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Abstract. Among preprocessing techniques for quantified Boolean for-
mula (QBF) solving, quantified blocked clause elimination (QBCE) has
been found to be extremely effective. We investigate the power of dynam-
ically applying QBCE in search-based QBF solving with clause and cube
learning (QCDCL). This dynamic application of QBCE is in sharp con-
trast to its typical use as a mere preprocessing technique. In our dynamic
approach, QBCE is applied eagerly to the formula interpreted under the
assignments that have been enumerated in QCDCL. The tight integra-
tion of QBCE in QCDCL results in a variant of cube learning which is
exponentially stronger than the traditional method. We implemented our
approach in the QBF solver DepQBF and ran experiments on instances
from the QBF Gallery 2014. On application benchmarks, QCDCL with
dynamic QBCE substantially outperforms traditional QCDCL. Moreover,
our approach is compatible with incremental solving and can be combined
with preprocessing techniques other than QBCE.

1 Introduction

Quantified Boolean formulas (QBF) extend propositional logic with universal and
existential quantifiers over propositional variables. QBFs potentially allow for
exponentially more succinct encodings compared to plain propositional logic and
provide a natural representation of applications which can be seen as two-player
games [22] as found, e.g., in program synthesis or formal verification [2].

A typical representation of QBFs is prenex conjunctive normal form (PCNF),
consisting of a quantifier prefix and a propositional CNF. In the game-based
QBF semantics a universal and an existential player play against each other. The
players assign truth values to the respective variables in the order enforced by
the quantifier prefix. The universal player aims to falsify the formula while the
existential player aims to satisfy it. PCNF allows to detect more easily when the
universal player has won. Once the literals of one clause are all set to false, a
conflict is detected and the universal player wins the current round of the game. In
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contrast, all clauses must be satisfied before we can detect a win for the existential
player. This bias is reflected in the sizes of clauses (small) and cubes (large) derived
by search-based QBF solvers with clause and cube learning (QCDCL) [8, 16, 28].

While the uniformity of a CNF representation simplifies reasoning [6], it
also blurs information essential for solving [1]. As a remedy, structural solvers
directly operate on non-CNF formulas [5, 9, 15]. Dual propagation approaches
combine structural and CNF-based reasoning and consider both a CNF and a
DNF representation at the same time. This can be done explicitly so that a DNF
and a CNF encoding of a problem are solved independently in parallel [25] or
it can be directly integrated in a solver [10, 15, 27]. However, these approaches
require a structural formulation of the problem that is often not available.

Another option is preprocessing, e.g., [3, 7, 11, 21, 26] which uses alternative
techniques to recover structural information from a CNF φ. The goal is to rewrite
φ into a new CNF that is easier to solve. For most QBF solvers preprocessing is
vital and has been integrated in most QBF-based solving tool chains. Modern
SAT solvers go even further and interleave preprocessing and standard search.
In this approach called inprocessing [13], preprocessing is applied in bounded
fashion to the formula simplified by unit clauses derived during the search. Until
this work inprocessing had not found its way into modern QBF solvers.

The QBF solver StruQS heuristically combines search-based solving and
variable elimination [17]. The latter is a complete decision procedure poten-
tially exponential in space. Its bounded variant is a powerful preprocessing
technique [11]. Preprocessing, however, can only recover structural information
before search. Structural solvers, on the other hand, can exploit such information
during search. Hence in this work we investigate a tighter integration of blocked
clause elimination (QBCE) [11] in QCDCL-based QBF solvers. While QBCE
originally is a preprocessing technique applied to QBFs in CNF, here we apply
it dynamically during the search process of QCDCL. This way, we leverage the
power of QBCE as a technique to simulate structural reasoning on CNFs in
QCDCL. In our dynamic approach, QBCE is applied to the CNF interpreted
under the assignment that has currently been enumerated in QCDCL. We show
that this tight integration of QBCE in QCDCL results in cube learning that is
exponentially stronger than its traditional variant. Dynamic QBCE also influences
clause learning in that clauses identified as redundant by QBCE are not used to
produce learned clauses in the current search context. In addition to dynamic
QBCE we also investigate inprocessing in a QBF solver using QBCE.

We implemented inprocessing based on QBCE and dynamic QBCE in the
QCDCL-based QBF solver DepQBF. On application benchmarks from the QBF
Gallery 2014, QCDCL with dynamic QBCE substantially outperforms traditional
QCDCL in terms of solved instances, run time and backtracks. We also observed
a performance gain with inprocessing. We report on the details of our implemen-
tation of dynamic QBCE. Since QBCE is applied frequently during the search in
QCDCL, sophisticated data structures are necessary to limit the computational
costs. Dynamic QBCE is compatible with incremental solving and is extensible
in that it can be combined with preprocessing techniques other than QBCE.



2 Preliminaries

We consider QBFs in prenex conjunctive normal form (PCNF). A QBF Π.ψ
in PCNF consists of a prefix Π and a matrix ψ. The prefix Π has the form
Q1X1Q2X2 . . . QnXn with disjoint variable sets Xi and Qi ∈ {∀,∃}. Furthermore,
Qi 6= Qi+1 and var(Π) = X1 ∪ . . . ∪ Xn. We consider only closed QBFs: the
matrix ψ of a QBF Π.ψ contains only variables that occur in Π. The matrix ψ is
a propositional formula in conjunctive normal form, i.e., a conjunction of clauses.
A clause (cube) is a disjunction (conjunction) of literals. A literal is either a
variable x or a negated variable x̄. The negation of a literal l is denoted by l̄.
If convenient, we consider clauses and cubes as sets of literals. The variable of
a literal is denoted by var(l) where var(l) = x if l = x or l = x̄. The quantifier
Q(Π, l) of a literal l is Qi if var(l) ∈ Xi. Let Q(Π, l) = Qi and Q(Π, k) = Qj ,
then l ≤Π k iff i ≤ j.

A set of literals A = {l1, . . . , ln} is called assignment of the QBF Π.ψ if
{var(li) | li ∈ A} ⊆ var(Π) and for any li, lj ∈ A with li 6= lj , var(li) 6= var(lj).
By φ[A] we denote the QBF φ under assignment A, i.e., for l ∈ A, all clauses
containing l are removed, all occurrences of l̄ are deleted, and var(l) is removed
from the prefix. The empty matrix is satisfiable, the matrix containing the empty
clause is unsatisfiable. If the matrix of φ[A] is empty, then A is a satisfying
assignment (written as φ[A] = T). If the matrix of φ[A] contains the empty
clause, then A is a falsifying assignment (written as φ[A] = F). For a cube
C = (l1 ∧ . . . ∧ ln), the set {l1, . . . , ln} is the assignment defined by C. We
write φ[C] to denote φ under the assignment defined by C. A closed QBF Π.ψ
with Q1 = ∃ (resp. Q1 = ∀) is satisfiable iff Π.ψ[{x}] or (resp. and) Π.ψ[{x̄}]
is satisfiable where x ∈ X1. Two PCNFs φ and φ′ are satisfiability-equivalent,
written as φ ≡sat φ

′, if and only if φ is satisfiable whenever φ′ is satisfiable.
We introduce the Q-resolution calculus as a proof system which underlies

search-based QBF solving with clause and cube learning [8, 14, 16, 28].

Definition 1 (Q-resolution calculus). Let φ = Π.ψ be a PCNF. The rules
of the Q-resolution calculus (QRES) are as follows.

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

if {x, x̄} 6⊆ (C1 ∪ C2), p̄ 6∈ C1, p 6∈ C2

and either
(1) C1,C2 are clauses and Q(Π, p) = ∃ or
(2) C1,C2 are cubes and Q(Π, p) = ∀

(res)

C ∪ {l}
C

if {x, x̄} 6⊆ (C ∪ {l}) and either
(1) C is a clause, Q(Π, l) = ∀,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∃ or
(2) C is a cube, Q(Π, l) = ∃,

l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∀

(red)

C

if {x, x̄} 6⊆ C and either
(1) C is a clause and C ∈ ψ or
(2) C is a cube and φ[C] = ∅

(init)



Note that φ[C] = ∅ in case (2) of rule init means that the matrix of φ[C] is
empty. We write Π.ψ ` C to denote that a clause or cube C is derivable from
the PCNF Π.ψ by rules init , red , and res . In a derivation of a clause (cube), the
rules init , red , and res operate only on clauses (cubes). Q-resolution of clauses [14]
is a generalization of propositional resolution, which is given by rules init and
res when applied to clauses. Q-resolution of cubes was introduced in the context
of solving satisfiable PCNFs [8, 16, 28]. Applications of rule red to clauses (cubes)
are called universal (existential) reduction. We write UR(C) (ER(C)) to denote
the clause (cube) resulting from universal (existential) reduction of C. The PCNF
UR(φ) is obtained by universal reduction of all clauses in the PCNF φ.

QRES is sound and refutationally complete for PCNFs [8, 14, 16, 28]. The
empty clause (cube) C = ∅ is derivable from a PCNF φ if and only if φ is
unsatisfiable (satisfiable). A derivation of the empty clause (cube) from φ is a
clause (cube) resolution proof of φ. The clausal variant of rule res is the basis for
the definition of blocked clauses which is as follows.

Definition 2 (Blocked clause). A literal l with Q(Π, l) = ∃ in a clause C ∈ ψ
of a QBF φ = Π.ψ is a blocking literal if for all C ′ ∈ ψ with l̄ ∈ C ′, a literal
l′ with l′ ≤Π l exists such that l′, l̄′ ∈ C ∪ (C ′ \ {l̄}). A clause is blocked if it
contains a blocking literal.

Note that blocking literal l in Definition 2 must be existential whereas literals
l′, l̄′ can be existential or universal. Blocked clause elimination (QBCE) [11] re-
moves blocked clauses from a PCNF φ until completion and takes time polynomial
in the size of φ. The resulting PCNF is satisfiability-equivalent to φ.

3 Search-Based QBF Solving with Learning

In order to present our approach of dynamically applying QBCE in search-based
QBF solvers, which results in a powerful variant of cube learning, we review the
basic concepts of search-based QBF solving with learning.

Search-based QBF solving is based on a QBF-specific variant of the DPLL al-
gorithm [4]. Similar to conflict-driven clause learning (CDCL) in SAT solving [23],
search-based QBF solving has been equipped with clause and cube learning [8,
16, 28], called QCDCL. We briefly describe QCDCL based on the pseudo code
shown in Fig. 1.

In QCDCL, assignments to the variables in a given input PCNF φ = Π.ψ
are successively generated. Initially, the current assignment A is empty. During
a run, φ is interpreted under A and φ[A] is simplified in a QBF-specific variant
of Boolean constraint propagation (QBCP) in function qbcp. Additionally, in
QBCP universal reduction according to rule red is applied to all clauses C ∈ φ[A],
resulting in the PCNF UR(φ[A]) with potentially shortened clauses UR(C) ⊆ C.

Assignment A is extended based on the detection of unit and pure literals in
UR(φ[A]). A clause UR(C[A]) = (l), with UR(C[A]) ∈ UR(φ[A]) containing the
single literal l and Q(Π, l) = ∃, is unit in UR(φ[A]). Given such a unit clause, A
is extended to A := A ∪ {l} and C is recorded as the antecedent clause of the



assignment {l}. A literal l is pure in UR(φ[A]) if l̄ does not occur in UR(φ[A]).
Given a pure literal l, A is extended to A := A ∪ {l} if Q(Π, l) = ∃ and to A :=
A ∪ {l̄} if Q(Π, l) = ∀. Simplifications of φ[A] and unit and pure literal detection

Result qcdcl (PCNF φ)
Result R = UNDEF;

Assignment A = ∅;
while (true)

/* Simplify under A. */

(R,A) = qbcp(φ,A);
if (R == UNDET)

/* Decision making. */

A = assign_dec_var(φ,A);
else

/* Backtracking. */

/* R == UNSAT/SAT */

B = analyze(R,A);

if (B == INVALID)

return R;

else

A = backtrack(B);

Fig. 1. Pseudo code of QCDCL.

are always applied until completion in
QBCP. Assignments li in A = {l1, . . . , ln}
are ordered chronologically.

If φ[A] 6= F and φ[A] 6= T, then the
satisfiability of φ[A] is still undetermined
(R == UNDET). Some variable from the left-
most quantifier block of φ[A] is selected
and tentatively assigned a value, thus ex-
tending A. Making tentative assignments
is also called decision making.

If φ[A] = F then φ[A] contains a clause
C so that UR(C[A]) = ∅ is empty. If
φ[A] = T, then φ[A] reduces to the empty
matrix under A. In either case, the sat-
isfiability of φ[A] has been determined
(R == UNSAT or R == SAT). Assignment A
is analyzed based on whether φ[A] = F or
φ[A] = T. A subset B ⊆ A of assignment
A is identified and retracted during back-
tracking. The run proceeds with the new,

current assignment A obtained by backtracking. QCDCL generates assignments
which have the following properties.

Definition 3 (QCDCL assignment). Given a QBF φ = Π.ψ. Let assignment
A = A′ ∪ A′′ where A′ are variables assigned in decision making and A′′ are
variables assigned by unit/pure literal detection. A is a QCDCL assignment if
(1) for a maximal l ∈ A′ with ∀l′ ∈ A′ : l′ ≤Π l it holds that ∀x <Π l : x ∈ var(A)
and (2) all l ∈ A′′ are unit/pure in φ[A′] after applying QBCP until completion.

Clause and cube learning is carried out in function analyze. If φ[A] = F then
by rules init , red , and res the clause C where UR(C[A]) = ∅ is resolved with
antecedent clauses to derive a learned clause C ′.

If φ[A] = T, then a new learned cube is derived similarly to clause learning.
However, rule init is special for cube learning in that cubes to be resolved
later must be first derived from satisfying assignments. In contrast to that,
clauses present in the input PCNF φ can be simply selected by rule init . QBCP
is also applied to learned clauses and cubes. Related to unit clauses, a cube
ER(C[A]) = (l) containing the single literal l with Q(Π, l) = ∀ is unit under A
and existential reduction. Existential reduction is also applied in QBCP. Given a
unit cube ER(C[A]) = (l), A is extended to A := A ∪ {l̄} and C is recorded as
the antecedent cube of the assignment {l̄}. In cube learning, resolution by rule res
is applied to cubes derived by rule init and to antecedent cubes.

Learned clauses (cubes) C ′ are constructed so that UR(C ′[A]) (ER(C ′[A]))
is unit after backtracking. QCDCL terminates if the empty learned clause (cube)



C ′ = ∅ is derived (B == INVALID). The derivations of learned clauses (cubes) up
to C ′ = ∅ are a clause (cube) resolution proof of φ. The application of the rules
of QRES is driven by the assignments generated in QCDCL.

In practice, the set θ of learned clauses is added conjunctively to φ = Π.ψ and
we have φ ≡sat Π.(ψ∧

∧
C∈θ C). The set γ of learned cubes is added disjunctively

to φ = Π.ψ and we have φ ≡sat Π.(ψ ∨ (
∨
C∈γ C)). These equivalence are due to

the soundness of QRES. In general, a formula φ′ = Π ′.ψ′ with ψ′ =
∨
C∈γ C in

prenex disjunctive normal form can be derived by rule init so that φ ≡sat φ
′ [8].

Preprocessing [3, 7, 11, 21, 26] aims at transforming the input PCNF φ into a
simplified PCNF φ′ with φ ≡sat φ

′ so that φ′ is solved faster than φ. In QCDCL,
preprocessing can be applied once to φ before entering the while-loop (Fig. 1).

Inprocessing [13] combines preprocessing techniques and formula simplification
under assignments which were fixed during a run of QCDCL. An assignment to
a variable x is fixed if a unit clause (cube) C = (l) with var(l) = x is learned.
Inprocessing can be applied after QBCP each time a unit clause (cube) is learned.

4 Improved Cube Learning by Dynamic QBCE

We take a closer look at cube learning by QRES. It is well known that in the worst
case an exponential number of cubes must be derived by rule init even on PCNFs
with a simple syntactic structure. The PCNFs in the following example are hard
for QCDCL based on QRES. We develop a generalization of QRES which allows
to solve these PCNFs easily by tightly integrating QBCE in QCDCL.

Example 1. Let Φ(n) = ∃z1,z
′
1∀u1∃y1, . . . ,∃zn,z′n∀un∃yn.

∧n
i=1

[
C0(i) ∧ C1(i) ∧

C2(i)
]
, where C0(i) = (ui ∨ ȳi) ∧ (ūi ∨ yi), C1(i) = (zi ∨ ui ∨ ȳi) ∧ (z′i ∨ ūi ∨ yi),

and C2(i) = (z̄i ∨ ūi ∨ ȳi) ∧ (z̄′i ∨ ui ∨ yi) be a family of satisfiable PCNFs.
Clauses in C0(i) encode the equivalence of ui and yi. In general, PCNFs

of the form Ψ(n) = ∀u1∃y1, . . . ,∀un∃yn.
∧n
i=1 C0(i) are typical examples where

every cube resolution proof requires an exponential number of applications of
rule init [12, 16, 18]. Since Ψ(n) is a subformula of Φ(n), this also holds for every
cube resolution proof of Φ(n). No clause is blocked in Φ(n), hence QBCE alone
cannot solve Φ(n), in contrast to Ψ(n) [12].

Consider n = 1 and Φ(n) = ∃z1, z
′
1∀u1∃y1.(u1 ∨ ȳ1) ∧ (ū1 ∨ y1) ∧ (z1 ∨ u1 ∨

ȳ1) ∧ (z′1 ∨ ū1 ∨ y1) ∧ (z̄1 ∨ ū1 ∨ ȳ1) ∧ (z̄′1 ∨ u1 ∨ y1). By rule init , we derive
C0 = (z̄1 ∧ z̄′1 ∧ ū1 ∧ ȳ1) and C1 = (z̄1 ∧ z̄′1 ∧ u1 ∧ y1). By existential reduction
we get C2 = ER(C0) = (z̄1 ∧ z̄′1 ∧ ū1) and C3 = ER(C1) = (z̄1 ∧ z̄′1 ∧ u1). By
resolving C2 and C3 we get C4 = (z̄1 ∧ z̄′1) and finally C5 = ER(C4) = ∅.

The PCNFs Φ(n) in Example 1 can be solved by preprocessing by eliminating
subsumed clauses and QBCE. In practice, however, preprocessing might not be
fully applicable to QBF-based workflows involving advanced techniques such as,
e.g., incremental QBF solving. Hence we aim at improving QCDCL with clause
and cube learning also in the absence of preprocessing.

The application of rule init to derive cubes from satisfying assignments is
also called model generation [8]. Model generation derives cubes C from a PCNF



φ = Π.ψ such that φ[C] = ∅. The PCNFs Φ(n) in Example 1 only have cube
resolution proofs in QRES whose size is exponential in n since an exponential
number of cubes must be derived by rule init [12, 16, 18]. Hence the run time of
QCDCL with cube learning by QRES scales exponentially in n.

In the following, we generalize model generation by rule init by relaxing the
condition φ[C] = ∅. This way, we obtain a variant of QRES for cube learning
which is exponentially stronger than the traditional variant from Definition 1.
The stronger calculus allows for cube resolution proofs of the PCNFs Φ(n) in
Example 1 whose size is polynomial in n.

To show the soundness of generalized model generation, we first show that a
cube C which contains only variables assigned in decision making in QCDCL is
derivable by QRES if φ[C] is satisfiable. To this end, we introduce the notion of
cubes obtained from assignments generated in QCDCL.

Definition 4 (QCDCL cube). Given a QBF φ = Π.ψ. The QCDCL cube C
of QCDCL assignment A is defined by C = (

∧
l∈A l). Then C = C ′∪C ′′ where C ′

is the maximal subset of C such that X1 ∪ . . . ∪Xi−1 ⊂ var(C ′) and C ′ ∩Xi 6= ∅.
The literals in C ′ are the first |C ′| consecutive variables of Π which are assigned,
i.e., C ′ contains all the variables in C assigned in decision making.4 The literals
in C ′′ are assigned due to pure and unit literal detection and may occur anywhere
in Π starting from Xi+1. For QCDCL cube C we further define dec(C) = C ′

and der(C) = C ′′.

Lemma 1. Given the satisfiable PCNF φ = Π.ψ with |var(Π)| = n and a
QCDCL cube C with dec(C) = C. If φ[C] is satisfiable, then φ ` C.

Proof. We argue that φ ` C by induction over k = n −m where m = |C| and
the rules of QRES shown in Definition 1.

If k = 0, then φ ` C by rule init . Consider k > 0. Let l ∈ C with var(l) ∈ Xi

be maximal in C w.r.t. <Π . Let h, h̄ 6∈ C and var(h) ∈ Xi if Xi\var(C) 6= ∅ and
var(h) ∈ Xi+1 otherwise.

Suppose that φ[C] is satisfiable. If Q(Π,h) = ∀ then both φ[C ∪ {h}] and
φ[C ∪ {h̄}] are satisfiable. By induction hypothesis it holds that φ ` C ∪ {h} and
φ ` C ∪ {h̄}, so φ ` C by the application of rule res (cf. Theorem 1 in [20]).

If Q(Π,h) = ∃ then at least one of φ[C ∪ {h}] and φ[C ∪ {h̄}] is satisfiable.
W.l.o.g. assume that φ[C ∪ {h}] is satisfiable. Then by induction hypothesis it
holds that φ ` C ∪ {h}, so φ ` C by the application of rule red . ut

Definition 5 (Generalized model generation). Given a PCNF φ and a
QCDCL assignment A according to Definition 3. If φ[A] is satisfiable, then the
QCDCL cube C = (

∧
l∈A l) is obtained by generalized model generation.

Condition φ[C] = ∅ in case (2) of rule init is a special case of the condition
in Definition 5 that φ[A] is satisfiable to obtain C. In general φ 0 C in QRES.

4 C′ can also contain literals assigned by pure/unit literal detection, but as they are left
to the maximal decision variable in the prefix, we treat them like decision variables.



Example 2. Given a satisfiable PCNF φ = ∃x1, x2∀u1∃x3.(x1∨u1∨x̄3)∧(x1∨u1∨
x3)∧(x̄1∨x̄2∨ū1∧x3)∧(x2∨x̄3), where no variable is pure initially. Let A = {x1}
by decision making. Then u1 becomes pure and φ[A] = ∃x2, x3.(x̄2∨x3)∧(x2∨x̄3)
is satisfiable under A = {x1, u1}, so C = (

∧
l∈A l) = (x1 ∧ u1) is obtained by

generalized model generation. However, φ 0 C since rule res is not applicable as
this would eliminate u1. Further, any cube C ′ ⊃ C derived by rule init contains
also a literal of x2 which cannot be reduced by rule red .

Theorem 1. Given PCNF φ = Π.ψ and a QCDCL cube C obtained from φ by
generalized model generation. Then it holds that Π.ψ ≡sat Π.(ψ ∨ C).

Proof (Sketch). Let C = C ′∪C ′′ as defined in Definition 4 with C ′ = dec(C) and
C ′′ = der(C). Recall that φ[C] is satisfiable, because C is obtained by generalized
model generation.

First, assume that φ[C ′] is unsatisfiable. The literals in C ′′ are assigned
according to pure and unit literal detection in φ[C ′] which is sound. Therefore,
these assignments do not change the satisfiability status of the formula. Hence,
φ[C ′] has to be satisfiable.

According to Lemma 1, it holds that Π.ψ ` C ′ and due to the soundness of
QRES it holds that Π.ψ ≡sat Π.(ψ ∨ C ′). Because of subsumption, it holds that
Π.ψ ≡sat Π.(ψ ∨ (C ′ ∧ C ′′)). ut

Corollary 1. By Theorem 1, a cube C obtained from PCNF Π.ψ by generalized
model generation can be used as a learned cube in QCDCL.

Definition 6. Let φ = Π.ψ be a PCNF. The Q-resolution calculus with general-
ized model generation (QRES-GMG) is obtained by replacing condition φ[C] = ∅
in case (2) of rule init in Definition 1 by the condition that φ[C] is satisfiable.

QRES-GMG can be used as a proof system underlying QCDCL to derive
learned clauses and cubes. For generalized model generation as part of rule init , it
is necessary to check whether φ[A] is satisfiable based on the current assignment
A enumerated in QCDCL. Since φ[A] is a PCNF in general, such check is as hard
as solving the original PCNF φ (i.e., PSPACE-complete).

In order to combine QRES-GMG and QCDCL in practice, we apply QBCE
dynamically to φ[A], i.e., with respect to the current assignment A. If all clauses
in φ[A] are blocked then QBCE reduces φ[A] to the empty matrix, thus showing
that φ[A] is satisfiable in time which is polynomial in the size of φ[A]. This way,
we apply QBCE as an incomplete decision procedure inside QCDCL to efficiently
check if φ[A] is satisfiable. To this end, in general any sound decision procedure
can be applied. However, QBCE is appealing since it only removes clauses and
can be implemented using data structures which fit in the QCDCL framework.

Generalized model generation in QRES-GMG is related to sign abstraction
(Proposition 7 in [16]). Based on a previously derived learned cube C ′, sign
abstraction allows to detect whether φ[A] is satisfiable in polynomial time based
on the sets of clauses satisfied by C ′ and by A. However, our approach to checking
φ[A] based on dynamic QBCE is independent from previously learned cubes.



In contrast to QRES, the PCNFs Φ(n) in Example 1 have short cube resolution
proofs in QRES-GMG. Hence QCDCL with QRES-GMG and dynamic QBCE
allows for more powerful cube learning than with QRES.

Example 3 (continues Example 1). For n = 2 consider Φ(n) = ∃z1,z
′
1∀u1∃y1,∃z2,

∃z′2∀u2∃y2.C0(1)∧C1(1)∧C2(1)∧C0(2)∧C1(2)∧C2(2). We solve Φ(n) by QCDCL
with QRES-GMG and dynamic QBCE. We start with the empty assignment
A = ∅. No clause is blocked in the PCNF Φ(n)[A] and hence rule init is not
applicable. By decision making we assign variables from left to right in prefix
ordering and extend A to A = A ∪ {z̄1, z̄

′
1}. The clauses in the subformula

(C0(1) ∧ C1(1))[A] = (u1 ∨ ȳ1) ∧ (ū1 ∨ y1) of Φ(n)[A] are blocked since all clauses
in C2(1)[A] are satisfied under A.

Before making further assignments, the PCNF Φ(n) is simplified to Φ(n)′ =
∃z2, z

′
2∀u2∃y2.C0(2) ∧ C1(2) ∧ C2(2) under A and QBCE. No clause is blocked

in Φ(n)′[A] and A is extended to A ∪ {z̄1, z̄
′
1, z̄2, z̄

′
2}. Like before, clauses in the

subformula (C0(2) ∧ C1(2))[A] = (u2 ∨ ȳ2) ∧ (ū2 ∨ y2) of Φ(n)′[A] are blocked
since all clauses in C2(2)[A] are satisfied under A. We have Φ(n)[A] = ∅ under
A = {z̄1, z̄

′
1, z̄2, z̄

′
2} and QBCE. By rule init of QRES-GMG, we derive the learned

cube C = (z̄1 ∧ z̄′1 ∧ z̄2 ∧ z̄′2) and finally the empty cube C ′ = ER(C) = ∅ by
existential reduction, after which QCDCL terminates.

Note that on the PCNFs Φ(n) from Example 1, for any value of n QCDCL
with QRES-GMG based on dynamic QBCE learns exactly one cube by rule init
which is reduced to the empty cube immediately. Hence in this special case the
actual run time of QCDCL depends on how efficiently QBCE is applied to Φ(n).

5 Integrating Dynamic QBCE in QCDCL

We implemented QCDCL with clause and cube learning based on QRES-GMG in
our solver DepQBF.5 DepQBF is a QCDCL-based solver which originally relies
on QRES [8, 16, 28]. For efficient generalized model generation in QRES-GMG,
we apply QBCE dynamically as illustrated by Example 3.

QBCE is carried out eagerly as part of QBCP (function qbcp in Fig. 1). After
the current assignment A has been extended in QBCP by unit and pure literal
detection, QBCE is applied to φ[A] until completion. If all clauses in φ[A] are
blocked, then a cube is learned by rule init in QRES-GMG. Otherwise, A is
further extended by decision making and again QBCP including QBCE is applied.
All clauses containing a literal of a variable x may be blocked in φ[A] and x
may be removed from the prefix of φ[A]. Hence in decision making variables are
selected from the left end of the prefix of φ[A] simplified under A and QBCE.

Clause learning works as in traditional QCDCL based on QRES. Clauses
currently blocked with respect to A are ignored when it comes to the detection of
unit clauses and empty clauses in QBCP. Consequently, such blocked clauses are
not used to derive learned clauses. However, since QBCE preserves unsatisfiability,

5 http://lonsing.github.io/depqbf/



QCDCL will eventually find a clause resolution proof of φ if φ is unsatisfiable even
if dynamic QBCE effectively removes blocked clauses. Hence we apply QBCE in
a fully dynamic way where QCDCL with clause and cube learning operates on
the PCNF φ[A] simplified under A and QBCE. QBCE is applied only to clauses
in the input PCNF φ, not to learned ones.

5.1 Witness Clauses for Efficient Dynamic QBCE

Dynamic QBCE is part of QBCP and hence is applied frequently in QCDCL.
Our implementation of dynamic QBCE relies on watched data structures like
QBCP [6]. In the following, let A be the current assignment in QCDCL.

Dynamic QBCE is carried out based on a working set of pairs (C, l) of a
clause C and a literal l ∈ C to be checked whether l is a blocking literal in C.
The working set is fully processed as part of QBCP. Variable assignments made
in QBCP might trigger further applications of QBCE, which causes the working
set to be filled based on watched data structures as described in the following.

For each clause C in the input PCNF φ a notification list is maintained. The
notification list of C contains pairs (C ′, l′) of clauses C ′ and an existential literal
l′ ∈ C ′ such that l̄′ ∈ C and C is a witness that l′ ∈ C ′ is not a blocking literal
by Definition 2 in C ′ under A. The witness C is neither blocked nor satisfied
under A. If C becomes either blocked or satisfied, then the pair (C ′, l′) is put in
the working set to be checked whether l′ ∈ C ′ is a blocking literal in C ′.

Each variable v has two lists Lv and Lv̄ containing clauses C ∈ φ with a
positive and negative literal of v, respectively. Each clause C in Lv or Lv̄ is a
witness that some other clause C ′ ∈ φ is not blocked with a blocking literal l ∈ C ′,
l̄ ∈ C, and var(l) = v. If v is assigned true (false), then previously non-satisfied
witness clauses C ∈ Lv (C ∈ Lv̄) are satisfied. All pairs (C ′, l′) in the notification
list of the now satisfied witness C are put in the working set.

Watched data structures based on witness clauses allow to carry out dynamic
QBCE precisely when a witness clause becomes blocked or satisfied under A.
Superfluous checks of Definition 2 are entirely avoided.

5.2 Dynamic QBCE Limits

The input PCNF φ may contain clauses with a large number of literals or variables
whose literals appear in a large number of clauses (called occurrences). In these
cases, the performance of dynamic QBCE may deteriorate with respect to run
time and memory footprint since the working set and the notification lists become
prohibitively large. To control the computational costs of dynamic QBCE, we
implemented a limit max lits on the size |C| (i.e. number of literals) of a clause
and a limit max occs on the number of occurrences of variables.

For all pairs (C, l) ever put in the working set it holds that |C| ≤ max lits.
Clauses C whose size |C| exceeds max lits are permanently ignored in dynamic
QBCE. Additionally, the size |C ′| of each occurrence C ′ with l̄ ∈ C ′ of variable
var(l) must not exceed max lits. This way, literals of variables with occurrences



larger than max lits are never checked as potential blocking literals. Limit
max lits allows to avoid inspecting large clauses when checking Definition 2.

For all pairs (C, l) ever put in the QBCE working set the number of occur-
rences of literal l̄ does not exceed max occs. This way, no more than max occs
occurrences of var(l̄) have to be inspected when checking whether l ∈ C is a
blocking literal in C by Definition 2.

QCDCL based on QRES-GMG is sound in the presence of limits max lits and
max occs. For generalized model generation, clauses ignored in dynamic QBCE
due to the limits must be satisfied under the current assignment A.

In our implementation of dynamic QBCE we used limits of max lits = 50
and max occs = 50 which we determined empirically.

6 Experiments

We evaluated our implementation of QCDCL with QRES-GMG based on dynamic
QBCE in the solver DepQBF. To this end, we compared three variants of Dep-
QBF. The plain version of DepQBF (no-qbce) is based on traditional QCDCL
with QRES. As a first step towards dynamic QBCE, we implemented QBCE
as inprocessing in DepQBF (qbce-inp) where the input PCNF φ is simplified
by QBCE only with respect to fixed assignment due to learned unit clauses
and unit cubes. This variant of DepQBF is still based on QRES. Finally, we
implemented QCDCL with QRES-GMG based on fully dynamic QBCE (qbce-
dyn) as presented in Section 5. To focus on dynamic QBCE, we used the linear
quantifier ordering given by the prefix of the input PCNF φ and hence disabled
advanced analysis of variable dependencies [19] in all variants of DepQBF.

Further, we consider the solvers GhostQ (ghostq) and RAReQS (rareqs) which
were both among the winning solvers of the QBF Gallery 2014 and which are
publicly available. All experiments reported in the following were run on an AMD
Opteron 6238 at 2.6 GHz under 64-bit Linux with time and memory limits of
1800 seconds and 7 GB. We use the benchmarks in the applications set of the
QBF Gallery consisting of 735 formulas.6 We do not consider structural solvers
because the benchmarks are not available in a structural, non-CNF format.

First, we consider the original applications set without preprocessing. The
results are shown in Table 1 and Fig. 2. The combinations of QBCE and QCDCL
in qbce-inp and qbce-dyn considerably outperform DepQBF (no-qbce) by solved
instances and run time. Moreover, qbce-dyn performs best among the variants
of DepQBF and outperforms RAReQS, an expansion-based solver. Whereas the
variants of DepQBF did not run out of memory, RAReQS did on 115 instances.

In order to evaluate the impact of preprocessing on solver performance, we
applied the preprocessor Bloqqer [11] prior to solving. The results are shown in
Table 2 and Fig. 4. RAReQS and DepQBF (no-qbce) benefit from preprocessing.
RAReQS ran out of memory on 34 instances. DepQBF (no-qbce) solves as many
formulas as qbce-inp. Among the variants of DepQBF, qbce-dyn still solves the

6 http://qbf.satisfiability.org/gallery



Solver Solved Unsat Sat Time

qbce-dyn 441 222 219 573,142
rareqs 414 272 142 611,742
qbce-inp 360 161 199 735,073
ghostq 347 166 181 752,950
no-qbce 278 128 150 880,485

Table 1. Total solved instances, solved
unsatisfiable, and solved satisfiable ones
of the original applications set of the QBF
Gallery 2014 without preprocessing. Re-
ported times are total run times includ-
ing time outs. Running out of memory is
counted as a time out.
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Fig. 2. Sorted run times (y-axis) of in-
stances (x-axis) related to Table 1.

largest number of instances. However, preprocessing has an overall negative effect
on qbce-dyn as only 405 instances are solved with preprocessing compared to
441 instances without preprocessing (Tables 1 and 2 are comparable since no
instance was solved by preprocessing).

Preprocessing by Bloqqer, which includes QBCE among other techniques,
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Fig. 3. Related to Table 1: sorted num-
bers of backtracks (log10 scale y-axis) by
DepQBF, qbce-inp, and qbce-dyn on 262
instances solved by all three (x-axis).

changes the formula structure such that
dynamic QBCE (qbce-dyn) does not
pay off any more. Although RAReQS
solves 142 instances more, DepQBF
with dynamic QBCE solves 25 in-
stances not solved by RAReQS.

In additional experiments, we found
out that the actual selection of tech-
niques applied for preprocessing by Blo-
qqer has a considerable impact on the
number of instances solved by RAReQS
and DepQBF with dynamic QBCE
(qbce-dyn). Limited preprocessing is
beneficial for qbce-dyn whereas it has a
negative impact on RAReQS compared
to full preprocessing (Table 2). We pre-

processed the applications set by Bloqqer using only QBCE and expansion of
universal variables [3]. On this preprocessed set, RAReQS solves only 471 in-
stances compared to 547 with full preprocessing (Table 2). In contrast to that,
qbce-dyn solves 463 instances compared to 405 with full preprocessing. Hence
limited preprocessing reduces the gap between RAReQS and qbce-dyn from 142
(Table 2) to eight solved instances. This is due to the fact that RAReQS performs
worse with limited preprocessing than with full preprocessing.

In addition to solved instances, the benefits of dynamic QBCE are also
reflected by backtracks in QCDCL. DepQBF with dynamic QBCE backtracks



Solver Solved Unsat Sat Time

rareqs 547 314 233 379,916
qbce-dyn 405 201 204 624,719
no-qbce 390 205 185 651,909
qbce-inp 390 205 185 655,329
ghostq 350 176 174 739,294

Table 2. Like Table 1, but on the appli-
cations set of the QBF Gallery 2014 with
preprocessing by Bloqqer prior to solving.
No instance was solved in preprocessing.
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Fig. 4. Sorted run times (y-axis) of in-
stances (x-axis) related to Table 2.

less frequently than the other variants of DepQBF. Figure 3 illustrates the
numbers of backtracks on those 262 instances which were solved by all three
variants of DepQBF. The average (median) number of backtracks is 160,597
(3,119) by no-qbce, 133,919 (1,793) by qbce-inp, and 66,372 (350) by qbce-dyn.
We made similar observations when comparing only qbce-inp and qbce-dyn.

A comparison of no-qbce and qbce-dyn in Table 3 shows that dynamic QBCE
results in fewer redundant backtracks in QCDCL with respect to resolution proofs.
For example, when solving an unsatisfiable PCNF φ by QCDCL, we consider
backtracks from satisfiable subcases (i.e., R == SAT in Fig. 1) redundant because
these backtracks result in learned cubes. However, learned cubes are irrelevant to
the clause resolution proof of φ produced by QCDCL. On unsatisfiable instances,
the numbers of redundant backtracks by no-qbce and qbce-dyn differ by a factor
of 24 (54,078 vs. 2,199). These results indicate the potential benefits of generalized
model generation in QRES-GMG for deriving learned cubes to prune the search
space tackled by QCDCL. On satisfiable instances, the difference in redundant
backtracks is less pronounced (17,356 vs. 15,979).

We also ran experiments on the preprocessing and QBFLIB tracks of the
QBF Gallery 2014. Dynamic QBCE (qbce-dyn) does not pay off on the massively
preprocessed instances in the preprocessing track. There, RAReQS solves the
largest number of instances (107) and qbce-dyn solves 95 compared to 101 solved
by no-qbce and qbce-inp. On the QBFLIB track, both qbce-inp (108 solved)
and qbce-dyn (104) clearly outperform no-qbce (83) and RAReQS (80), where
GhostQ solves 139 instances. On the QBFLIB track with full preprocessing by
Bloqqer, the performance of qbce-dyn (131 solved), no-qbce (130), and qbce-inp
(129) is close to each other, where RAReQS solves 134 instances.

7 Conclusion

We presented dynamic blocked clause elimination (QBCE) in QCDCL-based
QBF solvers as an approach to overcome the bias towards unsatisfiability in



ALL (265) SAT (141) UNSAT (124)
T SB UB T SB UB T SB UB

no-qbce 181 59,044 103,080 81 63,412 17,356 295 54,078 200,557
qbce-dyn 80 22,805 42,969 51 40,927 15,979 114 2,199 73,660

Table 3. Related to Table 1: average run time in seconds (T) and number of backtracks
resulting from satisfiable (SB) and unsatisfiable (UB) subcases in QCDCL (i.e. R ==

UNSAT/SAT in Fig. 1) on instances solved by both DepQBF without QBCE (no-qbce)
and DepQBF with dynamic QBCE (qbce-dyn). Statistics are shown based on all solved
instances (265) and separately for solved satisfiable (141) and unsatisfiable (124) ones.

solving that is due to the CNF structure of QBFs. Thereby, QBCE is applied
eagerly to the QBF interpreted under the assignments generated in QCDCL.
Dynamic QBCE results in a variant of cube learning by QRES-GMG in QCDCL
which is exponentially stronger than the traditional variant.

On application instances, we observed a considerable performance boost
with dynamic QBCE—despite its computational overhead—in terms of solved
instances, run time, and backtracks. Without preprocessing, our approach out-
performs expansion-based QBF solving. Depending on the selection of techniques,
preprocessing may have a negative impact on the performance of dynamic QBCE
since formula structure is blurred. However, dynamic QBCE may improve the
performance of QCDCL solvers in workflows involving incremental solving, which
cannot yet be combined with full-scale preprocessing. Dynamic QBCE is compat-
ible with incremental solving, in contrast to expansion-based solving.

Our approach is extensible in that techniques other than QBCE like bounded
variable elimination or expansion can be applied dynamically for generalized
model generation. Further, dynamic QBCE can be readily combined with any
variant of Q-resolution like QU-resolution [24] and long-distance resolution [28]
as part of rule res in QRES-GMG. We also aim at combining our approach with
full generation of proofs and certificates.
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1. Ansótegui, C., Gomes, C.P., Selman, B.: The Achilles’ Heel of QBF. In: AAAI/IAAI.
pp. 275–281. AAAI Press / The MIT Press (2005)

2. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and
Perspectives. JSAT 5(1-4), 133–191 (2008)
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