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Abstract. We describe Btor2, a word-level model checking format for
capturing models of hardware and potentially software in a bit-precise
manner. This simple, line-based and easy to parse format can be seen as
a sorted extension of the word-level format Btor. It uses design princi-
ples from the bit-level format Aiger and follows semantics of the Smt-
Lib logics of bit-vectors with arrays. This intermediate format can be
used in various verification flows and is perfectly suited to establish a
word-level model checking competition. It is supported by our new open
source model checker BtorMC, which is built on top of version 3.0 of our
SMT solver Boolector. We further provide new word-level benchmarks
on which these open source tools are evaluated.

Our format Btor2 generalizes and extends the Btor [5] format, which can be
seen as a word-level generalization of the initial version of the bit-level format
Aiger [2]. Btor is a format for quantifier-free formulas over bit-vectors and
arrays with Smt-Lib [1] semantics but also provides sequential extensions for
specifying word-level model checking problems with registers and memories. In
contrast to Btor, which is tailored towards bit-vectors and one-dimensional bit-
vector arrays, Btor2 has explicit sort declarations. It further allows to explicitly
initialize registers and memories (instead of implicit initialization in Btor) and
extends the set of sequential features with witnesses, invariant and fairness con-
straints, and liveness properties. All of these are word-level variants lifted from
corresponding features in the latest Aiger format [4], the input format of the
hardware model checking competition (HWMCC) [3,6] since 2011. We provide
an open source Btor2 tool suite, which includes a generic parser, random sim-
ulator and witness checker. We further implemented a reference bounded model
checker BtorMC on top of our SMT solver Boolector. We consider Btor2 as an
ideal candidate to establish a word-level hardware model checking competition.

1 Format Description

The syntax of Btor2 is shown in Fig. 1. The sort keyword is used to define arbi-
trary bit-vector and array sorts. This not only allows to specify multi-dimensional
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Fig. 1. Syntax of Btor2. Non-terminals 〈opidx〉 and 〈op〉 are indexed and non-indexed
operators as defined in Table 1 (sequential part in red). (Color figure online)

arrays but can be extended to support (uninterpreted) functions, floating points
and other sorts. As a consequence, Btor2 is not backwards compatible with
Btor. For clarity, in Fig. 1 we distinguish between node (line) identifiers 〈nid〉
and sort identifiers 〈sid〉, and do not allow an identifier to occur in both sets.
Introducing sorts renders type specific keywords such as var, array and acond from
Btor obsolete. Instead, Btor2 uses the keyword input to declare bit-vector and
array variables of a given sort. Bit-vector constants are created as in Btor with
the keywords const[dh], one, ones and zero.

Bit-vector and array operators as supported by Btor2 and their respective
sorts are shown in Table 1. We use Bn for a bit-vector sort of width n, and I
and E for the index and element sorts of an array sort AI→E. Note that some
bit-vector operators can be interpreted as signed or unsigned. In signed context,
as in Smt-Lib, bit-vectors are represented in two’s complement.

2 Sequential Extension

As shown in Fig. 1, the sequential extension of Btor2 introduces a state key-
word, which allows to specify registers and memories. In contrast to Btor, where
registers are implicitly zero-initialized and memories are uninitialized, Btor2
provides a keyword init to explicitly define initialization functions for states. This
enables us to also model partial initialization. For example, initializing a mem-
ory with a bit-vector constant zero, zero-initializes the whole memory, whereas
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Table 1. Operators supported by Btor2, where Bn represents a bit-vector sort of size
n and AI→E represents an array sort with index sort I and element sort E .

indexed

[su]ext w (un)signed extension Bn → Bn+w

slice u l extraction, n > u ≥ l Bn → Bu−l+1

unary

not bit-wise Bn → Bn

inc, dec, neg arithmetic Bn → Bn

redand, redor, redxor reduction Bn → B1

binary

iff, implies Boolean B1 × B1 → B1

eq, neq (dis)equality S × S → B1

[su]gt, [su]gte, [su]lt, [su]lte (un)signed inequality Bn × Bn → B1

and, nand, nor, or, xnor, xor bit-wise Bn × Bn → Bn

rol, ror, sll, sra, srl rotate, shift Bn × Bn → Bn

add, mul, [su]div, smod, [su]rem, sub arithmetic Bn × Bn → Bn

[su]addo, [su]divo, [su]mulo, [su]subo overflow Bn × Bn → B1

concat concatenation Bn × Bm → Bn+m

read array read AI→E × I → E
ternary

ite conditional B1 × Bn × Bn → Bn

write array write AI→E × I × E → AI→E

partially initializing a register can be achieved by applying a bit-mask to an
uninitialized register.

Transition functions for both registers and memories are defined with the
next keyword. It takes the current and next states as arguments. A state variable
without associated next function is treated as a primary input, i.e., it has the
same behaviour as inputs defined via keyword input. Note that Btor provides
a next keyword for registers and an anext keyword for memories. Using sorts in
Btor2 avoids such sort specific keyword variants.

As in the latest version of Aiger [4], Btor2 supports bad state properties,
which are essentially negations of safety properties. Multiple properties can be
specified by simply adding multiple bad state properties. Invariant constraints
can be introduced via the constraint keyword and are assumed to hold globally.
A witness for a bad state property is an initialized finite path, which reaches
(actually, contains) a bad state and satisfies all invariant constraints.

Again as in Aiger [4], keywords fair and justice allow to specify (global)
fairness constraints and (negations of) liveness properties. Each justice property
consists of a set of Büchi conditions. A witness for a justice property is an infinite
initialized path on which all Büchi conditions and all global fairness constraints
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are satisfied infinitely often. In addition, all global invariant constraints have to
hold. The justice keyword takes a number (the number of Büchi conditions) and
an arbitrary number of nodes (the Büchi conditions) as arguments.

3 Witness Format

The syntax of the Btor2 witness format is shown in Fig. 2. A Btor2 witness
consists of a sequence of valid input assignments grouped by (time) frames. It
starts with ‘sat’ followed by a list of properties that are satisfied by the witness.
A property is identified by a prefix ‘b’ (for bad) and ‘j’ (for justice) followed by
a number i, which ranges over the number of defined bad and justice properties
starting from 0. For example, ‘b0 j0’ refers to the first bad and first justice
property in the order as they occur in the Btor2 input. The list of properties is
followed by a sequence of k+1 frames at time t ∈ {0, . . . , k}. A frame is divided
into a state and input part. The state part starts with ‘#t’ and is mandatory
for the first frame (t = 0) and optional for later frames (t > 0). It contains
state assignments at time t. The input part starts with ‘@t’ and consists of input
assignments of the transition from time t to t + 1. If states are uninitialized
(no init), their initial assignment is required to be specified in frame ‘#0’. The
state part is usually omitted for t > 0 since state assignments can be computed
from states and inputs at time t − 1. While don’t care inputs can be omitted,
our witness checker assumes that they are zero. Input and state assignments use
the same numbering scheme as properties, i.e., states and inputs are numbered
separately in the order they are defined, starting from 0. For example, 0 in
frame ‘#t’ (or ‘@t’) refers to the first state (or input) as defined in the Btor2
input. For justice properties we assume the witness to be lasso shaped, i.e., the
next state, which can be computed from the last state and inputs at time k, is
identical to one of the previous states at time t = 0 . . . k. As in Aiger, a Btor2
witness is terminated with ‘.’ on a separate line.

Fig. 2. Btor2 model and witness format syntax (sequential part in red). (Color figure
online)

Figure 3 illustrates a simple C program (left), the corresponding Btor2
model with the negation of the assertion as a bad property (center), and a
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Fig. 3. Example C program with corresponding Btor2 model and witness.

Btor2 witness for the violated property (right). The Btor2 model defines
one bad property (a == 3 && b == 3), which is satisfied in frame 6. The corre-
sponding witness identifies this property as bad property ‘b0’ (first bad property
defined in the model). All states are initialized, hence ‘#0’ is empty, and ‘@0’
to ‘@6’ indicate the assignments of input 0 (turn, the first input defined in the
model) in frames 0 to 6, e.g., turn = 1 at t = 0, turn = 0 at t = 1 and so
on. In frame 6, both states a and b reach value 3, and therefore property ‘b0’ is
satisfied.

4 Tools

We provide a generic stand-alone parser for Btor2, which features basic type
checking and consists of approx. 1,500 lines of C code. We implemented a refer-
ence bounded model checker BtorMC, which currently supports checking safety
(aka. bad state) properties for models with registers and memories and produces
witnesses for satisfiable properties. Unrolling the model is performed by sym-
bolic simulation, i.e., symbolic substitution of current state expressions into next
state functions, and incremental SMT solving. We also implemented a simulator
for randomly simulating Btor2 models. It further supports checking Btor2
witnesses. The model checker is tightly integrated into our SMT solver Boolec-
tor [18], an award-winning SMT solver for the theory of fixed-size bit-vectors
with arrays and uninterpreted functions. Since the last major version [18], we
extended Boolector with several new features. Most notably, Boolector 3.0 now
comes with support for quantified bit-vectors [24] and two different local search
strategies for quantifier-free bit-vector formulas that don’t rely on but can be
combined with bit-blasting [19,21,22]. It further provides support for Btor2.
In contrast to previous versions of Boolector, Boolector 3.0 and all Btor2 tools



592 A. Niemetz et al.

are released under the MIT open source license and the source code is hosted on
GitHub1.

5 Experiments

We collected ten real-world (System)Verilog designs with safety properties from
various open source projects [11,26–28]. The majority of these designs include
memories. We used the open synthesis suite Yosys [29] to synthesize these designs
into Btor2 and Smt-Lib. For Btor2, Yosys directly generates the models
from a circuit description. For Smt-Lib, since the language does not support
describing model checking problems, we used Yosys in combination with Yosys-
SMTBMC to produce unrolled (incremental) problems.

We compared BtorMC against the most recent versions of Boolector (3.0)
and Yices [10] (2.5.4), the two best solvers of the QF ABV division of the SMT
competition 2017. The Btor2 models serve as input for BtorMC, and the incre-
mental Smt-Lib benchmarks serve as input for Boolector and Yices. All bench-
marks, synthesis scripts, generated files, log files and the source code of our tools
for this evaluation are available at http://fmv.jku.at/cav18-btor2.

The results in Table 2 show that our flow using Btor2 as intermediate for-
mat is competetive with simple unrolling. Note that our model checker BtorMC
issues incremental calls to Boolector. However, in Boolector, sophisticated word-
level rewriting is currently disabled in incremental mode. We expect a major
performance boost by fully supporting incremental word-level preprocessing.

Table 2. BtorMC/Btor2 vs. unrolled Smt-Lib with a time limit of 3600 s, where k
is the bound and #bad is the number of bad properties.

Benchmark k #bad BtorMC
time[s]

Boolector
time[s]

Yices time[s]

picorv32-check 30 23 4.8 18.9 10.8

picorv32-pcregs 20 3 63.0 293.0 TO

ponylink-slaveTXlen-sat 230 1 305.5 406.8 145.6

ponylink-slaveTXlen-unsat 231 1 183.8 131.4 71.4

VexRiscv-regch0-15 17 2 9.6 48.3 12.2

VexRiscv-regch0-20 22 2 528.8 520.7 2232.2

VexRiscv-regch0-30 32 2 TO TO TO

zipcpu-busdelay 100 50 157.0 287.0 181.2

zipcpu-pfcache 100 39 17.4 19.9 32.5

zipcpu-zipmmu 30 57 86.0 412.9 46.5

1 https://github.com/boolector.

http://fmv.jku.at/cav18-btor2
https://github.com/boolector
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6 Conclusion

We propose Btor2, a new word-level model-checking and witness format. For
this format we provide a generic parser implementation, a simulator that also
checks witnesses, and a reference bounded model checker BtorMC, which is
tightly integrated with our SMT solver Boolector. These open source tools are
evaluated on new real-world benchmarks, which we synthesized from open source
hardware (System) Verilog models into Btor2 and Smt-Lib with Yosys. The
tool Verilog2SMV [14] translates Verilog into model-checking problems in several
formats, including nuXmv [7] and Btor. However, its translation to Btor is
incomplete and development discontinued.

We plan to provide a translator from Btor2 into SALLY [25], and VMT [8],
which are both extensions of Smt-Lib to model symbolic transition systems.
It might also be interesting to translate incremental Smt-Lib benchmarks and
horn clause models (as handled by, e.g., µZ [13]) into Btor2 and vice versa.
We hope other compilers and model checkers such as SAL [9], EBMC [15] and
ABC [12,16] will provide support to produce and read Btor2 models. We want
to extend the format to other logics, in particular to support lambdas as in [23].
There is also a need for fuzzing [20] and delta-debugging tools [17].

Last but not least, we want to use this format to bootstrap a word-level
model checking competition, which of course needs more benchmarks.

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

2. Biere, A.: The AIGER And-Inverter Graph (AIG) format version 20071012. Tech-
nical report, FMV Reports Series, Institute for Formal Models and Verification,
Johannes Kepler University, Altenbergerstr 69, 4040 Linz, Austria (2007)

3. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods in Computer Aided
Design, FMCAD 2017, Vienna, Austria, 2–6 October 2017, p. 9. IEEE (2017).
https://doi.org/10.23919/FMCAD.2017.8102233

4. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report,
FMV Reports Series, Institute for Formal Models and Verification, Johannes
Kepler University, Altenbergerstr 69, 4040 Linz, Austria (2011)

5. Brummayer, R., Biere, A., Lonsing, F.: BTOR: bit-precise modelling of word-level
problems for model checking. In: Proceedings of the Joint Workshops of the 6th
International Workshop on Satisfiability Modulo Theories and 1st International
Workshop on Bit-Precise Reasoning, SMT 2008/BPR 2008, pp. 33–38. ACM, New
York, USA (2008). http://doi.acm.org/10.1145/1512464.1512472

6. Cabodi, G., Loiacono, C., Palena, M., Pasini, P., Patti, D., Quer, S., Ven-
draminetto, D., Biere, A., Heljanko, K.: Hardware model checking competition
2014: an analysis and comparison of solvers and benchmarks. J. Satisf. Boolean
Model. Comput. 9, 135–172 (2014). Published 2016

www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.23919/FMCAD.2017.8102233
http://doi.acm.org/10.1145/1512464.1512472


594 A. Niemetz et al.

7. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

8. Cimatti, A., Roveri, M., Griggio, A., Irfan, A.: Verification modulo theories. http://
es.fbk.eu/projects/vmt-lib/

9. De Moura, L., Owre, S., Shankar, N.: The SAL language manual. Technical report
CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park (2003)

10. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

11. Gisselquist, D.: ZipCPU. https://github.com/ZipCPU/zipcpu
12. Ho, Y., Mishchenko, A., Brayton, R.K.: Property directed reachability with word-

level abstraction. In: FMCAD, pp. 132–139. IEEE (2017)
13. Hoder, K., Bjørner, N., de Moura, L.: µZ - an efficient engine for fixed points

with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 36

14. Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Verilog2SMV: a tool
for word-level verification. In: DATE, pp. 1156–1159. IEEE (2016)

15. Kroening, D.: Computing over-approximations with bounded model checking.
Electr. Notes Theor. Comput. Sci. 144(1), 79–92 (2006)

16. Long, J., Ray, S., Sterin, B., Mishchenko, A., Brayton, R.K.: Enhancing ABC for
stabilization verification of systemverilog/VHDL models. In: Proceedings of the
CEUR Workshop DIFTS@FMCAD, vol. 832. CEUR-WS.org (2011)

17. Niemetz, A., Biere, A.: ddSMT: a delta debugger for the SMT-LIB v2 format. In:
Bruttomesso, R., Griggio, A. (eds.) Proceedings of the 11th International Work-
shop on Satisfiability Modulo Theories, SMT 2013, Affiliated with the 16th Interna-
tional Conference on Theory and Applications of Satisfiability Testing, SAT 2013,
Helsinki, Finland, 8–9 July 2013, pp. 36–45 (2013)

18. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2015)
19. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local

search for satisfiability modulo theories. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 199–217. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41528-4 11

20. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
Brain, M., Hadarean, L. (eds.) Proceedings of the 15th International Workshop on
Satisfiability Modulo Theories, SMT 2017, Affiliated with the 29th International
Conference on Computer Aided Verification, CAV 2017, Heidelberg, Germany, 24–
28 July 2017, p. 10 (2017)

21. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017). https://doi.org/10.
1007/s10703-017-0295-6

22. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-
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