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Abstract. Different quantifier types in Quantified Boolean Formulae
(QBF) introduce variable dependencies which have to be taken into con-
sideration when deciding satisfiability of a QBF. In this work, we focus on
dependencies based on syntactically connected variables. We generalize
our previous ideas for efficiently representing dependency sets of univer-
sal variables to existential ones. We obtain a dependency graph which
is applicable to arbitrary QBF solvers. The core part of our work is the
formulation and correctness proof of a static and compact, tree-shaped
connection relation over equivalence classes of existential variables. In
practice, this relation is constructed once from a given QBF and al-
lows to share connection information among all variables. We report on
practical aspects and demonstrate the effectiveness of our approach in
experiments on structured formulae from QBF competitions. Further, we
show by example that the common approach of quantifier scope analysis
is not optimal among syntactic methods for dependency computation.

1 Introduction

In the logic of Quantified Boolean Formulae (QBF), variables can be existen-
tially or universally quantified. This extends propositional logic (SAT), where
all variables are existentially quantified, and renders the decision problem of
QBF PSPACE-complete [26]. Whereas QBF is not more expressive than SAT,
relevant problems from formal verification [6, 11, 19] often can be encoded more
compactly in QBF than in SAT.

The two quantifier types in QBF introduce dependencies between differently
quantified variables. For example, if (the value of) an existential variable y de-
pends on (the value of) a universal variable x, then a search-based QBF solver
must not assign y before x to ensure soundness.

Example 1. In the satisfiable QBF ∀x∃y. (x∨¬y)∧ (¬x∨ y), y depends on x. If
erroneously y is assigned before x then satisfiability can not be concluded.

Dependencies limit the solver’s freedom to assign variables and thus influence
its performance negatively and complicate the integration of unit propagation
and learning as reported in [16–18, 21, 28]. The problem of determining smallest



possible dependency sets is therefore closely related to the practical applicabil-
ity of QBF solvers. This also applies to memory-bound solvers which eliminate
variables, for example by expansion [7, 8] or skolemization [5, 20].

Identifying dependencies in QBFs has been addressed in various ways in
previous approaches. Most QBF solvers process formulae in prenex conjunctive
normal form (PCNF), where all quantifiers occur in the quantifier prefix and the
quantifier-free part of the formula is in CNF. For example, in search-based solvers
like [10, 14, 28], dependencies are given by the total linear quantifier ordering in
the prefix. Strategies for converting QBFs into PCNF were suggested in [12] to
produce optimal prefixes with respect to the number of quantifier alternations.
As a more powerful approach, mini-scoping was used in [2] to minimize quantifier
scopes by shifting quantifiers from the prefix into the formula. Mini-scoping
results in a tree shaped dependency relation, which follows the formula structure.

By a similar approach in [4], syntactic quantifier trees were extracted from
a PCNF to be used instead of the linear prefix. In expansion-based solvers like
[7, 8], dependencies are identified by variable connections. A partial quantifier
ordering was derived in [18] by analyzing the quantifier scope structure in non-
PCNF formulae prior to conversion into PCNF. Again this results in a tree-
shaped prefix which leaves more freedom for choosing decision variables. The
same method can implicitly be applied in non-PCNF solvers [13]. All of these
approaches mentioned so far are based on syntactic analysis of the QBF.

Informally, y depends on x in a QBF if reordering the quantifiers of x and y
in the prefix changes satisfiability. For example, the formula in Ex. 1 becomes
unsatisfiable under the prefix ∃y∀x. Dependencies were formalized in [25] in
terms of dependency schemes. A dependency scheme for a QBF is a binary
relation D on the set of variables where (x, y) ∈ D if y depends on x. In practice,
D must be computed according to some strategy which influences the quality of
D. Trivially D could be defined to correspond to the prefix: (x, y) ∈ D if y occurs
to the right of x in the prefix and is quantified differently. Such trivial dependency
scheme is usually too restrictive. The goal is to minimize dependencies.

Since the problem of computing the optimal, that is the smallest, dependency
scheme is PSPACE-hard [25], a trade-off has to be found between efficiency (poly-
nomial time computation) and optimality (non-optimal over-approximation). In
this work we focus on dependency computation for QBFs in PCNF by the stan-
dard dependency scheme Dstd defined in [25], which is another syntactic ap-
proach based on variable connections [7, 8]. As we show, Dstd can be efficiently
represented as a compact graph. This first result gives a structural characteriza-
tion of the standard dependency scheme. We then show how this graph can be
constructed and give experimental results.

Before elaborating our ideas, we review dependency computation by mini-
scoping [2, 4] and point out two drawbacks compared to our approach using Dstd.
While considering QBFs in PCNF, we argue that our results can be extended to
QBFs with tree-shaped prefixes. Thus they are also applicable to solvers using
quantifier scope analysis [4, 13, 18]. Again, using a less restrictive (that is smaller)
dependency relation provides more flexibility.



E

b

E

c

A

x

E

A

y

E

b

E

a

d

E

A

E

E

A

E

c

x

a

b

y

d

E

A

E

A

E

c

x

a

y

d

Fig. 1. Two possible quantifier trees for the QBF ∃a, b∀x, y∃c, d. (a∨ x∨ c)∧ (a∨ b)∧
(b ∨ d) ∧ (y ∨ d) obtained by mini-scoping (left and middle) and dependencies by the
standard dependency scheme Dstd (right). See also Ex. 2 and 4.

1.1 Motivation

Mini-scoping was applied in various contexts as a syntactic method for depen-
dency computation [2, 4, 5, 7, 8, 12]. By rule (Qx. (φ∧ψ)) ≡ (Qx. φ)∧ψ where x 6∈
Var(ψ), Q ∈ {∀,∃}, quantifiers are shifted from the prefix into the formula. Their
scopes are reduced to a subset of clauses. This produces a syntactic quantifier
tree (parse tree) similar to [4]. For a quantifier tree and a variable x, all differently
quantified descendants of x are regarded as depending on x.

Example 2. Consider the QBF ∃a, b∀x, y∃c, d. (a∨x∨c)∧(a∨b)∧(b∨d)∧(y∨d).
Minimizing ∃c, ∃d, ∀x and ∀y yields ∃a, b. (∀x∃c. (a∨x∨c))∧(a∨b)∧(∀y∃d. (b∨
d)∧ (y∨d)). Now there is the non-deterministic choice whether to first minimize
∃a and then ∃b or vice versa. Fig. 1 shows the quantifier trees for the two alter-
natives. Dependency schemes resulting from the trees (left and middle) are Dl =
{(a, x), (x, c), (a, y), (b, y), (y, d)} and Dm = {(b, x), (a, x), (x, c), (b, y), (y, d)}.

Apart from non-determinism, which has already been reported in [4, 12, 13, 18],
mini-scoping as well as quantifier scope analysis [13, 18] is not optimal among
syntactic methods for dependency computation. At this point, we informally
introduce Dstd and report its advantage over mini-scoping and scope analysis.

The standard dependency scheme Dstd, which is the focus of our work, was
defined in [25] and is based on ideas from expansion-based solvers [7, 8]. Depen-
dencies are identified by analyzing connections between variables in a PCNF
over sequences of clauses as follows.

Definition 1 (X-path). For x, y ∈ V , where V is the set of variables in the
PCNF, and X ⊆ V , an X-path between x and y is a sequence C1, . . . , Ck of
clauses such that x ∈ C1, y ∈ Ck and Ci ∩ Ci+1 ∩X 6= ∅ for 1 ≤ i < k.

Example 3. For the formula from Ex. 2, there are X-paths between b and y for
X = {d} and clauses (b ∨ d) and (y ∨ d), and between a and y for X = {b, d}
and clauses (a ∨ b), (b ∨ d) and (y ∨ d).

Definition 2 (Dstd informally). (x, y) ∈ Dstd whenever x and y are quanti-
fied differently and there is an X-path between x and y where X is the set of
existential variables to the right of, but not adjacent to x in the quantifier prefix.



A correctness proof of Dstd is given in [25] and a formal definition in Def. 5.

Example 4. For the formula from Ex. 2, Dstd = {(a, x), (x, c), (b, y), (y, d)}.

Note that in Ex. 4 (a, y) 6∈ Dstd and (b, x) 6∈ Dstd, hence y does not depend on
a and x not on b by Dstd. By Def. 2, a and b are excluded from X, and there
are no X-paths for X = {c, d} between a, y and b, x in the QBF from Ex. 2.

Comparing dependencies from Ex. 2 and 4 shows a crucial difference between
mini-scoping or scope analysis and Dstd. Dependencies by Dstd can be strictly
less restrictive: no matter which of the two non-deterministically constructed
quantifier trees (Fig. 1) are taken for dependency computation, either (a, y) or
(b, x) is included in the resulting dependency set, but neither in Dstd. The same
applies to scope analysis like in [13, 18] because any tree-shaped prefix of non-
PCNF formulae can in principle be obtained by mini-scoping.

Because of non-determinism and more restrictive dependencies when using
mini-scoping or scope analysis, we focus on Dstd. Our motivation is two-fold.
First, we want to extract a static graph representation of Dstd from a QBF in
PCNF. By traversing clauses in a QBF φ, Dstd(x) for one variable x ∈ Var(φ)
can be computed in O(|φ|) time [25] where |φ| is the length of φ. However, com-
puting Dstd(x) for all variables x by the same approach requires O(|Var(φ)|.|φ|)
time. We construct a directed acyclic graph (DAG) for Dstd, which has the
same worst-case time complexity but can be done efficiently in practice. The
idea is similar to quantifier trees by mini-scoping [4] but does not suffer from
non-determinism and, as shown, results in a less restrictive dependency relation.

Example 5. Search-based solvers profit from Dstd because variables can be as-
signed earlier. In Fig. 1, both a and b have to be assigned before y (left tree)
and before x (middle). By Dstd (right), x and y can be assigned as soon as a,
respectively b has been assigned.

Second, we aim at compactness in practice. We take advantage of properties
of the connection relations from [7, 8] which allow to merge existential variables
into equivalence classes. A static connection relation over equivalence classes is
defined which is shared between all variables, thus contributing to compactness.

In this work, we extend our ideas from [22] to existential variables, thus
making our work applicable to arbitrary QBF solvers. We develop a formal
background for a graph representation of Dstd in Sec. 3 including proofs. Based
on this theoretical part, practical aspects concerning dependency computation
and graph construction are reported in Sec. 4. In Sec. 5, experimental results on
structured formulae demonstrate the effectiveness of our approach.

2 Preliminaries

For a set of propositional variables V , a literal is either a variable x ∈ V or its
negation ¬x where v(x) = x and v(¬x) = x denotes the variable of a literal.
A clause is a disjunction over literals. A propositional formula is in conjunctive
normal form (CNF) if it consists of a conjunction over clauses.



A quantified boolean formula (QBF) S1 . . . Sn. φ in prenex conjunctive normal
form (PCNF) consists of a propositional formula φ in CNF over a set of variables
V and a quantifier prefix S1 . . . Sn. The quantifier prefix is a linearly ordered set
of scopes Si where S1 < . . . < Sn, which forms a partition on the set of variables:
V = S1 ∪ . . . ∪ Sn where Si 6= ∅ and Si ∩ Sj = ∅ for 1 ≤ i, j ≤ n and i 6= j.

A scope Si is existential if it is associated with an existential quantifier,
written as q(Si) = ∃ and universal otherwise where q(Si) = ∀. The set of
existential and universal variables is denoted by V∃ =

⋃
Si for q(Si) = ∃ and

V∀ =
⋃
Si for q(Si) = ∀, respectively. For a variable x ∈ Si, s(x) = Si is the

scope of x and q(x) = q(s(x)) the type of x. For two adjacent scopes Si and Si+1

where 1 ≤ i < n, q(Si) 6= q(Si+1). Given a QBF with n scopes, there are n − 1
quantifier alternations.

For a scope Si and literal l, δ(Si) = i and δ(l) = δ(s(v(l))) denote the level
of Si and of l, respectively. For scopes Si, Sj and literals l, k, Sj is larger than
Si and k is larger than l if δ(Si) < δ(Sj) and δ(l) < δ(k), respectively.

Let R ⊆ V × V be a binary relation on the set of variables V . The reflexive
and transitive closure of R is the smallest reflexive and transitive R′ ⊆ V × V
such that R ⊆ R′. The reflexive and transitive reduction of R is the smallest
R′ ⊆ V × V such that R and R′ have the same reflexive and transitive closure.

In the following, we consider QBFs in PCNF where for all clauses C =
(l1 ∨ . . . ∨ lk), v(li) 6= v(lj) and δ(li) ≤ δ(lj) for 1 ≤ i < j ≤ k and q(v(lk)) = ∃.
A clause neither contains multiple nor complementary literals of one and the
same variable, all literals are sorted ascendingly according to their level and the
largest literal is existential. Universal reduction [7, 9] can be applied to remove
literals lk for which q(v(lk)) = ∀. Furthermore, we assume that there occurs at
least one literal for each x ∈ V in the formula.

3 Theoretical Background

The goal of our work is a compact graph representation of the standard depen-
dency scheme Dstd. In this section we pick up our ideas from [22]. We first define
a connection relation over equivalence classes of existential variables. A directed
and reduced variant of this relation is tree-shaped and, as we prove, can be
used for dependency computation by Dstd. For reasons of space and conciseness
we omit detailed proofs when appropriate. In definitions we explicitly state the
types of variables since this is crucial particularly for connection relations.

Definition 3. For x ∈ V , if q(x) = ∃ then q(x) = ∀ and q(x) = ∃ otherwise.

Definition 4. For a QBF and q ∈ {∃,∀}, Vq,i = {y ∈ Vq | δ(y) ≥ i}.
Definition 5 (Standard Dependency Scheme). For x ∈ V, i = δ(x) + 1 :
Dstd(x) = {y ∈ V

q(x),i
| there is an X-path between x and y for X = V∃,i}.

By setting i = δ(x) + 1 and X = V∃,i, universal variables as well as variables
from the scope of x are excluded from X as already informally in Def. 2. 1

1 The correctness proof of Dstd in [25] is given for i = δ(x) and, according to the
author’s remarks, also works when i = δ(x) + 1 as for our purposes.



i q(Si) Si (a2, e5, e9)
1 ∀ a1, a2 (e5, e9, e15)
2 ∃ e3, e4, e5 (e3, e8, e13)
3 ∀ a6, a7 (e4, a7, e10)
4 ∃ e8, e9, e10 (e4, e13, e14)
5 ∀ a11, a12 (a1, a6, e8, e14)
6 ∃ e13, e14, e15 (a11, a12, e13)

a1

e3

a2

e5e4

a6

e8 e10

a7

e9

a12

e14 e15

a11

e13

Fig. 2. QBF example. The table on the left shows the levels, quantifiers and variables
for each scope in the first three columns and clauses as lists of literals in the last column.
Variables and literals are uniquely identified by integers as in QDIMACS format [24].
Identifier prefixes “e” and “a” indicate types ∃ and ∀, respectively. The graph on the
right shows a compact representation of Dstd for the QBF (see also Ex. 10).

Example 6. For the QBF in Fig. 2, e13 ∈ Dstd(a1) by clauses (a1, a6, e8, e14)
and (e3, e8, e13), and X = V∃,2 = {e3, e4, e5, e8, e9, e10, e13, e14, e15}.

Different from [7, 8, 25], the following definition of connections is scope-aware.

Definition 6 (Connection). For x, y ∈ V , x is connected to y with respect to
scope Si, written as x→i y, if, and only if y ∈ V∃,i and there is a clause C such
that x ∈ C and y ∈ C. →∗i denotes the reflexive and transitive closure of →i.

Relation →∗i is defined with respect to some scope Si: if x →∗i y, then x is
connected to y over existential variables from scopes larger than or equal to Si

only. There is a close correspondence between X-paths and →∗i .

Corollary 1. For x, y ∈ V , if x →∗i y, then there is an X-path between x and
y for X = V∃,i.

Due to Def. 6 the converse of Cor. 1 does not hold in general. For example, if
there is an X-path between x ∈ V∃ and y ∈ V∀ then x 6→∗i y for all i. A weaker
variant can be stated as follows.

Corollary 2. For x ∈ V, y ∈ V∃, if there is an X-path between x and y for
X = V∃,i and i ≤ min(δ(x), δ(y)), then x→∗i y.

Connections with respect to a scope Sj are preserved for any smaller scope Si.

Corollary 3. For x, y ∈ V, i ≤ j : if x→∗j y, then also x→∗i y.

For proper values of i, connections between existential variables are symmetric
because X-paths resulting from Cor. 1 can be reversed.

Lemma 1. For x, y ∈ V∃ and i ≤ min(δ(x), δ(y)) : if x→∗i y then y →∗i x.

Example 7. For the QBF in Fig. 2, e3 →4 e8 but e3 6→5 e8, e8 →6 e14 and by
Cor. 3 also e8→1 e14, further e3→∗2 e14 and by Lem. 1 e14→∗2 e3.



As a first step towards a compact representation of Dstd we want to take advan-
tage of situations where two variables can be regarded as equivalent.

Definition 7 (Equivalence). For x, y ∈ V , x is equivalent to y, written as
x ≈ y, if, and only if either (1) x = y or (2) q(x) = q(y) = ∃, δ(x) = δ(y) = i
and x→∗i y.

Variables x and y are equivalent if x = y or both are from the same existential
scope Si and are connected by existential variables larger than or equal to Si.

Theorem 1. ≈ is an equivalence relation. For x ∈ V , [x] is the class of x.

Proof. Reflexivity is trivial since x ≈ x for x ∈ V by Def. 7. If not q(x) =
q(y) = ∃ then by Def. 7 x ≈ y if, and only if x = y. Since = is an equivalence
relation, symmetry and transitivity of ≈ follow immediately. Otherwise, assume
q(x) = q(y) = ∃. If x ≈ y and x = y, then also y ≈ x by Def. 7. If x ≈ y and
x 6= y then by Def. 6 and Def. 7 δ(x) = δ(y) and x →∗i y for i = δ(x) = δ(y).
Then by Lem. 1 also y →∗i x and hence y ≈ x. Therefore ≈ is symmetric. To
show transitivity, assume x ≈ y′ and y′ ≈ y for y′ ∈ V . Then more precisely
y′ ∈ V∃ (because otherwise x 6≈ y′ and y′ 6≈ y) and by Def. 7 also x →∗i y′,
y′ →∗i y for i = δ(x) = δ(y′) = δ(y) and q(x) = q(y′) = q(y). By x →∗i y′,
y′ →∗i y and transitivity of →∗i , also x→∗i y, hence x ≈ y. ut

Example 8. For the QBF in Fig. 2: e3 ≈ e4 since q(e3) = q(e4) = ∃, δ(e3) =
δ(e4) = 2 and e3 →∗2 e4 by e3 →2 e8 →2 e14 →2 e4. Also e13 ≈ e14 since
e13→6 e14 but e5 6≈ e4 because e5 6→∗2 e4. Trivially a11 ≈ a11 and e3 6≈ e14.

Relation →∗i is compatible with ≈: if two variables are connected then so are all
members of their respective classes and vice versa as stated in Lem. 2.

Lemma 2. Let x, y ∈ V, i ≤ min(δ(x), δ(y)). Then x →∗i y if, and only if
x′ →∗i y′ for all x′ ∈ [x], y′ ∈ [y].

Proof. The proof works regardless of the types of x and y by Def. 6 (reflexivity
of→∗i ), Cor. 3 and Def. 7. Trivial cases arise for V∀. Assume x→∗i y for x, y ∈ V
and i ≤ min(δ(x), δ(y)). Then for x′ ∈ [x], y′ ∈ [y], x′ →∗i x and y →∗i y′ by
Cor. 3 and Def. 7. Since x′ →∗i x, x→∗i y (by assumption), y →∗i y′, also x′ →∗i y′
by transitivity of→∗i . The other direction can be shown similarly by Lem. 1. ut

When regarding [x] as an arbitrary class member, we may write, for example,
[x]→∗i [y] by Lem. 2. This notation denotes connections between classes.

Lem. 2 would not hold for arbitrary values of i. For example, if δ(x) < i then
x 6→∗i x′ for x′ ∈ [x], which contradicts Def. 7. The following variant of Lem. 2
does not refer to [x] and holds for arbitrary values of i.

Lemma 3. Let x, y ∈ V with δ(x) ≤ δ(y). Then x→∗i y if, and only if x→∗i y′
for all y′ ∈ [y].

Example 9. For the QBF in Fig. 2, e3 ≈ e4, e10 ≈ e10, where [e10] is a singleton
class, and e4 →∗2 e10 because e4 →2 e10. By Lem. 2, also e3 →∗2 e10 because
e3→2 e8→2 e14→2 e4→2 e10.



Besides considering classes in →∗i by Lem. 2, the following relation additionally
allows to share information about connections, which is pointed out in Sec. 4.1.

Definition 8 (Directed Connection). ;∗ denotes the directed connection
relation. For x ∈ V, y ∈ V∃, [x] ;∗ [y] if, and only if, δ(x) ≤ δ(y) and x →∗i y
for i = δ(x). The reflexive and transitive reduction of ;∗ is denoted by ;.

Corollary 4. For x, y ∈ V : if [x] ;∗ [y] then either [x] = [y] or δ(x) < δ(y).

Relation ;∗ is defined on classes only and respects the scope ordering. If [x] ;∗

[y] then variables smaller than x are excluded in the connection between x and
y. By Cor. 4, if [x] ;∗ [y] then either x and y are in the same class or in different
classes but from different scopes. We now prove that our definitions can be used
to compute Dstd.

Theorem 2 (Dependency Computation). For x ∈ V, i = δ(x) + 1 :

Dstd(x) = {y ∈ V
q(x),i

| ∃w ∈ V∃,i : x→∗i w and y →∗i w} (1)

= {y ∈ V
q(x),i

| ∃w ∈ V∃,i : x→∗i [w] and [y]→∗i [w]} (2)

= {y ∈ V
q(x),i

| ∃w ∈ V∃,i : x→∗i [w] and [y] ;∗ [w]} (3)

Proof. Equivalence of left (LHS) and right-hand sides (RHS) of Eqn. 1 to 3.

– LHS(1) = RHS(1): Assume X-path P between x and y by clauses C1, . . . , Ck

where y ∈ V
q(x),i

. P can be split into P1 between x,w for clauses C1, . . . , Cj

where w ∈ Cj , 1 ≤ j ≤ k,w ∈ V∃,i and P2 between w, y by clauses Cj , . . . , Ck.
By P1 and Cor. 2 also x→∗i w and by reversing P2 and Cor. 2, also y →∗i w
and hence y ∈ RHS(1). For the other direction, assume x→∗i w and y →∗i w.
Then by Cor. 1, there are X-paths P1 between x,w and P2 between y, w for
X = V∃,i. An X-path P between x, y can be constructed by combining P1

with reversed P2, thus y ∈ LHS(1).
– RHS(1) = RHS(2): Assume x →∗i w and y →∗i w. Since w ∈ V∃,i, also
δ(x) ≤ δ(w) and hence by Lem. 3 and Def. 7 also x→∗i [w]. Further, because
i ≤ δ(y) and i ≤ δ(w) and hence i ≤ min(δ(y), δ(w)), also [y] →∗i [w] by
Lem. 2 and Def. 7. Since x →∗i [w] and [y] →∗i [w], also y ∈ RHS(2). For
the other direction, assume x →∗i [w] and [y] →∗i [w]. Similar arguments
apply to derive x →∗i w and y →∗i w by Lem. 2, Lem. 3 and Def. 7. Hence
y ∈ RHS(1).

– RHS(2) = RHS(3): Assume x →∗i [w] and [y] →∗i [w]. Since LHS(1) =
RHS(1) = RHS(2), there is an X-path P between x, y for X = V∃,i and
clauses C1, . . . , Ck where y ∈ Ck. Let l denote the largest literal in Ck. By
assumptions in Sec. 2, v(l) ∈ V∃ and more precisely δ(y) ≤ δ(l) (if q(y) = ∀
then δ(y) < δ(l)). Assume that w = v(l). Then δ(y) ≤ δ(w). By y, w ∈ Ck

also y →j w for j = δ(y) and y →∗j w by Def. 6. By y →∗j w and δ(y) ≤ δ(w)
also [y] ;∗ [w]. Since x →∗i [w] and [y] ;∗ [w] also y ∈ RHS(3). For the
other direction, Def. 8, Cor. 3 and Lem. 2 apply. ut



4 Practical Application

In Thm. 2, Eqn. 1 is similar to computation by X-paths in Def. 5, Eqn. 2 refers
to classes rather than individual variables, which is already an improvement. The
step from Eqn. 2 to Eqn. 3 is the most interesting one for practical applications,
yet this is not apparent from theory. Since ;∗ is directed, it restricts the set
of classes to be considered when connections of a variable are determined. In
practice this contributes to compactness in addition to equivalence classes. In
this section we first examine properties of ;∗ over existential variables which
allow to efficiently represent its reflexive and transitive reduction ; as a tree.
This tree can be shared between all variables and is the basis for a graph data-
structure representing Dstd.

4.1 A Tree-Shaped Representation of ;

Since ;∗ is directed by Def. 8 and hence also antisymmetric and acyclic, its
transitive reduction ; is unique [1]. The following lemma states a property of
;∗ which accounts for the tree structure of ;.

Lemma 4. Let x, y, z ∈ V∃ where δ(x) ≤ δ(y). If [x] ;∗ [z] and [y] ;∗ [z] then
[x] ;∗ [y].

Proof. Assume [x] ;∗ [z] and [y] ;∗ [z] where δ(x) ≤ δ(y). Then by Def. 8,
x→∗i z for i = δ(x) and y →∗j z for j = δ(y) and δ(x) ≤ δ(y) ≤ δ(z). By Cor. 3
also y →∗i z and by Lem. 1 z →∗i y. By Def. 6, x→∗i z and z →∗i y, also x→∗i y
and [x] ;∗ [y]. ut

If [x] ;∗ [z] and [y] ;∗ [z] for existential variables x, y, z and δ(x) ≤ δ(y) then
by Lem. 4 [x] ;∗ [z] is transitive. As a consequence [x] 6; [z]: at most one class
is related to another one in ;. Hence ; can directly be represented as a forest,
that is a collection of trees.

Definition 9 (Connection Forest). The connection forest (c-forest) for a
QBF with m existential scopes is a collection of trees over V∃ with respect to ≈
with the following properties:

1. For x, y ∈ V∃ : there is an edge ([x], [y]) if, and only if [x] ; [y].
2. For x, y ∈ V∃ : there is a path from [x] to [y] if, and only if [x] ;∗ [y].
3. The maximum length (number of edges) of a path is m− 1 (by Cor. 4).

4.2 Dependency Computation by Connection-Forests

The c-forest represents directed connections between existential variables. To
compute Dstd(x) for arbitrary x ∈ V , a set of proper classes has to be found
in the c-forest which exactly denote all connections of x to larger existential
variables. Classes in such a set must be connected to x and be minimal with
respect to the scope ordering since edges in the c-forest are directed. Descendants
of such classes in the c-forest then comprise all connections of x by ;∗.



Definition 10 (Smallest Ancestor). For y ∈ V∃, i ≤ δ(y) and the c-forest,
let h(i, [y]) = [y′] such that y′ ∈ V∃,i, [y′] ;∗ [y] and there is no y′′ ∈ V∃,i with
i ≤ δ(y′′) < δ(y′) and [y′′] ;∗ [y].

Class h(i, [y]) is the smallest ancestor of [y] which is larger than or equal to Si,
hence h(i, [y]) is minimal with respect to Si and the scope ordering.

Definition 11 (Descendants). For x ∈ V and the c-forest, the set of descen-
dants H∗i (x) with respect to scope Si is defined as follows:

1. VC,i(x) := {[y] | y ∈ V∃,i and x→i y}
2. Hi(x) := {[z] | [z] = h(i, [y]) for [y] ∈ VC,i(x)}
3. H∗i (x) := {[y] | [z] ;∗ [y] for [z] ∈ Hi(x)}

From clauses containing x, classes of existential variables larger than or equal
to Si are collected in VC,i(x). Hi(x) contains smallest ancestors with respect to
Si for classes in VC,i(x). H∗i (x) comprises descendants of classes in Hi(x) and
represents all connections of x to existential variables larger than or equal to Si.

Corollary 5. For x ∈ V : if [y] ∈ H∗i (x) then x→∗i y.

For x ∈ V , H∗i (x) exactly characterizes connections of x to existential vari-
ables. This is sufficient for computing Dstd(x). Informally, there is a dependence
between two differently quantified variables if their sets of descendants in the
c-forest are not disjoint.

Theorem 3 (Dependency Computation). For x ∈ V, i = δ(x) + 1 :
Dstd(x) = {y ∈ V

q(x),i
| H∗i (x) ∩H∗j (y) 6= ∅ for j = δ(y)}.

Proof. Assume x ∈ V and i = δ(x) + 1. Direction ⊇ follows right from Def. 11,
Cor. 5, Cor. 3 and Thm. 2. To show ⊆, assume y ∈ Dstd(x). Then there is an
X-path P between x, y for X = V∃,i. Hence there are clauses C1, . . . , Ck where
y, yk ∈ Ck for some yk ∈ V∃,i with δ(y) ≤ δ(yk). Such yk always exists since
by assumption the largest literal in a clause is existential. 2 Then P is also an
X-path between x and yk by C1, . . . , Ck and hence x →∗i yk and δ(x) < δ(yk)
since i ≤ δ(yk), i = δ(x) + 1. We show that [yk] ∈ H∗i (x) ∩H∗j (y) for j = δ(y).

Since y, yk ∈ Ck by P , also [yk] ∈ VC,j(y). Then [z′] ∈ Hj(y) where [z′] =
h(j, [yk]) for j = δ(y). By Def. 10, [z′] ;∗ [yk], hence [yk] ∈ H∗j (y).

Since P connects x and yk, also x, y1 ∈ C1 for some y1 ∈ V∃,i. Thus [y1] ∈
VC,i(x) and [z1] ∈ Hi(x) for [z1] = h(i, [y1]). Then by Def. 10, [z1] ;∗ [y1].
P is also an X-path between y1 and yk by C1, . . . , Ck, hence y1 →∗i yk and
δ(x) < δ(y1), δ(x) < δ(yk). Let w denote the smallest connecting variable in P
between y1, yk: m = δ(w) = min({δ(v) | v ∈ Ci ∩ Ci+1 ∩X, 1 ≤ i < k}). Since
m is minimal, also y1 →∗m w, w →∗m yk and by Lem. 1 w →∗m y1. By Def. 8
and since m = δ(w), also [w] ;∗ [y1], [w] ;∗ [yk]. By Lem. 4, [z1] ;∗ [y1] and
[w] ;∗ [y1], also [z1] ;∗ [w]. Then by [z1] ;∗ [w], [w] ;∗ [yk] and transitivity
also [z1] ;∗ [yk], hence [yk] ∈ H∗i (x) because [z1] ∈ Hi(x). ut

In contrast to Thm. 2, practical application follows right from Thm. 3. For a
QBF, dependencies can be identified by checking descendants in the c-forest.
2 If x ∈ V∀ then y ∈ V∃ and we may choose yk = y.



4.3 A Graph Representation of Dstd

We describe a static graph representation of Dstd for a given QBF which is
compact in practice. Representing each pair (x, y) ∈ Dstd as a separate edge
yields a graph with |V |2 edges in the worst case. Instead, this can often be
avoided by building the c-forest once and inserting edges as follows.

First, if x ∈ V∀ then by Thm. 3 any member y′ of a class [y] ∈ H∗i (x) for
i = δ(x) + 1 depends on x (see also Thm. 3 in [22]). Thus the c-forest and
set Hi(x) compactly represent Dstd(x) (see also Ex. 10). In the graph Hi(x) is
represented as edges from class [x], which is singleton by Def. 7, to classes in
the c-forest. After Hi(x) for all x ∈ V∀ have been determined, universal classes
[y1], [y2] are merged whenever Hj(y1) = Hj(y2) for j = δ(y1)+1 = δ(y2)+1 and
either Hj(y1) or Hj(y2) is discarded. This reduces the number of edges in the
graph. Such merging does not correspond to ≈ but is applied as post-processing.

Second, if x ∈ V∃ then edges for y ∈ Dstd(x) need to be inserted explicitly in
the graph. For x ∈ V∃ and descendant [y′] ∈ H∗i (x) where i = δ(x) + 1, there is
an edge from variable x to [y] for y ∈ V∀,i if [y′] ∈ Hj(y) for j = δ(y) + 1. This
amounts to checking descendants in H∗i (x) and sets Hj(y) for y ∈ V∀,i. Since
universal classes have been merged before, again the number of inserted edges
is reduced. Edges corresponding to transitive dependencies are discarded.

Example 10. In the graph in Fig. 2, boxes denote class representatives. Dotted
vertical pointers like from [e3] to [e8] correspond to ; and denoted edges in the
c-forest, dotted horizontal edges like between e13 and e14 connect class members
and solid vertical pointers indicate dependencies. The classes of a11 and a12 have
been merged in post-processing. The dependency e15 ∈ Dstd(a2) is represented
implicitly by the pointer from [a2] to [e5] and the path from [e5] to [e15]. Also
e13 ∈ Dstd(a11) by the pointer from [a12] to [e14] and a11 ∈ Dstd(e8) by the
pointer from [e8] to [a12]. Further a7 ∈ Dstd(e4) by the pointer from e4 to [a7],
but a7 6∈ Dstd(e3) since [e10] 6∈ H∗3 (e3).

5 Experimental Results

We have implemented a tool which constructs the graph representing Dstd for
a given QBF as described in Sec. 4.3. Tab. 1 shows experimental results with
conclusions. In a first pass over the clauses, the c-forest is incrementally built by
maintaining relation ; whenever pairs of existential literals l1, l2 are encountered
in a clause. Additionally, sets Hi(x) for x ∈ V, i = δ(x)+1 are updated for literal
pairs l1, l2 where v(l1) = x, δ(l1) < δ(l2) and either q(v(l1)) = q(v(l2)) = ∃ or
q(v(l1)) = ∀ and q(v(l2)) = ∃. An efficient union-find data structure [27] is used
to represent classes. In subsequent passes over the c-forest for x ∈ V∃, pointers
representing dependencies of existential variables are inserted.

By using the c-forest over equivalence classes as basis for the graph of Dstd,
both time and memory requirements are kept small. For a given QBF φ, the
graph can be constructed in O(|V |.|φ|) time and O(|V |2) space, when keeping
edges for transitive dependencies. We observed that time required for removing



QBFEVAL’05 QBFEVAL’06 QBFEVAL’07 QBFEVAL’08

size 211 216 1136 3328

total time 7.94 1.35 227.05 300.31
max. time 0.58 0.03 7.96 8.11
avg. time 0.04 0.01 0.2 0.09

x ∈ V∀
max. |Dstd(x)| 256535 9993 2177280 2177280

avg. |Dstd(x)| 82055.87 4794.60 33447.6 19807

max. |Hi(x)| 256 1 518 518
avg. |Hi(x)| 3.26 0.98 2.02 1.14

max. |H∗i (x)| 797 5 797 1872
avg. |H∗i (x)| 19.51 1.12 39.06 8.24

avg. |{[y]∈Dstd(x)}|
|{y∈Dstd(x)}| 3.44% 0.04% 6.42% 1.21%

classes per variables 28.2% 10.23% 40.31% 21.29%

x ∈ V∃
max. |Dstd(x)| 5040 440 5040 22696

avg. |Dstd(x)| 12.76 2.98 3.24 4

max. |Hi(x)| 24 7 490 490
avg. |Hi(x)| 0.14 0.13 0.17 0.13

max. |H∗i (x)| 797 7 797 1872
avg. |H∗i (x)| 5.16 0.16 1.32 1.31

avg. |{[y]∈Dstd(x)}|
|{y∈Dstd(x)}| 2.37% 0.4% 2.76% 2.09%

classes per variables 10.96% 4.99% 11.45% 7.11%

Table 1. Experimental results on publicly available, structured (“fixed” class) in-
stances from QBF competitions 2005 to 2008 [15]. We did not include random instances.
Experiments were run on 64-bit Ubuntu Linux 8.04, Intel R© Q6700 at 2.66 GHz and
8 GB of memory. For reference, statistical data and a binary of our tool are available
from http://fmv.jku.at/qdag/. For all formulae in the sets the graph for Dstd has
been built (see also Sec. 4.3 and 5 for comments on graph construction). The first line
shows the numbers of formulae per set. Total run time, maximum over all formulae and
average per formula are reported in seconds. Statistics are divided into two sections for
existential and universal variables, respectively, and always i = δ(x)+1. Maximum and
average number of dependencies by Dstd over all variables are shown. Compactness of
the graph is indicated several times. For x ∈ V∀ classes in H∗i (x), which are reachable by
ancestors in Hi(x), efficiently represent Dstd(x). This becomes apparent when compar-
ing |Hi(x)|, |H∗i (x)| and |Dstd(x)|. For x ∈ V∃, |Hi(x)| and |H∗i (x)| measure the effort
for inserting dependency pointers since, starting from classes in Hi(x), descendants in
H∗i (x) are visited. Further, the average number of dependency classes per dependency

for all x ∈ V∀ and x ∈ V∃, denoted by line |{[y]∈Dstd(x)}|
|{y∈Dstd(x)}| , is small. Note that classes

result from ≈ for x ∈ V∃ and from post-processing for x ∈ V∀. The worst-case is 100%,
where each dependency is in a singleton class. This is clearly not the case. The last
line in each section shows the average number of classes per variable in each formula.
Again, values are far below 100%, hence many variables can be regarded as equivalent.



transitive dependencies is negligible. As the results in Tab. 1 indicate, we achieve
compaction of up to two orders of magnitude compared to a graph of Dstd over
variables rather than classes. This is due to the fact that connection information
is shared between variables in the c-forest. To increase confidence in our imple-
mentation, we have run random tests and tests on formulae from Tab. 1 where
we compared dependencies resulting from the graph to those from Def. 5.

6 Conclusion

Using less restrictive dependency schemes than those obtained from mini-scoping
or scoping information readily available in structural formulae has the potential
to boost performance of QBF solvers considerably. We gave a structural charac-
terization of the simplest such formulation, based on the standard dependency
scheme. The standard dependency scheme has so far only been applied in expan-
sion based QBF solvers and preprocessing algorithms. As next step we want to
incorporate our dependency analysis into search-based solvers, which currently
are restricted to use tree-shaped prefixes. In a search-based solver it is prohibitive
to recompute the dependency relation at each decision point. This also applies
to static dependency representations based on mini-scoping such as quantifier
trees [4]. As quantifier trees, our compact graph representation can be used as a
precomputed approximation of actual dependencies. This can also be beneficial
for expansion-based solvers.

Even though our algorithms can easily be extended to work on CNF with
a tree-shaped prefix, it is not clear at this point how dependencies of variables
introduced to encode structural QBF into CNF can be eliminated in order to
lift our arguments to arbitrary structural QBF. This would also give us a way
to experimentally show that less restrictive dependency schemes are useful for
structural QBF solvers as well. As alternative one can try to generalize the
concept of dependency schemes to structural formulas. Furthermore, we want
to apply similar ideas to more advanced dependency schemes. Finally, we would
like to thank Marko Samer for fruitful discussions on dependency schemes.
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