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Abstract. In earlier work on a limited form of extended resolution for
CDCL based SAT solving, new literals were introduced to factor out
parts of learned clauses. The main goal was to shorten clauses, reduce
proof size and memory usage and thus speed up propagation and conflict
analysis. Even though some reduction was achieved, the effectiveness of
this technique was rather modest for generic SAT solving. In this paper
we show that factoring out literals is particularly useful for incremen-
tal SAT solving, based on assumptions. This is the most common ap-
proach for incremental SAT solving and was pioneered by the authors
of MINISAT. Our first contribution is to focus on factoring out only
assumptions, and actually all eagerly. This enables the use of compact
dedicated data structures, and naturally suggests a new form of clause
minimization, our second contribution. As last main contribution, we
propose to use these data structures to maintain a partial proof trace for
learned clauses with assumptions, which gives us a cheap way to flush
useless learned clauses. In order to evaluate the effectiveness of our tech-
niques we implemented them within the version of MINISAT used in the
publically available state-of-the-art MUS extractor MUSer. An extensive
experimental evaluation shows that factoring out assumptions in com-
bination with our novel clause minimization procedure and eager clause
removal is particularly effective in reducing average clause size, improves
running time and in general the state-of-the-art in MUS extraction.

1 Introduction

The currently most widespread approach for incremental SAT was pioneered by
the authors of MINISAT [1] in context of bounded model checking [2] and finite
model finding [3], and has seen many other important practical applications
since then. It can easily be implemented on top of a standard SAT solver based
on the conflict driven clause learning (CDCL) paradigm [4], as described in [1],
by modifying the heuristics for picking decisions, to branch on literals assumed
to be true first. In this paper we refer with assumptions to this set of literals
assumed to be true.

Another important application, which makes use of incremental SAT, is the
extraction of a minimal unsatisfiable set (MUS) of clauses from a propositional
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formula in conjunctive normal form (CNF). The current state-of-the-art in MUS
extraction [5] is based on incremental SAT. In the context of MUS extrac-
tion [6,7,8,9,10], the focus of this paper, and in similar or related applications of
incremental SAT [3,11,12,13,14,15,16], an additional analysis is required, which
learns sub-sets of assumptions, under which the formula is proven to be unsatis-
fiable. In these applications, the number of assumptions is usually not only quite
large, e.g. similar in size to the number of original variables and clauses in the
CNF, but also the SAT solver is called many times, while the set of assumptions
almost stays the same.

As it turns out, current SAT solvers have not been optimized for this actu-
ally rather common usage scenario. We propose a new technique for compressing
incremental proofs for problems with many assumptions. Our technique is based
on the idea of factoring out literals of learned clauses by extended resolution
steps, which also forms the basis of related work on speeding up SAT solving
in general [17,18]. Clauses learned in those applications we are interested in
typically contain many literals which are the negation of original assumptions.
We call these negations of originally assumed literals also assumptions or more
precisely assumption literals, if the context requires to distinguish between orig-
inally assumed literals (“assumptions”) used as decisions and their negations
occurring in learned clauses (“assumption literals”).

In our approach we factor out these assumption literals in order to shrink
learned clauses and reduce the number of literals traversed, particularly during
boolean constraint propagation (BCP). This idea, if implemented correctly, does
not change the search at all, but it is still quite effective in reducing the time
needed for MUS extraction. Further, factoring out assumptions enables the use of
compact dedicated data structures, and naturally suggests a new form of clause
minimization, which gives another substantial improvement. Recording factored
out assumptions explicitly, also gives us simple way to maintain a partial proof
trace for learned clauses with assumptions. The trace can be used to compute an
approximation of a “clausal core”. We can then discard learned clauses out-side
this clausal core eagerly, which empirically seems to be a useful strategy.

The authors of [19] observed a similar deficiency when using the assumption
based approach for incremental SAT solving in the context of bounded model
checking. They propose to use an additional SAT solver, to which assumptions
are added as unit clauses. This in turn allows to improve efficiency of preprocess-
ing and inprocessing under assumptions, but prohibits to reuse in the main solver
clauses learned by the additional solver. However, according to [19] it is possi-
ble, by selectively adding assumptions, to extract “pervasive clauses” from the
resolution proofs of clauses learned in the additional solver, with the objective
that adding these “pervasive clauses” to the main solver is sound.

While in [19] as in our approach some sort of resolution proof has to be main-
tained, the main solver in [19] still uses the classical assumption based approach
and thus will benefit from our proposed techniques. Finally, the motivations as
well as the application characteristics considered in the experimental part differ.



2 Factoring Out Assumptions

In incremental SAT with many assumptions, learned clauses contain many as-
sumption literals too (see previous section for the definition of this terminology).
Accordingly the average size of learned clauses can become very large (as we will
see in Fig. 6). This effect increases the size of the working set (used memory), or
more specifically, the average number of traversed literals per visited clause dur-
ing BCP. The same argument applies to visited clauses during conflict analysis.
As a consequence, SAT solver performance degrades.

For every learned clause we propose to replace the “assumption part” by
a new fresh literal, called abbreviation literal. The replaced part consists of all
assumptions and previously added abbreviations. The connection between the
abbreviation and the replaced literals is stored in a definition map as follows.

(p1 ∨ · · · ∨ pn ∨ a1 ∨ · · · ∨ am)

is factored out into

(p1 ∨ · · · ∨ pn ∨ ℓ) and ℓ 7→ a1 ∨ · · · ∨ am
︸ ︷︷ ︸

G[ℓ]

Fig. 1. Factoring out assumptions by introducing a new abbreviation literal ℓ.

Let p1 ∨ · · · ∨ pn ∨ a1 ∨ · · · ∨ am be a new learned clause, where p1, . . . , pn are
original literals and a1, . . . , am are either assumptions or abbreviations. We pick
a fresh abbreviation literal ℓ and instead of the originally learned clause add the
clause p1 ∨ · · · ∨ pn ∨ ℓ to the clause data base. Then we record a1 ∨ · · · ∨ am
as the definition G[ℓ] of ℓ in the definition map G (see Fig. 1). For m ≤ 1 this
replacement does not make sense and the original learned clause is kept instead.

Consider the example in Fig. 2 for an (incremental) SAT run under the as-
sumptions a1, . . . , a6. Conflict analysis might learn clauses α1, . . ., α7 depicted
on the left of Fig. 2(a), where p1, . . . , p7 are original literals and a1, . . . , a6 as-
sumption literals.1 Note that the run is not supposed to be complete. Only some
clauses are shown together with their antecedent clauses, and original clauses
are ignored too (to simplify the example). For instance α3 is derived through
resolution from α1 and from some other original clauses not shown (the “. . .”).

The result of introducing abbreviations to factor out assumptions is shown on
the right. The first clause α1 is factored into α′

1
and the definition a1 ∨ a2 of the

new abbreviation literal ℓ1. The definition is recorded in the definition map, as
shown in Fig. 2(b), where ℓ1 has two incoming arcs, one from a1 and one from a2.
Further let us point out, that α′

5
= α5, because it keeps a2 as single non-original

literal, which (as discussed above) reduces the overall number of introduced
abbreviations. Finally, note how definitions might recursively depend on other
definitions as for ℓ3, ℓ4 or ℓ5, while factoring α3, α4, and α6 respectively.

As briefly discussed above, assumptions are always assigned first and thus
assigning them can actually be seen as a preprocessing resp. initialization step

1 Assumption literals are literals made of a variable which is currently used or was
used in an assumption. See again the introduction section for a precise definition.



α1 : p2 ∨ p7 ∨ a1 ∨ a2

α2 : p2 ∨ a2 ∨ a3

α3 : p7 ∨ p4 ∨ p6 ∨ a1 ∨ a2 ∨ a4

α4 : p6 ∨ p8 ∨ a3 ∨ a2 ∨ a5

α5 : p2 ∨ p5 ∨ a2

α6 : p7 ∨ p4 ∨ a1 ∨ a2 ∨ a4 ∨ a5

α7 : p2 ∨ a6 ∨ a5

{. . .}
{. . .}
{α1, . . .}
{α2, . . .}
{. . .}
{α3, α4, . . .}
{. . .}

learned clauses antecedents

factoring

α′
1 : p2 ∨ p7 ∨ ℓ1

α′
2 : p2 ∨ ℓ2

α′
3 : p7 ∨ p4 ∨ p6 ∨ ℓ3

α′
4 : p6 ∨ p8 ∨ ℓ4

α′
5 : p2 ∨ p5 ∨ a2

α′
6 : p7 ∨ p4 ∨ ℓ5

α′
7 : p2 ∨ ℓ6

factored clauses

(a) Learned clauses (original version left, factored version right)

a6

a5

a3

a2

a1

a4

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

(b) Definition Map

Fig. 2. Factoring out assumptions

before the actual solving starts. Furthermore, the algorithm for MUS extraction,
as implemented in MUSer [9], to which we applied our technique, has the fol-
lowing property: the set of variables used in assumptions stays the same over

all incremental calls, with the exception of variables assigned at the top-level.
The techniques presented in this paper are sound, even if this property does not
hold, i.e. the set of assumptions changes (substantially) from one incremental
call to the next. However, if the property does not hold they are probably less
effective. We focus on the important problem of MUS extraction here and leave
it to future work to apply our techniques to other scenarios of incremental SAT.

Assigning in every incremental call the current set of assumptions during an
initialization phase, will imply a unique value for all the (previously introduced)
abbreviation literals, unless the set of assumptions turns out to be inconsistent,
in which case the solver returns immediately. For that reason we do not have
to encode definitions as part of the CNF. Abbreviations are assigned during an
initialization phase, as described in the next Section (see also Alg. 2).

2.1 Initialization

After factoring out assumptions and adding abbreviations instead, every learned
clause α contains at most one assumption or abbreviation. In this case we de-
note by r(α) this replacement literal. For other clauses we assume r(α) to be
undefined. The graph represented by the definition map G can be interpreted as
a (non-cyclic) circuit, which computes consistent values for abbreviations after
all the assumption variables have been assigned. Special care has to be taken to
handle assumptions and abbreviations, which are fixed by the user in between
incremental calls. For instance, in MUS extraction, they are used to permanently
select transition clauses [9] to be part of the extracted MUS.



Algorithm 1: assignAbbreviation

Input: ℓ: literal; var I: interpretation; G: definition map
removeUnit(G[ℓ]);1

while I(G[ℓ]) unassigned do2

pick unassigned ℓ′ ∈ G[ℓ];3

assignAbbreviation(G, ℓ′, I);4

if I(G[ℓ]) = ⊥ then I ← I ∪ {¬ℓ} else I ← I ∪ {ℓ};5

In order to assign an abbreviation, we need to assign assumption variables
and, recursively, every abbreviation in its definition. This is formulated in Alg. 1,
which has the following arguments: the literal ℓ to be assigned, and (by reference)
the current interpretation I and the definition map G. First, literals assigned at
the top-level (units), are removed from G[ℓ]. Next, while there is an unassigned
literal ℓ′ in G[ℓ] and G[ℓ] is itself unassigned by the current interpretation I,
we assign ℓ′, using the same algorithm recursively. As soon as the value of G[ℓ]
under I is determined, we can also assign ℓ to I(G[ℓ]).

By construction the definitions in the definition map G are non-cyclic. Fur-
ther, we assume that every assumption is assigned by I, as discussed in the
previous section. Then this algorithm terminates and consistently assigns the
value of each abbreviation ℓ to the value of its definition G[ℓ].

2.2 Assigning the Set of Necessary Abbreviations

In the worst case, every learned clause resp. conflict requires a new abbreviation
to be added. Therefore, in principle, the definition map grows linearly in the
number of conflicts. This not only requires a huge amount of memory, but also
needs substantial running time to initialize all the abbreviations of the definition
map during incremental SAT calls.

However, since inactive [20] resp. less useful learned [21,22] clauses are fre-
quently collected during the main CDCL loop of the SAT solver anyhow, many
abbreviations turn out not to be referenced anymore after a certain point. They
become garbage abbreviations and could be collected too. Actually, only the
assignments of those abbreviations have to be initialized, which are still refer-
enced in learned clauses (recursively). Assigning additional abbreviations is not
harmful, but useless.

Algorithm 2 implements an initialization of abbreviations taking this argu-
ment into account. It returns an interpretation I, which assigns all abbreviations
recursively reachable from the clauses in the CNF Σ (which includes learned
clauses). First, the algorithm initializes I by assigning all assumptions. Next,
it traverses all clauses α to which a replacement r(α) has been added and then
calls Alg. 1 to assign the replacement literal. The resulting I consistently assigns
reachable abbreviations to the value of their definition in the definition map G,
unless a clause is found that has all its literals assigned to false.



Algorithm 2: initialization

Input: Σ: CNF formula; A: assumptions; G: a definition map
Result: I a partial interpretation
I ← A ∪ {top-level units};1

foreach α ∈ Σ with r(α) defined do2

if r(α) is unassigned by I then3

assignAbbreviation(G, r(α), I);4

if I(α) = ⊥ then break;5

return I;6

2.3 Assumption Core Analysis

As discussed in the introduction, applications of incremental SAT with assump-
tions often make use of the SAT solver’s ability to return an assumption core,
i.e., a subset of the given assumptions, which in combination with the given
CNF can not to be satisfied. Intuitively, the assumption core exactly contains
the assumptions “used” by the SAT solver to derive the inconsistency. In con-
trast to the concept of MUS, these assumption cores are typically not required
to be minimal. As implemented in MINISAT [1] such an assumption core can
be computed by a separate conflict analysis routine called “analyzeFinal”, which
recursively goes through the implication graph to only collect assumptions in
contrast to the usual analysis routine of CDCL solvers which cuts off the search
for a learned clause as soon as possible, e.g., following the 1st UIP scheme [23].

After factoring out assumptions and adding abbreviations the “analyzeFinal”
procedure has to be adapted to care for abbreviations, which is described in
Alg. 3. The algorithm takes as input a CNF formula Σ, the current unsatisfiable
trail2 I, a clause α falsified under I, the definition map G, and returns the
set of assumptions C “used” to establish the unsatisfiability proof. It starts by
initializing C and the literals V already visited with the empty set. Next, the
stack T , containing the set of literals that must be further visited, is initialized
with the conflict clause α. Then, while there is still an unvisited literal ℓ ∈ T , it
is marked. Depending on its type three different cases have to be distinguished.
First in line 5, if ℓ is an assumption, then ℓ is added to the conflict clause C.
Second in line 6, if ℓ is an abbreviation its definition G[ℓ] is added to T . This
is actually the only part where the algorithm has to be adapted to recursively
explore the definition map. Third in line 7, ℓ is neither an assumption nor an
abbreviation and the reason of its propagation is added to T (implication graph
exploration). Decision literals are assumed to have an empty set of antecedents.

2 Every literal assigned to true, particularly those found during BCP, are added to
a stack, called trail, to record the order of assignments. The reason, also called
antecedent, of a forced assignment is saved too. Please refer to [1] for more details.



Algorithm 3: analyzeFinal

Input: Σ: CNF; I: trail; α: clause; G: a definition map
Result: C, a subset of the assumptions
C = ∅; V = ∅;1

T ← α;2

while ∃ℓ ∈ T \ V do3

V ← V ∪ {ℓ};4

if ℓ is an assumption then C ← C ∪ {ℓ};5

else if ℓ is an abbreviation then T ← T ∪ G[ℓ];6

else T ← T ∪ reason(ℓ, I);7

return C;8

Example 1. Consider again the example in Fig. 2. Given {a1, a2, a3, a4, a5, a6},
learning α′

7
allows to conclude that the formula is unsatisfiable. Alg. 3 produces:
T V C ℓ

p2, ℓ6 ∅ ∅ undef

ℓ6, ℓ2 ∅ ∅ p2
ℓ2, a5, a6 ℓ5 ∅ ℓ6
a5, a6, a2, a3 ℓ5, ℓ6 ∅ ℓ2
a6, a2, a3 ℓ5, ℓ6, a5 a5 a5
a2, a3 ℓ5, ℓ6, a5, a6 a5, a6 a6
a3 ℓ5, ℓ6, a5, a6, a2 a5, a6, a2 a2
∅ ℓ5, ℓ6, a5, a6, a2, a3 a5, a6, a2, a3 a3

The resulting learned clause is (a5 ∨ a6 ∨ a2 ∨ a3). Note, neither a1 nor a4 were
actually “used” in deriving it. In the next section will make use of such an
analysis to eagerly reduce the learned clause data base.

2.4 Reduce Learned Clause Database

Keeping all learned clauses slows down the SAT solver considerably. Thus heuris-
tics to determine which learned clauses to keep resp. how and when to re-
duce the learned clause database are an essential part of state-of-the-art SAT
solvers [20,21,22]. After an incremental SAT call returned “unsatisfiable”, we
propose to only keep those learned clauses, which were used to show that the
assumed assumptions in this SAT call are inconsistent and discard all others.

Experiments in Sect. 3.2 will give empirical evidence for the effectiveness of
these heuristics. Even though it is not a solid argument, an intuitive explanation
could be that learned clauses are removed quite frequently anyhow. Further,
most likely exactly those learned clauses related to the last set of assumptions
are useful in the next SAT call too. This particularly applies to MUS extraction
where the assumptions do not change much.

However, in order to apply these heuristics we need to be able to determine
whether a certain clause was used in deriving the inconsistency. As it turns out,
our definition map can be interpreted as partial proof trace for learned clauses
(with assumptions) and thus gives us a cheap way to flush learned clauses and
definitions not required to show that the given set of assumptions is inconsistent.



Algorithm 4: eagerLearnedClauseDatabaseReduction

Input: var ∆: set of learned clauses; var G: a definition map; V: literals;
foreach α ∈ ∆ do1

if r(α) is an abbreviation and r(α) /∈ V then2

∆← ∆ \ α;3

remove r(α) and its definition from G;4

Focusing on the remaining relevant learned clauses and definitions in this “core”
reduces run time, as our experiments in Sect. 3.2 will show.

Let us continue with Example 1 after learning α′

7
. Only α′

2
and α′

7
are required

to show unsatisfiability under the given set of assumptions, while α′

4
is not

required and thus according to our heuristic should be removed. This eager
reduction of the learned clause database can be easily implemented as a post-
processing phase using V computed by analyzeFinal, which is shown in Alg. 4.

2.5 Assumption Aware Clause Minimization

New learned clauses can often be minimized by applying additional resolution
steps with antecedent clauses in the implication graph. Two approaches are cur-
rently used to achieve this minimization: applying self-subsuming resolution, also
called local minimization, or applying recursive minimization[24]. In recursive
minimization several resolution steps are tried to determine whether a literal can
be removed from the learned clause. In both cases resolutions are only applied if
the resulting clause is a strict sub-clause. Sörensson and Biere [24] demonstrated
that clause minimization usually improves SAT solver performance. In the fol-
lowing we will either apply this classical recursive minimization, no minimization
at all, or a new form of recursive minimization, and thus do not consider local
minimization further.

In the incremental setting with many assumptions, our preliminary exper-
iments showed that classical clause minimization is not very effective. Usually
the number of literals deleted in classical clause minimizations is rather small.
As reason we identified the fact that assumptions are not obtained by unit prop-
agation, and thus cannot be removed from learned clauses through additional
resolution steps. Furthermore, non-assumption literals are often blocked by at
least one assumption pulled in by resolution steps. The classical minimization al-
gorithm requires that the resulting clause is a strict sub-clause. It is not allowed
to contain more assumptions.

This situation is not optimal since assumptions, during one call of the in-
cremental SAT algorithm, are assigned to false and can thus be considered to
be irrelevant, at least for this call. Our new minimization procedure makes use
of this observation and simply ignores additionally pulled in assumptions dur-
ing minimization. The resulting “minimized” clause might even increase in size.
However, it will never have more non-assumption literals than the original clause.



3 Experiments

The algorithms described above have been implemented within the SAT solver
MINISAT [1], starting from the original version, used in the current version of
the state-of-the-art MUS extractor MUSer [9]. It heavily makes use of incremen-
tal SAT solving with many assumptions following the selector variable-based
approach [25]. Our modified version of [1] is called MINISATabb (MINISAT with
abbreviation). We focus on MUS extraction and compare the performance of
MUSer for different versions of MINISAT.

For our experiments we used all 295 benchmarks from the MUS track of the
SAT Competition 2011 3 after removing 5 duplicates from the original 300 bench-
marks. These benchmarks4 have their origin in various industrial applications of
SAT, including hardware bounded model checking, hardware and software ver-
ification, FPGA routing, equivalence checking, abstraction refinement, design
debugging, functional decomposition, and bioinformatics. The experiments were
performed on machines with Intel R© CoreTM2 Quad Processor Q9550 with 2.83
GHz CPU frequency with 8 GB memory and running Ubuntu 12.04. Resource
limits are the same as in the competition: time limit of 1800 seconds, memory
limit of 7680 MB.

In the first experiment we apply our new approach of factoring out assump-
tions without changing clause learning. We then evaluate the impact of our new
learned clause reduction scheme and our new clause minimization procedure.
The experimental part concludes with more details on memory consumption.

3.1 Factoring Out Assumptions

Fig. 3 shows a comparison between MUSer with our new approach based on
factoring out assumptions, called MINISATabb, and the original version of MIN-
ISAT. First, in Fig. 3(a) the average size of learned clauses is compared. For
many problems, adding clause abbreviations reduces the average size of learned
clauses by an order of magnitude.

The main effect of our new technique is to reduce the size of learned clauses.
This should also decrease the number of literals traversed while visiting learned
clauses during BCP. In the scatter plot in Fig. 3(b) we focus on this metric and
compare the average number of traversed literals while running both versions
on the same instance. This includes the literals traversed in clauses visited dur-
ing BCP, also including original clauses, but of course ignores clauses that are
skipped due to satisfied blocking literals [26]. As the plot shows, the reduction
in terms of the number of traversed literals is even more than the reduction of
the average size of learned clauses. Consequently also the running time reduces
considerably, see Fig. 3(c), but of course not in the same scale as in the previous
plots. Note that in essence the “same clauses” are learned and thus the number
of conflicts and learned clauses does not change.

3 http://www.satcompetition.org/2011
4 The set of benchmarks is available at http://www.cril.univ-artois.fr/SAT11/.

http://www.satcompetition.org/2011
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Fig. 3. Comparing MUSer on the 2011 competition instances from the MUS track,
using the original MINISAT without abbreviations (y axis) vs. using our new version
MINISATabb with abbreviations (x axis) w.r.t. three different criteria.

The net effect of using abbreviations to factor out assumptions is that MUSer
based on MINISATabb solves 272 out of the 295 instances, and runs out of mem-
ory on 3 instances, whereas the version with the original MINISAT solves only
261 instances and runs out of memory in 13 cases. Our approach solves more
instances, but not, at least primarily, because it runs out of memory less often.

As it turns out in the context of MUS extraction, definition clauses actually
do not have to be watched. Further, abbreviation literals never have to be con-
sidered as decision and thus also do not have to be added to the priority queue
(implemented as heap in MINISAT) for picking decisions. Thus we need initial-
ization, by assigning all assumptions and abbreviations, the latter in incremental
calls only, at the first decision level.

In order to make sure that the improvement observed in the previous ex-
periment is independent from using our new optimized initialization phase, we
report in Fig. 4(a) the run times of MUSer using the original version of MINISAT
compared to the run times using a modified version of MINISAT, in which the
assumption variables are assigned up-front and removed from the priority queue
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Fig. 4. On the left we show the running time of MUSer using MINISAT+init, a version
of MINISAT, which initializes assumptions explicitly (x axis) vs. the original MINISAT
version, which does not initialize them explicitly before search (y axis), both without
abbreviations. Visiting each learned clause during initialization is time consuming with-
out abbreviations. In the experiment shown on the right we only modified the restart
mechanism to backtrack to the decision level of the last assigned assumption instead
of backtracking to the root level. The modified version MINISAT+assumption-level-
restarting (x axis) performs equally well as the original version of MINISAT (y axis).
Running time is measured in seconds with a time limit of 1800 seconds as always.

initially too, called MINISAT+init. The results show that using this modified
initialization scheme in the original version of MINISAT actually has a negative
effect on the performance of MUSer (MUSer using MINISAT solves 261 instances
whereas MUSer using MINISAT+init solves 257 instances) and thus can not be
considered to be the main reason for the witnessed improvements in the first
experiment. Our explanation for this effect is, that our initialization algorithm
in essence needs only one pass over the learned clauses, even just a subset of
all learned clauses, while initializing up-front BCP in MINISAT+init needs to
visit lots of clauses during initialization. Note, again, that initialization has to
be performed at the start of every incremental SAT call and might contribute a
substantial part to the overall running time.

Modern SAT solvers based on the CDCL paradigm restart often by frequently
backtracking to the root-level (also called top-level) [27,28,29,30] using a specific
restart schedule [31,32,33,34]. With assumptions it seems however to be more
natural to backtrack to the highest decision level, where the last assumption
was assigned, which we call assumption-level. This technique is implemented in
Lingeling [35], since it can naturally be combined with the technique of reusing
the trail [36], but is not part of MINISAT. It might be conceivable, that forc-
ing MINISAT to backtrack to the assumption-level during restarts can give the
same improvement as initialization up-front. However, the experiment reported
in Fig. 4(b) shows, that at least in MUS extraction, this “optimization” is useless.
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Fig. 5. Comparison MUSer using MINISATabb (y axis) vs. MINISATabb+g (x axis).

3.2 Learned Clauses Database Reduction

In this section, we study the impact on the performance of MINISATabb w.r.t our
new reduction algorithm for the learned clause database presented in Sect. 2.4.
Fig. 5 compares MUSer using MINISATabb with and without this more “ea-
ger garbage collector”, which we denote by MINISATabb+g resp. MINISATabb.
According to Fig. 5(b) eager garbage collection reduces memory consumption.
Moreover, as shown in Fig. 5(a), this memory reduction does not hurt perfor-
mance, since three more instances are solved (275 vs. 272) and only 1 instance
(instead of 3) runs out of memory (see also Tab. 1).

3.3 Minimization of the Learned Clauses

In this section, we compare our new clause minimization procedure to existing
variants of clause minimization. We consider three versions of MINISAT and
MINISATabb as back-end in MUSer [9]:

– without clause minimization (called without);
– the classical recursive clause minimization (classic) [24];
– our new clause minimization procedure (full) described in Sect. 2.5.

From the cactus plot in Fig. 6, which compares average size of learned clauses,
we can draw the following conclusions. First, classical minimization is not effec-
tive in terms of reducing the average size of learned clauses, neither for MINISAT
nor for MINISATabb, because it cannot remove assumptions during clause min-
imization. Classical minimization is slightly more effective with abbreviations
than without. However, abbreviations might block self-subsumption during re-
cursive resolution steps and thus prevent further minimization.

Next, we study the impact of our new full clause minimization described
in Sect. 2.5 with and without using abbreviations. As reported in [24] for SAT
solving without assumptions, recursive clause minimization typically is able to
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Fig. 6. Cactus plot reporting the average size of learned clauses produced by MUSer
using MINISAT without abbreviations and MINISATabb with abbreviations, and differ-
ent clause minimization approaches. Factoring out assumptions (lower three curves) is
always better than the original scheme (upper three curves). Further, full minimization
gives a large improvement but only if assumptions are factored out. Without abbre-
viations full minimization actually turns out to be detrimental. Classic minimization
only gives a small advantage over not using any minimization.

reduce the average size of learned clauses by one third. In the SAT solving with

assumptions, as previously noted, assumptions prevent this reduction. With full
clause minimization, however, we get back to the same reduction ratio of around
30% considering only literals that are neither assumptions nor abbreviations.
Nevertheless, since deleting one literal is often necessary to apply additional
resolutions, many new assumptions are added to the minimized clause. Using
full minimization in MINISAT without abbreviations increases the average size
of learned clauses by an order of magnitude, whereas MINISATabb does not have
this problem, since assumptions and abbreviations are factored out.

Actually, our new full clause minimization procedure in combination with
MINISATabb is able to reduce the average size of learned clauses by two orders
of magnitude w.r.t the best version of MINISAT without abbreviations, while
already one order of magnitude is obtained by MINISATabb just by using abbre-
viations alone (with or without using classical clause minimization procedure).

In another experiment we measured the effect of our new garbage collection
procedure Alg. 4. As it turns out, the average size is not influenced by adding
this procedure, but as Tab. 1 shows, it has a positive impact on the number
solved instances independent from the minimization algorithm used. Finally, this



MINISAT MINISATabb MINISATabb+g
#solved(mo) #solved(mo) #solved(mo)

without minimization 259(15) 272(3) 273(3)

classic minimization 261(13) 272(3) 275(1)

full minimization 238(25) 276(0) 281(0)

Table 1. The table shows the number of solved instances by MUSer within a time limit
of 1800 seconds and a memory limit of 7680 MB, for different back-end SAT solver: the
original MINISAT, then MINISATabb with abbreviations, and finally MINISATabb+g
with abbreviations and eager learned clause garbage collection. For each version of
these three SAT solvers we further use three variants of learned clause minimization.
The approach with abbreviations, eager garbage collection and full learned clause min-
imization, e.g. using all of our suggested techniques, works best and improves the
state-of-the-art in MUS extraction from 261 solved instances to 281.

tables also shows that the reduction of the average size of learned clauses directly
translates into an increase of the number of solved instances. The combination of
our new techniques improves the state-of-the-art of MUS extraction considerably.

3.4 Memory Usage

We conclude the experiments with a more detailed analysis of memory usage
for the various considered versions of MUSer. As expected, Fig. 7 shows that
shorter clauses need less memory. However, the effect in using our new tech-
niques on overall memory usage is less pronounced than their effect w.r.t. to
reducing average learned clause length. The main reason is that definitions have
to be stored too. However, MINISAT with full clause minimization but without
abbreviations produces a huge increase in memory consumption by an order of
magnitude. This shows that factoring out assumptions is the key to make full
clause minimization actually work. Also note, that our current implementation
for storing definitions is not optimized for memory usage yet, and we believe
that it is possible to further reduce memory consumption considerably.

4 Conclusion

In this paper we introduced the idea of factoring out assumptions, in the context
of incremental SAT solving under assumptions. We developed techniques that
work particularly well for large numbers of assumptions and many incremental
SAT calls, as it is common, for instance, in MUS extraction. We implemented
these techniques in the SAT solver MINISATabb and showed that they lead to a
substantial reduction in solving time if used in the SAT solver back-end of the
state-of-the-art MUS extractor MUSer [9].

More specifically, experimental results show that factoring out assumptions
by introducing abbreviations is particularly effective in reducing the average
learned clause length, which in turn improves BCP speed. Even though memory
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Fig. 7. Memory usage of MUSer based on the original MINISAT without abbreviations
and MINISATabb+g with both abbreviations and eager garbage collection. Both ver-
sions of the MINISAT are combined with three different clause minimization strategies.
Note, that even with eager garbage collection, which reduces memory consumption, e.g.,
see Fig. 5(b), the effect of our techniques on overall memory usage is not particularly
impressive and leaves room for further optimization.

usage is not reduced at the same level as average learned clause lengths, using
abbreviations leads to shorter running time. Furthermore, the ability to factor
out assumptions is crucial for a new form of clause minimization, which gave
another substantial improvement. In general, we improved the state-of-the-art
in MUS extraction considerably.

Our prototype MINISATabb uses rather basic data structures, which can be
improved in several ways. Memory usage could be reduced by a more sophisti-
cated implementation of managing abbreviations. Further, in the current imple-
mentation, identical definitions are not shared. A hashing scheme could cheaply
detect this situation and would allow to reuse already existing definitions in-
stead of introducing new ones. This should reduce memory usage further and
also speed up the initialization phase.

Finally, it would be interesting to combine the techniques presented in this
paper with more recent results on MUS preprocessing [10] and preprocessing
under assumptions [19,37] resp. inprocessing [38]. We also want to apply our
approach to high-level MUS extraction [7,8,16].

Software and more details about the experiments including log files are avail-
able at http://fmv.jku.at/musaddlit.

http://fmv.jku.at/musaddlit
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