
Backing Backtracking?

Sibylle Möhle and Armin Biere

Johannes Kepler University Linz, Austria

Abstract. Non-chronological backtracking was considered an important
and necessary feature of conflict-driven clause learning (CDCL). How-
ever, a SAT solver combining CDCL with chronological backtracking suc-
ceeded in the main track of the SAT Competition 2018. In that solver,
multiple invariants considered crucial for CDCL were violated. In partic-
ular, decision levels of literals on the trail were not necessarily increasing
anymore. The corresponding paper presented at SAT 2018 described the
algorithm and provided empirical evidence of its correctness, but a for-
malization and proofs were missing. Our contribution is to fill this gap.
We further generalize the approach, discuss implementation details, and
empirically confirm its effectiveness in an independent implementation.

1 Introduction

Most state-of-the-art SAT solvers are based on the CDCL framework [8,9]. The
performance gain of SAT solvers achieved in the last two decades is to some
extent attributed to combining conflict-driven backjumping and learning. It en-
ables the solver to escape regions of the search space with no solution.

Non-chronological backtracking during learning enforces the lowest decision
level at which the learned clause becomes unit and then is used as a reason.
While backtracking to a higher level still enables propagation of a literal in the
learned clause, the resulting propagations might conflict with previous assign-
ments. Resolving these conflicts introduces additional work which is prevented
by backtracking non-chronologically to the lowest level [15].

However, in some cases a significant amount of the assignments undone is
repeated later in the search [10,16], and a need for methods to save redundant
work has been identified. Chronological backtracking avoids redundant work
by keeping assignments which otherwise would be repeated at a later stage of
the search. As our experiments show, satisfiable instances benefit most from
chronological backtracking. Thus this technique should probably also be seen as
a method to optimize SAT solving for satisfiable instances similar to [2,14].

The combination of chronological backtracking with CDCL is challenging
since invariants classically considered crucial to CDCL cease to hold. Nonethe-
less, taking appropriate measures preserves the solver’s correctness, and the

? Supported by Austrian Science Fund (FWF) grant S11408-N23 (RiSE) and by the
LIT Secure and Correct Systems Lab funded by the State of Upper Austria.

Chronological and non-chronological CDCL:

Trail: The assignment trail contains neither complementary
pairs of literals nor duplicates.

ConflictLower: The assignment trail preceding the current decision
level does not falsify the formula.

Non-chronological CDCL only:

Propagation: On every decision level preceding the current decision
level all unit clauses are propagated until completion.

LevelOrder: The literals are ordered on the assignment trail in
ascending order with respect to their decision level.

ConflictingClause: At decision levels greater than zero the conflicting
clause contains at least two literals with the current
decision level.

Fig. 1. The CDCL invariants listed in the box are usually considered crucial to CDCL.
By combining CDCL with chronological backtracking, the last three are violated.

combination of chronological backtracking and CDCL appeared to be a win-
ning strategy: The SAT solver Maple LCM Dist ChronoBT [11] was ranked
first in the main track of the SAT Competition 2018.

In Fig. 1 we give invariants classically considered crucial to CDCL which are
relevant for the further discussion. Our aim is to demonstrate that although
some of them do not hold in [10], the solving procedure remains correct.

Clearly, if upon conflict analysis the solver jumps to a decision level higher
than the asserting level, invariant Propagation is violated. Measures to fix po-
tential conflicting assignments were proposed in [10] which in addition violated
invariants LevelOrder and ConflictingClause. The algorithm’s correctness as well
as its efficiency were empirically demonstrated. However, a formal treatment
with proofs was not provided.

Our Contribution. Our main contribution consists in providing a generalization
of the method presented in [10] together with a formalization. We prove that
despite violating some of the invariants given above, the approach is correct.
Our experiments confirm the effectiveness of chronological backtracking with an
independent implementation in our SAT solver CaDiCaL [4].

2 Preliminaries

Let F be a formula over a set of variables V . A literal ` is either a variable v ∈ V
or its negation ¬v. The variable of ` is obtained by V (`). We denote by ¯̀ the

complement of `, i.e., ¯̀ = ¬`, and assume ¬¬` = `. We consider formulae in
conjunctive normal form (CNF) defined as conjunctions of clauses which are
disjunctions of literals. We write C ∈ F if C is a clause in F and ` ∈ C for
a literal ` occurring in C interpreting F as a set of clauses and C as a set of
literals. We use set notation for formulae and clauses where convenient.

We call trail a sequence of literals with no duplicated variables and write I =
`1 . . . `n. We refer to an element ` of I by writing ` ∈ I interpreting I as a set of
literals and denote the set of its variables by V (I). Trails can be concatenated,
I = JK, assuming V (J) ∩ V (K) = ∅. We denote by τ(I, `) the position of
the literal ` on the trail I. A total assignment is a mapping from V to the
truth values 1 and 0. A trail may be interpreted as a partial assignment where
I(`) = 1 iff ` ∈ I. Similarly, I(C) and I(F) are defined.

The residual of the formula F under the trail I, denoted by F |I , is obtained
by replacing in F the literals ` where V (`) ∈ I with their truth value. We define
the residual of a clause in an analogous manner. The empty clause and the literal
assigned truth value 0 are denoted by ⊥, the empty formula by >. If I(F) = >,
i.e., F |I = >, we say that I satisfies F and call I a model of F . If I(C) = ⊥ for
a clause C ∈ F , i.e., C|I = ⊥ and hence F |I = ⊥, we say that I falsifies C (and
therefore F) and call C the conflicting clause.

We call unit clause a clause {`} containing one single literal ` which we
refer to as unit literal. We denote by units(F) the sequence of unit literals in F
and extend this notion to the residual of F under I by writing units(F |I). We
write ` ∈ units(F |I) for referring to the unit literal ` in the residual of F under I.

3 Generalizing CDCL with Chronological Backtracking

In classical CDCL SAT solvers based on non-chronological backtracking [8]
the trail reflects the order in which literals are assigned. The trail is used during
conflict analysis to simplify traversal of the implication graph in reverse assign-
ment order and in general during backtracking to undo assignments in the proper
reverse assignment order.

In CDCL with non-chronological backtracking, the trail is partitioned into
subsequences of literals between decisions in which all literals have the same
decision level. Each subsequence starts with a decision literal and extends until
the last literal before the next decision. Literals assigned before any decision
may form an additional subsequence at decision level zero.

After adding chronological backtracking to CDCL as described in [10], the
trail is not partitioned in the same way but subsequences of the same decision
level are interleaved, while still respecting the assignment order.

Let δ : V 7→ N ∪ {∞} return the decision level of a variable v in the set of
variables V , with δ(v) =∞ if v is unassigned. This function is updated whenever
a variable is either assigned or unassigned. The function δ is extended to literals `,
clauses C and trails I by defining δ(`) = δ(V (`)), δ(C) = max{δ(`) | ` ∈ C}
for C 6= ⊥, and δ(I) = max{δ(`) | ` ∈ I}. We further define δ(⊥) = 0.

Given a set of literals L, we denote by δ(L) = {δ(`) | ` ∈ L} the set containing
the decision levels of its elements. The function δ updated with decision level d
assigned to V (`) is denoted by δ[` 7→ d]. Similarly, δ[I 7→ ∞] represents the
function δ where all literals on the trail I are unassigned. In the same manner,
δ[V 7→ ∞] assigns all variables in V to decision level ∞. We may write δ ≡ ∞
as a shortcut. The function δ is left-associative. We write δ[L 7→ ∞][` 7→ b]
to express that the function δ is updated by first unassigning all literals in a
sequence of literals L and then assigning literal ` to decision level b.

For the sake of readability, we write J 6 I where J is a subsequence of I
and the elements in J have the same order as in I and J < I when furthermore
J 6= I. We denote by I6b the subsequence of I containing exactly the literals `
where δ(`) 6 b.

Due to the interleaved trail structure we need to define decision literals dif-
ferently than in CDCL. We refer to the set consisting of all decision literals on I
by writing decs(I) and define a decision literal ` as

` ∈ decs(I) iff ` ∈ I, δ(`) > 0, ∀k ∈ I . τ(I, k) < τ(I, `) ⇒ δ(k) < δ(`) (1)

Thus, the decision level of a decision literal ` ∈ I is strictly higher than the
decision level of any literal preceding it on I. If C|I = {`} for a literal `, then
` is not a decision literal. The set decs(I) can be restricted to decision literals
with decision level lower or equal to i by writing decs6i(I) = decs(I6i).

As in [13] we use an abstract representation of the assignment trail I by
writing I = I0`1I1 . . . `nIn where {`1, . . . , `n} = decs(I). We denote by slice(I, i)
the i-th slice of I, i.e., the subsequence of I containing all literals ` with the
same decision level δ(`) = i. The i-th block, denoted by block(I, i), is defined as
the subsequence of I starting with the decision literal with decision level i and
extending until the last literal before the next decision:

slice(I, i) = I=i

block(I, i) = `iIi

Note that in general I=i 6= Ii, since Ii (due to the interleaved structure of the
trail I) may contain literals with different decision levels, while this is not the
case in I=i. In particular, there might be literals with a lower decision level
than some literal preceding them on the trail. We call these literals out-of-order
literals. Contrarily to classical CDCL with non-chronological backtracking, upon
backtracking to a decision level b, blocks must not be discarded as a whole, but
only the literals in slice(I, i) where i > b need to be unassigned.

Consider the trail I on the left hand side of Fig. 2 over variables {1, . . . , 5}
(in DIMACS format) where τ represents the position of a literal on I and δ rep-
resents its decision level:

Literals 1 and 3 were propagated at decision level zero, literal 5 was prop-
agated at decision level one. The literals 3 and 5 are out-of-order literals: We
have δ(2) = 1 > 0 = δ(3), whereas τ(I, 2) = 1 < 2 = τ(I, 3). In a similar man-
ner, δ(4) = 2 > 1 = δ(5), and τ(I, 4) = 3 < 4 = τ(I, 5). Moreover, I61 = 1 2 3 5,
decs(I) = 2 4, decs61(I) = 2, slice(I, 1) = 2 5, and block(I, 1) = 2 3.

τ

I

δ

0

1

0

1

2

1

2

3

0

3

4

2

4

5

1

τ

I

δ

0

1

0

1

2

1

2

3

0

3

5

1

τ

I

δ

0

1

0

1

3

0

Fig. 2. In the trail I on the left, from the three trails shown, literals 3 and 5 are placed
out of order. In fact, their decision level δ is lower than the decision level of a literal
preceding them on the trail, i.e., with lower position τ . The trails in the middle and on
the right hand side show the results of backtracking to decision levels 1 and 0. When
backtracking to the backtrack level b, only literals ` with δ(`) > b are removed from
the trail, while the assignment order is preserved.

Upon backtracking to decision level one, the literals in slice(I, 2) are unas-
signed. The resulting trail is visualized in the middle of Fig. 2. Note that since
the assignment order is preserved, the trail still contains one out-of-order literal,
namely 3. Backtracking to decision level zero unassigns all literals in slice(I, 2)
and slice(I, 1) resulting in the trail in which all literals are placed in order de-
picted on the right hand side.

4 Calculus

We devise our calculus as a transition system over a set of states S, a transition
relation ;⊆ S×S and an initial state s0. Non-terminal states are described
by (F, I, δ) where F denotes a formula over variables V , I denotes the current
trail and δ refers to the decision level function.

The initial state is given by s0 = (F, ε, δ0). In this context, F is the original
formula, ε denotes the empty trail and δ0 ≡ ∞. The terminal state is either SAT
or UNSAT expressing satisfiability or unsatisfiability of F . The transition rela-
tion ; is defined as the union of transition relations ;R where R is either True,
False, Unit, Jump or Decide. These rules are listed in Fig. 3. We first explain the
intuition behind these rules before proving correctness in Sect. 5:

True / False. If F |I = >, F is satisfiable and the search terminates in the
state SAT (rule True). If F |I = ⊥, a clause C ∈ F exists where I(C) = ⊥.
The conflict level is δ(C) = 0. Obviously I60(F) = ⊥ and consequently F is
unsatisfiable. Then the procedure terminates in state UNSAT (False).

Unit. Propagated unit literals are assigned the maximum decision level of their
reason which may be lower than the current decision level. Requiring that the
residual of F under I is conflict-free ensures that invariant ConflictLower holds.

Jump. We have F |I = ⊥, i.e., there exists a clause C ∈ F for which we have
I(C) = ⊥. Since the conflict level is δ(C) = c > 0, there is a decision left on I.
We assume to obtain a clause D implied by F (usually through conflict analysis)
with δ(D) = c > 0 whose residual is unit, e.g., {`}, at jump level j = δ(D \ {`}),
the second highest decision level in D. In fact, the residual of D under the trail
is unit at any backtrack level b where j 6 b < c 6 d, with d = δ(I) denoting

True: (F, I, δ) ;True SAT if F |I = >

False: (F, I, δ) ;False UNSAT if exists C ∈ F with C|I = ⊥ and δ(C) = 0

Unit: (F, I, δ) ;Unit (F, I`, δ[` 7→ a]) if F |I 6= > and ⊥ 6∈ F |I and

exists C ∈ F with {`} = C|I and a = δ(C \ {`})

Jump: (F, I, δ) ;Jump (F ∧D, PK`, δ[L 7→ ∞][` 7→ j]) if exists C ∈ F with

PQ = I and C|I = ⊥ such that c = δ(C) = δ(D) > 0 and ` ∈ D and

`|Q = ⊥ and F |= D and j = δ(D \ {`}) and b = δ(P) and

j 6 b < c and K = Q6b and L = Q>b

Decide: (F, I, δ) ;Decide (F, I`, δ[` 7→ d]) if F |I 6= > and ⊥ 6∈ F |I and

units(F |I) = ∅ and V (`) ∈ V and δ(`) =∞ and d = δ(I) + 1

Fig. 3. In the transition system of our framework non-terminal states (F, I, δ) consist
of a CNF formula F , the current trail I and the decision level function δ. The rules
formalize termination (True and False), backtracking (Jump), unit propagation (Unit)
and picking decisions (Decide).

the current decision level. Using D as a reason, we may backtrack to any of
these decision levels. Remember that the decision levels on the trail do not have
to be sorted in ascending order and that upon backtracking only the literals in
the i-th slice with i > b need to be unassigned as discussed in Sect. 3. After
backtracking we propagate ` and assign it decision level j to obtain δ(PK`) = b.

Note. If the conflicting clause C contains exactly one literal ` assigned at
conflict level c, its residual is unit at decision level c − 1. The solver therefore
could backtrack to decision level c − 1 and propagate `. An optimization is to
use D = C as reason saving the computational effort of conflict analysis. This
corresponds to learning C instead of a new clause D and is a special case of
rule Jump. It is also explicitly included in the pseudocode in [10].

Decide. If F is neither satisfied nor falsified and there are no unit literals in F |I ,
an unassigned variable is assigned. Invariants ConflictLower and Propagation hold.

Example. As pointed out above, the conflicting clause C may contain one sin-
gle literal ` assigned at decision level c. While according to the pseudocode
in [10] backtracking is executed to the second highest decision level j in C, the
implementation Maple LCM Dist ChronoBT backtracks chronologically to
decision level c− 1, which may be higher than j. We adopt this strategy in our
own solver, but unlike Maple LCM Dist ChronoBT we eagerly propagate `
and assign it decision level j, as described in the explanation of rule Jump above.

The authors of [10] focused on unit propagation and backtracking, and an
in-depth discussion of the case in which the conflicting clause contains exactly

one literal at conflict level is missing. We fill this gap and explain our calculus in
detail by means of an example for this case. We generated this example with our
model-based tester Mobical for CaDiCaL based on ideas in [1,12]. Our example
is larger and provides a good intuition regarding the occurrence of multiple
nested decision levels on the trail as well as its effect on backtracking.

We represent variables by natural numbers and consider a formula F over
variables {1, . . . , 48} as above where negative numbers encode negated variables.
We further use set notation for representing clauses. Consider the following as-
signment trail excerpt where the trail I is represented as a sequence of literals,
τ denotes the position of a literal on I and δ its decision level:

τ · · ·
I · · ·
δ · · ·

C

D

4

4

3

5

5

4

6

30

4

-30,

7

47

4

-47,

-47,

8

15

4

9

18

4

-18,

10

6

5

11

-7

5

12

-8

5

13

45

5

14

9

6

15

38

6

16

-23

6

23

17

17

6

-17,

18

44

6

-44

19

-16

6

{ }
{ }

Initially, the literals are placed in order on I, i.e., they are sorted in ascend-
ing order with respect to their decision level. At this point, a conflict occurs.
The conflicting clause is C = {-47, -17, -44} depicted below the trail containing
two literals at conflict level c = δ(C) = 6, i.e., -17 and -44 depicted in bold-
face in the above outline. Conflict analysis in our implementation learned the
clause D = {-30, -47, -18, 23} where δ(-30) = δ(-47) = δ(-18) = 4 and δ(23) = 6.
Since δ(D) = c = 6 and j = δ(D \ {23}) = 4, the solver in principle would be
free to backtrack to either decision level 4 or 5.

Let the solver backtrack chronologically to decision level 5 where D becomes
unit, specifically {23}. The position on the trail the solver backtracks to is
marked with a vertical dotted line. Accordingly all literals with decision level
higher than 5 are removed from I (literals at positions higher than 13). Then lit-
eral 23 is propagated. The jump level is j = 4, hence literal 23 is assigned decision
level 4 out of order. Literal -38 is propagated due to reason(-38) = {-15, -23, -38}
(not shown). Since δ(-15) = δ(-23) = 4, literal -38 is assigned decision level 4.
Then literal -9 is propagated with reason(-9) = {-45, 38, -9} with δ(-45) = 5
and δ(38) = 4. Thus, -9 is assigned decision level 5. The resulting trail is

τ · · ·
I · · ·
δ · · ·

4

4

3

5

5

4

6

30

4

7

47

4

8

15

4

9

18

4

10

6

5

11

-7

5

12

-8

5

13

45

5

14

23

4

15

-38

4

16

-9

5

where the literals 23 and -38 (depicted in boldface) are placed out of order on I.

Later in the search we might have the following situation:

τ · · ·
I · · ·
δ · · ·

C

9

18

4

10

6

5

11

-7

5

12

-8

5

13

45

5

14

23

4

15

-38

4

16

-9

5

17

10

6

18

-11

7

19

13

5

20

16

4

21

-17

4

17,

22

-25

4

23

42

4

-42,

24

12

5

-12

25

-41

5

{ }

The first assignment after analyzing the last conflict is placed right after the
dashed vertical line. Again, a conflict occurs. Let C = {17, -42, -12} be the
conflicting clause. The conflict level is δ(C) = 5 and the decision level of I
is δ(I) = 7. Clause C contains exactly one literal at conflict level, namely -12
depicted in boldface. The solver backtracks to decision level c − 1 = 4 marked
with a thick solid line. After removing from I all literals with decision level
higher than 4 and propagating literal -12, the resulting trail is

τ · · ·
I · · ·
δ · · ·

9

18

4

10

23

4

11

-38

4

12

16

4

13

-17

4

14

-25

4

15

42

4

16

-12

4

Note that as discussed above we use D = C ∈ F without actually adding it.

5 Proofs

For proving the correctness of our method, we first show that the system ter-
minates in the correct state which can be done in a straightforward manner.
Proving that the system always makes progress is more involved. Last we prove
that our procedure terminates by showing that no infinite sequence of states is
generated. By δ(decs(I)) we denote the set consisting of the decision levels of
the set of decision literals on I. We start by proving the following invariants:

(1) ∀k, ` ∈ decs(I) . τ(I, k) < τ(I, `) =⇒ δ(k) < δ(`)

(2) δ(decs(I)) = {1, . . . , δ(I)}
(3) ∀n ∈ N . F ∧ decs6n(I) |= I6n.

Lemma 1 (Invariants). Invariants (1) – (3) hold in non-terminal states.

Proof. The proof is carried out by induction over the number of rule applications.
We assume Inv. (1) – (3) hold in a non-terminal state (F, I, δ) and show that
they are still met after the transition to another non-terminal state for all rules.

Unit: The trail I is extended by a literal `. We need to show that ` is not a
decision literal. To this end it is sufficient to consider the case where a > 0.
There exists a clause C ∈ F with {`} = C|I . Since a = δ(C \ {`}), there exists
a literal k ∈ C where k 6= ` and such that δ(k) = a. Obviously, k was assigned
prior to ` and τ(I, k) < τ(I, `). Since δ(k) = δ(`) and by the definition of decision

literal in Eq. (1), ` is not a decision literal. The decisions remain unchanged, and
Inv. (1) and (2) hold after executing rule Unit.

We have F∧decs6n(I) |= C \ {`} and F∧decs6n(I) |= C, therefore, by modus
ponens we get F∧decs6n(I) |= `. Since ` is not a decision literal, as shown above,
F ∧ decs6n(I`) ≡ F ∧ decs6n(I) |= I6n. Hence, F ∧ decs6n(I`) |= (I`)6n, and
Inv. (3) holds after executing rule Unit.

Jump: We first show that K contains no decision literal. In fact, the trail I
is of the form I = PQ, and K is obtained from Q by removing all literals
with decision level greater than b. In particular, the order of the remaining
(decision) literals remains unaffected, and Inv. (1) still holds. We further have
δ(K) 6 δ(P) = b. Since ∀p ∈ P, k ∈ K . τ(PK, p) < τ(PK, k) and by the
definition of decision literals in Eq. (1), the decision literal with decision level b
is contained in P . Therefore, since K contains no (decision) literal with decision
level greater than b, it contains no decision literal.

Now we show that ` is not a decision literal either. As in the proof for
rule Unit, it is sufficient to consider the case where j > 0. There exists a clause D
where F |= D such that δ(D) = c and a literal ` ∈ D for which `|Q = ⊥ and
` ∈ Q. Since j = δ(D \ {`}), δ(`) = δ(D) = c > b, and ` 6∈ K. Instead, ` ∈ L,
and ` is unassigned during backtracking to any decision level smaller than c, i.e.,
` 6∈ PK. Furthermore, there exists a literal k ∈ D where k 6= ` and such that
δ(k) = j which precedes ` on the trail PK`. Therefore, following the argument
in rule Unit, literal ` is not a decision literal, and since the decisions remain
unchanged, Inv. (1) and (2) hold after applying rule Jump.

Invariant (3) holds prior to applying rule Jump, i.e., F ∧ decs6n(I) |= I6n.
We have that F |= D, and therefore F ∧ D ≡ F . Since I = PQ, PK < I
and obviously F ∧ decs6n(PK) =⇒ (PK)6n. From j = δ(D \ {`}) we get
D|PK = {`}. Repeating the argument in the proof for rule Unit by replacing I
by PK and C by D, we have that F ∧ decs6n(PQ`) |= (PQ`)6n, and Inv. (3) is
met after executing rule Jump.

Decide: Literal ` is a decision literal by the definition of a decision literal in
Eq. 1: It is assigned decision level d = δ(I) + 1, and ∀k ∈ I . δ(k) < δ(`).
Further, ∀k ∈ I` . k 6= ` =⇒ τ(I`, k) < τ(I`, `). Since ` ∈ decs(I`), we have
δ(decs(I`)) = {1, . . . , d}, and Inv. (1) and (2) hold after applying rule Decide.

Since ` is a decision, F ∧ decs6n(I`) ≡ F ∧ decs6n(I)∧ `6n and since Inv. (3)
holds prior to applying Decide, obviously F ∧ decs6(I`) |= I6n ∧ `6n ≡ (I`)6n,
and Inv. (3) is met after applying rule Decide. ut

Proposition 1 (Correctness of Terminal State). Search terminates in
the correct state, i.e., if the terminal state is SAT, then F is satisfiable, and if
the terminal state is UNSAT, then F is unsatisfiable.

Proof. We show that the terminal state is correct for all terminal states.

SAT: We must show that an unsatisfiable formula can not be turned into a
satisfiable one by any of the transition rules. Only equivalence-preserving trans-
formations are executed: Rules Unit and Decide do not affect F , and in rule Jump

a clause implied by F is added. Therefore, if the system terminates in state SAT,
F is indeed satisfiable.

UNSAT: It must be proven that a satisfiable formula can not be made unsat-
isfiable. Only equivalence-preserving transformations are executed. Rules Unit
and Decide do not affect F , and in rule Jump a clause implied by F is added.
We need to show that if rule False is applied, the formula F is unsatisfiable.
We have to consider Inv. (3) for n = 0. There exists a clause C ∈ F such that
I60(C) = ⊥, which leads to F ∧ decs60(F) ≡ F |= I60(C) = ⊥. ut

Proposition 2 (Progress and Termination). Search makes progress in
non-terminal states (a rule is applicable) and always reaches a terminal state.

Proof. We first prove progress by showing that in every non-terminal state a
transition rule is applicable. Then we prove termination by showing that no
infinite state sequence is generated.

Progress: We show that in every non-terminal state a transition rule is appli-
cable. The proof is by induction over the number of rule applications. Assume
we reached a non-terminal state (F, I, δ). We show that one rule is applicable.

If F |I = >, rule True can be applied. If F |I = ⊥, there exists a clause C ∈ F
such that C|I = ⊥. The conflict level δ(C) = c may be either zero or positive.
If c = 0, rule False is applicable. Now assuming c > 0 we obtain with Inv. (3):

F ∧ decs6c(I) ≡ F ∧ decs6c(I) ∧ I6c |= I6c.

Due to I6c(F) ≡ ⊥ we further have F ∧ I6c ≡ F ∧ decs6c(I) ≡ ⊥. By simply
picking ¬D = decs6c(I) we obtain F ∧ ¬D ≡ F ∧ ¬D ∧ I6c ≡ ⊥, thus F |= D.
Clause D contains only decision literals and δ(D) = c. From Inv. (1) and (2)
we know that D contains exactly one decision literal for each decision level
in {1, . . . , c}. We choose ` ∈ D such that δ(`) = c. Then the asserting level is
given by j = δ(D \ {`}) and we pick some backtrack level b where j 6 b < c.
Without loss of generalization we assume the trail to be of the form I = PQ
where δ(P) = b. After backtracking to decision level b, the trail is equal to
I6b = PK where K = Q6b. Since D|PK = {`}, all conditions of rule Jump hold.

If F |I 6∈ {>,⊥}, there are still unassigned variables in V . If there exists a
clause C ∈ F where C|I = {`}, the preconditions of rule Unit are met. If instead
units(F |I) = ∅, there exists a literal ` with V (`) ∈ V and δ(`) = ∞, and the
preconditions of rule Decide are satisfied.

In this argument, all possible cases are covered and thus in any non-terminal
state a transition rule can be executed, i.e., the system never gets stuck.

Termination: To show termination we follow the arguments in [7,13] or more
precisely the one in [5], except that our blocks (as formalized above with the block
notion) might contain literals with different decision levels, i.e., subsequences of
literals of the same decision level are interleaved as discussed in Sect. 3. This
has an impact on the backtracking procedure adopted in rule Jump, where after
backtracking to the end of block(I, b), trail P is extended by K = Q6b. As
discussed in the proof of Lemma 1, K contains no decision literals. Apart from
that, the same argument applies as in [5], and Search always terminates. ut

6 Algorithm

The transition system presented in Sect. 4 can be turned into an algorithm de-
scribed in Fig. 4 providing a foundation for our implementation. Unlike in [10], we
refrain from giving implementation details but provide pseudocode on a higher
abstraction level covering exclusively chronological backtracking.

Search: The main function Search takes as input a formula F , a set of vari-
ables V , a trail I and a decision level function δ. Initially, I is equal to the
empty trail and all variables are assigned decision level ∞.

If all variables are assigned and no conflict occurred, it terminates and re-
turns SAT. Otherwise, unit propagation by means of Propagate is executed until
either a conflict occurs or all units are propagated.

If a conflict at decision level zero occurs, Search returns UNSAT, since con-
flict analysis would yield the empty clause even if the trail contains literals with
decision level higher than zero. These literals are irrelevant for conflict analy-
sis (line 7), and they may be removed from I prior to conflict analysis without
affecting the computation of the learned clause. The resulting trail contains only
propagation literals, and the new (current) decision level is zero upon which the
empty clause is learned.

If a conflict at a decision level higher than zero occurs, conflict analysis (func-
tion Analyze) is executed. If no conflict occurs and there are still unassigned
variables, a decision is taken and a new block started.

Propagate: Unit propagation is carried out until completion. Unlike in CDCL
with non-chronological backtracking, the propagated literals may be assigned a
decision level lower than the current one (line 3). In this case invariant LevelOrder
presented in Sect. 1 does not hold anymore. Propagate returns the empty clause
if no conflict occurs and the conflicting clause otherwise.

Analyze: If the conflict level is higher than zero and the conflicting clause C
contains exactly one literal ` at conflict level c, then C can be used as reason
instead of performing conflict analysis (lines 1–3). The idea is to save the com-
putational effort of executing conflict analysis and adding redundant clauses.

Otherwise, a clause D is learned as in CDCL, e.g., the first unique implication
point (1st-UIP) containing exactly one literal ` at conflict level. Let j be the
lowest decision level at which D (or C, if it contains exactly one literal at conflict
level) becomes unit. Then according to some heuristics the solver backtracks to
a decision level b ∈ [j, c− 1].

This for instance, can be used to retain part of the trail, to avoid redundant
work which would repeat the same assignments after backtracking. Remember
that the decision levels on the trail may not be in ascending order. When back-
tracking to b, the solver removes all literals with decision level higher than b
from I, i.e., all i-th slices with i > b.

Input: formula F , set of variables V , trail I, decision level function δ

Output: SAT iff F is satisfiable, UNSAT otherwise

Search (F)

1 V := V (F)
2 I := ε
3 δ :=∞
4 while there are unassigned variables in V do
5 C := Propagate (F , I, δ)
6 if C 6= ⊥ then
7 c := δ(C)
8 if c = 0 then return UNSAT
9 Analyze (F , I, C, c)

10 else
11 Decide (I, δ)
12 return SAT

Propagate (F , I, δ)

1 while some C ∈ F is unit {`} under I do
2 I := I`
3 δ(`) := δ(C \ {`})
4 for all clauses D ∈ F containing ¬` do
5 if I(D) = ⊥ then return D
6 return ⊥

Analyze (F , I, C, c)

1 if C contains exactly one literal at decision level c then
2 ` := literal in C at decision level c
3 j := δ(C \ {`})
4 else
5 D := Learn (I, C)
6 F := F ∧D
7 ` := literal in D at decision level c
8 j := δ(D \ {`})
9 pick b ∈ [j, c− 1]

10 for all literals k ∈ I with decision level > b do
11 assign k decision level ∞
12 remove k from I
13 I := I`
14 assign ` decision level j

Fig. 4. This is the algorithm for CDCL with chronological backtracking, which differs
from its non-chronological backtracking version as follows: Propagated literals ` are
assigned a decision level which may be lower than the current one (line 3 in Propagate).
The conflict level may be lower than the current decision level (line 7 in Search). If the
conflicting clause contains only one literal at conflict level, it is used as reason and no
conflict analysis is performed (lines 1–3 in Analyze). Picking the backtracking level is
usually non-deterministic (line 9 in Analyze). Backtracking involves removing from the
trail I all (literals in) slice(I, i) with i > b (line 12 in Analyze).

7 Implementation

We added chronological backtracking to our SAT solver CaDiCaL [4] based on
the rules presented in Sect. 4, in essence implementing the algorithm presented
in Fig. 4, on top of a classical CDCL solver. This required the following four
changes, similar to those described in [10] and implemented in the source code
which was submitted by the authors to the SAT 2018 competition [11]. This list
is meant to be comprehensive and confirms that the changes are indeed local.

Asserting Level. During unit propagation the decision level a = δ(C\{`}), also
called asserting level, of propagated literals ` needs to be computed based on the
decision level of all the falsified literals in the reason clause C. This is factored
out in a new function called assignment level1, which needs to be called during
assignment of a variable if chronological backtracking is enabled.

Conflict Level. At the beginning of the conflict analysis the current conflict
level c is computed in a function called find conflict level1. This function
also determines if the conflicting clause has one or more falsified literals on the
conflict level. In the former case we can simply backtrack to backtrack level
b = c− 1 and use the conflicting clause as reason for assigning that single literal
on the conflict level. Even though not described in [10] but implemented in their
code, it is also necessary to update watched literals of the conflict. Otherwise
important low-level invariants are violated and propagation might miss falsified
clauses later. In order to restrict the changes to the conflict analysis code to a
minimum, it is then best to backtrack to the conflict level, if it happens to be
smaller than the current decision level. The procedure for deriving the learned
clause D can then remain unchanged (minimizing the 1st-UIP clause).

Backtrack Level. Then we select the backtrack level b with j 6 b < c, where
j is the minimum backjump level j (the second largest decision level in D) in
the function determine actual backtrack level1. By default we adopted the
heuristic from the original paper [10] to always force chronological backtracking
(b = c−1) if c−j > 100 (T in [10]) but in our implementation we do not prohibit
chronological backtracking initially (C in [10]). Beside that we adopted a variant
of reusing the trail [16] as follows. Among the literals on the trail assigned after
and including the decision at level j + 1 we find the literal k with the largest
variable score and backtrack to b with b+ 1 = δ(k).

Flushing. Finally, the last required change was to flush literals from the trail
with decision level larger than b but keep those smaller or equal than b. Instead
of using an extra data structure (queue) as proposed in [10] we simply traverse
the trail starting from block b+ 1, flushing out literals with decision level larger
than b. It is important to make sure that all the kept literals are propagated
again (resetting the propagated1 level).

1 Please refer to the source code of CaDiCaL provided at http://fmv.jku.at/chrono.

http://fmv.jku.at/chrono

0 50 100 150 200 250

0
10

00
20

00
30

00
40

00
50

00

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●
●●●

●●●●●
●
●●●

●●●
●●●●●●●

●●
●●●●

●●
●
●●
●
●
●

●●

●
●●
●●
●
●●●

●
●
●●●

●

●

●
●
●
●
●

●●

● cadical−limited−chronological−reusetrail
cadical−limited−chronological
cadical−always−chronological
cadical−non−chronological
maple−lcm−dist−chronological−2018
maple−lcm−dist−2017

Fig. 5. Cactus plot for benchmarks of the main track of the SAT Competition 2018.

8 Experiments

We evaluated our implementation on the benchmarks from the main track of
the SAT Competition 2018 and compare four configurations of CaDiCaL [4].
We also consider maple-lcm-dist-2017 [17], also called Maple LCM Dist, which
won the main track of the SAT Competition 2017, on which maple-lcm-dist-
chronological-2018 [11], also called Maple LCM Dist ChronoBT, is based.
We consider the latter as reference implementation for [10]. It won the main
track of the SAT Competition 2018 on the considered benchmark set.

The experiments were executed on our cluster where each compute node has
two Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz with turbo-mode disabled.
Time limit was set to 3600 seconds and memory limit to 7 GB. We used version
“0nd” of CaDiCaL. Compared to the SAT Competition 2018 version [4] it incor-
porates new phase saving heuristics and cleaner separation between stabilizing
and non-stabilizing phases [14]. This gave substantial performance improvements
on satisfiable formulae [3]. Nevertheless adding chronological backtracking im-
proves performance even further as the cactus plot in Fig. 5 and Tab. 1 show.

The default version cadical-limited-chronological-reusetrail is best (preliminary
experiments with CaDiCaL optimized for SAT Race 2019 did not confirm
this result though). It uses the limit C = 100 to chronologically backtrack if
c− j > 100 and further reuses the trail as explained in the previous section. For
cadical-limited-chronological reusing the trail is disabled and less instances are
solved. Quite remarkable is that configuration cadical-always-chronological ranks

Table 1. Solved instances of the main track of the SAT Competition 2018.

solver configurations
solved instances

total SAT UNSAT

cadical-limited-chronological-reusetrail 261 155 106
cadical-limited-chronological 253 147 106
cadical-always-chronological 253 148 105

cadical-non-chronological 250 144 106
maple-lcm-dist-chronological-2018 236 134 102

maple-lcm-dist-2017 226 126 100

third, even though it always enforces chronological backtracking (b = c − 1).
On these benchmarks there is no disadvantage in always backtracking chrono-
logically! The original classical CDCL variant cadical-non-chronological comes
next followed by the reference implementation for chronological backtracking
maple-lcm-dist-chronological-2018 and then maple-lcm-dist-2017 last, confirming
the previous results in [10]. Source code and experimental data can be found at
http://fmv.jku.at/chrono.

9 Conclusion

The success of Maple LCM Dist ChronoBT [11] is quite remarkable in the
SAT Competition 2018, since the solver violates various invariants previously
considered crucial for CDCL solvers (summarized in Fig. 1). The corresponding
paper [10] however was lacking proofs. In this paper we described and formalized
a framework for combining CDCL with chronological backtracking. Understand-
ing precisely which invariants are crucial and which are redundant was the main
motivation for this paper. Another goal was to empirically confirm the effective-
ness of chronological backtracking within an independendent implementation.

Our main contribution is to precisely define the concepts introduced in [10].
The rules of our framework simplify and generalize chronological backtracking.
We may relax even more CDCL invariants without compromising the procedure’s
correctness. For instance first experiments show that during the application of
the Unit rule it is not necessary to require that the formula is not falsified by the
trail. Similarly, requiring the formula not to be falsified appears to be sufficient
for rule Decide (no need to require that there are no units).

Our experiments confirm that combining chronological backtracking and
CDCL has a positive impact on solver performance. We have further explored
reusing the trail [16] during backjumping, which requires a limited form of
chronological backtracking, too. Our experiments also show that performing
chronological backtracking exclusively does not degrade performance much and
thus for instance has potential to be used in propositional model counting.
Furthermore, besides counting, possible applications may be found in SMT
and QBF. We further plan to investigate the combination of these ideas with
total assignments following [6].

http://fmv.jku.at/chrono

References

1. Artho, C., Biere, A., Seidl, M.: Model-based testing for verification back-ends. In:
Proc. of TAP’13. Lecture Notes in Computer Science, vol. 7942, pp. 39–55. Springer
(2013)

2. Audemard, G., Simon, L.: Refining restarts strategies for SAT and UNSAT. In:
Proc. of CP’12. Lecture Notes in Computer Science, vol. 7514, pp. 118–126.
Springer (2012)

3. Biere, A.: CaDiCaL at the SAT Race 2019. In: Proc. of SAT Race 2019. Submitted
4. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT Entering the

SAT Competition 2018. In: Proc. of SAT Competition 2018 – Solver and Bench-
mark Descriptions. Department of Computer Science Series of Publications B, vol.
B-2018-1, pp. 13–14. Univ. of Helsinki (2018)

5. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework with
learn, forget, restart, and incrementality. In: Proc. of IJCAR’16. Lecture Notes in
Computer Science, vol. 9706, pp. 25–44. Springer (2016)

6. Goultiaeva, A., Bacchus, F.: Off the trail: Re-examining the CDCL algorithm. In:
Proc. of SAT’12. Lecture Notes in Computer Science, vol. 7317, pp. 30–43. Springer
(2012)

7. Marić, F., Janičić, P.: Formalization of abstract state transition systems for SAT.
Logical Methods in Computer Science 7(3) (2011)

8. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Ap-
plications, vol. 185, pp. 131–153. IOS Press (2009)

9. Marques-Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for satisfia-
bility. In: Proc. of ICCAD’96. pp. 220–227 (1996)

10. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Proc. of SAT’18. Lecture
Notes in Computer Science, vol. 10929, pp. 111–121. Springer (2018)

11. Nadel, A., Ryvchin, V.: Maple LCM Dist ChronoBT: Featuring chronological
backtracking. In: Proc. of SAT Competition 2018 – Solver and Benchmark De-
scriptions. Department of Computer Science Series of Publications B, vol. B-2018-
1, p. 29. Univ. of Helsinki (2018)

12. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
Proc. of SMT’17, affiliated with CAV’17. p. 10 pages (2017)

13. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

14. Oh, C.: Between SAT and UNSAT: the fundamental difference in CDCL SAT.
In: Proc. of SAT’15. Lecture Notes in Computer Science, vol. 9340, pp. 307–323.
Springer (2015)

15. Oh, C.: Improving SAT Solvers by Exploiting Empirical Characteristics of CDCL.
Ph.D. thesis, New York University, Department of Computer Science (2016)

16. van der Tak, P., Ramos, A., Heule, M.: Reusing the assignment trail in CDCL
solvers. JSAT 7(4), 133–138 (2011)

17. Xiao, F., Luo, M., Li, C.M., Manyà, F., Lü, Z.: MapleLRB LCM, Maple LCM,
Maple LCM Dist, MapleLRB LCMoccRestart, and Glucose-3.0+width in SAT
Competition 2017. In: Proc. of SAT Competition 2017 – Solver and Benchmark
Descriptions. Department of Computer Science Series of Publications B, vol. B-
2017-1, pp. 22–23. Univ. of Helsinki (2017)

	 Backing Backtracking

