bit-width 16, u and v of bit-width
32, and operators for addition, shifting, concatenation, and comparison.

Note that, in bit-vector formulas, there exist such components which them-
selves do not represent bit-vectors, but rather carry additional numerical infor-
mation to the bit-vectors. We call them scalars. Bit-width is a scalar, and there
might be also other types of scalars in a formula3. This paper demonstrates
the effect of encoding the scalars in different ways. For instance, scalars could
be encoded as unary numbers or w.l.o.g. binary numbers, or we could choose
even more succinct encodings, such as the binary encoding of the logarithm of
the scalar. Formally, we represent those encodings by an integer ν ∈ N+, i.e.,
ν denotes how n ∈ N is obtained from a scalar s: (1) if ν = 1, then s is a
unary number encoding of n; (2) if ν > 1, then s is a binary number encoding
of a number d ∈ N such that n = expν−2 (d). Let encodeν (n) denote the scalar
that ν-encodes the number n, and let decodeν (s) denote the number that is
ν-encoded by the appropriate scalar s.

Now we give a formal definition of bit-vector formulas with the operators we
use throughout in the rest of the paper. Let us suppose that an encoding ν is

3 For example, the common operators extraction and zero/sign extensions use scalar
arguments as well, cf. [19,14,15,16,17,18].



fixed. A bit-vector term t of bit-width n is denoted by t[s] where s = encodeν (n),
and defined inductively as follows:

term condition bit-width

constant: c[s] c ∈ N, 0 ≤ c < 2n n

variable: x[s] x is an identifier n

bitwise negation: ∼ t[s] t[s] is a term n

bitwise and/or/xor, addition:
(t1

[s] • t2[s]) t1
[s], t2

[s] are terms n• ∈ {&, |,⊕,+}

equality, unsigned less than:
(t1

[s] • t2[s]) t1
[s], t2

[s] are terms 1• ∈ {=, <u}

Note that the value c of a bit-vector constant is not a scalar, therefore it is always
encoded as a binary number, regardless of ν. By a bit-vector formula we mean
a term of bit-width 1, since this case can be considered as the Boolean case. For
better readability, we write ¬,∧,∨ instead of ∼,&, | for bit-width 1, respectively.
Given a bit-vector operator set Ω, let BVΩν denote the fragment of QF BV that
applies the encoding ν to scalars and only uses operators from Ω. Bit-blasting, or
flattening [34], interprets bit-vector variables as strings of Boolean variables and
translates bit-vector operations into Boolean formulas. By denoting the Boolean
logic as BO, we give a formal definition.

Definition 1 (Bit-blasting). Given an operator set Ω, a bit-blasting function
bblastΩν : BVΩν 7→ BO is defined as follows:

bblastΩν
(
ψ(x1

[s1], . . . , xk
[sk])

)
= φ(y11 , . . . , y

n1
1 , . . . , y1k, . . . , y

nk

k , z1, . . . , zl)

where ni = decodeν (si), such that ∀d1 ∈ Bn1 , . . . , dk ∈ Bnk

ψ(d1, . . . , dk) = true iff

∃!e1, . . . , el ∈ B . φ(d11, . . . , d
n1
1 , . . . , d1k, . . . , d

nk

k , e1, . . . , el) = true

where dji denotes the jth bit of di.

Note that the additional Boolean values e1, . . . , el are uniquely existentially
quantified. Therefore, in fact, each Boolean variable zi can rather be consid-
ered as a bit-vector function fi(x1

[s1], . . . , xk
[sk]) : Bn1 × · · · × Bnk 7→ B. Thus,

ψ and φ encode the same
(∑k

i=1 ni
)
-ary relation over B.

We say that bblastΩν is log-space computable in bit-width if it is log-space

computable in
∑k
i=1 ni. Let Π denote the set of all the bit-vector operators such

that bblastΠν is log-space computable in bit-width, for all ν ∈ N+. Note that all
the common bit-vector operators [19] fall into Π.

4 Motivating Example: Word-Level Model Checking

We now demonstrate that our generic main results can be applied to the im-
portant example of reachability analysis in model checking, as to establish the
complexity of reachability in word-level model checking.



The model checking problem has a natural representation with a relational
signature τ = (I1, T 2, P 1). In model checking terminology, I represents the set
of initial states, T the transition relation, and P the condition to check, i.e.,
the set of states whose reachability we want to verify. Thus, a structure A =
(U, Î1, T̂ 2, P̂ 1) is essentially a Kripke structure. Reachability analysis in A means

to check if there exists a reachable P̂ -state in the defined transition system, i.e.,
if ∃s0, s1, . . . , sk ∈ U such that (1) s0 ∈ Î, (2) ∀i ∈ [1, k] . (si−1, si) ∈ T̂ ,

and (3) sk ∈ P̂ . We call MC = {A ∈ Struct (τ) | ∃ a reachable P̂ -state in A}
the (explicit) model checking problem. Since MC is a simple variant of graph
reachability, we know from [31] that MC is NL-complete under quantifier-free
reductions.

The word-level encoding of MC means to encode the states by tuples of
bit-vectors, and to define the relations Î , T̂ , P̂ by bit-vector formulas. The cor-
responding decision problem is called bvΩν (MC), where ν specifies the scalar
encoding and Ω is a set of bit-vector operators that are allowed in the formulas.
We will formally define this problem in Sec. 5.

Our results require the following assumptions on Ω: (1) Ω contains only such
operators for which bit-blasting is log-space computable in bit-width and (2) Ω
contains all the simple operators ∧,∨,∼,=,+1. In particular, Ω may contain all
common bit-vector operators [19] that are used in practice.

Then we obtain the following results as a direct consequence of Thm. 1,
Cor. 2, and the NL-completeness of MC:

Corollary 1. Let Ω ⊆ Π. The decision problem bvΩν (MC) is

1. PSpace-complete, if ν = 1 and Ω ⊇ {∧,∨,¬},
2. (ν − 1)-ExpSpace-complete, if ν > 1 and Ω ⊇ {∧,∨,∼,=,+1},

under log-space reductions.

In practice, the term word-level model checking usually refers to the problem
bvΩ2 (MC), i.e., all scalars in the formulas are encoded as w.l.o.g. binary numbers.
Thus, our results show that word-level model checking is ExpSpace-complete.

5 Bit-Vector Representation of Problems

Our intention is to represent instances of computational problems as bit-vector
formulas. More precisely, given a relational signature τ = (P a11 , . . . , P akk ), we

define what the bit-vector definition of a corresponding relation P̂i
ai

looks like
and what structure these definitions generate.

In order to simplify the presentation, we introduce the concept of term vec-
tors. A term vector is a sequence t1

[s1], . . . , tl
[sl] of bit-vector terms. We write

term vectors in boldface, i.e., t = t1
[s1], . . . , tl

[sl], and say that t has the bit-width
signature s1, . . . , sl. We distinguish the special case when terms are variables, by
denoting variable vectors as x,y, z.

Word-level model checking can again serve as motivation here, since it rep-
resents the states of a transition system by the same set of bit-vector variables



x1
[s1], . . . , xl

[sl]. I.e., a state is in fact can be represented as the valuation of
terms t1

[s1], . . . , tl
[sl] assigned to those variables. Therefore, it is important that

each state must have the same bit-width signature s1, . . . , sl.

Definition 2. Let x1, . . . ,xa be variable vectors each of which has the bit-width
signature s1, . . . , sl. Let ν be a scalar encoding, and let ni = decodeν (si) de-
note the actual bit-widths. A bit-vector formula ψ(x1, . . . ,xa) defines the a-ary
relation

genaν(ψ) = {(d1, . . . , da) ∈ (Bn1 × · · · × Bnl)
a | ψ(d1, . . . , da) = true} .

Let τ = (P a11 , . . . , P akk ) be a relational signature. The tuple of definitions

Ψ =
(
P1(x1

1, . . . ,x
1
a1) := ψ1(x1

1, . . . ,x
1
a1),

. . . ,

Pk(xk1 , . . . ,x
k
ak

) := ψk(xk1 , . . . ,x
k
ak

)
)

where each ψi is a bit-vector formula and each xij is a variable vector that has
the bit-width signature s1, . . . , sl, defines the τ -structure

genτν(Ψ) =
(
Bn1 × · · · × Bnl , gena1ν (ψ1), . . . , genakν (ψk)

)
.

The bit-vector representation of a computational problem consists of all the bit-
vector representations of all the structures in the problem. Besides the definitions
Ψ of relations, it is also necessary to include the scalar encoding ν to use, as
follows.

Definition 3. Let A ⊆ Struct (τ) be a problem, ν a scalar encoding, and Ω a
set of bit-vector operators. Then we define

bvΩν (A) =
{

(Ψ, ν)
∣∣ genτν(Ψ) ∈ A, and Ψ contains only BVΩν formulas

}
.

In order to show how membership for a standard complexity class C can be
automatically lifted when bit-vector representation is used, we give a necessary,
although not very strong, criterion on the operator set. This criterion is based
on bit-blasting, and requires to use operators from Π, i.e., those which allow
log-space computable bit-blasting in bit-width.

Theorem 1. Given a problem A, a standard complexity class C, and an oper-
ator set Ω ⊆ Π, if A ∈ C, then bvΩν (A) ∈ Expν (C).

6 Lifting Hardness

The main contribution of this paper is to show how hardness for a standard com-
plexity class C can also be automatically lifted. Our most important theorem,
Thm. 2 gives a rather general hardness result, from which we derive Cor. 2 to
show hardness of bvΩν for Expν (C), where Ω ⊇ {∧,∨,∼,=,+1}.



Our proofs employ the framework of descriptive complexity theory [31]. In
particular, we use the standard assumption that all structures are equipped with
a binary successor relation. Thus, the universe of a structure can be naturally
seen as an initial segment of the natural numbers. Our complexity results for bit-
vector encoded problems assume that the problems in explicit encoding are hard
under quantifier-free reductions, i.e., quantifier-free interpretations with equality
and the successor relation. Examples of such problems including those in Tab. 1
can be found in [35,36,37,38,39]. For natural problems, it is usually not difficult
to rephrase an existing reduction as a quantifier-free reduction. Let A 6qf B
resp. A 6L B denote that the problem A has a quantifier-free resp. log-space
reduction to the problem B. Note that quantifier-free reductions are weaker
than log-space reductions, i.e., A 6qf B implies A 6L B. For exact background
material and definitions, see [31].

The key steps for Thm. 2 are two lemmas. Lemma 1 (“Conversion Lemma”)
shows that a quantifier-free reduction between A and B can be lifted to a log-
space reduction between bvν(A) and bvν(B). Lemma 2 shows that A is log-
space reducible to bvν(longν(A)) where longν(·) is an operator which decreases
the complexity ν-exponentially. From these two lemmas, Thm. 2 follows easily.
The methodology of this paper is closest to [30], which contains a more thor-
ough discussion of related work, descriptive complexity, and complexity theoretic
background.

Lemma 1 (Conversion Lemma). Let Ω ⊇ {∧,∨,∼,=,+1}. Given two prob-
lems A ⊆ Struct (σ) and B ⊆ Struct (τ), if A 6qf B, then bvΩν (A) 6L bvΩν (B),
for any ν.

The role of the following definition is to obtain from a problem A another prob-
lem longν(A) of ν-exponentially lower complexity. In order to construct this
latter problem, we are going to “blow up” the size of a structure in a poten-
tially ν-exponential way. To this end, we view a structure A as a bit string, and
interpret the bit string as a binary number char(A). The bit string is obtained
from the characteristic sequences of the relations in A, i.e., for each tuple in
lexicographic order, a single bit indicates whether the tuple is in the relation.
Due to the presence of the successor relation, this notion is well defined.

Definition 4. Given a structure A = (U, P̂1, . . . , P̂k), let char(P̂i) denote the

characteristic sequence of the tuples in P̂i in lexicographical order. Let char(A)
denote the binary number obtained by concatenating a leading 1 with the con-
catenation of char(P̂1), . . . , char(P̂k).

We define longν(A) =
{

(V, R̂1)
∣∣ |V | = expν−1 (char(A)) and

∣∣R̂∣∣ = |V |
}

.
For a problem A, let longν(A) =

⋃
A∈A longν(A). For a complexity class C, let

longν(C) =
⋃
A∈C longν(A).

The next lemma shows that encoding the problem longν(A) as bit-vector formu-
las applying ν-encoding to scalars gives a ν-exponentially more succinct repre-
sentation, to which, consequently, the original problem A can be reduced.



Lemma 2. Given a problem A, A 6L bvΩν (longν(A)) if one of the following
conditions holds:

1. ν = 1 and Ω ⊇ {<u}
2. ν > 1 and Ω ⊇ {=}

Theorem 2 (Upgrading Theorem). Let C1 and C2 be complexity classes
such that longν(C1) ⊆ C2. If a problem A is C2-hard under quantifier-free reduc-
tions, then bvΩν (A) is C1-hard under log-space reductions if one of the following
conditions holds:

1. ν = 1 and Ω ⊇ {∧,∨,∼,=,+1, <u}
2. ν > 1 and Ω ⊇ {∧,∨,∼,=,+1}

Proof. For any B ∈ C1, by assumption longν(B) ∈ C2, and hence longν(B) 6qf

A. By Lemma 1, it follows that bvΩν (longν(B)) 6L bvΩν (A), regardless of the
additional operator <u in the unary case. Furthermore, by Lemma 2, it holds
that B 6L bvΩν (longν(B)). To put them together, B 6L bvΩν (longν(B)) 6L

bvΩν (A) and, therefore, bvΩν (A) is C1-hard.

As we discussed before, the case of ν = 1 shows the same complexity behavior
as Boolean logic. Of course, this is no wonder, since all the operators in Ω =
{∧,∨,∼,=,+1, <u}, or more precisely, BVΩ1 allows log-space computable bit-
blasting in bit-width, and also in formula size, since bit-widths are now encoded

in unary form. Thus, BVΩ1 is log-space reducible to BV{∧,∨,¬}1 , since {∧,∨,¬}
is a functionally complete set of Boolean operators. As a consequence, one can

strengthen the first statement of Thm. 2 further as follows: bvΩ
′

1 (A) is C1-hard
for any Ω′ ⊇ {∧,∨,¬}. Note that this is consistent with corresponding results
in [10,30]. As a direct consequence, we can give the following corollary.

Corollary 2. Given a standard complexity class C and a problem A, if A is
C-hard under quantifier-free reductions, then bvΩν (A) is Expν (C)-hard under
log-space reductions if one of the following conditions holds:

1. ν = 1 and Ω ⊇ {∧,∨,¬}
2. ν > 1 and Ω ⊇ {∧,∨,∼,=,+1}

7 Conclusion

This paper gives a generic method for asserting the complexity of bit-vector
logic encoded problems. As corollary we obtain a new complexity result for
word-level model checking, an important practical problem. Since all complexity
classes with complete problems have problems complete under quantifier-free
reductions [11], we obtain a comprehensive picture of the worst case complexity
of problems in bit-vector encoding. Note that our results do not apply to sat-
isfiability of bit-vector logic, because “existence of a solution” is not hard for
a complexity class, and thus the assumption of the Conversion Lemma is not
satisfied. Nevertheless, we expect that the complexity of satisfiability for multi-
logarithmic encodings shows a similar behavior as the problems studied here.
We leave an analysis of this question to future work.
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