
Integrating Dependency Schemes in
Search-Based QBF Solvers

Florian Lonsing and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at/

Abstract. Many search-based QBF solvers implementing the DPLL al-
gorithm for QBF (QDPLL) process formulae in prenex conjunctive nor-
mal form (PCNF). The quantifier prefix of PCNFs often results in strong
variable dependencies which can influence solver performance negatively.
A common approach to overcome this problem is to reconstruct quanti-
fier structure e.g. by quantifier trees. Dependency schemes are a gener-
alization of quantifier trees in the sense that more general dependency
graphs can be obtained. So far, dependency graphs have not been ap-
plied in QBF solving. In this work we consider the problem of efficiently
integrating dependency graphs in QDPLL. Thereby we generalize re-
lated work on integrating quantifier trees. By analyzing the core parts of
QDPLL, we report on modifications necessary to profit from general de-
pendency graphs. In comprehensive experiments we show that QDPLL
using a particular dependency graph, despite of increased overhead, out-
performs classical QDPLL relying on quantifier prefixes of PCNFs.

1 Introduction

The satisfiability problem of quantified boolean formulae (QBF) is the canon-
ical PSPACE-complete decision problem. QBF often allows many practically
relevant-problems from the domains of model checking or automated planning
to be encoded succinctly. As propositional logic (SAT), which is widely applied
for modelling NP-complete problems in practice, QBF requires efficient and scal-
able decision procedures to be accepted for practical application.

Many QBF solvers process formulae in prenex conjunctive normal form
(PCNF), hence QBF encodings of problems have to be converted into PCNF
first. Such conversion often comes with a loss of structural properties of the
original formula. This can influence solver performance negatively.

Structure can be partially recovered to tackle this problem. A special case
in this respect is the analysis of quantifier structure in QBFs, either before [8,
16] or after [2] conversion to PCNF. Such approaches allow a QBF solver to
overcome the restrictions of linear quantifier prefixes in PCNFs to some extent.
This applies to search- and elimination-based solvers, e.g. [4, 7, 12, 19, 20, 28, 32].

Exploiting tree-shaped quantifier structure is well-known and has been ap-
plied in different contexts. This can be achieved either by reconstructing quanti-
fier trees from PCNFs [2], which is closely related to minimizing quantifier scopes

by miniscoping [1], or by analyzing tree structure present in non-PCNF formulae
as e.g. in [8, 16]. The latter corresponds to directly considering the parse tree of
a formula and can be integrated in non-PCNF solvers such as [9, 18, 28].

Dependency schemes [30] based on [4, 5], which are relations over variables,
can be regarded as a generalization of tree-shaped quantifier structure. Given a
dependency scheme D, a variable x is associated with all the variables y that
“depend” on x with respect to D. Informally, if y depends on x, i.e. y ∈ D(x),
then the result obtained from assigning y before x in a search-based solver may
not be sound in general. Quantifier prefixes of PCNFs as well as quantifier trees
fit into that framework since dependency schemes can be obtained from the prefix
or the tree, respectively. Sophisticated dependency schemes were introduced in
[30], all of which can be computed efficiently by syntactically analyzing PCNFs.

1.1 From Quantifier Trees to Dependency Graphs

A well-known drawback when reconstructing quantifier trees in PCNFs is non-
determinism [2, 8, 9, 16]. This is related to preferring some variable over another,
which can result in different trees and hence in different sets of dependencies.

E

b

E

a
E

c

A

x

E

A

y

d

E

A

E

E

A

E

c

x

a

b

y

d

Fig. 1. Quantifier trees for the PCNF ∃a, b∀x, y∃c, d. (a∨b)∧(a∨x∨c)∧(b∨c)∧(b∨y∨d).
Minimizing the scope of ∃a in the left tree yields the tree on the right. See also Ex. 1.

Example 1. Consider the PCNF ∃a, b∀x, y∃c, d. (a ∨ b) ∧ (a ∨ x ∨ c) ∧ (b ∨ c) ∧
(b∨y∨d). Minimizing the scopes of ∃c,∃d,∀x and ∀y is deterministic and yields
∃a, b.(a ∨ b) ∧ (∀x∃c.(a ∨ x ∨ c) ∧ (b ∨ c)) ∧ (∀y∃d.(b ∨ y ∨ d)). Now there is the
non-deterministic choice of whether to first minimize ∃a and then ∃b (right tree
in Fig. 1) or vice versa (left tree in Fig. 1). Note that the left tree induces a
dependency between a and y which is not the case in the right tree. Further, the
left tree can be transformed into the tree on the right by first swapping ∃a and
∃b according to the rule ∃a∃b.φ ≡ ∃b∃a.φ and then minimizing ∃a.

In addition to the problem described in Ex. 1, analyzing tree-shaped quanti-
fier structure in general is not optimal among syntactic methods for structure
analysis. This applies to reconstructed quantifier trees as well as considering tree-
shaped structure present in non-PCNFs. For example, the standard dependency
scheme Dstd [30] is superior to tree-based approaches since it is deterministic

and yields less dependencies. 1 This was pointed out in Ex. 2 in [24]. Dstd can be
efficiently constructed by analyzing connections between variables over clauses.

For those reasons and given the drawbacks of tree-shaped quantifier struc-
ture, we suggest to apply the more general concept of dependency schemes for
analyzing quantifier structure in PCNFs. Similar to quantifier trees, which have
already been implemented in QBF solvers, we apply directed acyclic dependency
graphs (DAGs) in QBF solving. This generalizes quantifier trees. Dependency
DAGs can be obtained from dependency schemes such as the ones introduced
in [30]. When integrating dependency DAGs in QBF solvers, the drawbacks of
tree-shaped quantifier structure as pointed out above can be overcome.

The core parts of our work presented here are as follows. We focus on search-
based QBF solvers for PCNF which implement the DPLL algorithm for QBF [7]
(QDPLL) with learning like [12, 32, 33]. By considering the main parts of QD-
PLL such as boolean constraint propagation, decision making or learning, we
show how to integrate dependency DAGs into QDPLL in order to profit from
dependency schemes in practice (Sec. 3 and 4). This analysis is closely related
to [16] which aims at exploiting tree-based quantifier structure in QDPLL. Our
work generalizes observations made in [16] to arbitrary dependency schemes.
Further we address implementation-related issues indispensable for practical ef-
ficiency of dependency DAGs. Although we focus on PCNF and QDPLL, our
results are, just as quantifier trees, relevant for any QBF solver.

We provide a comprehensive experimental evaluation (Sec. 5) of dependency
DAGs in practice. For this purpose we have implemented QDPLL with learning
in a new QBF solver DepQBF [23] which tightly integrates dependency DAGs.
We analyze the costs of moving from relatively simple structures like linear
quantifier prefixes of PCNFs or trees to more general dependency DAGs. This
is closely related to practical applicability. Finally, we evaluate dynamic effects
on QDPLL when using dependency DAGs for different dependency schemes.

In DepQBF we implemented a common framework for dependency DAGs
which can represent linear quantifier prefixes and trees as well, thus enabling
us to compare these approaches. Apart from that, we have implemented Dstd

as suggested in [30]. The remarks on how to profit from dependency schemes in
QDPLL (Sec. 4) are general and hold independently from our implementation.

We show in experiments (Sec. 5) that, despite increased overhead, QDPLL
with a DAG representation of Dstd outperforms QDPLL relying on quantifier
prefixes and trees. Our results indicate the potential of using dependency schemes
in QDPLL in terms of more powerful rules for detecting unit literals and learning.

2 Preliminaries

For a set of propositional variables V , a literal is either a variable x ∈ V or its
negation ¬x where v(x) = x and v(¬x) = x denotes the variable of a literal. A
clause (cube) is a disjunction (conjunction) over literals. A propositional formula
1 Note that here we ignore variable polarities in dependency analysis. Otherwise, quan-

tifier trees would have to be compared to the polarity-aware triangle scheme D4 [30].

is in conjunctive normal form (CNF) if it consists of a conjunction over clauses. A
quantified boolean formula (QBF) F = S1 . . . Sn. φ in prenex conjunctive normal
form (PCNF) consists of a propositional formula φ in CNF over a set of variables
V and a quantifier prefix S1 . . . Sn. The quantifier prefix is a linearly ordered set
of scopes Si forming a partition on V . A scope Si is existential (q(Si) = ∃) if it
is associated with an existential quantifier and universal (q(Si) = ∀) otherwise.
For scopes Si and Si+1, q(Si) 6= q(Si+1) for 1 ≤ i < n. The set of existential
and universal variables is denoted by V∃ =

⋃
Si for q(Si) = ∃ and V∀ =

⋃
Si

for q(Si) = ∀. For a literal x with v(x) ∈ Si, q(x) = q(Si) is the type of x. For a
clause (cube) C and Q ∈ {∀,∃}, LQ(C) := {l ∈ C | q(l) = Q}. For literals l, k
with v(l) ∈ Si and v(k) ∈ Sj , l ≤ k if, and only if i ≤ j for 1 ≤ i, j ≤ n.

3 Dependency Schemes in Theory

Due to space limitations, we introduce dependency schemes only informally and
refer to the original definition in [30]. As we focus on QDPLL with learning [12,
22, 32, 33] (see Sec. 4.1), we confine the theoretical framework in that respect.

Definition 1. For a PCNF F , a dependency scheme is a relation D ⊆ ((V∃ ×
V∀)∪(V∀×V∃)) with the following property when applied in QDPLL: for variables
x and y with y 6∈ D(x), the result of QDPLL when assigning y before x will be
sound. The inverse of D is D := {(y, x) | (x, y) ∈ D}.

Def. 1 is related to the semantical evaluation of a QBF by QDPLL and corre-
sponds to cumulative dependency schemes as defined in [30], which guarantees
soundness of assigning y before x if y 6∈ D(x). It is based on independence
(y 6∈ D(x)), rather than dependence (y ∈ D(x)). In practice, independence be-
tween x and y with respect to D allows y to be assigned earlier. Consequently, if
y ∈ D(x) then the result of QDPLL when assigning y before x as a decision vari-
able is not sound in general2. At the same time it is not always unsound. This
is due to different amounts of independence identified by different dependency
schemes. For a PCNF there could be dependency schemes D and D′ such that
y ∈ D′(x) but y 6∈ D(x). Hence dependency schemes can be compared according
to the amount independence.

Definition 2. For a PCNF F and dependency schemes D and D′, D is less
restrictive if, and only if |D| ⊆ |D′|.

Example 2. For the QBF from Ex. 1, let Dtriv be the trivial dependency scheme
obtained from the prefix of F : y ∈ Dtriv(x) if, and only if q(x) 6= q(y) and x ≤ y.
Let Dtree be obtained from the left tree in Fig. 1: y ∈ Dtree(x) if, and only if
q(x) 6= q(y) and y is a successor of x in the tree. Then Dtree is less restrictive
than Dtriv since Dtree ⊆ Dtriv. For example, d ∈ Dtriv(x) but d 6∈ Dtree(x).

A dependency scheme induces a partial order on the set of variables V which
can be represented as a directed acyclic graph (DAG) over V .
2 Assignments by unit and pure literals [7] are always sound independently from D.

Definition 3. Given a dependency scheme D, the dependency graph for D is
a DAG G(D) with vertices V and edges E := {(x, y) | y ∈ D(x)}.

4 Dependency Schemes in QDPLL

Many implementations of QDPLL rely on the quantifier prefixes of PCNFs,
which corresponds to Dtriv as defined in Ex. 2. In this section we analyze the
core parts of QDPLL. We point out how to modify those parts in order to profit
from less restrictive dependency schemes other than Dtriv in QDPLL. In our
analysis, we generalize observations from using quantifier trees in QDPLL [16].
Our results are independent from a particular dependency scheme (Def. 1).

In the following, let D be an arbitrary dependency scheme for a PCNF. For
literals x, y, we write x ≺ y if v(y) ∈ D(v(x)). G denotes the dependency graph
for D. D is integrated into QDPLL by means of G, which is used to check if
x ≺ y. This corresponds to checking if there is an edge (x, y) in G. However,
D has O(V 2) elements and storing all edges of G can be prohibitive. Instead,
transitive edges are discarded and variables are merged into equivalence classes.
Checking x ≺ y is done by checking successor relation between x and y in G. As
shown (Sec. 5), these optimizations are indispensable for efficiency in practice.

4.1 QDPLL with Learning

We briefly introduce QDPLL with conflict-driven clause and solution-driven cube
learning based on [33]. For a PCNF S1 . . . Sn. φ, an additional disjunction ψ over
learnt cubes is stored: S1 . . . Sn. (φ∨ψ), also called augmented CNF. Fig. 2 shows
a high-level view. Clauses and cubes (constraints) are derived by clause resolu-
tions [6] and cube resolutions [13, 22, 33] (constraint resolutions). Cube “resolu-
tion” is actually consensus. Different from [32, 33] we do not consider to learn
constraints containing complementary literals and rather follow the algorithms
from [15]. Further details can also be found in e.g. [13, 22].

The core of algorithm qdpll in Fig. 2 is propagation of implications (unit and
pure literals) which is carried out in bcp until saturation. If neither a conflicting
(conflict), nor a satisfying assignment (solution) was found, i.e. the formula state
is undefined under the current assignment, then a variable x is assigned as next
decision in select dec var. Decisions are numbered ascendingly by decision
levels dl(x), starting at 1. Having assigned x as decision, all implications y are
propagated by bcp again, where dl(y) := dl(x).

Otherwise the solver has either derived a conflict or a solution. This situation
corresponds to a leaf in the search tree enumerated by QDPLL. For conflicts the
formula contains an empty clause (see Def. 5) returned by get initial reason
in analyze leaf. By means of successive clause resolutions, the backtrack level
and a learnt clause (called asserting clause, see Def. 8) containing a forced literal
are computed which is unit at the backtrack level (also called asserting level).
We assume that qdpll learns asserting clauses only. The current clause R is
resolved (constraint res) with the antecedent clause (get antecedent) of an

existential unit literal (get pivot) in R. The antecedent clause is the clause
where that literal became unit. If R is asserting then resolution stops (stop res).

For handling solutions, get initial reason either returns a satisfied learnt
cube (see Def. 5) already present in the cube set ψ of the formula or a new one
generated from the current assignment. Dually to clauses, an asserting cube is
learnt by cube resolutions using antecedent cubes of universal unit literals.

After backtracking and unassigning variables (backtrack), the forced literal
is assigned as unit at the backtrack level and the learnt constraint is added to the
formula. Again bcp propagates all implications. If an empty clause or satisfied
cube is derived by resolutions then qdpll terminates (btlevel == INVALID).

State qdpll ()

while (true)

State s = bcp ();

if (s == UNDEF)

// Make decision.

v = select_dec_var ();

assign_dec_var (v);

else

// Conflict or solution.

// s == UNSAT or s == SAT.

btlevel = analyze_leaf (s);

if (btlevel == INVALID)

return s;

else

backtrack (btlevel);

DecLevel analyze_leaf (State s)

R = get_initial_reason (s);

// s == UNSAT: ’R’ is empty clause.

// s == SAT: ’R’ is sat. cube...

// ..or new cube from assignment.

while (!stop_res (R))

p = get_pivot (R);

A = get_antecedent (p);

R = constraint_res (R, p, A);

add_to_formula (R);

assign_forced_lit (R);

return get_asserting_level (R);

Fig. 2. Pseudo-code of QDPLL with conflict-driven clause and solution-driven cube
learning [13, 22, 33]. Code blocks are indicated by indentation level. See also Sec. 4.1.

In the following, we generalize unit literals and learning (Def. 4, 6, 8) to arbi-
trary dependency schemes. Soundness is explained by reordering the quantifiers
in the prefix of a PCNF F based on D by Def. 1 to obtain an equivalent PCNF
F ′ [30]. This is possible, as Def. 1 corresponds to cumulative schemes [30]. Then
original versions of Def. 4, 6, 8 in the context of prefixes (i.e. Dtriv in Def. 2)
apply to F ′. Finally, F ′ can be converted back to F by reordering.

4.2 Unit Literal Detection

Unit literals were introduced in [7] for clauses and extended to cubes in [13, 33].
The original definition is based on quantifier prefixes of PCNFs, i.e. on Dtriv as
defined in Ex. 2, and can be generalized to arbitrary dependency schemes.

Definition 4. A clause (cube) C is unit if, and only if no l ∈ C is assigned
true (false), exactly one le ∈ L∃(C) (lu ∈ L∀(C)) is unassigned, and for all
unassigned lu ∈ L∀(C) (le ∈ L∃(C)): lu 6≺ le (le 6≺ lu).

Analogously, Def. 4 generalizes the definition based on quantifier trees from [16].
If a clause (cube) C is unit according to Def. 4 then le (lu) can be assigned as a
unit literal (bcp in Fig. 2). Detecting unit literals involves checking dependencies.
Using a two-literal watching scheme based on [10, 26], this can be achieved lazily
as follows. In each clause two unassigned literals l1 and l2 are watched such that
either q(l1) = q(l2) = ∃ or q(l1) = ∀, q(l2) = ∃ and l1 ≺ l2. If watched literals
are updated during BCP then condition l1 ≺ l2 needs to be checked in the latter
case only. Literal watching in cubes can be handled dually.

4.3 Constraint Learning

In QDPLL as shown in Fig. 2, new constraints are added to the formula whenever
a conflicting or satisfying assignment was found. These constraints are derived
by successive resolutions, each potentially eliminating literals from the resolvent.

Definition 5. A clause (cube) C is empty (satisfied) if, and only if no l ∈ C
is assigned true (false), and all l ∈ L∃(C) (l ∈ L∀(C)) are assigned false (true).

Definition 6. Universal reduction (existential reduction) eliminates from a
clause (cube) C all lu ∈ L∀(C) (le ∈ L∃(C)) for which there is no le ∈ L∃(C)
(lu ∈ L∀(C)) with lu ≺ le (le ≺ lu).

Definition 7. For universally-reduced clauses (existentially-reduced cubes) C1

and C2 with v ∈ C1 and ¬v ∈ C2 for a variable v, let C := (C1 ∪ C2) \ {v,¬v}.
If C does not contain complementary literals then let C ′ be the result of applying
universal (existential) reduction to C; C ′ is the resolvent of C1 and C2 on v.

Soundness of universal reduction as part of clause resolution for QBF was proved
in [6]. Existential reduction for cube resolution was applied in [13, 33]. Def. 6
generalizes the reduction rules from Dtriv to arbitrary dependency schemes. In
[16] such generalization was given for quantifier trees.

Among several learning strategies which add and remove learnt constraints
according to particular quality measures [13, 22, 33], QDPLL as shown in Fig. 2
learns exactly one constraint for each conflict or solution. The learnt constraint
is asserting, i.e. it is unit at the level QDPLL backtracks to, and hence will
trigger a unit literal to be assigned at the backtrack level. Resolution continues
until the current resolvent is asserting. This is controlled by a stop criterion.

Definition 8. Let R denote the clause (cube) derived after some resolution steps
in the learning process. For Q := ∃ (Q := ∀), let d := max ({dl(l) | l ∈ LQ(R)}).
Then R is asserting at level a := max ({dl(l) | l ∈ R ∧ dl(l) < d}) if, and only if

1. the decision variable at level d is existential (universal).
2. there is exactly one l ∈ L∃(R) (l ∈ L∀(R)) with dl(l) = d
3. for all lu ∈ L∀(R) (le ∈ L∃(R)) where lu ≺ l (le ≺ l): lu (le) must be assigned

false (true) with dl(lu) < d (dl(le) < d).

Def. 8 generalizes the stop criteria for generating asserting constraints given in
[15, 33] from Dtriv to arbitrary dependency schemes. This affects condition 3
in Def. 8 only, where dependency has to be checked. In practice, this check is
deferred as far as possible by checking conditions 1 and 2 before condition 3.

4.4 Decision Making

The quantifier prefix of PCNFs restricts the freedom of QDPLL to select decision
variables, as variables must be assigned “from left to right” according to the
prefix (i.e. Dtriv). In the context of dependency schemes (see Def. 1), a variable
y may be assigned as decision as soon as all variables in D(y) have been assigned.

Definition 9. A variable y is enabled in QDPLL if, and only if all variables in
D(y) are assigned. Otherwise, y is disabled. A variable is a (decision) candidate
if, and only if it is unassigned and enabled.

Example 3. For the PCNF ∃a∀x, y∃b. φ, Dtriv(a) = ∅, Dtriv(x) = Dtriv(y) = {a}
and Dtriv(b) = {x, y}. Variable a is always enabled, b is enabled as soon as both
x and y are assigned and if a is assigned then both x and y are enabled.

Following from Def. 1 and 9, assigning disabled variables as decisions is not sound
in general. Using less restrictive dependency schemes (see Def. 2) than e.g. Dtriv

allows more freedom to select candidates in QDPLL because D is smaller and
hence variables become enabled earlier.

One candidate is heuristically selected as next decision by select dec var in
Fig. 2. In practice, it is prohibitive to maintain the exact candidate set explicitly.
First, this set is needed precisely in select dec var and not e.g. in bcp. Further,
not every assignment enables, not every backtrack disables new variables.

Based on these observations, we apply the dependency graph G and maintain
the set of decision candidates (DC) incrementally as follows. Before QDPLL
starts, DC := {x ∈ V | D(x) = ∅}, i.e. DC corresponds to the roots of G.
Each time a decision is made (i.e. each time select dec var in Fig. 2 is called),
DC is updated by taking into account the effects of assignments l1, . . . , lk made
since the previous decision only. Each li in l1, . . . , lk is processed one after the
other. The assignment li possibly enables some, not necessarily all variables in
D(v(li)). There might be other variables x 6= v(li) with D(x) = D(v(li)). If any
such x is still unassigned at the time li is processed then li will not enable any
variable in D(v(li)). This observation can be exploited by constructing G as a
graph [24] over equivalence classes [x] of variables: x ≈ y ⇔ D(x) = D(y) for
x, y ∈ V . Assuming li ∈ [x], no variable will be enabled unless all variables in
[x] are assigned. Only if this is the case, set D(v(li)) is inspected by traversing
successors of [x] in G and new candidates are added to DC . If successor [y] with
D(y) ⊆ D(v(li)) is visited, then it is checked if [y] is fully assigned.

When backtracking in backtrack, assignments li in l1, . . . , lk made between
the backtrack level and the current decision level are cleared one after the other,
which possibly disables variables in D(v(li)). Assuming li ∈ [x], this can happen
only if all variables in [x] are assigned at the time li is cleared. Only if this is
the case, set D(v(li)) is inspected and disabled variables are removed from DC .

Maintaining DC as described is independent from any decision heuristic for
QBF and therefore can be integrated in any implementation of select dec var.
Furthermore, this approach generalizes quantifier watching [10] from quantifier
prefixes to arbitrary dependency schemes.

5 Experimental Results

We have implemented QDPLL with dependency schemes as described in Sec. 4
in our PCNF-based solver DepQBF [23], which also participated in QBFEVAL’10
[11]. It differs from other search-based solvers mainly in a tight integration of de-
pendency schemes. Apart from that, approaches implemented comprise watched
data structures for detection of unit and pure literals [10, 14, 26], conflict-driven
clause and solution-driven cube learning [13, 22, 32, 33], assignment caching [29],
activity heuristics based on VSIDS [26] and partial restarts based on [3].

As pointed out in Sec. 4, dependency graphs G in DepQBF are represented as
compact graphs over equivalence classes of variables. The data structure evolved
from previous work in [24]. Although originally being tailored to the standard
dependency scheme Dstd, we also implemented dependency graphs for Dtriv

and Dtree (see Ex. 2) within the same framework. This enables us to directly
compare QDPLL using those three schemes without changing any other part
of the solver. To build one out of possibly many non-deterministic dependency
graphs (i.e. trees) for Dtree, we adapted the approach from [2] to our framework.

QBFEVAL’08 (3326 formulae)

Dtriv Dtree Dstd QuBE6.6-np QuBE6.6

solved 1223 1221 1252 1106 2277

time 579.94 580.64 572.31 608.97 302.49

QBFEVAL’07 (1136 formulae)

solved 533 548 567 458 734

time 497.12 484.69 469.97 549.29 348.05

Herbstritt (478 formulae)

solved 321 357 357 296 395

time 316.06 248.20 248.07 357.52 173.53

Table 1. Performance comparison of DepQBF with quantifier prefixes (Dtriv), quanti-
fier trees (Dtree) and the standard dependency scheme (Dstd), which is less restrictive
than the other two. Average run times are given in seconds. Benchmarks include all
structured formulae from QBFEVAL’07, QBFEVAL’08 and from set Herbstritt [11].
The three versions of DepQBF do not apply preprocessing and differ only in the inte-
grated dependency schemes, all other parts are exactly the same. For external reference,
statistics of PCNF-based QuBE6.6 [12] with and without preprocessing (QuBE6.6-np)
are listed. We did not add other solvers as we focus on evaluating QDPLL with de-
pendency schemes and, given the results of QBF competitions [11], QuBE6.x is the
state-of-the-art QDPLL-based solver.

Tab. 1 shows a comparison3 of DepQBF with Dtriv, Dtree and Dstd on struc-
tured formulae from previous QBF competitions [11]. Dependency checking as
3 Setup for all experiments reported: Ubuntu Linux 9.04, Intel R© Q9550@2.83 GHz, 3

GB/900 sec. mem and time limit. Data: http://fmv.jku.at/papers/sat10qbf.7z

needed in Def. 4, 6 and 8 was optimized in Dtriv: for x, y ∈ V , x ≺ y if, and only
if x < y, which can be checked in constant time. This is impossible for arbitrary
schemes where x ≺ y if, and only if q(x) 6= q(y) and y is a successor of x in G. De-
spite that additional overhead, QDPLL with Dstd is best on QBFEVAL’07 and
QBFEVAL’08 and is slightly faster than Dtree on set Herbstritt. There is a large
performance gap to QuBE6.6 which, different from DepQBF, uses preprocessing.
However, any version of DepQBF outperforms QuBE6.6 when preprocessing is
disabled. Note that, in our terminology, QuBE6.6 uses Dtriv.

A more detailed comparison of all three versions of DepQBF considering the
intersection of solved formulae is shown in Tab. 2. Dtriv is slightly faster on the

QBFEVAL’08 (solved only)

Dtriv ∩Dtree Dtriv ∩Dstd Dtree ∩Dstd

solved 1172 1196 1206

time 23.15 26.68 23.73 25.93 25.63 22.37

implied/assigned 90.4% 90.7% 88.6% 90.5% 90.9% 92.1%

backtracks 32431 27938 34323 31085 25106 26136

sat. cubes/sol. 1.8% 2.9% 1.8% 2.6% 3.6% 3.1%

learnt constr. size 157 99 150 96 102 95

QBFEVAL’07 (solved only)

solved 501 513 537

time 31.22 34.46 32.76 32.66 33.31 28.33

implied/assigned 89.0% 89.2% 87.7% 89.5% 89.9% 91.9%

backtracks 35131 22334 39906 26362 21945 22323

sat. cubes/sol. 4.0% 10.0% 4.0% 9.5% 10.8% 9.9%

learnt constr. size 150 101 134 113 100 96

Herbstritt (solved only)

solved 312 308 348

time 26.86 19.28 24.41 19.28 20.46 20.83

implied/assigned 96.6% 97.4% 96.2% 97.4% 97.4% 97.4%

backtracks 26565 1329 26733 1482 1615 1800

sat. cubes/sol. 0% 0% 0% 0% 0% 0%

learnt constr. size 174 306 173 323 407 410

Table 2. Comparing combinations of DepQBF with quantifier prefixes (Dtriv), quan-
tifier trees (Dtree) and the standard dependency scheme (Dstd). Only formulae solved
by both solvers (∩) were considered. E.g. in section “Dtriv ∩ Dstd”, the left column
reports statistics for Dtriv, the right one for Dstd. Average values are given for run time
in seconds, ratio of implications among all assignments, number of backtracks, ratio of
satisfied learnt cubes among all identified solutions and size (i.e. number of literals) of
learnt constraints. See also Sec. 4.1 for terminology.

QBFEVAL sets. On the other hand, Dtriv yields more backtracks than Dtree and
Dstd on all sets. On set Herbstritt, the difference in this respect is a factor of up to

20. Dtree and Dstd, both being less restrictive than Dtriv, produce smaller learnt
constraints on the QBFEVAL sets. Furthermore, Dstd triggers more implications
on all sets and Dtriv fewer satisfied learnt cubes. These effects can be attributed
to more powerful rules for unit detection and constraint reduction (Def. 4, 6).

The results from Tab. 2 indicate that moving fromDtriv to more sophisticated
dependency DAGs incurs run time overhead (except on set Herbstritt), but also
allows QDPLL to produce shorter runs in terms of backtracks. As mentioned
above, checking if x ≺ y, which is required in unit literal detection and constraint
learning, is not a constant-time operation in general dependency DAGs. Instead,
G must be inspected. However, QDPLL still seems to profit from using less
restrictive dependency schemes such as Dtree and Dstd, as indicated in Tab. 1.

In order to assess both the costs and benefits of integrating dependency DAGs
in QDPLL in more detail, we carried out the following experiment. In addition
to the dependency DAG which is used for dependency checking and constraint
reduction in QDPLL, called primary DAG G1, another dependency DAG, the
secondary DAG G2, is maintained independently and in parallel for statistical
computations. The idea is to compare the effects of using different DAGs dy-
namically, i.e. during a solver run. This setup allows to compute more fine-grain

QBFEVAL’08 (3326 formulae)

Dtriv n Dstd Dstd n Dtriv Dtree n Dstd Dstd n Dtree

DC/d 13801.0 13801.6 11409.7 11409.0 8932.5 8933.0 15625.6 15625.3

DC-updt. 3.23 3.16 3.30 3.43 3.38 3.37 3.30 3.36

≺ 1 - 6.21 - 7.15 - 6.26 -

C-red. 1.18 - 535.62 - 538.30 - 540.94 -

Herbstritt (478 formulae)

DC/d 21.3 26.55 20.14 20.13 20.67 20.67 20.16 20.16

Pan (384 formulae) ∪ Sorting-Networks (84 formulae)

DC/d 75.81 93.87 117.50 109.66 86.89 86.90 120.03 119.98

Table 3. Comparing costs and benefits of different dependency schemes in DepQBF
(all benchmarks, time out 900 sec.). The solver maintains two dependency DAGs G1

(primary) and G2 (secondary) in parallel. E.g. in section “Dtriv nDstd”, G1 is obtained
from Dtriv (left column), G2 from Dstd (right column). Note that columns “Dstd” in
“Dstd n Dtriv” and “Dstd n Dtree” are incomparable since G2 influences run time,
i.e. “Dstd n Dtriv” and “Dstd n Dtree” may run at different speeds. Numbers of deci-
sion candidates (DC , see Sec. 4.4, Def. 9) when using different DAGs are compared.
Each time before decision making, the number of DC under the current assignment
is computed. Row “DC/d” shows the total sum of DC over the total number of de-
cisions in the benchmark set after max. 900 sec. run time. Average costs are listed
for (un)assigning an li as defined in Sec. 4.4 for updating DC (DC-updt.), dependency
checks (≺) as needed in unit detection (Def. 4) and for the stop criterion (Def. 8), and
constraint reduction (C-red.) per resolution. The latter are irrelevant for G2 (“-”).

statistics than overall run time or number of backtracks, as listed in Tab. 1 and
2. During a run of QDPLL, it is interesting to compare the numbers of deci-
sion candidates (DC) with respect to G1 and G2 under the current assignment.
These numbers are computed each time before a decision is made and reflect
the degree of freedom resulting from less restrictive dependency schemes (see
Sec. 4.4). E.g. we expect Dstd to allow more candidates than Dtriv and Dtree.
Apart from that, we want to measure average costs of dependency checking and
candidate maintenance for DAGs resulting from different dependency schemes.

Tab. 3 shows results of the experiments described above. For G1 and G2,
we compared Dstd to Dtriv and Dtree , where all four combinations were run
to even out biased solver behaviour. Due to limited computational resources,
we did not compare Dtriv to Dtree and omitted QBFEVAL’07. As indicated for
sets QBFEVAL’08 and Herbstritt, the difference in DC statistics is very small
in general, sometimes less than 1 candidate on average per decision. However,
it seems that this is already enough for QDPLL with Dstd to outperform Dtriv

and Dtree by Tab. 1. Further, DC statistics are also family-dependent, as shown
by the results for sets Pan and Sorting-Networks in Tab. 3.

Cost statistics in Tab. 3 (rows “DC-updt.”, “≺”, “C-red.”) are correlated to
the number of variables that have to be visited (i.e. pointer dereferences in our
implementation) when inspecting a dependency DAG. Average costs for depen-
dency checking and (un)assigning variables for updating DC before decisions
or during backtracking are small. This is due to the class-based approaches de-
scribed in Sec. 4. On the other hand, costs of constraint reduction are very high
for Dtree and Dstd. These effects are closely related to implementation. When
using Dtriv, all constraints C can be kept sorted according to scope order, which
allows efficient reduction. This was implemented in DepQBF with Dtriv and is
reflected by low costs in Tab. 3. In general, such an approach is not possible
and we rather reduce constraints based on classes in the dependency DAG for
Dtree and Dstd. Classes are collected for all literals in C before reduction, where
the size of C (particularly for cubes) can be large. The statistics in Tab. 3 also
include that effort. Instead of collecting from scratch, the set of classes could
also be maintained incrementally for all constraints, which is currently not im-
plemented in DepQBF. However, despite that overhead in Dtree and Dstd, overall
performance by Tab. 1 is still better than with Dtriv .

6 Conclusion

Structure analysis of formulae can improve QBF solvers considerably. A common
approach is the analysis of quantifier structure in PCNFs by quantifier trees.
Dependency schemes generalize trees and allow to overcome related drawbacks.

In this work, we considered the problem of efficiently integrating dependency
DAGs into search-based QBF solvers (QDPLL) for PCNFs. Dependency DAGs
result from dependency schemes and, just as trees, represent quantifier structure.
By analyzing core parts of QDPLL, we have pointed out how to profit from
DAGs. Thereby we generalized related work on quantifier trees in QDPLL. The

results of our analysis are independent from a particular dependency scheme.
Further, quantifier DAGs are relevant for QBF solvers of any kind.

Our experiments demonstrate that a careful implementation of QDPLL inte-
grating the standard dependency scheme Dstd outperforms classical approaches
based on quantifier prefixes and trees. Despite increased overhead, our results
indicate the potential of using less restrictive dependency schemes in QDPLL,
which is supported by DepQBF’s performance in QBFEVAL’10 [11]. More pow-
erful unit literal detection and constraint reduction produce more implications
and shorter learnt constraints. However, we also argue that the effects to a large
extent differ with respect to problem domains and QBF encodings.

As future work we want to extend our implementation to arbitrary depen-
dency schemes. Particularly, the triangle dependency scheme seems to be promis-
ing since it is provably less restrictive than Dstd [27, 30].

Finally, we want to thank Paolo Marin and Enrico Giunchiglia for providing
us with a version of QuBE6.6 without preprocessing.

References

1. A. Ayari and D. A. Basin. QUBOS: Deciding Quantified Boolean Logic Using
Propositional Satisfiability Solvers. In M. Aagaard and J. W. O’Leary, editors,
FMCAD, volume 2517 of LNCS, pages 187–201. Springer, 2002.

2. M. Benedetti. Quantifier Trees for QBFs. In F. Bacchus and T. Walsh, editors,
SAT, volume 3569 of LNCS, pages 378–385. Springer, 2005.

3. A. Bhalla, I. Lynce, J. T. de Sousa, and J. Marques-Silva. Heuristic-Based Back-
tracking Relaxation for Propositional Satisfiability. Journal of Automated Reason-
ing (JAR), 35(1-3):3–24, 2005.

4. A. Biere. Resolve and Expand. In H. H. Hoos and D. G. Mitchell, editors, SAT
(Selected Papers), volume 3542 of LNCS, pages 59–70. Springer, 2004.

5. U. Bubeck and H. Kleine Büning. Bounded Universal Expansion for Preprocessing
QBF. In Marques-Silva and Sakallah [25], pages 244–257.

6. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean
Formulas. Inf. Comput., 117(1):12–18, 1995.

7. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified
Boolean Formulae. In AAAI/IAAI, pages 262–267, 1998.

8. U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing Different
Prenexing Strategies for Quantified Boolean Formulas. In Giunchiglia and Tac-
chella [17], pages 214–228.

9. U. Egly, M. Seidl, and S. Woltran. A Solver for QBFs in Nonprenex Form. In
G. Brewka, S. Coradeschi, A. Perini, and P. Traverso, editors, ECAI, volume 141
of FAIA, pages 477–481. IOS Press, 2006.

10. I. P. Gent, E. Giunchiglia, M. Narizzano, A. G. D. Rowley, and A. Tacchella.
Watched Data Structures for QBF Solvers. In Giunchiglia and Tacchella [17],
pages 25–36.

11. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
Satisfiability Library (QBFLIB), 2001. http://www.qbflib.org.

12. E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A System for Deciding
Quantified Boolean Formulas Satisfiability. In R. Goré, A. Leitsch, and T. Nipkow,
editors, IJCAR, volume 2083 of LNCS, pages 364–369. Springer, 2001.

13. E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for Quantified Boolean
Logic Satisfiability. In AAAI/IAAI, pages 649–654, 2002.

14. E. Giunchiglia, M. Narizzano, and A. Tacchella. Monotone Literals and Learning
in QBF Reasoning. In Wallace [31], pages 260–273.

15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and
Learning in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res.
(JAIR), 26:371–416, 2006.

16. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantifier Structure in Search-
Based Procedures for QBFs. TCAD, 26(3):497–507, 2007.

17. E. Giunchiglia and A. Tacchella, editors. Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy,
May 5-8, 2003 Selected Revised Papers, volume 2919 of LNCS. Springer, 2004.

18. A. Goultiaeva, V. Iverson, and F. Bacchus. Beyond CNF: A Circuit-Based QBF
Solver. In Kullmann [21], pages 412–426.

19. G.Pan and M. Y. Vardi. Symbolic Decision Procedures for QBF. In Wallace [31],
pages 453–467.

20. T. Jussila, A. Biere, C. Sinz, D. Kröning, and C. M. Wintersteiger. A First Step
Towards a Unified Proof Checker for QBF. In Marques-Silva and Sakallah [25],
pages 201–214.

21. O. Kullmann, editor. Theory and Applications of Satisfiability Testing - SAT 2009,
12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of LNCS. Springer, 2009.

22. R. Letz. Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In U. Egly and C. G. Fermüller, editors, TABLEAUX, volume 2381 of
LNCS, pages 160–175. Springer, 2002.

23. F. Lonsing. DepQBF 0.1 Source Code, 2010. http://fmv.jku.at/depqbf/.
24. F. Lonsing and A. Biere. A Compact Representation for Syntactic Dependencies

in QBFs. In Kullmann [21], pages 398–411.
25. J. Marques-Silva and K. A. Sakallah, editors. Proceedings SAT’07, volume 4501 of

LNCS. Springer, 2007.
26. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engi-

neering an Efficient SAT Solver. In DAC, pages 530–535. ACM, 2001.
27. M.Samer. Variable Dependencies of Quantified CSPs. In I. Cervesato, H. Veith,

and A. Voronkov, editors, LPAR, volume 5330 of LNCS, pages 512–527. Springer,
2008.

28. F. Pigorsch and C. Scholl. Exploiting structure in an AIG based QBF solver. In
DATE, pages 1596–1601. IEEE, 2009.

29. K. Pipatsrisawat and A. Darwiche. A Lightweight Component Caching Scheme for
Satisfiability Solvers. In Marques-Silva and Sakallah [25], pages 294–299.

30. M. Samer and S. Szeider. Backdoor Sets of Quantified Boolean Formulas. Journal
of Automated Reasoning (JAR), 42(1):77–97, 2009.

31. M. Wallace, editor. Principles and Practice of Constraint Programming - CP 2004,
10th International Conference, CP 2004, Toronto, Canada, September 27 - October
1, 2004, Proceedings, volume 3258 of LNCS. Springer, 2004.

32. L. Zhang and S. Malik. Conflict Driven Learning in a Quantified Boolean Satisfia-
bility Solver. In L. T. Pileggi and A. Kuehlmann, editors, ICCAD, pages 442–449.
ACM, 2002.

33. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Con-
flicts in Quantified Boolean Formula Evaluation. In P. Van Hentenryck, editor,
CP, volume 2470 of LNCS, pages 200–215. Springer, 2002.

