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ABSTRACT

Tolerating inconsistencies is well accepted in design model-
ing because it is often neither obvious how to fix an incon-
sistency nor important to do so right away. However, there
are technical reasons why inconsistencies are not tolerated
in many areas of software engineering. The most obvious be-
ing that common reasoning engines are rendered (partially)
useless in the presence of inconsistencies. This paper inves-
tigates automated strategies for tolerating inconsistencies
during decision-making in product line engineering, based
on isolating parts from reasoning that cause inconsistencies.
We compare trade offs concerning incorrect and incomplete
reasoning and demonstrate that it is even possible to fully
eliminate incorrect reasoning in the presence of inconsisten-
cies at the expense of marginally less complete reasoning.
Our evaluation is based on seven medium-to-large size soft-
ware product line case studies. It is important to note that
our mechanism for tolerating inconsistencies can be applied
to arbitrary SAT problems and thus the basic principles of
this approach are applicable to other domains also.

Categories and Subject Descriptors

1.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms

Algorithms, Human Factors, Verification

Keywords

Formal Reasoning, User Guidance, Inconsistencies

1. INTRODUCTION

Inconsistencies in models imply the presence of errors. For
the software engineer, the main benefit of tolerating incon-
sistencies is the ability to continue working despite this pres-
ence of errors. This is useful when it is neither obvious how
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to fix the inconsistency nor important to do so right away.
Indeed, many inconsistencies can be tolerated. Balzer ar-
gued that inconsistencies should be detected and communi-
cated to the developers; however, developers should not be
hindered in continuing their work despite the presence of in-
consistencies [1]. The same is true in software product line
engineering. For instance during the configuration of soft-
ware components there could be an inconsistency concerning
the communication protocol between components. However,
the protocol could have a dependency to other component
decisions which the engineer might prefer to explore before
deciding on the protocol. Another example would be if an
engineer starts with an existing configuration and adapts it.
Changing decisions might cause inconsistencies that could
be fixed by follow-on decisions, however the engineer should
not be hindered to make other decisions in the meantime.
Also during the creation of feature models it would be desir-
able to have automations working that inform the engineer
e.g. about dead features despite the feature model not being
consistent at the moment.

While in model-driven software engineering, it is state-
of-the-practice to tolerate inconsistencies [6], most product
configuration tools, disallow tolerating inconsistencies (i.e.,
usually by preventing decisions that cause inconsistencies).
And there are good reasons for disallowing inconsistencies.
First and foremost, many reasoning engines are rendered
useless in the presence of inconsistencies. Even if the rea-
soning engines were to function (instead of failing outright),
the implications on the quality of the results are typically
not understood (conventional wisdom implies that we can-
not expect a reasoning engine to compute correct results in
the presence of inconsistent, aka erroneous input). This is
a severe problem because as Balzer said, inconsistencies are
a fact of (software engineering) life and to date reasoning
engines enable many vital automations during product con-
figuration. When we speak of automations during product
configuration, we speak of any automations that are conceiv-
able based on reasoning with the model and the configura-
tion state, such as: i) understanding the effects of decisions,
11) deducing other decisions, i) determining the optimal or-
der of questions [19] etc. Typically such automations fail, if
the reasoning engine fails; or they produce incorrect results
if the reasoning is incorrect.

As a continuation of our previous work [17], the goal of this
paper is to investigate how to handle inconsistencies dur-
ing product configuration based on SAT-based reasoning [4]
while still benefiting from a definable level of completeness
and correctness. Contrary to conventional wisdom, we will
demonstrate that i) correct reasoning in the presence of in-



consistencies is possible and 1) automations (SAT-based)
remain useful even while tolerating inconsistencies. In con-
trast to our previous work [17], were we investigated the
applications of one technique to manage inconsistencies in
different areas of product line engineering, we extended the
number of techniques but narrowed the focus to one applica-
tion to do a in depth evaluation. Even though the evaluation
focuses on product configuration, one decision at a time, this
work should be applicable to other configuration processes,
such as starting with a default product.

While this paper focuses on product configuration, it is
the first study to compare strategies for tolerating inconsis-
tencies in SAT-based reasoning. As such, we believe that
this work has wider applicability and may benefit other ar-
eas in product line engineering and in software engineering
in general, that rely on SAT-based reasoning, e.g. feature
model analysis, SAT-based hardware verification [9] or de-
bugging [21].

Next, we present an illustration used throughout the pa-
per. We discuss the goals of this work and the challenges.
A detailed discussion of the tolerating strategies follows, in-
cluding a discussion of trade-offs. The evaluation, related
work, future work and conclusions round off the paper. It
is out of the scope of this paper to discuss how to fix in-
consistencies with or without tolerating them; however we
believe that tolerating inconsistencies also makes the fixing
of such inconsistencies easier — an observation that is alluded
at various places in the paper, but future work to explore
and already partially covered in our paper [17].

2. PROBLEM DESCRIPTION

Since this paper investigates how to tolerate inconsisten-
cies while reasoning with SAT solvers, a short introduction
to the terminology based on [3] is given: SAT problems are
defined in conjunctive normal form (CNF') which is a con-
junction of clauses. One clause is a disjunction of literals
which are Boolean variables. Assumptions are assignments
for literals that constrain the assignment possibility of a lit-
eral to either true or false, such assumptions can either be
derived or made by the user. SAT solvers produce one of
two results, either a CNF is satisfiable (SAT') or unsatisfiable
(UNSAT) — SAT meaning that there exists an assignment
for all literals such that the CNF evaluates to true, UNSAT
meaning that such an assignment does not exist. If a prob-
lem is UNSAT it can be because of either an inconsistency
in the clauses which would be low-level, or an inconsistency
because of assumptions which would be high-level.

2.1 Illustrative Configuration Example

As an illustrative configuration example we will be using
an excerpt from a real e-commerce decision-oriented prod-
uct line. This decision model was reverse engineered from
the the DELL homepage (during February 2009), a com-
plete version of the model was also used in the evaluation
and it can be downloaded from the C20 website'. The il-
lustration’s relevant questions (e.g. Screen Size) with their
respective choices (e.g. 12.1”, 13.3", and 15.4") are shown
in Figure 1, the indicated constraint relations are listed next:

(Screen Size = Laptop Type)Constraint Relation = {
(12.1” = {Inspirion, Latitude}),
(13.3" = {Latitude, Vostro}),
(15.4” = {Inspirion, Latitude, Vostro})}

Lwww.sea.jku.at /tools/c20
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Figure 1: Illustrative Excerpt of a Product Line De-
cision Model.

constraint
relations

(Memory = Operating SyStem)ConstraintRelation = {
(2GB = {32bit, 64bit}),
(8GB — {64bit})}

(Screen Resolution = Laptop T'ype) ConstraintRelation ‘= {
(XGA = {Latitude, Vostro}),
(WXGA = {Inspirion, Latitude, Vostro}),
(WUXGA = {Latitude, Vostro})}

(Webcam = Laptop Type)Constraint Relation *= {
(yes = {Inspirion, Vostro}),
(no = {Latitude, Vostro})}

These relations impose constraints onto a configuration,
such as selecting 2GB of Memory, both 32bit and 64bit
Operating Systems are viable, but if 8GB is selected only
a 64bit Operating System is allowed.

Encoding this example in CNF is straight-forward, by as-
signing a literal to each choice (e.g. Memory(2GB) — a,
Memory(8GB) — b, Operating System(32bit) — c), pre-
serving the question concepts through clauses that only al-
low one choice per question (e.g. for the Memory question:
(ma vV =b) A (a Vb)), and adding clauses for the constraint
relations (e. g. the relation between Memory and Operating
System: (=bV —¢)).

2.2 Terminology

In our case of decision-making scenarios supported with
SAT-based reasoning, one has to distinguish between the
user’s perspective and that from the reasoning engine. Users
make decisions in a configuration tool (e.g. our C20 config-
uration tool [18]), these decisions are then translated to user
assumptions to be used in the SAT-based reasoning engine
which then further derives assumptions.

2.3 Reasoning during Product Configuration

In the domain of product configuration and decision mod-
eling, SAT-based reasoning is state-of-the-practice [15, 22].
It has several primary uses: SAT reasoning is used i) to
validate products, i) to find viable alternative solutions if
a product is not valid [24] or auto complete partial prod-
ucts [15], and 4ii) to provide guidance during the configu-
ration process [20, 19]. To validate a product one call to
the SAT solver is sufficient. For the other uses several SAT
solver calls are necessary with different assumptions to find
out if combinations of assumptions are valid. So basically
in these cases the SAT solver is used as an oracle and the
reasoning process is based on querying this oracle.

The most basic guidance that SAT solvers are used for
in decision-making scenarios, is to calculate the effect of a
decision and show its effects to the user when subsequent



Table 1: Configuration Progression of the Example
given in Figure 1 at the Literal Level.
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q...question, w...user assumption, s...derived state,
0.. .false, 1.. .true

questions are answered. This is illustrated in Table 1, for
the first question the user decided the Screen Size to be
12.1” which is indicated in the column 1%%q, u, the effect
and resulting state of this decision is shown in the column
1°%q, s. This is repeated for the other questions, where user
assumptions are bold and choices belonging to questions that
already have been answered are grayed out. The effect of
each user assumption is calculated the following way: For
every remaining literal a SAT call with a positive as well
as a negative assumption is made, to see if there are any
solutions left with those assumptions. If both assumptions
are still possible the answer had no effect on this literal at
that time, but if only one assumption is possible this as-
sumption can be kept as a derived assumption (e.g. the as-
sumptions Screen Size(12.1") and Screen Size(13.3") are
UNSAT, therefore ~Screen Size(13.3") is derived, the same
is true for =Laptop Type(Vostro)). This process is repeated
after each decision during the whole process.

In the illustration in Table 1 technically after the third de-
cision the decision-making process could be stopped, since
an assumption was provided or derived for all literals. How-
ever what if the user is not satisfied with some of the derived
decisions as illustrated and wants to select Webcam(yes)?
There are three possibilities, shown in Figure 2, how to han-
dle such a situation: ) not allowing such a decision and
thereby forcing the user to backtrack and explore different
decisions so that Webcam(yes) becomes available, i) fixing
the problem right away by deciding differently for an ear-
lier question that Webcam(yes) is in conflict with, and #i4)
tolerate the inconsistency for the time being until the user
made up his / her mind on how to fix it.

In this paper, we focus on tolerating inconsistencies as a
viable alternative to disallowing inconsistencies or forcing
an immediate fix. Our tolerating mechanisms are based on
isolating contributing assumptions of an inconsistency from
reasoning, however this is hidden from the user, the deci-
sions are not discarded and the configuration process can be
continued in case of an inconsistency with no limitations.
We believe an indication of isolated decisions and not keep-
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Figure 2: Overview of SAT-based reasoning.

ing the user from making new decisions is preferable, so the
user can decide when to fix an inconsistency. One also has
to separate the user’s view from the reasoning behind, e.g.
users are still able to see what contradictory decisions they
made even though they might be excluded from reasoning.
For the remainder of this paper we solely focus on tolerating
mechanisms from the perspective of a SAT-based reasoning
engine.

2.4 Reasoning in the Presence of Inconsisten-
cies

As long as a CNF with assumptions evaluates to SAT, no
inconsistency is detected. Adding additional clauses and / or
assumptions may change SAT to UNSAT, but once the SAT
solver is in an UNSAT (inconsistent) state adding additional
clauses and / or assumptions will have no effect at all because
the SAT solver will continue to evaluate to UNSAT. As ex-
plained in Section 2.3, since the SAT solver is used for more
then just detecting inconsistencies, automations are lost too.
For example, the ability to automatically derive assumptions
i) to (partially) auto-complete the configuration process or
11) show decision effects, is lost.

If the tolerance to inconsistencies should not change the
SAT-based automation then the only option is isolation.
It is important to distinguish between isolating and fixing
an inconsistency at this point: Isolating means sandboxing
clauses and / or assumptions that cause an inconsistency, in
other words identify contributors and ignore them for rea-
soning purposes. Fixing would go one step further and in
addition change those clauses and /or assumptions in such
a way the inconsistency would be resolved. So the isolation
can be seen as a first step of an actual fix without commit-
ting on how to fix.

In the domain of decision-making, isolating clauses and
assumptions account for different parts. Assumptions are
used to express user decisions and derived decisions (high-
level), whereas clauses are used to define the decision model
(low-level). This paper works under the assumption that
the decision model is correct, and that the user decisions
are contradictory to the model (much like we presume that
in case of inconsistencies in design models, the user model
is at fault and not the meta model that defines the model-
ing language). Therefore we only care about isolating user
assumptions, ignoring the clauses. So looking at the ex-
ample from Table 1 with the inconsistency detected at the
fourth answer, given the constraints and considering all pos-
sibilities, the following decisions contribute to the inconsis-
tency: Screen Size(12.1"), Screen Resolution(XGA) and
Webcam(yes). As a matter of fact isolating any one of these
is sufficient to get meaningful results again. At this point
the user could continue configuring the product and fix the
problem later on. Once the user decides to fix the problem,



the defective contributor has to be identified by the user,
since choosing a random contributor often does not suffice.
The user then has to provide a different, valid decision for
the identified question, resulting in the fix of the problem.
The fixing aspect is out of the scope of this work.

3. GOALS

Our goal is to provide SAT-based automations (i. e., guid-
ance in our case), that remain as complete and as correct
as possible in the presence of inconsistencies. We discussed
the advantages of tolerating inconsistencies in the introduc-
tion and we discussed that tolerating inconsistencies should
not affect the SAT-based automations themselves (ideally
SAT-based automations should remain the same regardless
of whether inconsistencies are tolerated or not). Tolerating
inconsistencies without changing SAT-based automations is
doable by isolating offending assumptions. Since there are
alternatives on how to isolate them we will investigate four
isolation strategies and compare their advantages and dis-
advantages in terms of incorrect reasoning and incomplete
reasoning, which will be explained in detail later. Some
of the isolation strategies are intuitive (even trivial) others
may not be known to the software engineering community.
A secondary goal of this paper is thus to raise awareness
of strategies less known — particularly HUMUS. We make
no claim that the four isolation strategies represent a com-
plete set but believe that they cover interesting ends of the
problem and solution spectrum.

4. APPROACH

In this section we will discuss different isolation strate-
gies in detail. However, as mentioned before in Section 2.4,
we will solely focus on isolating user assumptions and recal-
culating derived assumptions (high-level facts during SAT-
based reasoning) and assume that the decision models them-
selves are correct and therefore the clauses (low-level facts
during SAT-based reasoning) do not need to be changed.
However, it should be pointed out that two out of the four
isolation strategies (MaxSAT and HUMUS) could also be
applied to isolate low-level facts [13, 12].

To provide a better insight into the investigated SAT isola-
tion techniques we need to introduce a few more (high-level)
SAT concepts [3, 13]. First an important SAT concept is
a minimal unsatisfiable set (MUS) which is defined by the
properties of being minimal and that removing any single
assumption results in the remaining set being satisfiable. In
our example configuration illustrated in Table 1 only one
MUS of user assumptions is present {Screen Size(12.1"),
Screen Resolution(X GA), Webcam(yes)}. However gener-
ally speaking inconsistencies consist of many possibly over-
lapping MUSes, as a consequence isolating one assumption
of one MUS does not necessarily result in a satisfiable SAT
model. Another concept is the minimal correcting set (MCS)
which is defined by the properties of being minimal and
that removing it from reasoning, results in a satisfiable SAT
model. In our illustration the MCSes are {Webcam(yes)},

{Screen Resolution(XGA)}, and {Screen Size(12.1"”)}. Gen-

erally speaking MUSes and MCSes are connected via hitting
sets, meaning that every MCS is composed of a single ele-
ment from every MUS. In addition to this relation MCSes
are the complement of a maximal satisfiable set (MSS). As
the name already states a MSS is a set of assumptions that
is satisfiable and of the maximum size it can be. An example
for one possible MCS and its complementary MSS given our
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Table 2: Isolation strategies based
in Table 1.
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illustration, is the MCS {Screen Size(12.1”)} and the MSS
{Memory(8GB), Screen Resolution(XGA), Webcam(yes)}.

4.1 Different Isolation Strategies

In the following the four different isolation strategies we
investigated will be explained in detail, with the help of Ta-
ble 2. This table continues the configuration example from
Table 1 where the derived state after the third questions
was complete, but introduces a conflicting user assumption
at the fourth question. At this point depending on the iso-
lation strategy different alternative states can be derived,
which are explained next.

4.1.1 Disregard All Strategy

A trivial way to ensure a correct state in the presence
of inconsistencies is to ignore everything that happened so
far, meaning that every single assumption before the incon-
sistency was encountered is isolated from future reasoning.
This solution may seem mundane; however, we can think
of it as the worst-case strategy against which others can be
compared. This strategy is also specific to high-level isola-
tion since isolating all clauses hardly makes sense. The result
of this isolation strategy can be seen in Table 2: All user as-
sumptions are isolated resulting in no derived assumptions
for future questions, but also for already decided questions
— basically the initial state is restored.

4.1.2  Skip Strategy

In order to be consistent again, this strategy skips the
user assumption immediately preceding the detection of the
inconsistency. Unless clauses are added iteratively this also
makes no sense for a low-level isolation strategy (hence it
applies to high-level facts only). The result of this isolation
strategy can be seen in Table 2: The conflicting user as-



sumption Webcam(yes) is isolated (skipped) — basically the
state before the inconsistency detection is kept, requiring a
simple history of user assumptions to implement it.

4.1.3 MaxSAT Strategy

MaxSAT stands for maximum satisfiability of the high-
est cardinality [12], the basic concept is to identify a set
of clauses that can be satisfied and consists of the maxi-
mum number of clauses possible. In our case since we do
not care about clauses but assumptions, this idea can be
translated to keeping as many user assumptions as possible
that do not contradict each other, or in other words find the
“closest” solution. After a MaxSAT solution is calculated,
every assumption not contained in the solution is isolated.
While Disregard All and Skip are isolation strategies with a
single solution, MaxSAT is different in that there could be
multiple, alternative “closest” solutions with an equal num-
ber of user assumptions kept. For the given illustration
there are three possible solutions of the same cardinality,
since MaxSAT is non-deterministic any of those alternatives
can be the result. The one solution presented in Table 2
isolates the user assumption Screen Resolution(XGA), the
most noticeable effects of this isolation are that the de-
rived positive assumption Screen Resolution(W XGA) and
that Laptop Type(Inspirion) is derived instead of Laptop
Type(Latitude). The isolation solution from Skip is a spe-
cial case of a MaxSAT isolation; however, it may not always
be desired to isolate the last decision made by the user.

The implementation of the MaxSAT strategy is realized
by searching for a MSS with maximum cardinality, starting
at a cardinality of the number of user assumptions minus one
and decreasing it by one if no such set is found. Once a MSS
with a maximum cardinality is found every assumption that
is not contained in this set is isolated. MaxSAT typically
returns the first MSS it finds, ignoring potential other MSS
of the same size.

4.1.4 HUMUS Strategy

HUMUS stands for High-level Union of Minimal Unsat-
isfiable Sets, it is a concept based on the calculation of all
Minimal Unsatisfiable Sets (MUSes) [13], which again tar-
gets more at the low-level. As already mentioned in our
paper [17], the basic concept behind it is to isolate all con-
tributors (directly and indirectly) of the inconsistency and
only keep assumptions that have no relation to the incon-
sistency. The result of this isolation strategy is depicted
in Table 2, by isolating all contributors the only impartial
assumption Memory(8GB) is kept. Note that the HUMUS
calculation only returns a single result like Skip or Disregard
All because a user assumption either contributes to the in-
consistency (in which case it is in the HUMUS) or it does
not.

The implementation of the HUMUS strategy takes a short-
cut in comparison to the approach of Liffiton to compute all
MUSes [13], since we only care about the union of the MUSes
and not the individual MUSes themselves. Our implemen-
tation uses a variant of Liffiton’s [13] approach to calculate
MSSes using assumptions over clause selector variables. If
a satisfiable subset of clauses has been found, which cannot
be increased in size without making the resulting formula
unsatisfiable, the complement of this set is an MCS. This
particular satisfiable subset is then blocked with a blocking
clause. We do not use at-most constraints, this avoids hav-
ing to reset the SAT solver as soon as an MCS of a different
size is found. After having calculated all the MCSes we sim-
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ply calculate the union of the MCSes, since the resulting set
is the same as the union of all MUSes due to the relation via
hitting sets. The exact implementation details are omitted
here due to space limitations.

4.2 Discussion of Isolation Strategies

As can be observed in Table 2 the different isolation strate-
gies, described in the last section, result in different states
after the inconsistency is encountered. Thus they do not
achieve the same result but rather provide alternatives on
how to proceed after an inconsistency is encountered. All
strategies have in common that the SAT-based automations
appear functional again (SAT is returned instead of UN-
SAT). But how can one tell which resulting state is the most
complete or correct one, without knowing how the user even-
tually will fix the inconsistency? Obviously there must be
qualitative differences once the user fix is known and the
reasoning so far can be analyzed with respect to the now
known fix. These qualitative differences can be divided into
three categories and are discussed next.

4.2.1 Incomplete Reasoning

If the isolation strategy removes correct user assumptions
then the reasoning gets incomplete due to missing informa-
tion in the reasoning process (not as much is inferred as
could be). As a result user guidance (see Section 2.3) would
potentially offer fewer derived assumptions. For decision-
making scenarios, fewer derived assumptions are not prob-
lematic except that the degree of automation decreases (hence,
more isolation implies less automation). However, do note
that that completeness during user guidance is a loose con-
cept. For example at the beginning of the configuration
process, no user guidance is available, because no user as-
sumptions are available to reason with. During the configu-
ration process, depending on how many relations the given
answers are in, the number of derived assumptions increases
steadily. And at the end of the configuration process when
all is known, naturally guidance would be best since the rea-
soning is complete, but that is also the point where guidance
is not needed anymore.

Generally speaking as can already be observed in Sec-
tion 4.1, the Disregard All isolation strategy results in the
most incomplete reasoning possible (worst case), while the
MaxSAT and Skip strategies potentially suffer the least in-
complete reasoning (best case). For the HUMUS strategy
the degree of incomplete reasoning could vary between the
best and the worst case depending on the number of con-
straints in the model and therefore the number of involved
assumptions. However many constraints in a model could
indicate overlapping constraints and redundant information.
For example revisiting the illustration in Figure 1, both
Screen Size(13.3") and Screen Resolution(WUXGA) re-
sult in the elimination of Laptop T'ype(Inspirion). So iso-
lating only one of those two assumptions would not result
in incomplete reasoning (hence, isolation results in a poten-
tial incompleteness only). Even if both assumptions would
be isolated and cause incompleteness due to something cor-
rect being isolated, new answers like Webcam(no) would re-
provide this lost piece of information again (hence, isolation
may lead to temporary incompleteness only).

4.2.2 Incorrect Reasoning

Incorrect reasoning is the result of reasoning with de-
fects. Although we do not investigate fixes in this paper,
they are crucial for determining incorrect reasoning because



they identify defects that caused inconsistencies. Incorrect
reasoning can be determined by analyzing the effects that
defects have on the reasoning process, if not isolated. Rea-
soning with defects would mean that the guidance might
leave out correct choices or even suggest incorrect choices to
follow-up questions. Since constraints are somewhat redun-
dant as was discussed above, a non-isolated defect might also
lead to another inconsistency later. That is, it may conflict
with new user assumptions while tolerating inconsistencies
which seems more equivalent to postponing inconsistencies
rather than tolerating inconsistencies. Related to this prob-
lem is the detection of another inconsistency while already
tolerating an inconsistency, in this case it cannot be deter-
mined if it is an inconsistency related to the inconsistency
that was tolerated earlier or if it is in fact a new, unrelated
inconsistency.

When using the Disregard All and HUMUS isolation strate-
gies one can be sure to eliminate the defect, because Disre-
gard All isolates all assumptions made by the user prior to
the inconsistency (and is as such conservative) and HUMUS
computes all assumptions involved in the inconsistency (di-
rectly and indirectly). HUMUS, in the worst case, could
isolate everything like Disregard All if all assumptions are
contributors to the inconsistency. On the other hand with
the MaxSAT and Skip strategies it is the inconsistency that
is eliminated and not necessarily the assumption(s) that the
user will change later when fixing (though by random chance
these strategies may also isolate these assumptions). It fol-
lows that one cannot be sure if the configuration process is
being continued with incorrect derived assumptions based
on something that will be fixed and hence the user should
not fully trust the results derived from these kinds of au-
tomations. In other words MaxSAT and Skip are maximiz-
ing what assumptions to keep (they isolate less) which likely
leads to less incomplete reasoning, though at the expense of
incorrect reasoning. Disregard All and HUMUS likely lead
to more incomplete reasoning, though they are guaranteed
not to lead to incorrect reasoning — in the presence of incon-
sistencies.

4.2.3 Revisitation

Depending on the use of the SAT solver this could be
more or less important. In decision-making scenarios this
means that the more user assumptions are isolated the more
questions have to be potentially revisited at a later point in
time (less automation for the end user). As with incomplete
reasoning this issue is the biggest for the Disregard All ap-
proach, the smallest for the MaxSAT and Skip approaches,
and highly depends on the model and situation for the HU-
MUS approach.

S. EVALUATION

To assess the differences of isolation strategies, we evalu-
ated them on seven product line and decision models from
various domains (e-commerce, decision models, feature mod-
els). The models were different in size and complexity. For
example, the Delll e-commerce model (only a very simpli-
fied version thereof was used as illustration in this paper)
had 28 questions, with roughly 5 choices per question, and
111 relations. We also investigated another version of the
Delll model, the Dell2 model, using alternative relations
but still representing the same configuration space. Ad-
ditionally, we investigated a decision-oriented product line
for a steel plant configuration (CC-L2) [5], the Dopler Tool
Product Line and several feature models ( WebPortal by M.

Table 3: Decision Models Used for Evaluation.

| Model || #q | #c | #r || #literals | #clauses |
Delll 28 147 | 111 137 2,127
Dell2 24 147 | 23 142 2,540
Dopler 14 48 8 51 274
CC-L2 59 | 137 | 20 135 257
WebPortal 42 | 113 | 31 113 253
Graph 29 70 24 70 163
EShop 286 | 703 | 147 703 1,440

Mendoca, Graph by Hong Mei, EShop by Sean Quan Lau)
available on the S.P.L.O.T. website (Software Product Lines
Online Tools website ). Key characteristics of those mod-
els are stated in Table 3 like the number of questions (#gq),
the number of choices (#c) in the model, and the number
of relations (#r) between questions in the model. In ad-
dition the number of literals and clauses needed after the
transformation into CNF is stated. Note that the feature
models were automatically converted into our own decision
model (basically features are represented by questions with
up to three answers: yes, no, irrelevant) to be used with our
tool, hence the characteristics differ from those given on the
S.P.L.O.T. website.

5.1 Objectives and Questions

The objectives of this evaluation are to investigate the
effects of different isolation strategies on user guidance in
decision-making scenarios. Specific questions we answer are:

1. What is the difference among the isolation approaches
in terms of incomplete reasoning (missing guidance)?

2. What is the difference among the isolation approaches
in terms of incorrect reasoning (faulty guidance)?

3. How many questions have to be revisited using the
different approaches?

4. How are the approaches handling multiple inconsisten-
cies at the same time?

5. How do the different isolation approaches for tolerating
inconsistencies in SAT-based reasoning scale?

5.2 Execution

As mentioned in section 4.2 in order to be able to evalu-
ate the isolation approaches with respect to our objectives,
we need to know how an inconsistency is going to be fixed.
For that purpose we generated one thousand valid config-
urations for each model (without any inconsistencies), to
have a statistical significant sample size. In each config-
uration we injected up to three defects, for the purpose
of getting an idea how the isolation strategies are effected
when multiple defects are present three were sufficient be-
cause more defects are treated in the same manner. We
seeded the defects by randomly changing decisions of each
configuration to cause inconsistencies and treating the orig-
inal decisions as the fixes. We then simulated the decision-
making involved. Since each configuration contained de-
fects, the decision-making eventually encountered an incon-
sistency. Starting at this point the simulation was continued
using the different isolation approaches described in Sec-
tion 4.1, while the reasoning data was collected for each

*http://www.splot-research.org/



simulation. The approach works with defects injected at
any stage from the very beginning to the end, however for
meaningful observations on completeness and correctness it
is not useful to inject defects at the beginning or end due to
the following reasons: i) assuring that uninvolved assump-
tions are made before the inconsistency detection, in order
to reveal differences between the isolation approaches and
ii) potentially leaving assumptions to be made left after the
isolation, in order to be able to measure the impact of the
different isolation approaches onto the reasoning with suf-
ficient data points. This is why we injected defects in the
range [0.2x #q, 0.8 x #¢|. Furthermore our simulations used
a random decision order, changing the order may change the
time when an inconsistency is detected or how many contrib-
utors the inconsistency has for each individual simulation,
but it does not have any effects on the described isolation
strategies and the results presented next.

To put our results concerning incomplete and incorrect
reasoning into perspective, we also calculated the hypothet-
ical best and worst cases. The worst case is that no SAT-
based automation is available while tolerating inconsisten-
cies (i.e., because it fails due to UNSAT and no strategy
is in place for isolation). This implies that the worst case
is about answering each question without any reasoning in
place that helps guide the user. The ideal case is to isolate
the defects only. We of course knew for each configuration
where the defects were, since we seeded them. Thus, we can
think of our knowledge as the optimal isolation strategy (al-
though it should be clear that in a non-experimental setting
this extra information would not be available and the ideal
is not computable). Having the ideal available is useful for
understanding how far away the various isolation strategies
are from the optimum. As was mentioned above, Disregard
All, Skip, and HUMUS compute unique isolation solutions
while MaxSAT typically computes a non-deterministic solu-
tion out of several alternatives. To account for the random-
ness of the MaxSAT isolation we thus investigated it from its
normal case (the random selection of a solution) as well as
from its worst case (the solution does not isolate the defects
and thus causes the maximum harm in terms of incorrect
reasoning).

The results present the comparison of the different isola-
tion strategies with the ideal isolation simulation data start-
ing at the point during the decision-making process the first
inconsistency was discovered. Looking at our example from
Table 1 this would mean starting the comparison at the
fourth question and ignoring literals belonging to questions
already answered (the grayed out areas in the table). For in-
stance to compute the incomplete reasoning data, we counted
the number of literals remaining (no assumptions were de-
rived for them) after each question answered, excluding liter-
als belonging to already answered questions. To compute the
incorrect reasoning data we counted the number of assump-
tions made different from the ones of the ideal simulation
data, again excluding literals belonging to already answered
questions. To compute the revisitation sizes the number of
assumptions isolated were counted for each approach. And
last but not least the needed isolation times were measured
during the simulations.

5.3 Results

To get an idea what the evaluation data looks like, Fig-
ure 3 shows absolute results of three individual runs to assess
incomplete reasoning with the HUMUS isolation strategy
for the Delll model. On the x-axis the number of questions
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Figure 3: Incomplete Reasoning Progression Runs
with HUMUS isolation strategy for the Delll Model.

answered is shown, while on the y-axis the number of unas-
signed literals remaining is depicted. While these individual
runs look quite different, their characteristics are basically
the same, which is reflected in the overall results. The mean-
ing of the top curve for example is that the inconsistency was
detected after question 16 was answered, at this point after
the HUMUS isolation took place there were 103 unassigned
literals left belonging to the remaining 12 questions that
were not yet answered or looked at. After answering ques-
tion number 17 through reasoning the number of unassigned
literals was reduced to 41 and so on.

For calculating the overall results covering all models,
these individual runs were normalized on the x-axis between
the question where the inconsistency was detected (0%) and
the number of remaining questions in the model (100%) that
need to tolerate the inconsistency. The y-axis values were
normalized between the number of literals representing all
the choices of the questions left at the time the inconsis-
tency was detected (100% equal to no reasoning) and zero
literals (0%). For example, the top curve from Figure 3,
the point questions answered 17 and unassigned literals 41
will get normalized between 16 questions answered (0%)
and 28 questions answered (100%) resulting in a x-value of
~ 8.3%, the 41 unassigned literals will get normalized be-
tween 0 unassigned literals (0%) and 105 unassigned literals
(100%), from the no reasoning simulation run, resulting in
a y-value of ~ 39.05%. Based on such normalized runs the
averages shown in Figures 4 and 5 were calculated. Due
to the very large number of configurations investigates, the
averages have little variation and combined form a perfect
line.

5.3.1 Incomplete Reasoning (Single Defect)

In Figure 4 the average results of all configurations eval-
uated for incomplete reasoning are shown (objective 5.1-1).
The 95% confidence intervals are not shown to avoid fur-
ther clutter, they are in the range of 0% up to 3.14% for
all data points. Due to the fact that we only evaluate in-
complete reasoning on questions not yet answered by the
user, even with no reasoning 0% incomplete reasoning can
be reached at the end when no questions are left. On the
other hand even with knowledge that normally would not be
available (ideal case) for about 30% of the remaining literals
no assumptions can be derived at the time of the incon-
sistency detection. The results correspond to the general
discussion beforehand in Section 4.2.1 but also hold some
surprises. The Disregard All strategy which we expected to
be the worst-case is in fact a good alternative to no reason-
ing at all and not just because it enables automations. The
HUMUS isolation strategy on average only starts out with
about 10% more incompleteness than the MaxSAT strategy
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Figure 5: Incorrect reasoning progression results

combining all case study systems.

and quickly closes the gap to the MaxSAT strategy (to the
worst case MaxSAT at ~10% and the random MaxSAT at
~45% of the remaining configuration process). Overall it
seems that the investigated models contain significant over-
lapping constraints resulting in a more complete reasoning
than expected.

5.3.2  Incorrect Reasoning (Single Defect)

In Figure 5 the average results of all configurations eval-
uated for incorrect reasoning are shown (objective 5.1-2).
Again the 95% confidence intervals are not shown to avoid
further clutter, they are in the range of 0% up to 0.36%
for all data points. The results for incorrect reasoning are
also quite interesting. Overall the amount of incorrect de-
rived assumptions seems not very high — in the worst case
only about 6%. Another interesting fact is the self correct-
ing ability of the MaxSAT strategy since reasoning with the
defect sometimes leads to its re-detection in form of new
inconsistencies due to the overlapping constraints. Every
time such a defect is re-detected, the MaxSAT strategy has
a chance to isolate the defect, increasing its chance over time
and resulting in a rapid decrease in incorrect reasoning. The
worst case MaxSAT obviously does not get that benefit and
the Skip strategy also has no chance to eliminate the de-
fect once it is included in the reasoning process since the
defect must be located at an earlier point in time during the
configuration. MaxSAT is thus an interesting alternative
to HUMUS if incorrect reasoning is acceptable temporarily.
However, do note that using MaxSAT in this manner is more
equivalent to postponing inconsistencies since the defect is
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Figure 7: Incorrect reasoning progression results
combining all case study systems with multiple de-
fects.

detected multiple times in form of different, yet related in-
consistencies.

5.3.3  Revisitation (Single Defect)

The results show that the Disregard All isolated about
41% of the literals on average. The HUMUS isolation strat-
egy (3,45%) on average isolates about twice as many literals
as MaxSAT (1,27%), but less than Skip (3,94%) and the
worst case MaxSAT (4,19%). This can be explained by ad-
ditional isolations needed (increasing the number of literals
in isolation) in case of additional inconsistencies, which oc-
curred more frequent in the worst case (objective 5.1-3).

5.3.4  Multiple Defects

As mentioned earlier we also conducted simulations with
up to three defects (objective 5.1-4). To avoid additional
clutter only the HUMUS and MaxSAT strategies are shown
in the figures. As evident in Figure 6 (95% confidence inter-
vals are in the range of 0% up to 1.33% for all data points)
the results for incomplete reasoning look quite the same ex-
cept that naturally it increases for all strategies, since more
defects mean more isolations, the same is true for revisi-
tation results. However the results for incorrect reasoning
in Figure 7 (95% confidence intervals are in the range of
0% up to 3,01% for all data points), in addition to a slight
overall increase, clearly indicate a slower decrease in incor-
rect reasoning over time. This effect can be explained by
the nature of MaxSAT to only isolate as little as possible
and inconsistencies that involve common correct assump-
tions. Given our example of the three incompatible de-



Table 4: Scalability test results on artificial SAT
problems.

# Contributors 10 | 100 | 1000 | 10000 | 100000
MaxSAT 1ms | 1ms 3ms 86ms ~06s
HUMUS Ims | 3ms | 241ms | ~28s ~1h

cisions Screen Size(12.1"), Screen Resolution(XGA) and
Webcam(yes), if two of them were injected defects then
MaxSAT would always isolate the third correct one, until
additional decisions conflict with the defects and as a result
solutions with one decision isolated would not work any-
more.

5.3.5 Scalability

We also conducted performance tests on an Intel® Core™
2 Quad Q9550 @2.83 GHz with 4GB RAM, although only
one core was used for the time being. The computation
time needed for all models and the different isolation ap-
proaches was between Oms and 1ms per computation. The
evaluated models are not the largest SAT models around,
however in context of this domain they are quite large and
we have shown that the approach scales for our case studies
(objective 5.1-5). However further evaluations on artificial
SAT models (Table 4, a detailed description of how these
models were created can be found in [17]) show an expo-
nential growth but acceptable performance for inconsisten-
cies involving up to 10000 assumptions. As mentioned in
Section 5.3.3, the number of contributors (#Contributors),
which is equal to the number of assumptions isolated by
the HUMUS strategy averages around 3.45% of the model
size for our case studies. Obviously the amount of contrib-
utors differs depending on the model size, the number and
complexity of constraints and the inconsistency. However,
that means in an interactive environment, HUMUS should
be calculated fast enough for inconsistencies involving up to
1000 contributors which, given our observations, would put
the model size at approximately 29000 features / choices.

M

5.4 Implications for Decision-Making

All four strategies are useful, because they allow automa-
tions to continue working in the presence of inconsistencies.
The Disregard All and Skip strategy can easily be imple-
mented for any reasoning engine and the results may be
good enough in certain scenarios. The more advanced iso-
lation strategies MaxSAT and HUMUS, are both viable op-
tions for tolerating inconsistencies although, at least for this
domain, HUMUS appears superior to MaxSAT given that
it avoids incorrect reasoning altogether (which we believe
often to be worse than incomplete reasoning) and that its
incomplete reasoning and revisitation effort is only briefly
worse than that of MaxSAT. It also allows decision-making
tools to visualize all contributing decisions of an inconsis-
tency, which could help users to make an informed decision
on how to fix an inconsistency, which is in our opinion su-
perior to more or less random suggestions.

5.5 Threats to Validity

This work was evaluated on a diverse set of decision mod-
els. Still, there are threats to the validity which are discussed
next.

Threats to construct validity imply whether we are eval-
uating the different strategies with the proper criteria. This
paper evaluated the different trade-offs of common SAT-
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based strategies to tolerating inconsistencies in the domain
of decision-making based on qualitative criteria (incomplete,
incorrect reasoning, and revisitation) and other criteria (per-
formance). While we acknowledge that these criteria may
not be all there are, they seemed reasonable enough for our
needs.

We made no assumption that would invalidate the inter-
nal validity of our findings. As was discussed, our approach
applies to guided decision-making and was evaluated on pre-
definable decision models only. Fortunately, many decision
models fall into this category and future work will show
whether these strategies are applicable to tolerating incon-
sistencies in general.

Regarding external validity the question is: Are the case
studies used for validating our approach representative of
decision models in practice? Due to the fact that the case
studies are from very different domains and real world exam-
ples, we can assume them to be representative with regards
to composition and observable behavior. It seems reason-
able that in other models relations will be as least as com-
plex as in our case studies. We exhaustively evaluated the
seven case study models by randomly injecting defects and
observing the progression with regard to the different isola-
tion approaches. Due to this exhaustive evaluation and the
conclusions, we believe the conclusion validity to be high.

However, we cannot generalize that our result will apply
to other domains where SAT-based reasoning is used. This
paper thus provides a proof of concept in that we found
domains where tolerating inconsistencies is indeed a viable
option. We believe that many other domains would likewise
benefit from observations we made here, though perhaps not
all.

6. RELATED WORK

In this section we give a brief overview of work that al-
ready has been done in related research areas. The idea of
tolerating inconsistencies is not new, 20 years ago, Balzer
argued that inconsistencies should be detected and commu-
nicated to the developers; however, developers should not be
hindered in continuing their work despite the presence of in-
consistencies [1]. This basic but essential principle has been
applied not only in the modeling world but for example also
in any code editor that allows you to continue programming
even if there is a syntax error [11].

SAT solvers and theorem provers [4, 3] are commonly used
today. Concepts such as MUSes are well known in the SAT
community [23], as are MaxSAT [12], MSSes, MCSes [14]
and the CAMUS [13], but the application of these concepts
in other software engineering domains, particularly for tol-
erating inconsistencies, has not been exploited as of yet.

As stated earlier in Section 2.3 SAT-based reasoning is
state-of-the-art [15, 22, 16] in the domain of product line
configuration. It has several primary uses: i) SAT reason-
ing is used to validate products, i) find viable alternative
solutions if a product is not valid [24], or auto complete par-
tial products [15], and 4ii) to provide guidance during the
configuration process [20, 19].

Other domains applying SAT-based reasoning like for in-
stance hardware verification [9], debugging [21] and model
checking [2, 10] already make use of the concept of MUSes
to identify problems in the models. Even in non SAT-based
reasoning environments like for example in UML modeling
tools similar concepts are realized as a basis for fix genera-
tions [7, 8.



But to the best of our knowledge no one compared dif-
ferent isolation strategies and their trade-offs for tolerating
inconsistencies as we have done in this paper.

7. CONCLUSION AND FUTURE WORK

This paper demonstrated four strategies for tolerating in-
consistencies during SAT-based reasoning to guide users dur-
ing decision-making and highlighted their respective advan-
tages and disadvantages. While we only evaluated this one
SAT-based automation of guiding the user during decision-
making, it is a proof of concept, that tolerating inconsisten-
cies during SAT-based reasoning is possible, and even that
incorrect reasoning is avoidable, without the need to adapt
the automation itself. It is our belief that the same proper-
ties and observations should also hold for other SAT-based
automations in decision-making, and even for SAT-based au-
tomations in other domains. We come to this conclusion be-
cause of the fact that these strategies do not have to under-
stand any details about the automation to function, in fact
they are applied to the SAT reasoning itself. This implies
that the strategies can be readily evaluated and adopted in
other domains. As a next step we think it is important to
also consider fixing defects which we believe to be tightly
related to the tolerating of inconsistencies.
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