(Q)CompSAT and (Q)PicoSAT at the SAT'06 Race

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract

This report describes the new features of our four
SAT solvers that entered the SAT’06 Race affili-
ated to the SAT’06 conference in Seattle. Two core
solvers were submitted, CompSAT and PicoSAT.
We also integrated these two solvers as back end
into our QBF solver Quantor [1]. Quantor can be
used for purely propositional problems. Then it is
used as preprocessor very similar to SATeLite [6].
The resulting solvers are called QCompSAT and
QPicoSAT.

CompSAT Version 1.5

The implementation of CompSAT followed ZChaff
[5]. Since our original implementation as described
in [2] we worked on decomposing SAT problems
into disconnected components [3]. We also inte-
grated two features from MiniSAT Version 1.14.
One is conflict clause shrinking and the other is to
use a priority queue implemented as heap for rank-
ing decision variables. As decision heuristics we
followed the approach taken by BerkMin [4]. How-
ever, CompSAT still does not have a sophisticated
reduction strategy. Learned clauses in essence can
only be discarded if they become top level satisfied.
Often, CompSAT needs too much memory.

PicoSAT Version 0.1

PicoSAT follows the main design decisions of Min-
iSAT Version 1.14. It implements clause shrink-
ing, simplification of clauses by top level assigned
literals and an activity based reduction of learned
clauses, which is memory aware. It has support
for generating compressed proof traces and cores
for unsatisfiable instances in memory. This feature
can be enabled at run time. Furthermore, PicoSAT
learns failed literals and binary clauses on-the-fly.
In contrast to MiniSAT, binary clauses are stored
as ordinary clauses, but on the other hand priori-
tized in BCP.

PicoSAT uses an efficient representation of occur-
rence lists. Instead of organizing the lists as stacks
of pointers to clauses in which a literal occurs, we

added two link fields to each clause, one for each
watched literal. When we switched to this repre-
sentation we experienced speed-ups of up to 30%.
As in CompSAT and MiniSAT we use Van Gelder’s
idea of keeping the two watched literals of a clause
at its front.

QCompSAT and QPicoSAT

Quantor as opposed to SATeLite does not support
self subsuming resolution and in addition has a
slightly different optimization criteria. It tries to
minimize the number of literals and not the number
of clauses. SATeLite ignores trivial clauses when
calculating the benefit of eliminating a variable,
while Quantor for efficiency reasons of the elimi-
nation procedure does not. Our experience is that
Quantor is not as efficient as SAT preprocessor as
SATeLite.

References

[1] A. Biere. Resolve and expand. In Proc. SAT’04,
volume 3542 of LNCS. Springer.

[2] A. Biere. The evolution from Limmat to
Nanosat. Technical Report 444, Dept. of Com-
puter Science, ETH Ziirich, 2004.

[3] A. Biere and C. Sinz. Decomposing SAT prob-
lems into connected components. Journal on

Satisfiability, Boolean Modeling and Computa-
tion, 2:191-198, 2006.

[4] E. Goldberg and Y. Novikov. BerkMin: a fast
and robust SAT-solver. In Proc. Design and
Test Conf. Europe (DATE’02).

[5] M. W. Moskewicz, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proc. 38th Design
Automation Conference (DAC’01).

[6] N. Een and A. Biere. Effective preprocessing in
SAT through variable and clause elimination.
In Proc. SAT’05, volume 3569 of LNCS.



