
Column-Wise Verification of Multipliers
Using Computer Algebra
Daniela Ritirc Armin Biere Manuel Kauers

Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
daniela.ritirc@jku.at armin.biere@jku.at manuel.kauers@jku.at

Abstract—Verifying arithmetic circuits, and most prominently
multipliers, is an important problem but in practice still requires
substantial manual effort. Recent work tries to solve this issue
using techniques from computer algebra. The most effective
approach uses polynomial reasoning over pseudo boolean poly-
nomials. In this paper we give a rigorous formalization of this
approach and present a new column-wise verification technique
for the correctness of gate-level multipliers which does not require
the reduction of a full word-level specification. We formally
prove soundness and completeness of our technique, making
use of our precise formalization. Our experiments show that
simple multipliers can be verified efficiently by using off-the-
shelf computer algebra tools, while more complex and optimized
multipliers require more sophisticated techniques. Further, our
paper independently confirms the effectiveness of previous related
work. We make all benchmarks and tools publicly available.

I. INTRODUCTION

Formal verification of arithmetic circuits is motivated by
the necessity to avoid issues like the famous Pentium FDIV
bug, which is reported to have cost Intel almost half a billion
dollar. There have been many attempts since then to verify
such circuits, but even today verifying designs with arithmetic
parts is not considered to be fully automated. For instance,
a common approach is to black-box multipliers and then
verify them separately. This might also require insight into
the multiplier design, which has to be communicated to the
verification tool. Commercial tools can not fully automatically
handle full-sized multipliers [24] or huge multipliers occurring
in cryptographic circuits. In this paper we will focus, as a first
step, on the simplest but also most important arithmetic circuit
verification problem of verifying multipliers.

This lack of automation was a common conclusion in three
plenary talks at the joint FMCAD’15 and SAT’15 conferences
in Austin in 2015, by Anna Slobodova on formal verification
of processors, Aaron Tomb on verifying cryptographic circuits,
and, from the academic side, Priyank Kalla on methods for
data path verification. In order to stimulate research into this
direction, particularly the development of fast SAT solving
techniques for arithmetic circuit verification, we collected a
large set of such benchmarks, generated and submitted CNF
encodings of these problems to the SAT 2016 competition
and made them publicly available [4]. The competition results
confirmed that miters of even small multipliers pose a real
challenge to SAT solvers.

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE),
Y464-N18, SFB F5004.

The weak performance of SAT solvers on these benchmarks
lead to the conjecture that verifying miters of multipliers and
other ring properties after encoding them into CNF needs
exponential sized resolution proofs [5], which would imply
exponential run-time of CDCL SAT solvers. Surprisingly,
however, this conjecture was recently answered negatively [2].
Such ring properties do admit polynomial resolution proofs.
However, proof search is non-deterministic. Thus this theo-
retical result still needs to be transferred into practical SAT
solving. The complexity bounds on proof size given in [2]
involve polynomials of high degree too.

The first technique which was shown to be able to have
prevented the Pentium bug was based on decision diagrams,
precisely on binary moment diagrams (BMDs) [10] and vari-
ants [11]. While common (gate-level) BDDs are exponential
in size for multipliers [6], BMDs remain linear in the number
of the input bits of a multiplier (using edge weights). However,
the BMD approach is not robust, in the sense that it still
requires structural knowledge of the multipliers to determine
the order in which BMDs are built, which has tremendous
influence on performance. Actually only a row-wise back-
ward substitution approach seems to be feasibly [9], which
in addition assumes a simple carry-save-adder (CSA) design.

Recent algebraically inspired techniques [12], [28] based
on so-called function-extraction also fail for even slightly op-
timized multiplier designs. On the positive side, this technique
is able to handle very large clean multipliers.

In even more recent work [24] substantial progress was
made. The authors use a dedicated polynomial reduction
engine and also gave various optimizations (discussed further
down), which made their algebraic technique scale to large
non-trivial multiplier designs of various architectures [16]
(called AOKI benchmarks in the following) even with and
without Booth reencoding. It is still unclear however, whether
their technique is robust under synthesis or technology map-
ping. Their arguments for soundness and completeness are
rather imprecise. Their tool is not available, nor details about
the experiments. Benchmarks have not been published either.

There is a substantial amount of previous work for arith-
metic circuit verification. We focus on comparing our approach
to the currently most successful techniques for verifying
multipliers, which all are using some form of algebraic rea-
soning [28], [24]. For an up-to-date discussion of related work
and a more comprehensive list see the recent article [28].

daniela.ritirc@jku.at
armin.biere@jku.at
manuel.kauers@jku.at

II. ALGEBRA

Following [21], [23], [12], [28], we model the behavior
of circuits using multivariate polynomials. There will be a
variable for every input and every output of each gate, and
the specification of each gate is translated into a polynomial
relation among these variables. All these polynomials together
form a description of the circuit, and we will prove the cor-
rectness of a given circuit by showing that the desired relation
between input and output is implied by the polynomials that
describe the circuit on the gate level.

The appropriate formalism for such a reasoning is the theory
of Gröbner bases [8], [13]. Basic facts are:

• Q[X] = Q[x1, . . . , xn] denotes the ring of polynomials
in variables x1, . . . , xn with coefficients in the field Q.

• A term (or power product) is a polynomial of the form
xe11 · · ·xenn for certain e1, . . . , en ∈ N. A monomial is a
constant multiple of a term.

• Fix an order ≤ on the set of terms such that for all terms
τ, σ1, σ2 we have 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2.

• Every polynomial p 6= 0 contains only finitely many
terms, the largest of which (w.r.t. the chosen order ≤)
is called the leading term and denoted by lt(p).

• If p = cτ+· · · and lt(p) = τ , then lc(p) = c is called the
leading coefficient and lm(p) = cτ is called the leading
monomial of p.

• A nonempty subset I ⊆ Q[X] is called an ideal if
∀ p, q ∈ I : p+ q ∈ I and ∀ p ∈ Q[X] ∀ q ∈ I : pq ∈ I .

• If I ⊆ Q[X] is an ideal, then a set {p1, . . . , pm} ⊆ Q[X]
is called a basis of I if I = {q1p1 + · · · + qmpm |
q1, . . . , qm ∈ Q[X]}, i.e., if I consists of all the linear
combinations of the pi with polynomial coefficients.

• A basis {g1, . . . , gn} of an ideal I ⊆ Q[X] is called a
Gröbner basis (w.r.t. the fixed order ≤) if the leading
term of every nonzero element of I is a multiple of (at
least) one of the leading terms lt(g1), . . . , lt(gn).

• Every ideal of Q[X] has a Gröbner basis, and there is
an algorithm which, given an arbitrary basis of an ideal,
computes a Gröbner basis of it.

The theory of Gröbner bases offers a decision procedure for
the ideal membership problem: given a polynomial q ∈ Q[X]
and a basis {p1, . . . , pm} ⊆ Q[X], it is a priori not obvious
how to check whether q belongs to the ideal generated by
p1, . . . , pm. However, if {p1, . . . , pm} is a Gröbner basis, then
the question can be answered using a multivariate version of
polynomial division with remainder. It can be shown that when
G is a Gröbner basis, then q belongs to the ideal generated by
G iff the remainder of division of q by G is zero.

Example 1.

1) Consider q = x2 + 4x + 3, p = x + 1 ∈ Q[x]. Since
x2+4x+3 = (x+3)(x+1)+0, it follows that q belongs to the
ideal I generated by x+ 1 in Q[x]. On the other hand, taking
q̃ = x2 + 4x+ 5, division with remainder gives x2 + 4x+ 5 =
(x+ 3)(x+ 1) + 2, and thus q̃ 6∈ I .

g

s

rl u

t

r

wv

a b a b a b c

Fig. 1. AIGs [20] used in Example 1 and Sect. IV.

2) For the AIG [20] on the left of Fig. 1, we have the relation
g = a(1− b) for all a, b, g ∈ {0, 1}. Furthermore, we always
have g(g−1) = a(a−1) = b(b−1) = 0 for all a, b, g ∈ {0, 1}.
To show that we always have gb = 0, it is therefore enough
to check if the polynomial gb ∈ Q[g, a, b] belongs to the ideal
I ⊆ Q[g, a, b] generated by

{−g + a(1− b), g(g − 1), a(a− 1), b(b− 1)}.

Multivariate polynomial division yields

gb = (−b) (−g + a(1− b)) + (−a) b(b− 1) +

remainder
↓
0,

therefore gb ∈ I and thus gb = 0 in the left AIG of Fig. 1.

As illustrated in the second example, we can view an
ideal I ⊆ Q[X] as an equational theory, with a basis
{p1, . . . , pm} as its set of axioms. Indeed, the ideal I generated
by p1, . . . , pm contains exactly those polynomials q for which
the equation “q = 0” can be deduced from the assumptions
“p1 = · · · = pm = 0” through repeated application of the
rules u = 0 ∧ v = 0 ⇒ u + v = 0 and u = 0 ⇒ uw = 0
(compare the two defining properties for ideals quoted above).

We will need a few more facts about Gröbner bases and
multivariate polynomial division.

Lemma 1.

1) Let q ∈ Q[X] and P = {p1, . . . , pm} ⊆ Q[X]. The
remainder r of the division of q by P is a polynomial such
that q − r is in the ideal generated by P and r is reduced
w.r.t. P , which means it does not contain any term that is a
multiple of one of the leading terms lt(p1), . . . , lt(pm).

2) Let G ⊆ Q[X] \ {0}, and define

spol(p, q) := lcm(lt(p), lt(q))

(
p

lm(p)
− q

lm(q)

)
for all p, q ∈ Q[X]\{0}, with lcm the least common multiple.
Then G is a Gröbner basis if and only if the remainder of the
division of spol(p, q) by G is zero for all pairs (p, q) ∈ G×G.

3) If p, q ∈ Q[X] \ {0} are such that their leading terms
lt(p), lt(q) have no variables in common, then the division
of spol(p, q) with {p, q} has remainder zero.

Proof. 1) is Prop. 1 in Chap. 2 §6 of [13]; 2) is Thm. 6 in
Chap. 2 §6 of [13]; 3) is Prop. 1 in Chap. 2 §10 of [13]. �

III. IDEALS ASSOCIATED TO CIRCUITS

We consider circuits with 2n inputs a0, . . . , an−1 and
b0, . . . , bn−1, 2n outputs s0, . . . , s2n−1, and a number of logi-
cal gates. The output of some gate may be input to some other
gate, but cycles are not allowed. In addition to the variables
for input and output, we also associate one variable to each
internal edge of the circuit, say g1, . . . , gk. By R we denote the
ring Q[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1].

The semantics of the circuit gates imply polynomial rela-
tions among these variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw
u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(1)

We also have the relations u(u− 1) = 0 for each variable u,
because the circuit operates with boolean values.

Since logical gates are functional, the values of all the
variables g1, . . . , gk, s0, . . . , s2n−1 in a circuit are uniquely
determined as soon as a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are
fixed. This motivates the following definition.

Definition 1. Let C be a circuit.

1) A polynomial p ∈ R is called a polynomial circuit
constraint (PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and resulting values g1, . . . , gk, s0, . . . , s2n−1 implied by the
gates of C the substitution of these values into p gives zero.

2) The set of all PCCs for C is denoted by I(C).

It is easy to see that I(C) is in fact an ideal of R. By
definition, this ideal contains all the relations that hold among
the values at the different points in the circuit. In particular,
it “knows” everything about how input and output are related.
Therefore, the circuit fulfills a certain specification if and only
if the polynomial relation corresponding to the specification is
contained in I(C). This motivates the next definition.

Definition 2. A circuit C is called a multiplier if
2n−1∑
i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑
i=0

2ibi

)
∈ I(C).

Checking whether a given circuit C is a multiplier thus
reduces to an ideal membership test. Definition 1 does not
provide us with a basis of I(C), so Gröbner basis technology
is not directly applicable. However, we can deduce at least
some elements of I(C) from the semantics of circuit gates.

Definition 3. Let C be a circuit. Let G ⊆ R be the set which
contains for each gate of C the corresponding polynomial
of (1) (with u, v, w replaced by the variables of the edges
attached to the gate), as well as the polynomials ai(ai − 1)
and bi(bi − 1) for 0 ≤ i < n, called input field polynomials.
Then the ideal generated by G in R is denoted by J(C).

As a basis of J(C) is explicitly known, we can decide
membership using Gröbner bases. Consider a verifier for
circuits which checks for a given C and a given specifica-
tion polynomial p whether p belongs to J(C). Because of
J(C) ⊆ I(C), such a verifier is certainly sound. In order to
prove that it is also complete, we need to show J(C) ⊇ I(C).
For doing so, we recall a crucial observation which for instance
already appears in [26], [21].

Theorem 1. Let C be a circuit, and let G be as in Def. 3. Let
≤ be a lexicographic term order for a variable order such that
the variable attached to the output edge of a gate is always
greater than the variables attached to the input edges of that
gate. Then G is a Gröbner basis with respect to ≤.

Proof. By the constraint on the term order and the form of
the equations (1), the leading term of each gate polynomial is
simply the output variable of the corresponding gate. Further,
the leading terms of the polynomials ai(ai−1) and bi(bi−1)
are a2i and b2i . Therefore, by part 3 of Lemma 1, division of
spol(p, q) by {p, q} gives the remainder zero for any choice
p, q ∈ G. Then, since {p, q} ⊆ G for all p, q ∈ G, also division
of spol(p, q) by G gives the remainder zero for all p, q ∈ G,
and then, by part 2 of Lemma 1, the claim follows. �

Theorem 2. For all acyclic circuits C, we have J(C) = I(C).

Proof. “⊆” (soundness) Clear by definition of J(C).
“⊇” (completeness) Let p ∈ I(C). We have to show that

p ∈ J(C). Since C is acyclic, there is a way to order the
variables such as to meet the requirement of Thm. 1. Let r
be the remainder of the division of p by G, where G is the
Gröbner basis of Thm. 1. Then p − r ∈ J(C) by part 1 of
Lemma 1, so r ∈ J(C) ⇐⇒ p ∈ J(C). Furthermore,
p ∈ I(C) and p − r ∈ J(C) ⊆ I(C) implies r ∈ I(C). It is
therefore sufficient to show that r ∈ J(C).

By the choice of the term order and the observations made
in the previous proof about the leading terms in G, part 1 of
Lemma 1 also implies that r only contains input variables
a0, . . . , an−1, b0, . . . , bn−1, and none of them appears with
degree greater than one. At the same time, since r ∈ I(C), all
the evaluations of r for all choices ai, bj ∈ {0, 1} are zero.

We show that r = 0, and thus r ∈ J(C). Suppose r 6= 0.
Let m be a monomial of r with a minimal number of variables,
which includes the case where m is constant. Since exponents
are at most one, the set of variables of monomials in r differ
by at least one variable. Now choose ai (bj) to evaluate to
1 iff ai ∈ m (bj ∈ m). By this choice all monomials of r
except m vanish (evaluate to zero). Thus r evaluates to the
(non-zero) coefficient of m, in contradiction to r ∈ I(C). �

Let us conclude the theoretical part of this paper with the
following simple but important observations.

First, I(C) is by definition a so-called vanishing ideal.
Therefore, the theorem implies that J(C) is a radical ideal.
This explains why ideal membership is sufficient for our
purpose, and there is no need to use the stronger radical
membership test (cf. Chap. 4 §2 of [13]).

Second, note that I(C) = J(C) contains the set F of all
field polynomials x(x − 1) for all variables x, not only for
inputs, thus we may add them to G.

Third, in the standard Gröbner basis for gate-level circuits
defined above in Def. 3 using Eqn. (1) all polynomials have
a leading coefficient of ±1 and thus during reduction never
introduce any coefficient outside of Z (with non-trivial de-
nominator). So all coefficient computations actually remain in
Z. This formally proves that dedicated implementations, e.g.,
those from [28], [24], used for determining ideal membership
to verify properties of gate-level circuits, can rely on compu-
tation in Z only without loosing soundness nor completeness
(assuming the same term order as in Thm. 1 is used).

Fourth, from a technical point of view, we do not need to use
Z as coefficient ring if we employ computer algebra systems,
but can simply use any field containing Z, e.g., Q. This
actually speeds up the computation, since computer algebra
systems are optimized for this case. In our experiments, using
rational coefficients made a huge difference for Singular [14]
(but did not have any effect in Mathematica [27]).

Fifth, given circuit C, checking that there exists an assign-
ment to the inputs which yields a certain value, at an output
is of course the same as (circuit) SAT, and thus NP complete:

Corollary 1. Checking ideal membership over Q[X] even in
terms of a given Gröbner basis is co-NP-hard.

Similar results but for Z2 and Z instead of Q and without
assuming a Gröbner basis can be found in [1], [18].

Finally, the last part in the proof of Thm. 2 allows us to
determine a concrete input evaluation in case a polynomial
g fails the membership test, e.g., an evaluation for which g
does not vanish. In our application of multiplier verification
these evaluations provide counter-examples, in case a circuit
is determined not to be a multiplier (Alg. 1 returns false).

We claim that this section is a first simple and precise
mathematical characterization of recent successful algebraic
approaches [24], [28] to the verification of gate-level integer
multipliers (without overflow), where we formally prove not
only soundness but also completeness. Soundness corresponds
to I ⊆ J and completeness to I ⊇ J in Thm. 2.

In previous work soundness and completeness was formally
proven too but only for other polynomial rings, i.e., over F2q

to model circuits implementing Galois-field multipliers [21],
[23], or for polynomial rings over Z2q to model arithmetic
circuit verification with overflow semantics [26].

In [28] soundness and completeness is discussed too, but
instead of giving proofs only refers to [21], [23] which
as discussed above uses coefficients in F2q and not Z, the
coefficient ring the approach [28] is actually working with.

IV. OPTIMIZATIONS

Following the argument of Cor. 1 in the previous section,
simply reducing the specification in the constructed Gröbner
basis may lead and in general has to lead (unless P = NP) to
an exponential number of monomials in intermediate results.

Thus in practice to use polynomial reduction to verify specific
circuits tailored heuristics become very important.

To reduce the number of monomials in [24] a logic
reduction rewriting scheme consisting of XOR-Rewriting
and Common-Rewriting is proposed. It is further combined
with eliminating monomials which fulfill certain Vanishing-
Constraints. In the following we show how these techniques
can be applied to computer algebra systems.

The technique of XOR-Rewriting [24] ensures that in the
Gröbner basis all variables which do not correspond to an
output nor input of an XOR-gate, nor primary input, nor output
of the circuit, are eliminated from the Gröbner basis up-front.

We adopt this rewriting for AIGs by matching XOR patterns
in the AIG which represents an XOR or XNOR, e.g., we find
nodes of the form s = (a ∧ b) ∧ (ā ∧ b̄). We then define
the polynomial of the parent in terms of the grandchildren
instead of the immediate children. For instance, in order to
apply XOR-Rewriting in the middle AIG in Fig. 1 we only
use the polynomial −s + a + b − 2ab as definition for the
XOR output instead of all the polynomials −l + ab, as well
as −r+ (1−a)(1− b), and −s+ (1− l)(1− r). This removes
defining polynomials for all children of XOR gates.

The technique of Common-Rewriting [24] eliminates all
nodes which have exactly one parent. In the right AIG of
Fig. 1 Common-Rewriting eliminates gates t, u, v, and w,
assuming r occurs twice, but t, u, v and w only once. Thus
r is directly expressed in terms of a, b, c. This technique is
actually similar to what bounded variable elimination in SAT
would do [15] after encoding a circuit to CNF by say Tseitin
encoding. It would also eliminate all variables in the CNF
representing gates in the circuit with only one parent [17].

In [24] an important optimization was a specific “vanishing
rule”, called XOR-AND Vanishing Rule. This rule can be
derived from the middle AIG in Fig. 1, a half adder, where l
represents the carry (AND) and s represents the sum (XOR) of
the two inputs. In a half adder both the carry bit l and the sum
bit s can never be 1 at the same time. Thus sl = 0, and [24]
suggests to remove monomials containing s and l immediately.
We simulate the effect of this rule by searching for (negated)
children or grand-children of certain AND-gates and adding
appropriate polynomial constraints to our reduction basis.

V. ORDER

According to Thm. 1 the choice of the reverse topological
term order does not influence the correctness of the procedure.
However in [28] it is shown empirically that the number of
monomials during the reduction process varies substantially
for different reverse topological orders.

Given the planar two dimensional “shape” of multipliers,
two approaches of ordering are quite natural, namely a row-
wise approach and a column-wise approach. Basically the idea
is to partition the gates into slices, which are totally ordered,
i.e., row-wise or column-wise, and then order the gates within
a slice (row or column) topologically. The combined total
order has to be topological, which then gives a valid term
order and thus a Gröbner basis according to Thm. 1.

FA

FA

FA

b1 b0a0a1a2 b2

s 0s 1s 2s 3s 4s 5 124832 16

a0

FA FA

a0

FA

a2

a2

a0

FA

a2

FA

a1

0bb0b0

FA

a1 b1 b1b1

b2b2 b2

FA

FA

FA

b1 b0a0a1a2 b2

s 0s 1s 2s 3s 4s 5 124832 16

a0

FA FA

a0

FA

a2

a2

a0

FA

a2

FA

a1

0bb0b0

FA

a1 b1 b1b1

b2b2 b2

0

0

0

0

224 1+ +4 1+))((+

0 0 a1

*

+ + + + +

0

0

0

0

224 1+ +4 1+))((+

0 0 a1

*

+ + + + +

Fig. 2. Classical row-wise slicing (left) versus our column-wise slicing approach (right) for clean 3-bit input (6-bit output) CSA multiplier.

The idea of the row-wise approach is to order the gates
according to their backward level. The intuition of row-wise
slicing is outlined in the left side of Fig. 2. It shows how
full adders are partitioned in a “clean” (CSA) multiplier.
Informally, we call a multiplier without gate synthesis, nor
mapping and where the XOR-gates and the half/full adders
can easily be identified, as clean. If a multiplier is not clean,
it is called dirty. Thus the AOKI benchmarks [16], [24] already
discussed in the introduction are considered to be dirty.

Previous papers [28], [10] use a row-wise approach. In [28]
gates are ordered by the logic level seen from the circuit inputs.
In [10] the order is only given for clean CSA multipliers,
such that a word-level spec for a CSA step can be given. It is
unclear how to apply this order to dirty multipliers, like the
AOKI benchmarks. Unfortunately, the description of the order
in [24] stays on a very high level. The tool is not available.

In the column-wise approach, cf. right side of Fig. 2, the
multiplier is partitioned vertically, where each slice contains
exactly one output bit. Our proposal is to use a column-wise
order which gives a more robust incremental checking method.

VI. COLUMN-WISE CHECKING

The goal of using a column-wise term order is to divide the
problem into smaller more manageable sub-problems, which
can be verified incrementally.

Definition 4. Let C be a circuit (as in Sect. III).

1) A sequence of 2n + 1 polynomials C0, . . . , C2n over the
variables of C is called a carry sequence of carry polynomials.

2) For column i with 0 ≤ i < 2n let Pi =
∑

k+l=i akbl be
the partial product sum (of column i).

3) For 0 ≤ i < 2n, carry polynomial Ci and output si let

−Ci + 2Ci+1 + si − Pi

denote the carry recurrence relation Ri for column i.

4) Then Ri holds on C if it vanishes in I(C), i.e., Ri ∈ I(C).

With these definitions we obtain an abstract theorem which
can be used to verify multipliers independent how the carry
sequence is actually constructed.

Theorem 3. Let C be a circuit where all carry recurrence
relations hold as defined in Def. 4. Then C is a multiplier in
the sense of Def. 2, if and only if C0 − 22nC2n ∈ I(C).

Proof. By the condition of Def. 4, we have (modulo I(C))
2n−1∑
i=0

2isi =

2n−1∑
i=0

2i(Pi + Ci − 2Ci+1)

=

2n−1∑
i=0

2iPi +

2n−1∑
i=0

(2iCi − 2i+1Ci+1)︸ ︷︷ ︸
C0 − 22nC2n

.

It remains to show
∑2n−1

i=0 2iPi = (
∑n−1

i=0 2iai)(
∑n−1

i=0 2ibi),
which is a rather straight forward calculation. �

To obtain our column-wise checking algorithm we define
slices incrementally. For each output bit si we determine its
input cone, namely the gates which si depends on (cf. Fig. 3):

Ii := {gate g | g is in input cone of output si}

We define slices Si as the difference of consecutive cones Ii:

S0 := I0 Si+1 := Ii+1 \
i⋃

j=0

Sj

Definition 5 (Sliced Gröbner Bases). Let Gi be the set of
polynomial representations of the gates in slice Si, cf. Eqn. 1.

Algorithm 1: Multiplier Checking Algorithm
Input : Circuit C with sliced Gröbner bases Gi

Output: Determine whether C is a multiplier
1 C2n ← 0;
2 for i← 2n− 1 to 0 do
3 Ci ← Remainder (2Ci+1 + si − Pi, Gi ∪ F)
4 end
5 return C0 = 0

In Alg. 1 we start at the last output bit si with i = 2n− 1.
Then Ci is computed recursively by taking the remainder of
2Ci+1 + si − Pi modulo the sliced Gröbner basis Gi and
(all) field polynomials F in order to make sure that the carry

FA

FA

FA

a0

FA FA

a0

FA

a2

a2

a0

FA

a2

FA

a1

0bb0b0

FA

a1 b1 b1b1

b2b2 b2

b1 b0a0a1a2 b2 224 1+ +4 1+))((+ *

I 5

0

0

0

0

0 0 a1

+ + + + + s 0ss 24 2 18 s 316 s 432 s 5

I I

I

1

I

4 3

I 2

1

0

Fig. 3. Input cones of outputs to determine column slices.

recurrence relation Ri holds. Thus Ci is uniquely defined given
the sum of the partial products Pi of column i, the output bit si
and the previous carry polynomial Ci+1. It remains to fix the
boundary carry polynomial C2n. In our algorithm we actually
always simply use C2n = 0.

Theorem 4. Algorithm 1 returns true iff C is a multiplier.

Proof. By definition Ri := −Ci + 2Ci+1 + si − Pi vanishes
on the ideal generated by Gi∪F which is a subset of the ideal
generated by G∪F since Gi ⊆ G. Thus Ri ∈ J(C) = I(C).

We can show inductively that Ci is reduced w.r.t. Hi with
Hi :=

⋃
j≥i(Gj∪F). This induction requires that si and Pi are

reduced w.r.t. to Hi+1 which holds due to the construction of
the sliced Gröbner bases. With H0 = G∪F we then get C0 is
reduced w.r.t. G∪F thus C0 = C0−22nC2n ∈ I(C) = J(C)
iff C0 = 0, which concludes the proof using Thm. 3. �

For incorrect multipliers Alg. 1 returns false , i.e., C0 6= 0.
As described after Cor. 1 this easily yields a concrete counter-
example. In this case it might further be possible to abort
the algorithm earlier if partial products akbl of higher slices
k + l > i not occurring in Sj with i < j remain in Ci.

VII. ENGINEERING

Our tool AIGMULTOPOLY takes an AIG describing a
circuit as input and produces output which can be passed to the
computer algebra systems Mathematica [27] and Singular [14].

Algorithm 2: Outline of AIGMULTOPOLY

Input : Circuit in AIG format
Output: File f for computer algebra system

1 for i← 0 to 2n− 1 do
2 Define-Cones-of-Influence ();
3 Merge (Si);
4 Promote (Si);
5 Levelize (Si);
6 Search-for-Common-Rewriting (Si);
7 Identify-Vanishing-Constraints (Si);
8 end
9 f ← Print to file;

For dirty multipliers slicing based on input cones, (Sect. VI),
is not precise enough. It regularly happens, that gates are
allocated to later slices, if they are not used to compute the
output value of the slice. This frequently happens for carry
outputs of full/half-adders (or combined carry outputs) and
results in larger carry polynomials Ci than necessary.

To avoid this performance issue we eagerly move gates
between slices, in a kind of peephole optimization, which
makes sure that the overall number of carries decreases:

Definition 6. We define those gates in Sj used as children of
gates in slice Si with i > j as carries of Sj .

The following technique reduces the support of carry poly-
nomials increasing the chances for cancellation of monomials.

Merge: Whenever we find an AND-gate g (not matched to
be an XOR- gate) in slice Si with children l, r in smaller
slices Sj and Sk, we move g back to Sl with l = max(j, k).
The procedure is depicted on the left side of Fig. 4. Thus after
merging g, the gates l, r are less likely to be carry variables
any more. We apply merging repeatedly until completion and
Sl and Si are updated after each application.

In some multipliers it happens that a gate g in the carry
depends on two other gates in the carry. We decrease the
number of carries by promoting g to the next bigger slice:

Promote: We search for gates g in slice Si−1 with again
exactly one parent, which in addition is required to be part of
some larger slice Sj where j ≥ i. Furthermore the children of
g also have to be in slice Si−1 and have at least one parent
in some later slice Sj with j ≥ i. We decrease the number of
carries by promoting g to slice Si, cf. right side of Fig. 4.

A gate g which is merged can not be promoted back to
its original slice, because the requirements for the children of
g differ. This prevents cyclic rule applications. After merging
and promoting, the association of gates to slices is fixed. We
order the gates in a slice by levelization from inputs.

In order to simulate Common-Rewriting, we factor out from
Si the set Ui of “unique gates”, i.e., all gates g of Si not
used in another slice with exactly one parent in slice Si.
Polynomials of gates which remain in Si and depend on gates
in Ui are reduced first by polynomials of gates in Ui and field
polynomials F before computing the remainder in Alg. 1.

As last step we search for Vanishing Constraints in Si,
namely gate products which always evaluate to zero, e.g.,
Example 1. We store such constraints in a corresponding set
Vi and during remainder computation reduce against elements
of Vi too. Because of Thm. 2, we can add these polynomials
to the ideal without violating the Gröbner basis property.

Finally, in AIGMULTOPOLY the optimization of “XOR-
Rewriting” is handled implicitly during printing by producing
polynomials for XOR-gates instead of AND-gates.

All optimizations either maintain the crictical criteria of
keeping the reduction order topologically sorted, add vanishing
constraints of the circuit ideal, or are standard techniques used
in computer algebra, e.g., autoreduction, and thus do not affect
correctness of our claims.

l
g

l

g

l

g

l

g

r r r r

i−1 i−1 i−1 i−1

S

S

S

S

S

SS

S ii ii

Merge Promote

Fig. 4. Locally optimizing number of carries (gates used in later slices) by moving gates backward (Merge) and forward (Promote). Inputs are on the left,
outputs on the right of AND-gates, which is the more common order used in visualizing circuits, but reversed compared to the column order in Fig. 2.

VIII. EXPERIMENTS

As in previous work we focus on (integer) multipliers with
two n-bit vectors as inputs and 2n output bits. In [28], [12]
the authors used clean CSA multipliers, handcrafted from [19],
for verifying their results. In [24] several architectures from
the AOKI benchmarks are used in their experiments. In our
experiments we use the multiplier types “btor”, “sp-ar-rc” and
“abc”. The “btor” benchmarks are generated from Boolec-
tor [22] and can be considered as clean multipliers. The “sp-ar-
rc” multipliers are part of the AOKI benchmarks [16] and can
be considered as dirty multipliers. The “abc” benchmarks are
generated with ABC [3]. The different versions of synthesis
and technology mapping should be the same as in [28], [12].

We used a standard Ubuntu 16.04 Desktop machine with
Intel i7-2600 3.40GHz CPU and 16 GB of main memory.
The (wall-clock) time limit was set to 1200 seconds and
main memory was limited to 14GB. An extended set of
experimental data, as well as source code, benchmarks, and
scripts are available at http://fmv.jku.at/cwmulverca. Beside
those benchmarks used in our experiments we also include the
AIGs we derived for other multipliers used in [28], [24]. More
information on the structure of the multipliers used in our
experiments can be found in [16], [28], [12] and the README
files which come with the experimental data.

In all our experiments the times are listed in seconds (wall-
clock time). We measure the time from starting our tool until
Mathematica resp. Singular are finished or we reach the time
limit (TO), the memory limit (MO), or reach an error state
(EE). An error state occurrs in Singular when more than 32767
ring variables are allocated. Our results include the time which
our tool AIGMULTOPOLY needs to generate the files for the
computer algebra system. This time is in the worst case around
3 seconds for 128 bit multipliers. The results also include the
time to launch Mathematica resp. Singular.

In Table I we compare our incremental column-wise reduc-
tion, outlined in Alg. 1 against the non-incremental approach,
where the word-level specification of Def. 2 is reduced against
the whole circuit. We apply the non-incremental reduction
for column-wise and row-wise ordering. All optimizations
(XOR-Rewriting, Common-Rewriting, Vanishing Constraints,
Merge, Promote) are enabled. The results in Table I show
that in Mathematica and Singular our approach is faster and
needs less memory than any non-incremental approach. In
the non-incremental experiments, the results between column-
wise and row-wise do not really differ. Generally Singular is

TABLE I
INCREMENTAL (+INC) VS. COLUMN- AND ROW-WISE NON-INCR. (-INC).

mult n
Mathematica Singular

+inc -inc +inc -inc
col row col row

btor 16 4 12 12 1 2 2
btor 32 35 531 491 16 53 58
btor 64 409 MO MO MO MO MO
btor 128 TO TO TO EE EE EE

sp-ar-rc 16 7 TO TO 1 TO TO
sp-ar-rc 32 67 TO TO 39 TO TO
sp-ar-rc 64 841 MO MO MO MO MO

TABLE II
EFFECT OF TURNING OFF OPTIMIZATIONS.

mult n
Mathematica Singular

+inc -xor -com -cs +inc -xor -com -cs
btor 16 4 TO 1 TO 1 2 1 1
btor 32 35 TO 7 TO 16 64 6 19
btor 64 409 TO 65 TO MO MO MO MO
btor 128 TO TO 823 TO EE EE EE EE

sp-ar-rc 16 7 30 TO 7 1 7 TO 2
sp-ar-rc 32 67 373 TO 64 39 266 TO 34
sp-ar-rc 64 841 TO TO 805 MO EE MO MO

faster than Mathematica, but it also needs more memory than
Mathematica. For multiplier “btor-128” we get an error state.

In the experiments shown in Table II we investigate the ef-
fects of turning off optimizations in our column-wise approach
and compare these variants to the “+inc” columns of Table I.
The results differ for clean and dirty multipliers. For the clean
“btor” multipliers turning off Common-Rewriting surprisingly
improves the reduction. In this case there are only few gates
outside of XORs with only one parent, and splitting remainder
computation just increases run-time and space usage. In dirty
multipliers, structures like carry trees containing gates with
only one parent occur much more frequently. If we turn off
Common-Rewriting remainder computation slows down a lot
in this case. Turning off XOR-Rewriting influences both clean
and dirty multipliers and slows down the reduction (especially
in Mathematica), whereas turning off Vanishing Constraints
has only a bad effect for clean multipliers in Mathematica,
in Singular the results are nearly the same. In summary, the
optimizations described in [24] have both positive and negative
effects in our experiments, depending on the type of multiplier
considered and the computer algebra system used.

http://fmv.jku.at/cwmulverca

TABLE III
DIFFERENCE OF TURNING OFF MERGE AND PROMOTE

mult n
Mathematica Singular

+inc -merge -prom +inc -merge -prom
sp-ar-rc 16 7 8 TO 1 1 TO
sp-ar-rc 32 67 72 TO 39 42 MO
sp-ar-rc 64 841 912 TO MO MO MO

TABLE IV
DIRTY SYNTHESIZED AND MAPPED MULTIPLIERS

mult n Mathematica Singular
abc 8 2 1
abc 16 4 1

abc-resyn3-no-comp 8 351 3
abc-resyn3-no-comp 16 TO TO

abc-resyn3-comp 8 TO TO

The experiments shown in Table III compare the effects
of turning off our Merge and Promote optimizations on dirty
multipliers. In clean multipliers (such as “btor”) no gates are
merged nor promoted. The running times of Merge enabled or
disabled can be considered to be the same. The difference is
the size of the carry polynomials, e.g., in sp-ar-rc-8 the carry
polynomials have up to 38 monomials with Merge disabled.
In our default setting with Merge enabled the biggest carry
polynomial contains only 8 monomials and is linear.

In Table IV we also consider synthesized and mapped
versions of multipliers. Synthesizing a circuit makes it very
hard to verify. When complex mapping is applied it gets even
harder and the 8-bit version cannot be verified any more,
neither in Mathematica nor Singular confirming [12], [28].

IX. CONCLUSION

We give a simple and precise mathematical formalization
of recent successful algebraic approaches to the verification of
multiplier circuits, including rigorous proofs of soundness and
completeness. We further show how to effectively make use
of computer algebra systems. Our main technical contribution
is a new incremental column-based verification approach to
multipliers, which is an order of magnitude faster than previ-
ous row-based approaches relying on reducing a global spec.
We further confirm the effectiveness of the algebraic approach
and make all data, benchmarks and tools publicly available.

As future work, we want to analyze complexity of previous
and our new column-wise approach similar to [7] and [2] and
extend our methods to floating-points (following [25]) and
other word-level operators. We also want to consider overflow-
semantics and negative numbers. An experimental comparison
with BMD based techniques should also be performed.

We would like to thank Paul Beame for sharing drafts of [2],
Mathias Soeken helping to synthesize AOKI multipliers [16]
used in their DATE’16 paper [24], Naofumi Homma send-
ing 128-bit versions of these benchmarks, Maciej Ciesielski
explaining the experimental set-up in [12], [28], and finally
Deepak Kapur for pointing us to related work [1], [18].

REFERENCES

[1] S. Agnarsson, A. Kandri-Rody, D. Kapur, P. Narendran, and B. Saunders.
Complexity of testing whether a polynomial ideal is nontrivial. In Third
MACSYMA User’s Conference, pages 452–458, 1984.

[2] P. Beame and V. Liew. Towards verifying nonlinear integer arithmetic.
In CAV, volume 10427 of LNCS, pages 238–258. Springer, 2017.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. http://www.eecs.berkeley.edu/
∼alanmi/abc/. Bitbucket Version 1.01, last change Feb. 27, 2017.

[4] A. Biere. Collection of combinational arithmetic miters submitted to the
SAT Competition 2016. In SAT Competition 2016, volume B-2016-1 of
Department of Computer Science Series of Publications B, pages 65–66.
Univ. Helsinki, 2016.

[5] A. Biere. Weaknesses of CDCL solvers, August 2016. http://www.fields.
utoronto.ca/talks/weaknesses-cdcl-solvers.

[6] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[7] R. Bryant and Y. Chen. Verification of arithmetic circuits using binary
moment diagrams. STTT, 3(2):137–155, 2001.

[8] B. Buchberger and M. Kauers. Gröbner basis. Scholarpedia, 5(10):7763,
2010. http://www.scholarpedia.org/article/Groebner basis.

[9] J. Chen and Y. Chen. Equivalence checking of integer multipliers. In
S. Goto, editor, ASP-DAC 2001, pages 169–174, 2001.

[10] Y. Chen and R. Bryant. Verification of arithmetic circuits with binary
moment diagrams. In DAC, pages 535–541, 1995.

[11] Y. Chen, E. Clarke, P. Ho, Y. Hoskote, T. Kam, M. Khaira, J. O’Leary,
and X. Zhao. Verification of all circuits in a floating-point unit using
word-level model checking. In FMCAD, volume 1166 of LNCS, pages
19–33. Springer, 1996.

[12] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi. Verification
of gate-level arithmetic circuits by function extraction. In DAC, pages
52:1–52:6. ACM, 2015.

[13] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms.
Springer-Verlag New York, 1997.

[14] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. SINGULAR
4-1-0. http://www.singular.uni-kl.de, 2016.

[15] N. Eén and A. Biere. Effective preprocessing in SAT through variable
and clause elimination. In SAT, volume 3569 of LNCS, pages 61–75.
Springer, 2005.

[16] N. Homma, Y. Watanabe, T. Aoki, and T. Higuchi. Formal design
of arithmetic circuits based on arithmetic description language. IEICE
Transactions, 89-A(12):3500–3509, 2006.

[17] M. Järvisalo, A. Biere, and M. Heule. Simulating circuit-level simplifi-
cations on CNF. J. Autom. Reasoning, 49(4):583–619, 2012.

[18] A. Kandri-Rody, D. Kapur, and P. Narendran. An ideal-theoretic ap-
proach to work problems and unification problems over finitely presented
commutative algebras. In RTA, volume 202 of LNCS, pages 345–364.
Springer, 1985.

[19] I. Koren. Computer Arithmetic Algorithms. A. K. Peters, Ltd., Natick,
MA, USA, 2nd edition, 2001.

[20] A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust boolean
reasoning for equivalence checking and functional property verification.
IEEE TCAD, 21(12):1377–1394, 2002.

[21] J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits. IEEE TCAD,
32(9):1409–1420, 2013.

[22] A. Niemetz, M. Preiner, and A. Biere. Boolector 2.0 system description.
JSAT, 9:53–58, 2014 (published 2015).

[23] T. Pruss, P. Kalla, and F. Enescu. Equivalence verification of large Galois
field arithmetic circuits using word-level abstraction via Gröbner bases.
In DAC, pages 152:1–152:6. ACM, 2014.

[24] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler.
Formal verification of integer multipliers by combining Gröbner basis
with logic reduction. In DATE, pages 1048–1053. IEEE, 2016.

[25] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler. Equivalence
checking using Gröbner bases. In FMCAD, pages 169–176. IEEE, 2016.

[26] O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G. Greuel. An
algebraic approach for proving data correctness in arithmetic data paths.
In CAV, volume 5123 of LNCS, pages 473–486. Springer, 2008.

[27] Wolfram Research, Inc. Mathematica, 2016. Version 10.4.
[28] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski. Formal

verification of arithmetic circuits by function extraction. IEEE TCAD,
35(12):2131–2142, 2016.

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.fields.utoronto.ca/talks/weaknesses-cdcl-solvers
http://www.fields.utoronto.ca/talks/weaknesses-cdcl-solvers
http://www.scholarpedia.org/article/Groebner_basis
http://www.singular.uni-kl.de

