
Q-Resolution with Generalized Axioms?

Florian Lonsing1, Uwe Egly1, and Martina Seidl2

1 Knowledge-Based Systems Group, Vienna University of Technology, Vienna, Austria
2 Institute for Formal Models and Verification, JKU, Linz, Austria

Abstract. Q-resolution is a proof system for quantified Boolean formu-
las (QBFs) in prenex conjunctive normal form (PCNF) which underlies
search-based QBF solvers with clause and cube learning (QCDCL). With
the aim to derive and learn stronger clauses and cubes earlier in the
search, we generalize the axioms of the Q-resolution calculus resulting
in an exponentially more powerful proof system. The generalized axioms
introduce an interface of Q-resolution to any other QBF proof system
allowing for the direct combination of orthogonal solving techniques. We
implemented a variant of the Q-resolution calculus with generalized ax-
ioms in the QBF solver DepQBF. As two case studies, we apply integrated
SAT solving and resource-bounded QBF preprocessing during the search
to heuristically detect potential axiom applications. Experiments with
application benchmarks indicate a substantial performance improvement.

1 Introduction

In the same way as SAT, the decision problem of propositional logic, is the
archetypical problem complete for the complexity class NP, QSAT, the decision
problem of quantified Boolean formulas (QBF), is the archetypical problem com-
plete for the complexity class PSPACE. The fact that many important practical
reasoning, verification, and synthesis problems fall into the latter complexity class
(cf. [3] for an overview) strongly motivates the quest for efficient QBF solvers.

As the languages of propositional logic and QBF only marginally differ from
a syntactical point of view, namely the quantifiers, it is a natural approach to
take inspiration from SAT solving and lift powerful SAT techniques to QSAT.
Motivated by the success of conflict-driven clause learning (CDCL) in SAT solv-
ing [31], a generalized version of CDCL called conflict/solution-driven clause/cube
learning (often abbreviated by QCDCL) is applied in QSAT solving [11]. Given
a propositional formula in conjunctive normal form (CNF), a CDCL-based
SAT solver enriches the original CNF with clauses—already found and justified
conflicts—which force the solver into a different area of the search space until
either a model, i.e., a satisfying variable assignment, is found or until the CNF is
proven to be unsatisfiable. If a QBF in prenex conjunctive normal form (PCNF) is
unsatisfiable then QCDCL works similar, apart from technical details. In the case
of satisfiability, however, it is not sufficient to find one assignment satisfying the

? Supported by the Austrian Science Fund (FWF) under grants S11408-N23 and
S11409-N23.

formula. To respect the semantics of universal quantification, QBF models have
to be described either by assignment trees or by Skolem functions. Hence, a QBF
solver may not abort the search if a satisfying assignment is found. Dual to clause
learning, a cube (a conjunction of literals) is learned and the search is resumed.
QCDCL is implemented in several state-of-the-art QBF solvers [12, 19, 21, 34].

Apart from QCDCL, orthogonal approaches to QBF solving have been devel-
oped. QBF competitions like the QBF Galleries 2013 [25] and 2014 [15] revealed
the power of expansion-based approaches [1, 6, 18], which are based on a different
proof system than search-based solving with QCDCL. We refer to related work [4,
5] for an overview of QBF proof systems. QCDCL relies on Q-resolution [19]. Tra-
ditionally, Q-resolution calculi3 offer two kinds of axioms with limited deductive
power: (i) the clause axiom stating that any clause in the CNF part of a QBF can
be immediately derived and (ii) the cube axiom allowing to derive cubes which
are propositional implicants of the CNF. In previous work [22], we generalized
the cube axiom such that quantified blocked clause elimination (QBCE) [8], a
clause elimination procedure for preprocessing, could be tightly integrated in
QCDCL for learning smaller cubes earlier in the search.

To overcome the restrictions of the traditional axioms of Q-resolution, we
extend previous work [22] on the cube axiom and present more powerful clause
axioms. We generalize the traditional clause and cube axioms such that their
application relies on checking the satisfiability of the PCNF under the current
assignment in QCDCL. This way, the axioms can be applied earlier in the search.
Further, they provide a framework to combine Q-resolution with any other
(complete or incomplete) QBF proof system. We implemented the generalized
axioms in the QCDCL solver DepQBF. As a case study, we integrated bounded
expansion and SAT-based abstraction [9] in QCDCL as incomplete QBF solving
techniques to detect potential axiom applications. Experimental results indicate
a substantial performance increase, particularly on application benchmarks.

This paper is structured as follows. In Sections 2 and 3, we introduce prelimi-
naries and recapitulate search-based QBF solving with QCDCL and traditional
Q-resolution. Then we generalize the axioms of Q-resolution in Section 4 allowing
for the integration of other proof systems. In Section 5 we integrate SAT-based ab-
straction into QCDCL. Implementation and evaluation are discussed in Section 6.
We conclude with a summary and an outlook to future work in Section 7.

2 Preliminaries

We introduce the concepts and terminology used in the rest of the paper. A
literal is a variable x or its negation x̄. By l̄ we denote the negation of literal
l and var(l) := x if l = x or l = x̄. A disjunction, resp. conjunction, of literals
is called clause, resp. cube. A propositional formula in conjunctive normal form
(CNF) is a conjunction of clauses. If convenient, we interpret a CNF as a set of
clauses, and clauses and cubes as sets of literals. A QBF in prenex conjunctive

3 Note that there are different variants of Q-resolution, e.g., long-distance resolution [34],
QU-resolution [33], etc. [2, 5].

normal form (PCNF) has the form Π.ψ with prefix Π := Q1X1 . . . QnXn and
matrix ψ, where ψ is a propositional CNF over the variables defined in Π. The
variable sets Xi are pairwise disjoint and for Qi ∈ {∀,∃}, Qi 6= Qi+1. We define
var(Π) := X1 ∪ . . . ∪Xn. The quantifier Q(Π, l) of a literal l is Qi if var(l) ∈ Xi.
If Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k iff i ≤ j. For a clause or cube C,
var(C) := {var(l) | l ∈ C} and for CNF ψ, var(ψ) := {var(l) | l ∈ C,C ∈ ψ}.

An assignment A is a mapping from the variables var(Π) of a QBF Π.ψ to
truth values true and false. We represent A as a set of literals A = {l1, . . . , ln}
with {var(li) | li ∈ A} ⊆ var(Π) such that if a variable x is assigned true then
li ∈ A and li = x, and if x is assigned false then li ∈ A and li = x̄. Further, for
any li, lj ∈ A with i 6= j, var(li) 6= var(lj). An assignment A is partial if it does
not map every variable in var(Π) to a truth value, i.e., {var(li) | li ∈ A} ⊂ var(Π).
A QBF φ under assignment A, written as φ[A], is the QBF obtained from φ in
which for all l ∈ A, all clauses containing l are removed, all occurrences of l̄ are
deleted, and var(l) is removed from the prefix. If the matrix of φ[A] is empty,
then the matrix is satisfied by A and A is a satisfying assignment (written as
φ[A] = T). If the matrix of φ[A] contains the empty clause, then the matrix is
falsified by A and A is a falsifying assignment (written as φ[A] = F). A QBF Π.ψ
with Q1 = ∃ (resp. Q1 = ∀) is satisfiable iff Π.ψ[{x}] or (resp. and) Π.ψ[{x̄}] is
satisfiable where x ∈ X1. Two QBFs φ and φ′ are satisfiability-equivalent, written
as φ ≡sat φ

′, iff φ is satisfiable whenever φ′ is satisfiable. Two propositional
CNFs ψ and ψ′ are logically equivalent, written as ψ ≡ ψ′, iff they have the
same set of propositional models, i.e., satisfying assignments. Two simplification
rules preserving satisfiability equivalence are unit and pure literal detection. If
a QBF φ contains a unit clause C = (l), where Q(Π, l) = ∃, then φ ≡sat φ[{l}].
If a literal is pure in QBF φ, i.e., φ contains l but not l̄, then φ ≡sat φ[{l}] if
Q(Π, l) = ∃ and φ ≡sat φ[{l̄}] otherwise.

3 QCDCL-Based QBF Solving

Figure 1 shows an abstract workflow of traditional search-based QBF solving
with QCDCL [12, 19, 21, 34]. Given a PCNF φ, assignments A are successively
generated (box in top left corner of Fig. 1). In general, variables must be assigned
in the ordering of the quantifier prefix. Variables may either be assigned tentatively
as decisions or by a QBF-specific variant of Boolean constraint propagation
(QBCP). QBCP consists of unit and pure literal detection. Assignments of
variables carried out in QBCP do not have to follow the prefix ordering. We
formalize the assignments generated during a run of QCDCL as follows.

Definition 1 (QCDCL Assignment). Given a QBF φ = Π.ψ. Let assignment
A = A′ ∪A′′ where A′ are variables assigned as decisions and A′′ are variables
assigned by unit/pure literal detection. A is a QCDCL assignment if (1) for a
maximal l ∈ A′ with ∀l′ ∈ A′ : l′ ≤Π l it holds that ∀x ∈ var(Π) <Π l : x ∈ var(A)
and (2) all l ∈ A′′ are unit/pure in φ[A′] after applying QBCP until completion.

QCDCL generates only QCDCL assignments by Definition 1. Assignment
generation by decisions and QBCP continues until the current assignment A is

Assignment
Generation

φ[A] = T/F?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF φ

YES

C 6= ∅

C = ∅
A′

NO

Propagate A

Fig. 1. Abstract workflow of QCDCL with traditional Q-resolution axioms.

either falsifying or satisfying by checking whether φ[A] = F or φ[A] = T (box in
top right corner of Fig. 1). In these cases, a new learned clause or learned cube is
derived in a learning phase, which is based on the Q-resolution calculus.

Definition 2 (Q-Resolution Calculus). Let φ = Π.ψ be a PCNF. The rules
of the Q-resolution calculus (QRES) are as follows.

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

if for all x ∈ Π : {x, x̄} 6⊆ (C1 ∪ C2),
p̄ 6∈ C1, p 6∈ C2, and either
(1) C1,C2 are clauses and Q(Π, p) = ∃ or
(2) C1,C2 are cubes and Q(Π, p) = ∀

(res)

C ∪ {l}
C

if for all x ∈ Π : {x, x̄} 6⊆ (C ∪ {l}) and either
(1) C is a clause, Q(Π, l) = ∀,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∃ or
(2) C is a cube, Q(Π, l) = ∃,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∀

(red)

C
if for all x ∈ Π : {x, x̄} 6⊆ C, C is a clause and C ∈ ψ (cl-init)

C

A is a QCDCL assignment,
φ[A] = T,
and C = (

∧
l∈A l) is a cube

(cu-init)

QRES is a proof system which underlies QCDCL. Rule cl-init is an axiom to
derive clauses which are already part of the given PCNF φ. In practice, the clause
C selected by axiom cl-init is falsified under the current QCDCL assignment.
Axiom cu-init allows to derive cubes based on a QCDCL assignment A which
satisfies all the clauses of the matrix ψ of φ = Π.ψ (i.e., φ[A] = T). A cube C
derived by axiom cu-init is an implicant of ψ, i.e., the implication C ⇒ ψ is valid.

The resolution and reduction rules res and red , respectively, are applied either
to clauses or cubes. Rule red is called universal (existential) reduction when
applied to clauses (cubes). We write UR(C) (ER(C)) to denote the clause (cube)
resulting from universal (existential) reduction of clause (cube) C. The PCNF
UR(φ) is obtained by universal reduction of all clauses in the PCNF φ.

Q-resolution of clauses [19] generalizes propositional resolution, which consists
of rules cl-init and res, by the reduction rule red . Q-resolution of cubes was
introduced for cube learning [12, 21, 34], the dual variant of clause learning.

QRES is sound and refutationally complete for PCNFs [12, 19, 21, 34]. The
empty clause (cube) is derivable from a PCNF φ in QRES if and only if φ is
unsatisfiable (satisfiable). A derivation of the empty clause (cube) from φ is a
clause (cube) resolution proof of φ.

In QCDCL, the rules of QRES are applied to derive new learned clauses
or cubes. A learned clause (cube) C is added conjunctively (disjunctively) to
the PCNF φ = Π.ψ to obtain Π.(ψ ∧ C) (Π.(ψ ∨ C)). After C has been added,
certain assignments in the current assignment A are retracted during backtracking,
resulting in assignment A′ (C 6= ∅ in Fig. 1). Assignment generation based on A′

continues, where learned clauses and cubes participate in QBCP. Typically, only
asserting learned clauses and cubes are generated in QCDCL. A clause (cube)
C is asserting if UR(C) (ER(C)) is unit under A′ after backtracking. QCDCL
terminates if and only if the empty clause or cube is learned (C = ∅ in Fig. 1).

Example 1 ([22]). Given a PCNF φ with prefix ∃z,z′∀u∃y and matrix ψ:

ψ := (u ∨ ȳ) ∧ (ū ∨ y) ∧
(z ∨ u ∨ ȳ) ∧ (z′ ∨ ū ∨ y) ∧
(z̄ ∨ ū ∨ ȳ) ∧ (z̄′ ∨ u ∨ y)

(z̄ ∧ z̄′ ∧ ū ∧ ȳ)

(z̄ ∧ z̄′ ∧ ū)

(z̄ ∧ z̄′ ∧ u ∧ y)

(z̄ ∧ z̄′ ∧ u)

z̄ ∧ z̄′
∅

Let A1 := {z̄, z̄′, ū, ȳ} and A2 := {z̄, z̄′, u, y} be satisfying QCDCL assignments
to be used for applications of axiom cu-init. A derivation of the empty cube by
rules cu-init, red , res, and red (from top to bottom) is shown on the right. 3

4 Generalizing the Axioms of QRES

The axioms cl-init and cu-init of QRES have limited deductive power. Any clause
derived by cl-init already appears in the matrix ψ of the PCNF φ = Π.ψ. Any
cube derived by cu-init is an implicant of ψ.

To overcome these limitations, we equip QRES with two additional axioms—
one to derive clauses and one to derive cubes—which generalize cl-init and cu-init.
Generalized model generation (GMG) [22] was presented as a new axiom to derive
learned cubes. The combination of QRES with GMG is stronger than QRES
with cu-init in terms of the sizes of cube resolution proofs it is able to produce.
In the following, we formulate a generalized clause axiom which we combine with
QRES in addition to GMG. Thereby, we obtain a variant of QRES which is
stronger than traditional QRES also in terms of sizes of clause resolution proofs.

Figure 2 shows an abstract workflow of search-based QBF solving with
QCDCL relying on QRES with generalized axioms. This workflow is the same
as in Fig. 1 except for applications of axioms (box in top right corner). The
generalized axioms are applied if the PCNF φ[A] under a QCDCL assignment A
is (un)satisfiable. This is in contrast to the more restricted conditions φ[A] = T

Assignment
Generation

φ[A] (un)sat.?

Backtracking
Clause/Cube
Learning

SAT/
UNSAT

PCNF φ

YES

C 6= ∅

C = ∅
A′

NO

Propagate A

Fig. 2. Abstract workflow of QCDCL with generalized Q-resolution axioms.

or φ[A] = F in Fig. 1. We show that the generalized axioms allow to combine any
sound (but maybe incomplete) QBF solving technique with QCDCL based on
QRES. First, we define QCDCL clauses and recapitulate QCDCL cubes [22].

Definition 3 (QCDCL Clause/Cube). Given a QBF φ = Π.ψ. The QCDCL
clause C of QCDCL assignment A is defined by C = (

∨
l∈A l̄). The QCDCL cube

C of QCDCL assignment A is defined by C = (
∧
l∈A l).

By Definition 1, a QCDCL clause or cube cannot contain complementary literals
x and x̄ of some variable x. According to QCDCL assignments, we split QCDCL
clauses and cubes into decision literals and literals assigned by unit and pure literal
detection. Let C be a QCDCL clause or QCDCL cube. Then C = C ′ ∪C ′′ where
C ′ is the maximal subset of C such that X1∪. . .∪Xi−1 ⊂ var(C ′) and C ′∩Xi 6= ∅.
The literals in C ′ are the first |C ′| consecutive variables of Π which are assigned,
i.e., C ′ contains all the variables in C assigned as decisions.4 The literals in C ′′

are assigned due to pure and unit literal detection and may occur anywhere in Π
starting from Xi+1. Further we define dec(C) = C ′ and der(C) = C ′′. We review
generalized model generation [22] as an axiom to derive cubes.

Definition 4 (Generalized Model Generation [22]). Given a PCNF φ and
a QCDCL assignment A according to Definition 1. If φ[A] is satisfiable, then the
QCDCL cube C = (

∧
l∈A l) is obtained by generalized model generation.

Theorem 1 ([22]). Given PCNF φ = Π.ψ and a QCDCL cube C obtained from
φ by generalized model generation. Then it holds that Π.ψ ≡sat Π.(ψ ∨ C).

Corollary 1 ([22]). By Theorem 1, a cube C obtained from PCNF Π.ψ by
generalized model generation can be used as a learned cube in QCDCL.

Dual to generalized model generation, we define generalized conflict generation
to derive clauses which can be added to a PCNF in a satisfiability-preserving way.

Definition 5 (Generalized Conflict Generation). Given a PCNF φ and a
QCDCL assignment A according to Definition 1. If φ[A] is unsatisfiable, then the
QCDCL clause C = (

∨
l∈A l̄) is obtained by generalized conflict generation.

4 C′ can also contain literals assigned by pure/unit literal detection, but as they are left
to the maximal decision variable in the prefix, we treat them like decision variables.

Theorem 2. Given PCNF φ = Π.ψ and a QCDCL clause C obtained from φ
by generalized conflict generation using QCDCL assignment A. Then it holds
that Π.ψ ≡sat Π.(ψ ∧ C).

Proof (Sketch). We argue that if Π.ψ is satisfiable, so is Π.(ψ ∧C). The case for
unsatisfiability is trivial. Let C = C ′ ∪ C ′′ with C ′ = dec(C) and C ′′ = der(C).
Further, let A = A′ ∪ A′′ such that var(A′) = var(C ′) and var(A′′) = var(C ′′).
Now assume that Π.ψ is satisfiable, but Π.(ψ ∧ C) is not. In order to falsify C,
its subclause C ′ has to be falsified, i.e., the first |C ′| variables of Π have to be set
according to A′. Then, due to pure and unit, also C ′′ is falsified, and therefore,
each assignment falsifying C has to contain A. But Π.ψ[A] is unsatisfiable. Since
Π.ψ is satisfiable, there have to be other decisions than the decisions of A to
show its satisfiability, but these also satisfy Π.(ψ ∧ C). ut

Corollary 2. By Theorem 2, a clause C obtained from PCNF Π.ψ by generalized
conflict generation can be used as a learned clause in QCDCL.

Based on Corollaries 1 and 2, we formulate axioms to derive learned clauses
(cubes) from QCDCL assignments A under which the PCNF φ is (un)satisfiable.

Definition 6 (Generalized Axioms). Let φ = Π.ψ be a PCNF. The general-
ized clause and cube axioms are as follows.

C

A is a QCDCL assignment,
φ[A] is unsatisfiable,
and C = (

∨
l∈A l̄) is a QCDCL clause

(gen-cl-init)

C

A is a QCDCL assignment,
φ[A] is satisfiable,
and C = (

∧
l∈A l) is a QCDCL cube

(gen-cu-init)

The generalized axioms gen-cl-init and gen-cu-init are added to QRES in
addition to the traditional axioms cl-init and cu-init from Definition 2.

Example 2. Consider the PCNF from Example 1. Let A := {z̄, z̄′} be a QCDCL
assignment where z and z′ are assigned as decisions. The PCNF
φ[A] = ∀u∃y.(u ∨ ȳ) ∧ (ū ∨ y) is satisfiable. We apply axiom
gen-cu-init to derive the cube C := (z̄ ∧ z̄′) and finally the empty
cube ER(C) = ∅ (proof shown on the right).

z̄ ∧ z̄′
∅

3

In contrast to axioms cl-init and cu-init (the latter corresponds to model
generation [12]), the generalized axioms allow to derive clauses that are not part
of the given PCNF φ and cubes that are not implicants of the matrix of φ.

Given the empty assignment A = {} and a PCNF φ, the empty clause or cube
can be derived using A by axioms gen-cl-init or gen-cu-init right away if φ[A] is
unsatisfiable or satisfiable, respectively. However, checking the satisfiability of
the PCNF φ[A] as required in the side conditions of the generalized axioms is
PSPACE-complete. Therefore, in practice it is necessary to consider non-empty
QCDCL assignments A and apply either complete approaches in a bounded

way, like the successful expansion-based approaches [1, 6, 13, 18], or incomplete
polynomial-time procedures, e.g., as used in preprocessing [13], to check the
satisfiability of φ[A]. Sign abstraction [21] can be regarded as a first approach
towards more powerful cube learning as formalized by axiom gen-cu-init.

Axioms gen-cl-init and gen-cu-init provide a formal framework for combining
Q-resolution in QRES with any QBF decision procedure D by using D to check
φ[A]. This framework also applies to related combinations of search-based QBF
solving with variable elimination [27]. Regarding proof complexity, decision
procedures like expansion and Q-resolution are incomparable as the lengths of
proofs they are able to produce for certain PCNFs differ by an exponential
factor [2, 5, 16]. Due to this property, the combination of incomparable procedures
in QRES via the generalized axioms allows to benefit from their individual
strengths. For example, the use of expansion to check the satisfiability of φ[A]
in axioms gen-cl-init and gen-cu-init results in a variant of QRES which is
exponentially stronger than traditional QRES. For satisfiable PCNFs, QBCE,
originally a preprocessing technique to eliminate redundant clauses in a PCNF,
was shown to be effective to solve φ[A] for applications of axiom gen-cu-init [22],
resulting in an exponentially stronger cube proof system.

If a decision procedure D is applied as a black box to check φ[A], then QRES
extended by gen-cl-init and gen-cu-init is not a proof system as defined by Cook
and Reckhow [10] because the final proof P of φ cannot be checked in polynomial
time. However, D can be augmented to return a proof P ′ of φ[A] for every
application of gen-cl-init and gen-cu-init. Such proof P ′ may be formulated, e.g.,
in the QRAT proof system [14]. Finally, the proof P of φ contains subproofs P ′,
all of which can be checked in polynomial time, like P itself (the size of P may
blow up exponentially in the worst case depending on the decision procedures
that are used to produce the subproofs P ′).

The QCDCL framework (Fig. 2) readily supports applications of the general-
ized axioms gen-cl-init and gen-cu-init. A clause (resp. cube) C derived by these
axioms is first reduced by universal (resp. existential) reduction to obtain a re-
duced clause (cube) C ′ ⊆ C. Then C ′ is used to derive an asserting learned clause
(cube) in the same way as in clause learning by traditional QRES (Definition 2).

5 An Abstraction-Based Clause Axiom

Axioms gen-cl-init and gen-cu-init by Definition 6 are based on QCDCL as-
signments, where decision variables have to be assigned in prefix ordering. To
overcome the order restriction, we introduce a clause axiom which allows to
derive clauses based on an abstraction of a PCNF and arbitrary assignments.

Definition 7 (Existential Abstraction). Let φ = Π.ψ be a PCNF with prefix
Π := Q1X1Q2X2 . . . QnXn and matrix ψ. The existential abstraction Abs∃(φ) :=
Π ′.ψ of φ has prefix Π ′ := ∃(X1 ∪X2 ∪ . . . ∪Xn).

Lemma 1. Let φ = Π.ψ be a PCNF, Abs∃(φ) its existential abstraction, and A
a partial assignment of the variables in Abs∃(φ). If Abs∃(φ)[A] is unsatisfiable
then ψ ≡ ψ ∧ (

∨
l∈A l̄).

Proof. Obviously, every model M of ψ ∧ (
∨
l∈A l̄) is also a model of ψ. To show

the other direction, let M be a model of ψ, but (ψ ∧ (
∨
l∈A l̄))[M] = F. Then

A ⊆ M . Since Abs∃(φ)[A] is unsatisfiable, also ψ[A] is unsatisfiable. Then M
cannot be a model of ψ. ut

Theorem 3 (cf. [29, 30]). For a PCNF φ = Π.ψ, Abs∃(φ) its existential ab-
straction, and a partial assignment A of the variables in Abs∃(φ) such that
Abs∃(φ)[A] is unsatisfiable, it holds that Π.ψ ≡sat Π.(ψ ∧ (

∨
l∈A l̄)).

Proof. By Lemma 1, ψ and ψ ∧ (
∨
l∈A l̄) have the same sets of propositional

models. As argued in the context of SAT-based QBF solving [29] and QBF
preprocessing [30], model-preserving manipulations of the matrix of a PCNF
result in a satisfiability-equivalent PCNF.5 ut

Definition 8 (Abstraction-Based Conflict Generation). Given a PCNF φ,
its existential abstraction Abs∃(φ) and an assignment A (not necessarily being a
QCDCL assignment). If Abs∃(φ)[A] is unsatisfiable, then the clause C = (

∨
l∈A l̄)

is obtained by abstraction-based conflict generation.

We formulate a new axiom to derive clauses by abstraction-based conflict
generation, which can be used as ordinary learned clauses in QCDCL (Theorem 3).

Definition 9 (Abstraction-Based Clause Axiom). For a PCNF φ = Π.ψ
and Abs∃(φ) by Definition 7, the abstraction-based clause axiom is as follows:

C

A is an assignment,
Abs∃(φ)[A] is unsatisfiable,
and C = (

∨
l∈A l̄) is a clause

(abs-cl-init)

Axiom abs-cl-init can be added to QRES in addition to all the other axioms.
In the side condition of axiom abs-cl-init, the propositional CNF Abs∃(φ)[A] has
to be solved, which naturally can be carried out by integrating a SAT solver in
QCDCL. SAT solving has been applied in the context of QCDCL to derive learned
clauses [29] and to overcome the ordering of the prefix of a PCNF. Further, many
QBF solvers rely on SAT solving [17, 18, 26, 32]. Integrating axiom abs-cl-init
in QRES by Definition 2 results in a variant of QRES which is exponentially
stronger than traditional QRES, as illustrated by the following example.

Example 3. Consider the following family (φt)t≥1 of PCNFs defined by Kleine
Büning et al. [19]. A formula φt in (φt)t≥1 has the quantifier prefix

∃d0d1e1∀x1∃d2e2∀x2∃d3e3 . . . ∀xt−1∃dtet∀xt∃f1 . . . ft

and a matrix consisting of the following clauses:

C0 := d0 C1 := d0 ∨ d1 ∨ e1
C2j := dj ∨ xj ∨ dj+1 ∨ ej+1 C2j+1 := ej ∨ xj ∨ dj+1 ∨ ej+1 for 1 ≤ j < t

C2t := dt ∨ xt ∨ f1 ∨ . . . ∨ f t C2t+1 := et ∨ xt ∨ f1 ∨ . . . ∨ f t
B2j−1 := xj ∨ fj B2j := xj ∨ fj for 1 ≤ j ≤ t
5 In fact, a stronger result is proved in [30]: model-preserving manipulations of the

matrix of a PCNF result in a PCNF having the same set of tree-like QBF models.

The size of every clause resolution proof of φt in traditional QRES (Definition 2)
is exponential in t [5, 19]. We show that QRES with axiom abs-cl-init allows to
generate proofs of φt which are polynomial in t. To this end, we apply abs-cl-init
to derive unit clauses (fj) for all existential variables fj in φt using assignments
A := {f̄j}, respectively. Since Abs∃(φt)[A] contains complementary unit clauses
(xj) and (xj) resulting from the clauses B2j−1 and B2j in φt, the unsatisfiability of
Abs∃(φt)[A] can be determined in polynomial time without invoking a SAT solver.
The derived unit clauses (fj) are resolved with clauses C2t and C2t+1 to produce
further unit clauses (dt) and (et) after universal reduction. This process continues
with C2j and C2j+1 until the empty clause is derived using C0 and C1. 3

Abstraction-based failed literal detection [23], where certain universal quanti-
fiers of a PCNF are treated as existential ones, implicitly relies on QU-resolution.
QU-resolution allows universal variables as pivots in rule res and can generate
the same proofs of (φt)t≥1 as in Example 3 [33]. Applying axiom abs-cl-init for
clause learning in QCDCL harnesses the power of SAT solving. Furthermore,
the combination of QRES (Definition 2) and abs-cl-init polynomially simulates6

QU-resolution, which has not been applied systematically to learn clauses in
QCDCL. Like with the axioms gen-cl-init and gen-cu-init, clauses derived by ax-
iom abs-cl-init can readily be used to derive asserting learned clauses in QCDCL.

6 Case Study and Experiments

DepQBF7 is a QCDCL-based QBF solver implementing the Q-resolution calculus
as in Definition 2. Since version 5.0, DepQBF additionally applies the generalized
cube axiom gen-cu-init based on dynamic blocked clause elimination (QBCE) [22].
The case where QBCE reduces the PCNF φ[A] under the current assignment A
to the empty formula constitutes a successful application of axiom gen-cu-init.
DepQBF comes with a sophisticated analysis of variable dependencies in a
PCNF [28] to relax their linear prefix ordering. However, we disabled dependency
analysis to focus the evaluation on axiom applications. In the following, we
evaluate the impact of (combinations of) the generalized axioms gen-cl-init
and gen-cu-init and the abstraction-based clause axiom abs-cl-init in practice.

6.1 Axiom Applications in Practice

In DepQBF, we attempt to apply the generalized axioms after QBCP has
saturated in QCDCL, i.e., before assigning a variable as decision. We integrated
the preprocessor Bloqqer [8] to detect applications of gen-cl-init and gen-cu-init.
Bloqqer implements techniques such as equivalence reasoning, variable elimination,
(variants of) QBCE, and expansion of universal variables. Since these techniques
are applied in bounded fashion, Bloqqer can be regarded as an incomplete QBF
solver. If the PCNF φ[A] is satisfiable (unsatisfiable) and Bloqqer solves it, then

6 We refer to an appendix of this paper with additional results [24].
7 DepQBF is free software: http://lonsing.github.io/depqbf/

a QCDCL cube (clause) is generated by axiom gen-cu-init (gen-cl-init), which
is used to derive a learned cube (clause). Otherwise, QCDCL proceeds as usual
with assigning a decision variable. Bloqqer is explicitly provided with the entire
PCNF φ[A] before each call. To limit the resulting run time overhead in practice,
Bloqqer is called in intervals of 2n decisions, where n := 11 in our experiments.
Further, Bloqqer is never called on PCNFs with more than 500,000 original
clauses, and it is disabled at run time if the average time spent to complete a
call exceeds 0.125 seconds.

To detect applications of the abstraction-based clause axiom abs-cl-init, we use
the SAT solver PicoSAT [7] to check the satisfiability of the existential abstraction
Abs∃(φ)[A] of the PCNF φ = Π.ψ under the current QCDCL assignment A. The
matrix ψ is imported to PicoSAT once before the entire solving process starts.
For each check of Abs∃(φ)[A], the QCDCL assignment A is passed to PicoSAT via
assumptions, and PicoSAT is called incrementally. If Abs∃(φ)[A] is unsatisfiable,
then we try to minimize the size of A by extracting the set A′ ⊆ A of failed
assumptions. Failed assumptions are those assumptions that were relevant for the
SAT solver to determine the unsatisfiability of Abs∃(φ)[A]. Note that in general
A′ is not a QCDCL assignment. It holds that Abs∃(φ)[A′] is unsatisfiable and
hence we derive the clause C = (

∨
l∈A′ l̄) by axiom abs-cl-init.

In addition to Bloqqer and dynamic QBCE (which is part of DepQBF 5.0 [22])
used to detect applications of the generalized cube axiom gen-cu-init, we imple-
mented a trivial truth [9] test based on the following abstraction.

Definition 10 (Universal Literal Abstraction, cf. Trivial Truth [9]). Let
φ = Π.ψ be a PCNF. The universal literal abstraction Abs∀(φ) := Π ′.ψ′ of φ
is obtained by removing all universal literals from all the clauses in ψ and by
removing all universal variables and universal quantifiers from Π.

Lemma 2 ([9]). For a PCNF φ = Π.ψ, Abs∀(φ), and a QCDCL assignment A
of variables in Abs∀(φ): if Abs∀(φ)[A] is satisfiable, then φ[A] is satisfiable.

By Lemma 2, we can check the side condition of axiom gen-cu-init whether φ[A]
is satisfiable under a QCDCL assignment A by checking whether Abs∀(φ)[A] is
satisfiable. To this end, we use a second instance of PicoSAT. Note that while
Definition 10 corresponds to trivial truth, the existential abstraction (Definition 7)
corresponds to trivial falsity [9]. Hence by axiom applications, we apply trivial
truth and falsity, which originate from purely search-based QBF solving without
learning, to derive clauses and cubes in QCDCL.

Like Bloqqer, we call the two instances of PicoSAT to detect applications
of abs-cl-init and gen-cu-init in QCDCL before assigning a decision variable.
PicoSAT is called in intervals of 2m decisions, where m := 10. PicoSAT is never
called on PCNFs with more than 500,000 original clauses, and it is disabled at
run time if the average time spent to complete a call exceeds five seconds.

6.2 Experimental Results

The integration of Bloqqer and SAT solving to detect axiom applications results
in several variants of DepQBF. We use the letter code “DQ-{nQ|B|A|T}” to

Table 1. Preprocessing track. Solved in-
stances (#T), solved unsatisfiable (#U)
and satisfiable ones (#S), and total wall
clock time in seconds including time outs.

Solver #T #U #S Time

RAReQS 107 44 63 255K
DQ-nQAT 105 46 59 266K
QESTO 104 46 58 267K
DQ-nQ 101 44 57 271K
DQ-AT 99 45 54 273K
DQ-BAT 98 43 55 276K
DQ 95 43 52 278K
DQ-A 95 44 51 280K
DQ-T 94 41 53 278K
DQ-B 94 42 52 284K
QELL-c 87 34 53 290K
CAQE 74 24 50 319K
GhostQ 61 18 43 338K

Table 2. QBFLIB track. Same column
headers as Table 1.

Solver #T #U #S Time

GhostQ 139 62 77 265K
DQ-AT 110 58 52 314K
DQ-BAT 109 56 53 314K
DQ-T 108 56 52 318K
QELL-c 106 48 58 320K
DQ-A 106 58 48 321K
DQ 105 57 48 326K
DQ-B 104 56 48 326K
DQ-nQAT 88 49 39 352K
DQ-nQ 82 44 38 362K
RAReQS 80 47 33 361K
QESTO 73 46 27 378K
CAQE 53 32 21 406K

label the variants, where “DQ” represents DepQBF 5.0 with dynamic QBCE
used for axiom gen-cu-init [22]. Variant “nQ” indicates that dynamic QBCE
is disabled. Letters, “B”, “A”, and “T” represent the additional application
of Bloqqer for axioms gen-cl-init and gen-cu-init, SAT solving to check the
existential abstraction for axiom abs-cl-init, and SAT solving to carry out the
trivial truth test for gen-cu-init, respectively.

For the empirical evaluation, we used the original benchmark sets from the
QBF Gallery 2014 [15]8 preprocessing track (243 instances), QBFLIB track (276
instances), and applications track (735 instances). We compare the variants of
DepQBF to RAReQS [18] and GhostQ [20], which showed top performance in
the QBF Gallery 2014, and to the recent solvers CAQE [26]9, QESTO [17], and
QELL [32]. We tested QELL with (QELL-c) and without (QELL-nc) exploiting
circuit information and show only the results of the better variant of the two in
terms of solved instances. All experiments reported in the following were run on
an AMD Opteron 6238 at 2.6 GHz under 64-bit Ubuntu Linux 12.04 with time
and memory limits of 1800 seconds and 7 GB, respectively.

Tables 1 to 3 illustrate solver performance by solved instances and total wall
clock time. For DepQBF, the variant where only dynamic QBCE is applied (DQ)
is the baseline of the comparison. In the QBFLIB (Table 2) and applications
track (Table 3), DepQBF with Bloqqer and SAT solving for axioms gen-cl-init,
gen-cu-init, and abs-cl-init solves substantially more instances than DQ.

Disabling dynamic QBCE used for axiom gen-cu-init (variants with “nQ” in
the tables) results in a considerable performance decrease, except in the prepro-
cessing track (Table 1). There, dynamic QBCE is harmful to the performance.

8 http://qbf.satisfiability.org/gallery/
9 The authors [26] provided us with an updated version which we used in our tests.

Table 3. Applications track. Same
column headers as Table 1.

Solver #T #U #S Time

DQ-BAT 466 236 230 553K
DQ-AT 461 234 227 555K
DQ-A 459 237 222 561K
DQ-B 449 222 227 563K
DQ-T 441 220 221 571K
DQ 441 224 217 575K
QELL-nc 434 302 132 563K
RAReQS 414 272 142 611K
CAQE 370 192 178 708K
GhostQ 347 166 181 752K
QESTO 331 188 143 767K
DQ-nQBAT 293 140 153 848K
DQ-nQ 279 127 152 880K

0 100 200 300 400 466

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800
DQ-nQ

DQ-nQBAT

QESTO

GhostQ

CAQE

RAReQS

QELL-nc

DQ

DQ-T

DQ-B

DQ-A

DQ-AT

DQ-BAT

Fig. 3. Sorted run times (y-axis) of instances
(x-axis) related to Table 3.

We attribute this phenomenon to massive preprocessing, after which QBCE does
not pay off. However, SAT solving for axioms gen-cl-init and gen-cu-init is crucial
as the variant DQ-nQAT outperforms DQ-nQ without SAT solving.

In general, combinations of dynamic QBCE, Bloqqer, and SAT solving (for
solving the existential abstraction and for testing trivial truth) outperform
variants where only one of these techniques is applied. Examples are DQ-AT,
DQ-A and DQ-T in Table 2 and DQ-BAT, DQ-B, DQ-A, and DQ-T in Table 3.
The results in the applications track are most pronounced, where six out of eight
variants of DepQBF outperform the other solvers (Fig. 3 shows a related cactus
plot of the run times). In the following we focus on the applications track.

Consider the best performing variant DQ-BAT in Table 3. Table 4 shows statis-
tics on the number of attempted and successful applications of axioms gen-cl-init,
gen-cu-init and abs-cl-init by Bloqqer and SAT solving. On the 466 instances
solved by DQ-BAT, Bloqqer was called on φ[A] at least once on 185 instances and
successfully solved φ[A] at least once on 184 instances, thus allowing applications
of axiom gen-cl-init or gen-cu-init. Bloqqer was disabled at run time on 143
instances due to the predefined limits. SAT solving for the trivial truth test for
gen-cu-init (respectively, to solve the existential abstraction for abs-cl-init) was
applied at least once on 364 (445) instances, was successful at least once on 177
(226) instances, and was disabled at run time on 21 (70) instances. While Bloqqer
is applied less frequently than SAT solving by a factor of two, applications of
Bloqqer have much higher success rates (97%) than SAT solving (8% and 22%).

In the following, we analyze applications of the abstraction-based clause axiom
in more detail. The extraction of failed assumptions in SAT solving for abs-cl-init
allows to reduce the size of the clauses learned by abstraction-based conflict
generation. On 145 instances solved by DQ-BAT (Table 3), axiom abs-cl-init
was applied more than once. Per instance, on average (median) 3,336K (70.7K)
assumptions were passed to the SAT solver when solving Abs∃(φ)[A], 28.8K (2.3K)

Table 4. Related to variant DQ-BAT
in Table 3: statistics on applications of
Bloqqer (B), SAT solving for abs-cl-init
(A), and SAT solving to test trivial truth
for gen-cu-init (T) with respect to total
solved instances (#T) and solved satisfi-
able (#S) and unsatisfiable ones (#U).

#T #S #U

B tried: 18559 12052 6507
B success: 18150 11946 6204
B sat: 10917 10405 512
B unsat: 7233 1541 5692

T tried: 241,180 88,623 152,557
T success: 20,494 19,276 1,218

A tried: 301,652 122,929 178,723
A success: 67,129 34,306 32,823

0 25 50 75 100 125 145

 0

 1

 2

 3

 4

 5
A

F

L

Fig. 4. Average SAT solver assumptions
per successful application of abs-cl-init
(“A”) on 145 selected instances solved by
DQ-BAT (Table 3), failed assumptions
(“F”), and literals in the clauses learned
by abs-cl-init (“L”), log10 scale on y-axis.

failed assumptions were extracted, and the clauses finally learned had 20.7K
(1.5K) literals. The difference in the number of failed assumptions and the size of
learned clauses is due to additional, heuristic minimization of the set of failed
assumptions which we apply. Given that Abs∃(φ)[A] is unsatisfiable, it may be
possible to remove assignments from A, thus resulting in a smaller assignment A′,
while preserving unsatisfiability of Abs∃(φ)[A′]. Additionally, universal reduction
by rule red may remove literals from the clause learned by generalized conflict
generation. Figure 4 shows related average statistics.

The abstraction-based clause axiom abs-cl-init is particularly effective on
instances from the domain of conformant planning. With variant DQ-BAT
(Table 3), 81 unsatisfiable instances from conformant planning were solved by
a single application of axiom abs-cl-init where the empty clause was derived
immediately. On 13 of these 81 instances, solving Abs∃(φ) was hard for the SAT
solver, which took more than 900 seconds. In contrast to DQ-BAT, DQ does not
use axiom abs-cl-init and failed to solve 15 of the 81 instances.

Additionally, we evaluated the variants of DepQBF and the other solvers
on the benchmarks of the applications and QBFLIB tracks with preprocessing
by Bloqqer before solving.10 In the QBFLIB track, RAReQS and DQ-T solved
the largest number of instances (134 in total each instead of 80 and 108 in
Table 2). However, here it is important to remark that already the plain variant
DepQBF solved 132 instances if Bloqqer is applied before solving. With partial
preprocessing by Bloqqer (using only QBCE and universal expansion), on the
applications track QELL-nc and DQ-AT each solved 483 instances, i.e., 49 and 22
more instances than without preprocessing (Table 3). Note that the best variant
DQ-BAT of DepQBF in Table 3 solved 480 instances. Partial preprocessing
increases the number of instances solved by the variants of DepQBF. In contrast

10 We refer to an appendix of this paper with additional tables [24].

to that, with full preprocessing the performance of the variants of DepQBF on
the applications track considerably decreases. If Bloqqer is applied to the full
extent (enabling all techniques), then RAReQS, QELL-nc, and QESTO solve 547,
501, and 463 instances, respectively. The variant DQ-AT of DepQBF, however,
which solved 483 instances with partial preprocessing, solves only 434 instances.
The phenomenon that preprocessing is not always beneficial was also observed in
the QBF Galleries [15, 25]. When applied without restrictions, Bloqqer rewrites a
formula and thus destroys or blurs structural information. For some approaches
structural information is essential to fully exploit their individual strengths.

7 Conclusion

The Q-resolution calculus QRES is a proof system which underlies clause and
cube learning in QCDCL-based QBF solvers. In QCDCL, the traditional axioms
of QRES either select clauses which already appear in the input PCNF φ or
construct cubes which are implicants of the matrix of φ.

To overcome the limited deductive power of the traditional axioms, we pre-
sented two generalized axioms to derive clauses and cubes based on checking the
satisfiability of φ under an assignment A generated in QCDCL. We also formu-
lated a new axiom to derive clauses which relies on an existential abstraction of φ
and on SAT solving. This abstraction-based axiom leverages QU-resolution and
allows to overcome the prefix order restriction in QCDCL to some extent. The
new axioms can be integrated in QRES and used for clause and cube learning in
the QCDCL framework. They are compatible with any variant of Q-resolution,
like long-distance resolution [35], QU-resolution [33], and combinations thereof [2].

For axiom applications in practice, any complete or incomplete QBF decision
procedure can be applied to check the satisfiability of φ under assignment A. In
this respect, the generalized axioms act as an interface to combining Q-resolution
with other QBF decision procedures in QRES. The combination of orthogonal
techniques like expansion via the generalized axioms results in variants of QRES
which are stronger than traditional QRES with respect to proof complexity. A
proof P produced by such variants of QRES can be checked in time which is
polynomial in the size of P if subproofs of all clauses and cubes derived by the
generalized axioms are provided by the QBF decision procedures.

In order to demonstrate the effectiveness of the newly introduced axioms, we
made case studies using the QCDCL solver DepQBF. We applied the preprocessor
Bloqqer and SAT solving as incomplete QBF decision procedures in DepQBF
to detect axiom applications. Overall, our experiments showed a considerable
performance improvement of QCDCL, particularly on application instances.

As future work, it would be interesting to integrate techniques like expansion-
based QBF solving more tightly in QCDCL than what we achieved with Bloqqer in
our case study. A tighter integration would allow to reduce the run time overhead
we observed in practice. Further research directions include axiom applications
based on different QBF solving techniques in parallel QCDCL, and potential
relaxations of the prefix order in assignments used for axiom applications.

References

1. Ayari, A., Basin, D.A.: QUBOS: Deciding Quantified Boolean Logic Using Proposi-
tional Satisfiability Solvers. In: FMCAD. LNCS, vol. 2517, pp. 187–201. Springer
(2002)

2. Balabanov, V., Widl, M., Jiang, J.R.: QBF Resolution Systems and Their Proof
Complexities. In: SAT. LNCS, vol. 8561, pp. 154–169. Springer (2014)

3. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and
Perspectives. JSAT 5(1-4), 133–191 (2008)

4. Beyersdorff, O., Chew, L., Janota, M.: On Unification of QBF Resolution-Based
Calculi. In: MFCS. LNCS, vol. 8635, pp. 81–93. Springer (2014)

5. Beyersdorff, O., Chew, L., Janota, M.: Proof Complexity of Resolution-based QBF
Calculi. In: STACS. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 30, pp. 76–89. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2015)

6. Biere, A.: Resolve and Expand. In: SAT. LNCS, vol. 3542, pp. 59–70. Springer
(2004)

7. Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008)
8. Biere, A., Lonsing, F., Seidl, M.: Blocked Clause Elimination for QBF. In: CADE.

LNCS, vol. 6803, pp. 101–115. Springer (2011)
9. Cadoli, M., Giovanardi, A., Schaerf, M.: An Algorithm to Evaluate Quantified

Boolean Formulae. In: AAAI. pp. 262–267. AAAI Press / The MIT Press (1998)
10. Cook, S.A., Reckhow, R.A.: The Relative Efficiency of Propositional Proof Systems.

J. Symb. Log. 44(1), 36–50 (1979)
11. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with Quantified Boolean

Formulas. In: Handbook of Satisfiability, FAIA, vol. 185, pp. 761–780. IOS Press
(2009)

12. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learning
in the Evaluation of Quantified Boolean Formulas. JAIR 26, 371–416 (2006)

13. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause Elimination for
SAT and QSAT. JAIR 53, 127–168 (2015)

14. Heule, M., Seidl, M., Biere, A.: A Unified Proof System for QBF Preprocessing. In:
IJCAR. LNCS, vol. 8562, pp. 91–106. Springer (2014)

15. Janota, M., Jordan, C., Klieber, W., Lonsing, F., Seidl, M., Van Gelder, A.: The
QBF Gallery 2014: The QBF Competition at the FLoC Olympic Games. JSAT 9,
187–206 (2015)

16. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

17. Janota, M., Marques-Silva, J.: Solving QBF by Clause Selection. In: IJCAI. pp.
325–331. AAAI Press (2015)

18. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

19. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean
Formulas. Inf. Comput. 117(1), 12–18 (1995)

20. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In: SAT. LNCS, vol. 6175, pp. 128–142. Springer
(2010)

21. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: TABLEAUX. LNCS, vol. 2381, pp. 160–175. Springer (2002)

22. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing Search-Based
QBF Solving by Dynamic Blocked Clause Elimination. In: LPAR. LNCS, vol. 9450,
pp. 418–433. Springer (2015)

23. Lonsing, F., Biere, A.: Failed Literal Detection for QBF. In: SAT. LNCS, vol. 6695,
pp. 259–272. Springer (2011)

24. Lonsing, F., Egly, U., Seidl, M.: Q-Resolution with Generalized Axioms. CoRR
abs/1604.05994 (2016), http://arxiv.org/abs/1604.05994, SAT 2016 proceedings
version with appendix

25. Lonsing, F., Seidl, M., Van Gelder, A.: The QBF Gallery: Behind the scenes.
Artif. Intell. 237, 92–114 (2016)

26. Rabe, M.N., Tentrup, L.: CAQE: A Certifying QBF Solver. In: FMCAD. pp.
136–143. IEEE (2015)

27. Reimer, S., Pigorsch, F., Scholl, C., Becker, B.: Enhanced Integration of QBF
Solving Techniques. In: Methoden und Beschreibungssprachen zur Modellierung
und Verifikation von Schaltungen und Systemen (MBMV). pp. 133–143. Verlag Dr.
Kovac (2012)

28. Samer, M., Szeider, S.: Backdoor Sets of Quantified Boolean Formulas. JAR 42(1),
77–97 (2009)

29. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: CP. LNCS, vol. 3709, pp.
578–592. Springer (2005)

30. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: CP. LNCS, vol.
4204, pp. 514–529. Springer (2006)

31. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers.
In: Handbook of Satisfiability, FAIA, vol. 185, pp. 131–153. IOS Press (2009)

32. Tu, K., Hsu, T., Jiang, J.R.: QELL: QBF Reasoning with Extended Clause Learning
and Levelized SAT Solving. In: SAT. LNCS, vol. 9340, pp. 343–359. Springer (2015)

33. Van Gelder, A.: Contributions to the Theory of Practical Quantified Boolean
Formula Solving. In: CP. LNCS, vol. 7514, pp. 647–663. Springer (2012)

34. Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified Boolean Satisfiability
Solver. In: ICCAD. pp. 442–449. ACM / IEEE Computer Society (2002)

35. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In: CP. LNCS, vol. 2470, pp. 200–215.
Springer (2002)

