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Abstract—Lemmas on demand is an abstraction/refinement
technique for procedures deciding Satisfiability Modulo Theories
(SMT), which iteratively refines full candidate models of the
formula abstraction until convergence. In this paper, we introduce
a dual propagation-based technique for optimizing lemmas on
demand by extracting partial candidate models via don’t care
reasoning on full candidate models. Further, we compare our
approach to a justification-based approach similar to techniques
employed in the context of model checking. We implemented
both optimizations in our SMT solver Boolector and provide an
extensive experimental evaluation, which shows that by enhanc-
ing lemmas on demand with don’t care reasoning, the number
of lemmas generated, and consequently the solver runtime, is
reduced considerably.

I. INTRODUCTION

Procedures for deciding satisfiability of first order formulas
w.r.t. first order theories, also known as Satisfiability Modulo
Theories (SMT), are usually divided into so-called eager and
lazy approaches. Eager SMT approaches eagerly encode an
SMT formula into an equisatisfiable Boolean formula, which
then serves as input for a SAT solver. Lazy approaches, on
the other hand, are generally based on a tight integration
of a SAT solver and one or more theory solvers. The SAT
solver typically enumerates Boolean truth assignments sat-
isfying a Boolean abstraction of the input formula, whereas
the theory solver(s) not only check if those assignments are
consistent w.r.t. the first order theorie(s), but guide the SAT
solver through its search. The majority of state-of-the-art SMT
solvers employ lazy SMT approaches, where the lemmas on
demand procedure as introduced for the extensional theory of
arrays in [7] is one extreme variant thereof [20]. The core
idea of lemmas on demand is similar to the Counterexample-
Guided Abstraction Refinement (CEGAR) approach intro-
duced in [9] and goes back to [11], while at the same
time, a related technique was proposed in the context of
bounded model checking, where all-different constraints are
lazily encoded over bit vectors (see also [5]). Recently, in [19]
we introduced a generalization of the lemmas on demand
decision procedure in [7] to lazily handle A terms.

Similar to other lazy SMT approaches, lemmas on demand
as in [7][19] enumerates truth assignments (so-called candi-
date models) of the bit vector abstraction of the (preprocessed)
input formula and iteratively refines those assignments with
lemmas until convergence. Each of these candidate models
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is a full truth assignment of the formula abstraction, which
subsequently needs to be checked for consistency w.r.t. the
theory of bit vectors with arrays. A full candidate model,
however, includes parts of the formula abstraction irrelevant
to its satisfiability under the current assignment and might
therefore be over-determined.

In this paper we aim at exploiting a posteriori observability
don’t cares, i.e., parts of the formula abstraction irrelevant un-
der the current assignment. We show that don’t care reasoning
on full candidate models to extract partial candidate models
subsequently reduces the cost for consistency checking by
focusing on the relevant parts of the formula, only. Motivated
by dual propagation techniques in the context of quantified
boolean formulas (QBF) [15][16], we propose an optimization
of the lemmas on demand procedure in [19] and compare our
approach to a technique based on justification heuristics in
ATPG [18]. We implemented both techniques in our SMT
solver Boolector and analyse the results in comparison to the
version of Boolector that won the QF_AUFBYV track of the
SMT competition 2012.

Note that in this paper, our justification-based approach
mainly serves as a basis for comparison to our dual
propagation-based approach. In the context of SMT, Barrett
and Donham [3] and De Moura and Bjgrner [10] applied
justification-based techniques to prune the search space of
DPLL(T). In the context of model checking, justification-based
techniques have been previously employed to identify a poste-
riori observability don’t cares. Bingham and Hu [6], e.g., prune
the search space of their simulation-based bounded model
checking engine by means of a justification-based general-
ization mechanism (skip cubes) similar to learning and non-
chronological backtracking of conventional SAT procedures.
Eén et al. [13] employ a related approach when generalizing
proof obligations by ternary simulation for property directed
reachability (PDR), whereas Chockler et al. [8] use a variant
of offline dual propagation for SAT. The verification tool
Reveal [2][1], on the other hand, employs a CEGAR approach
for model checking complex hardware designs and generalizes
candidate counter examples by justification techniques similar
to our justification-based method. Their (and our) justification-
based approach, however, is only applicable on structural (non-
clausal) problems. In contrast, our dual propagation-based
approach generalizes full candidate models by exploiting the
duality of the Boolean layer of the input formula and is not
restricted to structural formula abstractions.
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Fig. 1: The workflow of the lemmas on demand decision
procedure DPiopgpt in Boolector. The original procedure
DP\op (indicated by the dashed line) works on full candidate
models, whereas the optimized procedure DPgpopt extracts
partial candidate models prior to consistency checking.

II. LEMMAS ON DEMAND AT A GLANCE

The lemmas on demand decision procedure as implemented
in Boolector is an iterative abstraction/refinement approach
for the quantifier-free theory of fixed-sized bit vectors and
arrays. Figure 1 gives a high-level view of the procedure and
introduces both the original, unoptimized approach DP op and
our optimized approach DP_opgpt as follows.

Given a formula ¢, DP gp uses a bit vector skeleton of the
preprocessed formula 7 as formula abstraction a(7). In each
iteration, an underlying decision procedure DPg determines
the satisfiability of the refined formula abstraction I' = «a(7) A
¢ by encoding I' to SAT and determining its satisfiability by
means of a SAT solver. Note that initially, formula refinement
&1is T. As T is an overapproximation of ¢, DP| op immediately
concludes with unsat if I' is unsatisfiable. If I' is satisfiable,
the current (full) candidate model o(a(m) A ) is checked
for consistency w.rt. the preprocessed input formula . If
o(a(m) A€) is consistent, DP op immediately concludes with
sat. Otherwise, o(a(m)A&) is spurious and a lemma [ is added
to formula refinement &.

As indicated in Fig. 1, DP_gp iteratively refines a(m) by
consistency checking full candidate models, which usually
include parts of the bit vector skeleton irrelevant to its satisfi-
ability under the current assignment. In the following section,
we will introduce an optimization to extract a partial candidate
model o, (c(m) A€) from the full candidate model o(a(m) A§)
in order to guide the consistency check towards the relevant
parts of a(m) only.

III. PARTIAL MODEL EXTRACTION

In terms of runtime, abstraction refinement usually is the
most costly part of the lemmas on demand procedure DP | op,
where cost generally correlates with the number of lemmas
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1 procedure consistent (T, o)

2 S « search_initial_applies (T")

3 while S#0

4 flao,...,an) «— pop(S)

5 consistent «— check_consistency (f(ao,...,an), 0)

6 if not consistent return _L

7 S’ « search_applies_for_consistency_check (f(ao, . ..
8 push (S, s’ € §)

9 return T

7an))

Fig. 2: Procedure consistent in pseudo-code.

generated. During refinement, procedure DPg (and conse-
quently the call to the underlying SAT solver) constitutes the
majority of the overall runtime per iteration, which adds up
when a great number of refinement iterations is needed. Hence,
optimizing DP op in terms of runtime directly translates to
reducing the number of lemmas generated.

In contrast to other lazy SMT approaches [20], formula
abstraction in DP_gp does not produce a pure Boolean
skeleton, but a bit vector skeleton, where each function
application f(ag,...,a,) in the preprocessed formula 7 is
mapped to a fresh bit vector variable. Consequently, con-
sistency checking in DP_gp is performed on all function
applications in the bit vector skeleton (for details see [19]).
A high level view of the consistency checking algorithm
consistent in DP gp is given in Fig. 2 and proceeds as
follows. Given the refined formula abstraction I' and the full
candidate model o, search_initial_applies collects all function
applications in I' that need to be checked for consistency
(line 2) and iteratively checks each APPLY f(aq, ..., a,) W..t.
the current assignment o (lines 4-5). If check_consistency
encounters an inconsistency, consistent immediately returns
with 1. Else, search_applies_for_consistency_check instan-
tiates function f with arguments ag,...,a,, which yields
term ¢, and subsequently collects all function applications in
formula abstraction «(t) for consistency checking (lines 7-8).
If all applies in .S have been checked without inconsistencies,
procedure consistent concludes that current candidate model
o is consistent and returns T.

Consistency checking all function applications in formula
abstraction I' corresponds to checking the full candidate
model o for consistency, with the order in which applies are
checked as the only way to positively influence the number of
refinement iterations (by coincidentally finding lemmas that
shortcut the search, early on). Checking the full candidate
model, however, is often not required, as only a small subset of
the full candidate model is responsible for actually satisfying
the formula abstraction. As a consequence, parts of the formula
abstraction irrelevant to its satisfiability under the current
assignment are checked, which subsequently produces lemmas
that do not necessarily prune the search space and therefore
mainly cost runtime.

Example 1: As a running example, consider the formula

1 =iFEA(f(E) =eV f(k) =v) Av=ite(i = j,e,g(j))
as given in Fig. 3. Its initial formula abstraction I'y, = a(¢1)
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Fig. 3: DAG representation of formula 1/; (running example).

and a (possible) initial full candidate model o (I'y, ) (indicated
in red) is given in Fig. 4. In the following, we assume that
all variables in ; are bit vector variables of size 2 and
I'y, is a bit vector skeleton. For the sake of simplicity, we
further assume that functions f and g represent uninterpreted
functions, i.e., we concentrate on consistency checking of
the full versus a partial candidate model (via procedure
search_initial_applies) and do not bother with details of the
internals of the actual consistency check (for details, see [19]).
Procedure search_initial_applies initially collects all function
applications in I'y,, (apply1, applys2, applys) to be checked for
consistency. During consistency checking, however, no further
applies are identified as required to being checked (procedure
search_applies_for_consistency_check) as both f and g do
not make subsequent calls to other functions. Note that given
o(Ty, ), instead of checking all applies in 1)y, either checking
apply; or applys would be sufficient.

In the following, we consider two techniques for identifying
irrelevant parts of the formula abstraction by extracting partial
candidate models, which subsequently reduces the number of
refinement iterations, and therefore, the overall runtime of the
lemmas on demand procedure.

A. Justification-Based Partial Model Extraction

In the context of ATPG [18], sets of don’t care conditions
are usually divided into observability don’t cares (ODC) and
controllability don’t cares (CDC). The former denotes lines
that do not influence the primary outputs (independent from
the current assignment to the primary inputs), and the latter
identifies line values that can not be justified and are therefore
illegal under any assignment to the primary inputs. Given a
concrete assignment to the primary inputs, however, we can
determine what we call a posteriori observability don’t cares,
i.e., lines that do not influence the output of a gate under its
current assignment. In the context of model checking, such a
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Fig. 4: Formula abstraction I'y,, of formula 1); with candidate
model o(T'y,) indicated in red (running example).

posteriori ODC have already been exploited by Bingham and
Hu [6], Eén et al. [13], and Andraus et al. [2][1].

In this section, we introduce a technique similar to [2][1]
and extract partial candidate models by identifying parts of the
formula abstraction I that are irrelevant to its satisfiability un-
der the current assignment o. As indicated above, this directly
translates to collecting and checking function applications in
relevant parts of I' only. In the following, we assume that I"
is represented as a directed acyclic graph (DAG) with exactly
one root, where all Boolean operations are expressed by means
of NOT and (two-input) AND gates. In place of procedure
search_initial_applies, we introduce search_initial_applies;j,st
(Fig. 5), which collects function applications while traversing
all relevant paths in I" as follows.

Given I' and a full candidate model o, starting from the root,
search_initial_appliesj s iteratively traverses I' towards its
primary inputs (bit vector variables and function applications)
in depth first search (DFS) order. That is, initially, root (I")
is pushed onto stack X (line 2) and for each node x € X
we determine the paths to be skipped as follows. If a node x
is an AND node and its output is assigned to L, we follow
(one of) its controlling input(s), i.e., one of its inputs with
controlling value (L for an AND) [18], and skip the other
(lines 7-14). Similarly, if « is an IF-THEN-ELSE (ITE) node
and its condition is assigned to T (resp. L), we follow both
its condition and its then (resp. else) branch (lines 15-20). In
any other case where x is not an APPLY node, we follow all
inputs of node z (line 22). However, if x is an APPLY node,
we collect x (line 6) and cut off the traversal, as function
applications are treated as fresh bit vector variables in the
formula abstraction.

Note that in the case that both inputs of an AND node
are controlling, we can skip either one of them (lines 9-
10). Hence, we choose to follow the input with minimum
cost in terms of consistency checking, where the cost of a
node z is defined as the minimum number of (unique) applies
along a path from z to the primary inputs in the preprocessed
formula 7. Similar as controllability measures in ATPG [18],
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1 procedure search_initial_appliesj,: (I, o)

2 S« 0, X « {root(I)}

3 while X #0

4 z — pop (X)

5 if is_apply (x)

6 push (S, z)

7 elif is_and(z) and o(z) =1
8 I « left_input (z), 7 « right_input(z)
9 if is_controlling () and is_controlling ()
10 push (X, choose (I, 7))
11 elif is_controlling (1)

12 push (X, 1)

13 else

14 push (X, r)

15 elif is_ite(x)

16 push (z, condition (x))

17 if o(condition(z)) =T

18 push (X, then (x))

19 else

20 push (X, else (z))

21 else

22 push (X, i € inputs (z))

23 return S

Fig. 5: Procedure search_initial_applies; st in pseudo-code.

we recursively define a cost function cost (z) as follows.

0 if is_var (z)
min {cost (¢) | ¢ € inputs (z)} if is_and ()
t = 1
cost () sum {cost (¢) | ¢ € inputs(x)} +1 if is_apply (z) M
sum {cost (¢) | ¢ € inputs (z)} otherwise

Given formula 7, a bit vector variable is a primary input, hence
its cost is defined as 0. Function applications, on the other
hand, are not primary inputs but define the cost of a path from
input = to the primary inputs. Hence, the cost of an APPLY
is defined as the sum of the costs of its inputs increased by
one. In case of an AND node, we want to choose the input
with minimum cost if both inputs are controlling, hence cost
is defined as the minimum cost of its inputs. In any other case,
all input paths have to be followed and cost (x) is defined as
the sum of the costs of all inputs of x.

Example 2: Consider formula 1t);, formula abstraction
I'y,, and a full candidate model o(I'y,) as given in
Example 1. Starting from the root (and;), procedure
search_initial_applies;,s; traverses I'y, in DFS order while
identifying (and skipping) all paths irrelevant w.r.t. assignment
o(T'y, ). Note that in Fig. 3 and 4, inverted nodes are indicated
by black dots. In the following, however, we will interpret
an inverted node as two distinct nodes (with resp. distinct
assignments), i.e., mands with o(—-ands) = T in Fig. 4,
for example, is treated as a NOT (assigned to T) in front
of an AND (assigned to 1). Starting with root and;, which
is assigned to T, neither of its inputs may be skipped and we
first travel down towards eq;, whose inputs are both bit vector
variables. Hence, we immediately continue with ands (also
assigned to T) and follow its input eqy, where we encounter
an ite with its condition assigned to T. We skip the else
branch, no APPLY is collected, and we continue down the
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input path leading to ands, which is assigned to _L. Both inputs
of andj are controlling (i.e., assigned to L), hence we choose
one of them heuristically. The minimum cost for both paths,
however, is 0 (as the body of function f does not contain any
further applies), hence we may choose either. We decide on
the path to apply; and conclude with S = {apply;}, which
corresponds to the partial model to be subsequently checked
for consistency.

B. Dual Propagation-Based Partial Model Extraction

Exploiting the duality of QBF by propagating a dual set of
values through a QBF ¢ and its negation —¢, also referred to
as dual propagation, has successfully been employed in [15]
to significantly prune, and therefore speed up the search in
circuit-based QBF solvers. The core idea of dual propaga-
tion, however, is neither restricted to circuit-based representa-
tions [16] nor to QBF and is based on the fact that assignments
satisfying an input formula ¢ (the primal channel), falsify
its negation —¢ (the dual channel) and vice versa. Given a
Boolean formula i3 = (a/Ab)V (cAd), for example, assignment
{o(a) = T,0() =T,0(c) =T, o(d) = T} satisfies )2,
but falsifies its negation =)o = (—a V —b) A (—c V —d).

The duality of formula 15, however, can be further ex-
ploited. Assume, for example, that given 1o and o () as
above, we fix the values of all input variables assigned
in o(t2) by making assumptions {a=T,b=T,c=T,d=T}
to a SAT solver maintaining its negation —)2. All assumptions
inconsistent with —1s, also called failed assumptions [14],
identify all input assignments sufficient to falsify —)2, hence
sufficient to satisfy 1. This set of failed assumptions, for
example {a = T,b = T}, therefore represents a partial
model satisfying 5. Note that our approach does not re-
quire a structural SAT solver—structural don’t care reason-
ing is simulated via the dual solver, which maintains —t)9
in CNF. Consequently, given a CNF representation of o
(where structural information of - is essentially lost), we
extract a partial model (disregarding structural don’t cares
w.r.t. assignment o) that satisfies ¥o but not necessarily its
encoding to CNF. Consider, for example, the Tseitin encoding
CNF(¢p5) = (moVa Vy) A (—mxz Vo)A (-yVo)A(-xVa)A
(mz VD) A (maV-bVI)A(—~yVe)A(—yVd)A(—eV-dVy).
Our previous partial model {a = T,b = T} satisfies )2
(and therefore identifies those parts of o relevant to its
satisfiability) but does not satisfy all clauses in CNF(¢). This
is in contrast to other partial model extraction techniques based
on iterative removal of unnecessary assignments on the CNF
level (e.g. [12]), which do not enable structural don’t care
reasoning and therefore need to satisfy all clauses in CNF(1)).

In this section, we lift the approach sketched above to
the word level by means of a dual SMT solver and in-
troduce a technique to extract partial candidate models via
dual propagation-based don’t care reasoning. Given a formula
abstraction I = () A€, we use a single dual solver instance
to maintain —I" over all refinement iterations in combination
with the primal (or main) solver. However, since in each
iteration ¢ a new lemma /; is added to £ = [y A...Al;_1, we set
up the dual solver to maintain —T' = —(a(m)AlLA...Ali_1Al;)
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1 procedure search_initial_appliesq, (I, o)

S—0, A—10

assume (dual_solver, —T")

X « collect_primary_inputs (T")

for z€ X
a«—zxz=0c(x), A— AUa
assume (dual_solver, a)

res <« DPg (dual_solver)

assert res =UNSAT

10 for ac A

z, o(x) — a

12 if is_failed (a) and is_apply (x)

13 push (S, z)

14 return S

Nl HEE - RV B VS I S

—_
—_

Fig. 6: Procedure search_initial_appliesq, in pseudo-code.
Solver instance dual_solver simulates the dual channel and
is maintained globally.

as assumption rather than assertion. As illustrated in Fig. 6,
we introduce search_initial_appliesq, in place of procedure
search_initial_applies as follows.

Given I' and a full candidate model o, procedure
search_initial_appliesyp initializes the dual solver by assum-
ing —I' (line 3). The value of all primary inputs in —I is
then fixed by making assumptions of the form =z = o(x),
where z is either a bit vector variable or an abstracted function
application, and o(z) is its assignment in the current full
candidate model o (lines 4-7). Candidate model o represents
a satisfying assignment for I', hence decision procedure DPg
must conclude that assuming ¢, —I" is unsatisfiable (lines 8-9).
The resulting set of failed assumptions identifies all relevant
parts of I' w.r.t. assignment o, and all function applications
in the set of failed assumptions are subsequently collected for
consistency checking (lines 10-13).

Example 3: Again, consider formula 1)q, its initial for-
mula abstraction I'yy, = a(i1), and a (possible) full can-
didate model o(vyy) as given in Example 1. Procedure
search_initial_appliesqp initializes the dual solver by assuming
Ty, = (i kA (a(apply1) = e V a(apply2) = v) A
v = ite(i = j,e,a(applys))), and subsequently collects all
bit vector variables ¢, j, k, e, v and abstracted function
applications a(apply1), a(applys), a(applys) in I'y, onto
stack X. All primary inputs * € X are then fixed by
making assumptions {¢ = 00, j = 00, £k = 01, ¢ = 00, v =
00, a(apply1) = 00, a(applyz2) = 00, a(applyz) = 00} to
the dual SMT solver instance, which concludes that under the
current set of assumptions, —I'y, is unsatisfiable. Assumption
a(applyr) = 00 is identified as failed assumption and we
conclude with S = {apply;} to be subsequently checked for
consistency.

Note that in a sense, our dual propagation-based approach
as discussed above simulates dual propagation as introduced
in the context of QBF [15][16] rather than literally lifting it
to bit vectors with arrays. Dual propagation as in [15][16]
is done eagerly by means of one single solver instance
maintaining a primal and a dual channel without additional
overhead. Primary inputs are shared between both channels,
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Solved .

Solver (sat/unsat) TO MO Time [s] DS [s]
~ Boolectorg. 140 (83/57) 9 0 15882
: Boolectory,, 141 (83/58) 8 0 19312
S | Boolectorjy, 142 (84/58) 7 0 15709 -
“ Boolectorg, | 142 (84/58) 7 0 20992 5045
~ | Boolectorsc 116 (72/44) 50 7 85863 -
£ | Boolectory, 121 (76/45) 45 7 76104
%’) Boolectorj,, 130 (85/45) 36 7 63202 -
“2 | Boolectorg, | 130 (85/45) 36 7 66991 4705

TABLE I: Overall results on sets SMT’12 and Selected.

which enables symmetric propagation between the primal and
dual channel and allows to detect partial models early—even
before a full assignment has been generated. In our approach,
however, propagation is not interleaved, but consecutive—
the primal solver generates a full assignment before the dual
solver enables partial model extraction based on the primal full
assignment. Further, primary inputs are not physically shared
as the dual solver discretely maintains —¢ (while mapping
primary inputs back to the primal solver and vice versa).
Hence we have to simulate shared inputs via fixing input
values by means of assumptions to the dual solver, which
simply acts as “slave” for partial model extraction to the
primal solver. In order to adopt a more eager approach to
enable early partial model extraction while reducing the dual
solver overhead, interleaved execution between the primal
and dual solver similar to “SAT modulo SAT” [4] would be
required. Integrating such an interleaved decision process into
an existing SMT solver has high potential, however, is rather
involved to implement and left to future work.

IV. EXPERIMENTAL EVALUATION

We implemented justification-based and dual propagation-
based partial model extraction in our SMT solver Boolector
and provide a comparison of the following four configurations:

e Boolector,.: The version that won the QF_AUFBYV track
of the SMT competition 2012.

o Boolectory,: Our current base version of Boolector, a
slightly optimized version of [19], with partial model
extraction disabled.

o Boolector;,: Our base version of Boolector with
justification-based partial model extraction enabled.

o Boolectorg,: Our base version of Boolector with dual
propagation-based partial model extraction enabled.

We compiled two benchmarks sets for our experimental eval-
uation: (1) SMT’12 (149 instances), which consists of all
non-extensional benchmarks used for the SMT competition
2012 and (2) Selected (173 instances), which includes all
non-extensional benchmarks from the QF_AUFBYV category of
SMT-LIBfor which Boolector,. required at least 10 seconds
(CPU time) for solving (incl. timeouts and memouts). Note
that we had to exclude extensional benchmarks as Boolectory,
and its optimized versions Boolector;,, and Boolectorg, do
not yet support extensionality on arrays. Further note that 58
instances of the benchmark set SMT’[2 are included in Se-
lected. All experiments were performed on 2.83Ghz Intel Core
2 Quad machines with 8GB of memory using Ubuntu 12.04.
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Solver Time [s] Sat [s] DS overhead [s] LOD Array Model Size

Total Avg. Med Total Avg. Med. | Total Avg. Med. Total Avg. Med. Total Avg. Med.
« | Boolectorse 4129 29 2 3662 26 0 - - - 30741 221 0 | 184032 2272 20
E Boolectory,, 8564 61 6 7262 52 1 - - - 33013 237 0 33310 411 20
S | Boolectorj, 6362 45 4 5226 37 0 - - - 23660 170 0 19751 243 13
“ | Boolectorg, | 10145 72 5 4700 33 0 | 4109 29 0 33492 240 0 27912 344 12
~ | Boolectorse | 15037 133 35 | 12836 113 34 - - 104646 926 175 | 512225 7645 1257
2 | Boolectory, | 10001 88 35 8330 73 22 - - - 31752 280 88 | 136681 2040 212
< | Boolector,, 8182 72 29 6639 58 19 - - - 28215 249 28 | 122763 1832 154
“ | Boolectorg, | 10838 95 30 6164 54 15 | 3036 26 0 24866 220 29 | 130440 1946 170

TABLE II: Results for commonly solved instances on sets SM7°12 (139 benchmarks, 82 sat, 57 unsat) and Selected (113
benchmarks, 70 sat, 43 unsat). Commonly solved satisfiable instances for determining array model size were 81 (out of 82)
for SMT’12 and 67 (out of 70) for Selected. Array model size is measured in terms of number of index/value pairs.

The memory and time limits for each solver instance were set
to 7GB and 1200 seconds, respectively.

A. Results Overview

The overall results of all four solver configurations on both
benchmark sets SMT’12 and Selected are shown in Table I,
which summarizes the number of solved instances (Solved),
timeouts (TO), memouts (MO), total CPU time (Time), and
the overhead produced by the dual solver in terms of CPU time
(DS). Note that the overhead introduced by our justification-
based approach is negligible. Further note that in case of a
timeout or memout, a penalty of 1200 seconds was added to
the total CPU time. On the SMT’12 benchmark set, in terms
of solved instances, Boolectors,, Boolector,,, and Boolectorg,
perform slightly better than Boolector,,.. In terms of runtime,
however, only Boolector;, shows a significant improvement
(of about 20%), while Boolectorg, appears to even perform
worse than Boolector,, which is mainly due to the runtime
overhead introduced by the dual solver. If we disregard this
overhead, the overall runtime of Boolectorg, is competitive
with the runtime of Boolector;,. It is conceivable that an eager
implementation of dual propagation would perform equally
well, i.e., at least as fast as Boolectorg, without the overhead.

Interestingly, Boolector . clearly outperforms all other three
solver configurations on the benchmark family “platania str-
cmp” (9 instances). Boolector,. solved these benchmarks in
about 31 seconds, whereas the other solvers required 4416 sec-
onds (Boolectory, ), 2308 seconds (Boolector;,,), and 4527 sec-
onds (Boolectorgy,, incl. 2277 seconds dual solver overhead),
respectively. The base version Boolector,,, and consequently
both Boolector,, and Boolectorg,, obviously struggle on these
benchmarks, which needs further investigation.

Note that benchmark set SM7’12 is not necessarily represen-
tative for lemmas on demand in Boolector, as 79 (53%) out of
a total of 149 instances are immediately solved by Boolector,
without a single refinement iteration. Benchmark set Selected,
on the other hand, has been compiled based on the runtime
performance of the SMT competition 2012 winner Boolector,
(incl. timeouts and memouts) and represents a set considered
to be “harder” for Boolector. As indicated in Table I, on set
Selected both Boolector;,, and Boolectorg, clearly outperform
their base version Boolector, as well as the competition con-
figuration Boolector,.. More precisely, both our justification-
based and dual propagation-based optimizations considerably
reduce the overall runtime while solving 14 (9) additional
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instances compared to Boolector,. (Boolectory, ), where 13 (9)
out of 14 (9) are satisfiable instances. Again, Boolectorg, is
slowed down by the dual solver overhead, but still manages to
solve as many instances as Boolector,,. Disregarding the dual
solver overhead, Boolectorg, even outperforms Boolectorj,
in terms of runtime. Note that the dual solver overhead in
general correlates with the number of lemmas generated. This
is due to the fact that in each refinement iteration a partial
candidate model is extracted from the full candidate model,
which requires an additional call to the dual solver. On set
Selected, for 10 out of 130 instances, the dual solver overhead
constitutes about 50-70% of the total runtime per instance,
whereas for 83 instances it does not exceed 10%.

B. Results Commonly Solved Instances

Table II summarizes all instances in each benchmark set
that could be solved by all four solver configurations and gives
an overview of the runtime required for solving (Time), the
runtime required by the underlying SAT solver (Sat), the dual
solver overhead (DS), the number of lemmas generated (LOD),
and the size of the array models for satisfiable instances (Array
Model Size). For all four solver configurations, we identified
139 common instances (82 sat, 57 unsat) on benchmark set
SMT’12 and 113 common instances (70 sat, 43 unsat) on
benchmark set Selected. Array model size is measured in terms
of the number of index/value pairs identified by each solver
with model generation enabled. However, unlike Boolectory,
(and consequently Boolector;,, and Boolectorg,), Boolector,,
requires additional overhead for model generation, which has
a negative impact on the overall number of solved instances.
As a consequence, Boolector,. effectively “lost” 1 (resp. 3)
satisfiable instance(s) on set SMT’12 (resp. Selected). We
therefore compiled all columns except column Array Model
Size with model generation disabled.

On the 139 common instances in the SMT’12 benchmark
set, Boolector,, is still the fastest solver, albeit only due to
the “platania strcmp” benchmarks mentioned above—on those
nine instances, Boolectory,, Boolector;,, and Boolectorg,
spent 50%, 35% and 45% of the overall runtime, respec-
tively. A similar picture emerges when comparing the number
of refinement iterations required for these nine instances,
which constitutes 59%, 47%, and 60% of the total num-
ber of lemmas generated by Boolectory,, Boolector;,, and
Boolectorg,, respectively. In comparison to the base version
Boolectory,, however, Boolectorg, shows the most notable
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improvement (about 26%) in terms of runtime required by
the underlying SAT solver on the 139 common instances in
SMT’12. Disregarding the dual solver overhead, Boolectorg,,
even outperforms Boolector;, in terms of overall runtime.
Interestingly, in terms of the number of lemmas generated,
Boolectorg, requires slightly more lemmas than the base
version, which is in stark contrast to Boolector;,,. However, in
case of Boolectorgy, this can be contributed to a relative small
number of instances. On 14 instances, Boolectory, generates
1.5 to 2.6 times more lemmas than Boolector,,, whereas on
all other instances, Boolectory, requires considerably more
refinement iterations than Boolectorg,. This might indicate that
in some cases, Boolector, coincidentally generates lemmas
that shortcut the search early on. In terms of array model size,
both optimized configurations Boolector;,, and Boolectorg,
clearly show a reduction in the number of array index/value
pairs compared to the base version Boolectory,.

Note that the considerable difference in array model size
between Boolectors. and Boolectory, is due to an optimiza-
tion of procedure search_applies_for_consistency_check (see
Section III) introduced subsequent to [19]. In essence, given
a function application f(a), this optimization aims at con-
sistency checking APPLY nodes reachable while traversing
in DFS order from f(a) to the primary inputs, only. In
contrast, prior to that optimization it was possible that function
applications irrelevant to consistency checking f(a) were
pulled in. The effect of this optimization is even more notable
on the Selected benchmark set, where Boolector,, clearly
outperforms Boolector,. in every aspect.

On the 113 common instances in set Selected, Boolectorgy,
clearly outperforms Boolector;, and Boolector, not only in
terms of runtime required by the underlying SAT solver, but in
the number of lemmas generated. Disregarding the dual solver
overhead, Boolectorg, shows even more improvement in terms
of overall runtime than Boolector;,,. Note that without the op-
timization of procedure search_applies_for_consistency_check
mentioned above, the difference in terms of overall runtime
between Boolectory, and both optimized versions Boolector;,,
and Boolectorg, would be even greater, i.e., comparable to the
difference between both optimized versions and Boolectors,.

C. Results Dual Propagation-Based Optimization

A more detailed overview of the instance-based results of
our dual propagation-based approach Boolectory, on bench-
mark set Selected is given in Fig. 7-9. Figure 7 compares the
overall runtime of Boolectorg, (incl. the overhead introduced
by the dual solver) with the runtime of Boolectors. (7a),
Boolector,, (7b), and Boolector;, (7c). Even though the
dual solver overhead constitutes 31% of the total runtime of
Boolectorgy, it still outperforms Boolector,. and Boolectory,,
on a majority of the instances and is even competitive with
Boolectorj,,. Disregarding the overhead of the dual solver
(Fig. 8), Boolectory, even outperforms Boolector;, on a
majority of the instances (Fig. 8c). In terms of the number of
lemmas generated (Fig. 9), in comparison to all three solver
configurations Boolector,., Boolectory,, and Boolector;,,, our
dual propagation-based solver Boolectorg, clearly shows the
most notable improvement.
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V. CONCLUSION

In this paper we introduced a dual propagation-based opti-
mization of the lemmas on demand procedure for bit vectors
with arrays as implemented in Boolector. We compared our
approach with a justification-based approach similar to [2][1].
We showed that don’t care reasoning on full candidate models
improves the performance of lemmas on demand considerably,
Our current simulation of dual propagation is competitive with
our justification-based optimization and clearly outperforms
the winner of the SMT competition 2012, even though the
dual solver introduces a considerable amount of overhead to
the overall runtime. Adopting a more eager dual propagation
approach promises to render the dual solver overhead neg-
ligible, while further improving the overall performance by
enabling partial model extraction even before a full candidate
model has been generated. However, this would require an
interleaved execution between the primal and the dual solver,
which is rather involved to implement and subject of future
work. Further, our current version of dual propagation-based
partial model extraction heavily relies on incremental SAT
solving under assumptions, which can benefit from dedicated
data structures [17]. The integration of such SAT solver level
optimization techniques is also left to future work.

Binaries of Boolector and all log files of our experimental evaluation can be
found at http://fmv.jku.at/dpjust.
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