
Under consideration for publication in Formal Aspects of Computing

Verifying the IEEE 1394 FireWire
Tree Identify Protocol with SMV
Viktor Schuppan and Armin Biere
Computer Systems Institute
Department of Computer Science
Swiss Federal Institute of Technology Zurich, Switzerland

Abstract. This case study contains a formal verification of the IEEE 1394 FireWire Tree Identify Protocol. Crucial
properties of finite models of the protocol have been validated with state-of-the-art symbolic model checkers. Various
optimization techniques were applied to verify concrete and generic configurations.

Keywords: IEEE 1394 FireWire, Formal Methods, Protocol Verification, Model Checking.

1. Motivation

Traditional ways of validating and verifying the functional correctness of software include testing/simulation and
theorem proving [KMM00, Sch01]. Testing is based on a collection of test cases, correctness is assured for each test
case. The number of test cases may grow exponentially with the number of input variables. Therefore, it is usually
impossible to cover all potential behavior in a test suite. No knowledge of a specialized formalism is required. On
the other hand, with theorem proving, correctness of software can be verified formally. Every potential behavior is
covered. However, in-depth knowledge and a lot of of experience in the use of the methodology is necessary.

Model checking combines some of the advantages of both testing and theorem proving. Depending on the number
of parameters left unspecified in the model a configuration corresponds to either a single or a large number of test cases
which are verified in a single run of the model checker. By leaving all parameters unspecified all possible behaviors
can be covered. However, with more free parameters search space grows and thus the run time increases. The use
of a model checker requires only moderate knowledge of the underlying theory. In the past, model checking has
successfully been applied to several case studies in industry, see, e.g. [CGH+93], [Ben01], and [TWC01].

BDD-based symbolic model checking [BCM92] can handle systems with more than 1020 states. Still, for verifi-
cation problems typically found in industry BDDs may grow too large for the hardware available today. Symmetry
reduction [CFJ93], [ID96], [ES93] is one approach to reduce the state space to be explored by exploiting symme-
tries inherent in the problem. Bounded model checking [BCCZ99] provides another potential solution to the above
mentioned problem but can only find counterexample traces up to a user-specified length.

Correspondence and offprint requests to: Viktor Schuppan, Computer Systems Institute, ETH Zurich, 8092 Zurich, Switzerland. E-Mail: Vik-
tor.Schuppan@inf.ethz.ch

2 V. Schuppan and A. Biere

SMV1 [McM93] is probably one of the most widely used symbolic model checkers. Several variants of the original
version exist that still understand models in the original language but provide improved engines [YSMV] and advanced
features and algorithms [CSMV], [CCG+02].

We have modeled and verified the Tree Identify Protocol (TIP) of the IEEE 1394 (FireWire) standard2 [1394-1995],
[1394-2000], proposed as a case study for the application of formal methods [MRS02], withSMV. Starting with
specific network configurations we moved to more flexible models that include all legal topologies with a given
number of nodes and ports. We applied symmetry reduction and bounded model checking to evaluate what gains in
performance and capacity can be achieved.

In the next section, techniques and tools for symbolic model checking are introduced. Symmetry reduction and
bounded model checking are explained. In Sect. 3 we explain the models and the specifications used for our verification
of the protocol. Section 4 gives the results. These are discussed in Sect. 5 and in Sect. 6 we draw a brief conclusion.

2. Model Checking

In this section we give a brief overview of model checking. Symmetry reduction and bounded model checking are
discussed. A simplified model of a node in a FireWire system is used to illustrate the techniques and to introduce the
language of the model checkers used. For an in-depth coverage consult recent textbooks [CGP99], [BBF+01].

2.1. Symbolic Model Checking with SMV

Model checking was introduced independently by Clarke and Emerson [CE81] and by Quielle and Sifakis [QS82]
in 1981 as a technique for verification of finite state concurrent systems. Systematic state space exploration is used
to check a system against its specification. The specification is given as a number of formulae in either branching
or linear time temporal logic (see, e.g., [Eme90] for an introduction). The system itself is represented as a labeled
state-transition graph orKripke structure. A Kripke structure is a tupleM = (S, I ,T, l) consisting of a finite set of
statesS, a setI ⊆ Sof initial states, a transition relationT ⊆ S×S, and a labeling functionl : S→ 2A whereA is a set
of atomic propositions. Apathπ = (si) in a Kripke structure is a finite or infinite sequence of states withsi ∈ Sand
T(si ,si+1) for 0≤ i < |π|. When a model checker detects that a system does not satisfy its specification it can produce
a counterexample to help the user track down the error.

The first implementations of the model checking algorithm represented the state-transition graph explicitly. Sets
of states and transition relations can often be represented more compactly by stating their characteristic functions
instead of enumerating their elements explicitly. Verification is then performed by appropriate calculations on the
corresponding functions. For example, given a predicatefI (s) evaluating to true iffs is an initial state and another
predicatefT(s,s′) that is true iffs′ is a successor state ofs, the set of states reachable in one step from the set of initial
states is given byf1(s) ≡ ∃i ∈ S. fI (i)∧ fT(i,s). Similarly, reachability of an error state can be checked by iteratively
calculating f1(s), f2(s) ≡ ∃t ∈ S. f1(t)∧ fT(t,s), . . . and intersecting intermediate results with the set of error states
until reachability is proved or a fixed point is reached.

This idea was proposed first by Burch, Clarke, and McMillan [BCM92] using Bryant’sreduced ordered binary
decision diagrams[Br86] as a canonical representation for boolean functions. With the new representation, McMillan’s
SMV [McM93] could verify systems with more than 1020 states, reaching more than 10100 states today. However, for
the verification of larger systems BDD-based symbolic model checking requires careful ordering of the input variables
to avoid space blow-up of the BDDs. In some cases no space-efficient ordering can be found [Br91].SMV has been
used in a number of case studies. See, for example, [CGH+93], [CCW+95]. Its source code is available at [SMV].

Modeling State Machines in SMV

In SMV, a system is modeled as a state machine. The input language is similar to common hardware description
languages. The properties to be verified are given as temporal formulae in computation tree logic (CTL) [Eme90],
[CE81]. The state of the system is determined by the values of a collection of state variables. Available types include
booleans, integer ranges, sets of user-defined symbolic values as well as arrays. Compound types can be represented by

1 In the sequel,SMV refers to the original version ofSMVdistributed by CMU.
2 The term “standard” without further explanation is used as synonym for the IEEE 1394 (FireWire) standard [1394-1995, 1394-2000].

Verifying 1394 with SMV 3

T1T0 T2 S0

!rnd

rnd

at most one
port unknown

port unknown
more than one

T31T3

T32

3

Fig. 1. Simplified state transition diagram of our model of the
FireWire Tree Identify Protocol (TIP).

MODULE node
VAR
 s: {T0, T1, T2,
 T3_1, T3_2, T3_3, S0};
 p: array 0..2 of port;
 rnd: boolean;

ASSIGN
 init(s) := T0;
 next(s) := case
 s = T0 &
 ((!(p[0].role = unknown) &
 !(p[1].role = unknown)) |
 (!(p[0].role = unknown) &
 !(p[2].role = unknown)) |
 (!(p[1].role = unknown) &
 !(p[2].role = unknown))): T1;
 s = T1: {T1, T2};
 s = T2: {T2, S0, T3_1};
 s = T3_1 & rnd: T3_2;
 s = T3_1 & !rnd: T3_3;
 s = T3_2: T3_3;
 s = T3_3: {T1, T2};
 1: s;
 esac;

Fig. 2.Model of a node inSMV.

scalarset PORT 0..2;
module node() {
 s: {T0, T1, T2, T3_1, T3_2, T3_3, S0};
 p: array PORT of port;
 rnd: boolean;
 u: array PORT of array PORT of boolean;
 v: array PORT of boolean;

 init(s) := T0;
 default {next(s) := s;}
 in switch(s) {
 T0: {
 forall(i in PORT) {
 forall(j in PORT) {
 u[i][j] := (i ~= j) ->
 ~((p[i].role = unknown) &
 (p[j].role = unknown));
 }
 v[i] := &u[i];
 }
 if (&v) next(s) := T1;
 }
 T1: next(s) := {T1, T2};
 T2: next(s) := {T2, S0, T3_1};
 T3_1: if (rnd)
 next(s) := T3_2;
 else if (~rnd)
 next(s) := T3_3;
 T3_2: next(s) := T3_3;
 T3_3: next(s) := {T1, T2};
 }
}

Fig. 3.Model of a node inCadence SMVusing scalarsets.

hierarchical modules. The set of initial states and the transition relation between the states are defined by assignments
to the initial and next state values of the state variables. Invariants, constraints on the transition relation, and fairness
conditions may be added as boolean formulae.

A system is structured into a number of modules. Each module can be instantiated multiple times and may contain
instances of other modules.SMV allows for both synchronous and asynchronous execution of the model, but has no
provisions for expressing continuous time constraints. Communication takes place via shared variables.

As an example Fig. 2 shows a simplified part of our model of a node of a FireWire system. It implements the
state machine of the tree identify protocol. The corresponding state transition diagram is given in Fig 1. While the
set of states includes all states of our model, most conditions on the state transitions have been abstracted to a non-
deterministic choice to simplify the presentation. Details on the meaning of states and transitions can be found in
Sect. 3 and [MRS02], [1394-1995], [1394-2000].

The state of each instance ofnode is defined by 3 variables. The variables stores the node’s current state in the
TIP state machine. Each node has 3 ports declared in a separate user-defined moduleport . Booleanrnd is used as
random bit in the protocol.

Execution of the protocol starts in the initial stateT0. A node can only move fromT0 to T1 if the role of at most
one port isunknown. Booleanand, or, andnot are expressed with&, | , and! , respectively. As all combinations have
to be listed explicitly the length of the expression for the transition fromT0 toT1 is quadratic in the number of ports.
In stateT31 the value ofrnd decides whether a node moves toT32 or T33. rnd is never assigned a value in the
model – this corresponds to a non-deterministic choice. The branches of the case-statement are checked in their order
of appearance, the first that evaluates to true is taken. The last branch ensures that a node remains in its current state if
no other condition is true.

4 V. Schuppan and A. Biere

Variants

Based on the original version ofSMVseveral variants have been developed.NuSMV[CCG+02] is a reimplementation
of the original version developed by CMU and IRST. It provides additional interfaces and allows specifications in
both CTL and linear temporal logic (LTL, [Eme90], [CGP99]). Further improvements concerned modularity of the
design and robustness of the implementation. The latest version includes a bounded model checking engine and past
time operators for LTL. Yang [YSMV] independently rewrote large parts ofSMV. While preserving the features of the
original version, in particular the input language, Yang’s implementation gives significant speed-up in many cases.

McMillan continues to improveSMV at Cadence Berkeley Labs. A research version [CSMV] is freely available
for non-commercial purposes. In our work, we used the following additional features ofCadence SMV:

• Enhanced input language. Modules can be separated into different files and included via C-like include directives.
Most other C-preprocessor directives are also available. For-loops allow simple iterations over array elements.
Indices of arrays can be array elements as well. Specifications are usually expressed in LTL if the enhanced input
language is used.

• Assume guarantee reasoning. Assertions can be used in the proof of other assertions. Assertions marked as as-
sumptions do not need to be proved.

• Symmetry reduction. Scalar types can be defined as scalarset enabling symmetry reduction on these types.
• Bounded model checking. By default an interface tozChaff [ZMM+01] is provided. Other SAT-solvers can also be

integrated.

Further improvements not used in this case study include refinement verification, data type reduction, and induction.

2.2. Symmetry Reduction

Symmetry is found in many systems considered for the application of model checking. Examples are several instances
of a worker thread in a multi-threaded application or nodes of the same type in a network. In both cases, permuting
objects (i. e., threads or nodes) and references to those objects in a consistent way results in states with equivalent
behavior. Symmetry reduction [CFJ93], [ID96], [ES93] exploits this fact to reduce the state space to be searched in
model checking by selecting only a subset of representatives for such sets of states. In some cases this reduction may
have an exponential benefit.

More formally [CFJ93], consider a Kripke structureM = (S, I ,T, l). A group of permutationsP on S is called a
symmetry groupof M if each permutationσ ∈ P preservesT: ∀s1 ∈ S,∀s2 ∈ S : (s1,s2) ∈ T ⇔ (σ(s1),σ(s2)) ∈ T.
The orbit of a states∈ S is the set of statesθ(s) = {ŝ∈ S | ∃σ ∈ P: σ(ŝ) = s}. An atomic propositiona is called
invariant underP, if the set of states labeled witha is closed under the application of permutations inP. That is
∀s∈ S,∀σ ∈ P : a∈ l(s)⇔ a∈ l(σ(s)). Clarke et. al. show [CFJ93] that, if all propositions of a formulah are invariant
underP, it suffices to checkMP |= h instead ofM |= h, whereMP is thequotient modelof M: MP = {SP, IP,TP, lP}
with SP = {θ(s) | s∈ S}, IP = {θ(s) | s∈ I}, TP = {(θ(s1),θ(s2)) | ∃s3 ∈ θ(s1),∃s4 ∈ θ(s2) : (s3,s4) ∈ T}, and lP :
lP(θ(s)) = l(any(θ(s)))

Trying to find symmetries automatically without user guidance has not found widespread application, probably
because the problem seems to be almost as expensive as the calculation of reachable states.Scalarsetswere introduced
by Ip and Dill [ID96] in Murphi [DDH+92] and implemented inCadence SMV. As a fully symmetric data type they
enable the user to specify where symmetry reduction can be applied. Scalarsets are finite subranges with test for
equality as the only legal operation between two elements of a scalar set. More operations are possible when applied
to all elements of a scalarset. The elements of a scalarset can be arbitrarily permuted. Elements of arrays indexed
with a scalarset type may also be permuted as long as all references are updated accordingly. In this case, only one
particular ordering of a given set of array elements needs to be verified.

Model of a Node with Symmetry Reduction

Figure 3 shows our model of the TIP state machine in the enhanced input language ofCadence SMV. To enable
symmetry reduction on the ports of a node, a scalarset type is defined for port indices. Access to portsp must now
ensure that symmetry is not broken. Therefore, two nestedforall -loops are used to determine whether there exists
a pair of different ports whose role is unknown. The result is collected using two- and one-dimensional arraysu
andv with the&-operator being overloaded to calculate the booleanandof all elements of a vector.-> and˜ denote

Verifying 1394 with SMV 5

boolean implication and negation. Note also, that the expression for the transition fromT0 toT1 can now be formulated
independent of the specific number of nodes. Thecase -statement with arbitrary boolean expressions at the branches
in Fig. 2 is replaced by aswitch -statement ranging over all states and anif -statement within the branches where
necessary. Thedefault -statement is executed if no assignment takes place within theswitch part.

2.3. Bounded Model Checking

In contrast to BDD-based algorithms, SAT-based symbolic model checking orbounded model checkingas proposed by
Biere et. al. [BCCZ99] is typically independent of a good variable order. In addition, counterexamples are generated
faster and shortest counterexamples can be found.

A bounded model checker translates a Kripke structure and a specification into a boolean formula which is satisfi-
able iff a counterexample of a user-specified lengthk exists. This formula is then passed to an off-the-shelf SAT solver,
for exampleSATO[Zha97],Prover [Bor97] or zChaff [ZMM+01]. If the formula is satisfiable a counterexample can
be generated from the satisfying assignment.

Shtrichman [Sht00] proposed several strategies to optimize SAT solvers for bounded model checking. In several
case studies his strategies outperformed traditional BDD-based symbolic model checking. Bounded model checking
has also successfully been applied in industrial verification projects [CFF+01], [BLM01].

Bounded Model Checking of the Node Model

Bounded model checking can best be explained with an example. Consider the model of a FireWire node in Fig. 2
again. The system’s current state is given by variabless, p, andrnd. We assume that the predicates representing the
initial state and next state relations ofp are defined byIp andTp. In addition, we do not refer to individual bits of
a state variable but use compound expressions as ins= T0 as propositional formulae. Primed variables refer to the
value of a variable in the next state.

Initially, a node is in stateT0, rnd is unconstrained, andp is in a valid initial state:I(s, rnd, p) ≡ s= T0 ∧ Ip(p).
Similarly, the transition relationT can be expressed as the conjunction of the next state relationssteps, steprnd, andTp:

u(p) ≡ p[0].role 6= unknown∧ p[1].role 6= unknown ∨
p[0].role 6= unknown∧ p[2].role 6= unknown ∨
p[1].role 6= unknown∧ p[2].role 6= unknown

steps(s, p, rnd,s′) ≡ s= T0⇒ (¬u(p) ∧ s′ = T0 ∨ u(p) ∧ s′ = T1) ∧
s= T1⇒ (s′ = T1 ∨ s′ = T2) ∧
s= T2⇒ (s′ = T2 ∨ s′ = S0 ∨ s′ = T31) ∧
s= T31 ⇒ (rnd ∧ s′ = T32 ∨ ¬rnd ∧ s′ = T33) ∧
s= T32 ⇒ s′ = T33 ∧
s= T33 ⇒ (s′ = T1 ∨ s′ = T2)

steprnd(rnd, rnd′) ≡ true
T(s,s′, rnd, rnd′, p, p′) ≡ steps(s,s′) ∧ steprnd(rnd, rnd′) ∧ Tp(p, p′)

To verify the liveness propertyAF (s= S0) a formula is constructed which is satisfiable iff a counterexample exists:
EG (s 6= S0). Then the set of all valid paths of lengthk (i. e., k+ 1 states) is given byMk ≡ I(s0)∧

∧k−1
i=0 T(si ,si+1).

Every witness forEG (s 6= S0) has infinite length. Therefore, a witness withk + 1 states must contain a loop:
Lk ≡

∨k
i=0T(sk,si). Finally, s 6= S0 must hold for every state:Pk ≡

∧k
i=0si 6= S0. Now, Wk ≡ Mk ∧ Lk ∧Pk can be

passed to a SAT solver. In the example, a counterexample will be produced for anyk≥ 0.

3. Model

We have built a number of models to evaluate performance and capacity of some variants ofSMV. We started with
an implementation for the version ofSMV from CMU. A reimplementation was done to test symmetry reduction
with Cadence SMV. Finally, minor modifications enabled us to perform bounded model checking. After giving some
terminology we describe the implementation and specification forSMV. Then, we state the differences to our original
version made for model checking and bounded model checking withCadence SMV.

6 V. Schuppan and A. Biere

3.1. Terminology

Our model [URL] of a FireWire system is based on the structure as shown in sections 3.7.3.1.2 and E.3.2 of the
FireWire standard [1394-1995]. A specificconfigurationof a system is defined by

• the number ofnodes,
• the number ofportsavailable at each node,
• thetopology, given by the interconnection of the nodes in the network, and
• the value of theforce-root-flag of each node.

Each port is either connected to other ports or inactive. A more detailed explanation of the terms used can be found in
the introductory paper [MRS02] of this issue.

3.2. Implementation

The implementation of a node is similar to the Tree ID state machine in [1394-2000]. A state variable holds the state
of each node in the state machine. The set of states includes statesT0, T1, andT2 of the Tree Identify Protocol as
described in the standard. StateT3 is refined (see below) and the first state of the self-identify phase,S0, is added as
an end state. See Fig. 1 for a state-transition diagram. Note, that most conditions on the transition relation have been
abstracted to a non-deterministic choice.

In our experiments we only use synchronous execution of the model. Because of technical difficulties we were not
able to include some features of the FireWire TIP in an asynchronous model that can be processed by the original or
Yang’s version ofSMV. To allow for a fair comparison withCadence SMVwe also used a synchronous version there.
From that, an asynchronous model can be constructed with some additional effort.

For low-level communication, IEEE 1394 uses two signals with three different states. We abstract from this low-
level line-based encoding scheme and use the line states given in Tables 4-27 and 4-28 in [1394-1995]. Not all states
are relevant for the tree identify protocol [1394-1995]. In our implementation each port has two state variables which
take the line state to be transmitted and received as their values. Invariants ensure that input and output ports match.

For the random choice of bits during resolution of root contention [1394-2000], non-determinism is used in the
transition relation. A fairness condition ensures that the choices will differ after an arbitrary but finite number of steps.

3.3. Timing

Timing is an important issue at several points in the Tree Identify Protocol:

• timers are used to detecttime-outsin the protocol which indicate a cycle in the configuration,
• a node may intentionally be delayed in its first state to increase its chance of becoming root (calledforce-root),
• root contentionis resolved by time delays of different length.

SMVdoes not offer constructs to express continuous time constraints. Therefore, we use one counter per node to
model time-out and force-root conditions. The counter is incremented each time-step as long as the node is in stateT0.
If force-root is set the node cannot execute the transition fromT0 to T1 until its counter has reached a certain limit
l1. If the counter exceeds another limitl2 > l1, a flag indicating time-out is set. In contrast to the standard, both limits
depend on the number of nodes in a configuration. This is to minimize the state space while preserving the desired
effect in the protocol. For the resolution of root contention in the standard, nodes have to wait different amounts of
time. We implement this by making each of the two nodes non-deterministically choose one of two paths of different
length in the state machine. For this purpose, stateT3 is split into 3 sub-states.T31 andT33 serve as entry and exit
states.T33 is reachable fromT31 either directly on or on a path of length two viaT32.

3.4. Parameters

The size of the state space to be searched and, thus, the amount of time and memory needed for the verification depends
on the number of free variables in the model. For each configuration there are two groups of variables that can either

Verifying 1394 with SMV 7

be specified by the user or left undetermined: the network topology and the force-root flag. This gives 4 combinations
of (un-)determination3 in our model:

• specified topology, force-root set to 0, or fully determined
• specified topology, force-root unspecified, or force-root undetermined
• unspecified topology, force-root set to 0, or topology undetermined
• unspecified topology, force-root unspecified, or fully undetermined

Topology

The topology of a FireWire system is given by the interconnection of nodes in the network. Information about the
topology is kept in a global table. If only a certain topology is to be checked the user can initialize the table with that
topology. Otherwise, all configurations with legal topologies that can be formed by the given number of nodes using
up to the specified maximum number of ports are verified. In both cases, the topology is fixed during the run of the
protocol. A topology is calledlegal iff

1. it is sound, i. e. for each pair of input and output lines destination and source ports match,
2. it is connected, and
3. it containsno cycles.

These conditions are ensured by invariants. Condition 1 is straight-forward. Reachability in conditions 2 and 3 is
checked by explicitly enumerating all possible paths between any two nodes and checking the validity of each path.

Force-Root Flag

For each configuration another parameter remains to be chosen: the force-root flag of each node. The information is
kept in a local variable of each node. It also remains fixed throughout the protocol. If more than one node has its
force-root flag set, none of them might become root.

3.5. Specification

The two most important properties for the protocol are stated in the problem description [MRS02]:

1. Eventually, at least one node becomes root.
2. At any time, at most one node is root.

We have specified three additional properties to ensure that each node reaches a well defined, safe state at the end of
the protocol. It is required that

3. Eventually, every node is and remains in stateS0.
4. Eventually, the role of the peer node at each connected port is and remains determined.
5. Eventually, each link is and remains in state idle.

Depending on the particular configuration, further requirements are added to specify the desired outcome of the elec-
tion protocol.

There are certain exceptions to requirements 1 – 5. For example, if the user configures nodes into a cycle a time-out
should occur. In this case some requirements stated above will not be met although a legal end-state in this particular
configuration is always reached.

The specification can be extended to include exceptions and potential problems into the given requirements. Now
the model checker is ready to report whether the (extended) requirements are met or further problems are present. The
presence of known exceptions or problems in a given configuration can still be checked by separate specifications. For
instance, we include a time-out specification in our implementation. A typical requirement looks as follows:

AF ((AG in_state_S0) | timeout)

3 Undeterminationin our terminology corresponds to a non-deterministic choice at the start of the execution of the model.

8 V. Schuppan and A. Biere

This states that all nodes finally arrive and remain in stateS0 or a time-out occurs. If a timeout actually has occurred
(depending on the current configuration) can be seen by verifying one more clause:AG !timeout . It is also possible
to add a requirement stating that if a configuration is cyclic then a timeout will be produced.

3.6. Generation of the Model

Neither preprocessor directives nor for-loops are available in the input language of the originalSMV. To avoid the first
problem, we used the C-preprocessorcpp. Lack of for loops however makes it necessary to generate separate input
files for each configuration. In addition, the exponential growth in the number of possible paths in the network leads
to a blow-up in the file size for more than a handful of nodes.

3.7. Advanced Features of Cadence SMV

To use advanced features ofCadence SMVlarge parts of the model had to be rewritten. Node and port indices are
defined as scalarset types to enable symmetry reduction. Preprocessor directives and nested for loops allow us to
parameterize the model and the specification in the numbers of nodes and ports. Now it suffices to have a single
generic input file with only few parameters to be filled in for a particular configuration.

Many parts of the model can be formulated more elegantly. The mapping from output to input lines can be stated
in Cadence SMVusing for loops and nesting of array indices as essential features within 5 lines of code. The corre-
sponding statement inSMV takes more than a page for a configuration with 3 nodes and 3 ports. To check whether
a topology is connected and contains no cycle the transitive closure of the transition relation is computed instead of
listing all paths explicitly. The blow-up in the file size is avoided.

In Cadence SMV, LTL is used instead of CTL. The example from the previous section now reads (remember that
LTL formulae are implicitly quantified over all paths):F ((G in state S0) | timeout) . Note that the meaning
of both formulae is different. The semantics of the LTL version matches the standard as we understand it. However, as
it can be shown that the CTL formula actually represents a stronger statement, which suffices for our purposes.

Assume-guarantee reasoning is used instead of invariants to ensure that the desired properties only need to be
proven for fair executions of legal configurations. If a certain user-specified topology is to be verified, the assumptions
for legal configurations are dropped, since they can actually be verified.

3.8. Bounded Model Checking with Cadence SMV

In bounded model checking only paths up to a user-specified lengthk are explored. This requires a change in the
mechanism for random bit selection during the resolution of root contention. The non-deterministic choices of the two
contending nodes are now forced to differ after a fixed numberl of iterations through the sub-protocol. To derive the
path lengthk used for bounded model checking we manually calculated the maximum number of time steps it takes
for a legal configuration to complete a run of the protocol or for a timeout to occur in a cyclic configuration as follows:

time steps until force-root has passed
+ # time steps until at most two root candidates remain or a cycle has been detected
+ # time steps forl non-successful runs through root contention resolution
+ # time steps for one successful run through root contention resolution
+ # time steps for root to complete protocol
+ safety margin of 2.

Bounded model checking can not fully verify the correctness of this protocol because execution sequences of arbi-
trary length exist. However, our goal was only to show how expensive bounded model checking for certain examples
may be, even if completeness is not that important.

4. Results

The specification has been verified for a number of topologies with synchronous execution. For all legal topologies we
could prove the specifications to be valid. In topologies containing a cycle the cycle was detected. We used configu-
rations with 2 to 6 nodes and 2 to 4 ports without specifying a topology. In addition, user-specified topologies with 3

Verifying 1394 with SMV 9

Table 1.Results for Yang’s version of the original SMV with fixed topology

Configuration det. frn.

nodes ports # states time [s] mem [Mb] # states time [s] mem [Mb]

2 3 2ˆ15.5 0.2 186.3 2ˆ18.1 0.3 186.6
3 3 2ˆ26.7 0.3 186.9 2ˆ29.7 0.5 188.1
5 3 2ˆ41.0 0.8 192.0 2ˆ46.2 1.8 197.7
6 4 2ˆ54.2 1.5 197.6 2ˆ60.7 3.8 209.2
6c 4 2ˆ51.2 2.1 201.5 2ˆ57.9 2.2 201.2
10 3 2ˆ66.9 2.6 210.7 2ˆ77.2 64.4 442.8

Table 2.Results for Yang’s version of the original SMV with unspecified topology

Configuration topn. n.

nodes ports # states time [s] mem [Mb] # states time [s] mem [Mb]

2 2ˆ15.6 0.3 186.2 2ˆ15.7 0.4 186.8
2 3 2ˆ25.3 1.2 191.2 2ˆ27.6 1.3 192.3

4 2ˆ35.6 4.7 215.1 2ˆ38.1 5.6 220.9

2 2ˆ26.8 1.3 193.0 2ˆ29.8 3.5 204.3
3 3 2ˆ42.0 8.1 241.5 2ˆ45.0 22.5 303.5

4 2ˆ57.9 79.9 442.9 2ˆ60.9 544.4 819.4

2 2ˆ30.8 12.7 257.4 2ˆ34.9 90.1 442.3
4 3 m.o. 811.2 949.8 m.o. 8368.6 965.3

4 t.o. t.o. t.o. t.o. t.o. t.o.

2 2ˆ46.8 174.5 809.9 2ˆ52.0 7585.2 959.3
5 3/4 t.o. t.o. t.o. t.o. t.o. t.o.

ports (apart from(iv) with a cycle – 4 ports are needed here) were used. Topologies(i) – (iii) and(v) are taken from
the workshop version [SB01] of this paper,(iv) is the topology Calder and Miller have used in their case study [CM01]
with SPIN [Hol91]:

(i) two nodes
(ii) three nodes forming a chain
(iii) tree with five nodes configured as in sections 3.7.3.1.2 and E.3.2 of [1394-1995] (with 3 ports available per node)
(iv) tree with six nodes as used by Calder and Miller in [CM01] (with cycle, marked “c”, and without a cycle)
(v) tree with 10 nodes

Where possible we verified all combinations of (un-)determination in our model. In Tables 1 - 4 fully determined
configurations are markeddet., force-root undetermined configurations are markedfrn., topology-undetermined con-
figurations havetopn, and fully undetermined configurations haven. respectively. Combinations not used are marked
”-”. For each configuration we list the user time in seconds as reported by the model checkers and the memory allo-
cated in megabytes as reported by the toolmemusage. For all experiments we used a wall clock limit of 6 h. Memory
out and time out are indicated by ”m.o.” and ”t.o.”.

We spent several days to construct a good variable order. Reversing the default variable ordering resulted in con-
siderable runtime improvements inCadence SMV. Further optimizations based on dynamic and additional manual
variable reordering did not enable us to verify larger configurations.

4.1. SMV

Because of its superior performance, we used Yang’s implementation [YSMV] for the experiments in this section. We
enabled forward model checking without changing the default variable order. The experiments were conducted on a
Pentium III at 800 MHz with 1.5 Gbytes main memory running Linux 2.2.19. In addition to user time and memory,
tables 1, 2 also list the number of states reachable for each configuration. We could not handle configurations with 6
nodes and unspecified topology within these time and memory bounds.

10 V. Schuppan and A. Biere

Table 3.Results for Cadence SMV with symmetry reduction

Configuration topn. topn. symm. n. n. symm.

nodes ports time [s] mem [Mb] time [s] mem [Mb] time [s] mem [Mb] time [s] mem [Mb]

2 2.1 3.0 2.1 3.0 2.3 3.7 2.3 3.7
2 3 5.6 4.7 3.6 4.5 5.8 4.6 4.1 4.8

4 10.9 8.2 6.0 13.0 12.2 8.6 6.5 5.5

2 5.6 6.6 4.6 5.3 48.9 17.9 33.8 15.2
3 3 83.9 56.4 45.1 59.5 933.6 160.9 329.1 112.9

4 1993.8 1408.1 1521.6 418.7 m.o. m.o. 3524.4 1149.0

4 2 254.1 119.6 139.5 70.7 2154.9 357.9 2191.8 242.0

5 2 8070.5 1269.7 1272.3 598.6 m.o. m.o. m.o. m.o.

Table 4.Results for bounded model checking with Cadence SMV

Configuration det. n.
l = 0 l = 2 l = 0 l = 2

nodes ports k time [s] mem [Mb] k time [s] mem [Mb] k time [s] mem [Mb] k time [s] mem [Mb]

2 3 20 91.4 14.0 28 216.1 20.8 20 615.4 18.9 28 2808.5 27.7
3 3 25 94.0 29.6 33 147.8 42.5 25 4052.3 49.3 33 6058.1 68.2
5 3 34 1644.2 98.7 42 3340.7 120.0 34 t.o. t.o 42 t.o t.o.
6 4 38 3125.3 296.2 46 5077.0 354.3 - - - - - -
6c 4 38 732.1 296.2 46 954.5 354.0 - - - - - -
10 3 56 m.o. m.o. 64 m.o. m.o. - - - - - -

4.2. Symmetry Reduction with Cadence SMV

If the topology is left unspecified we can take advantage of symmetry reduction as implemented in Cadence SMV
and define the types representing node and port indices as scalarsets. Symmetry reduction can not be be applied to
configurations with a user-specified topology because assignment of constants to scalarset variables is a symmetry
breaking operation. Table 3 gives the results for each configuration without and with symmetry reduction. These
experiments were run on a slightly different machine, a Pentium III at 733 MHz. Again, we performed forward model
checking but with a reversed variable order. All properties were checked together. We could not handle configurations
with 4 or 5 nodes and more than 2 ports and no configuration with 6 nodes within the given memory bounds.

4.3. Bounded model checking with Cadence SMV

Due to the time available to perform the experiments we applied bounded model checking only to selected fully
deterministic and fully non-deterministic configurations. Symmetry reduction was not enabled. For the parameterl ,
the number of runs through the root contention resolution sub-protocol, see Section 3.8, we used values 0 and 2. The
resulting path length for the bounded model checker and the user time in seconds are given in Table 4. Apart from the
path lengthk no additional command line parameters had been specified. As SAT solverzChaff [ZMM+01] was used.
These experiments were run on the same machine as in the previous section.

5. Evaluation

An initial model for specific network configurations in theSMV input language can be produced within a couple of
days, even with only moderate experience in the subject. Considerably more effort and experience is required to add
flexibility to the model while ensuring that verification can be performed within given time and memory bounds.

The input language ofSMV is well suited to model state machines as used in [1394-1995], [1394-2000]. However,
continuous real time constraints cannot be specified and verified. No features are offered by theSMV language to
model procedural interfaces and advanced data types.

Verifying 1394 with SMV 11

A model in SMV should not be much harder to understand than program code written in a low-level procedural
language like C. Specifications in temporal logic probably require some explanation. Specification patterns [DAC98]
might help here.

Every change of the model requires to rerun the model checker to verify that the specification is still valid. However,
for minor changes the parameters of the verification will not have to be modified.

Symmetry reduction is considered most effective in the context of compositional reasoning. In our experiments we
relied on fully automatic methods only. Still, symmetry reduction reduced the run time and the memory used in many
cases up to 50 %. This allowed us to verify some larger configurations that could not be handled without symmetry
reduction within the same memory limit. However, savings in memory seem less stable than savings in time. Though
usually fewer memory is required to check each property individually, this option did not enable us to verify larger
configurations while in many cases considerably more time was needed. Note, that Yang’s version ofSMVproduced
much better run times thanCadence SMVeven with symmetry reduction enabled. Recently bounded model checking
has been added toCadence SMV. For our application this new feature did not help to verify larger configurations. As is
typical, bounded model checking was faster in finding a counterexample than in (partially) verifying a correct model.

The work most closely related to ours is that of Calder and Miller [CM01]. Their model of communication and
their state machine for the explicit state model checker SPIN [Hol91] is more detailed. The type of properties checked
are similar. However, they only report data for two fixed topologies with six nodes. In our experiments we verified fixed
configurations with up to ten nodes. Given a concrete number of nodes and ports, our setup can handle all topologies
in a single run of the model checker.

In principle, our approach is restricted to discrete time and can not handle detailed continuous timing constraints as
has been done, for example, by Simons and Stoelinga [SS01]. Therefore, timing related errors as reported by Romijn
in [Rom01] would probably remain undetected in our model. In contrast to [SS01] no construction of intermediate
models is required for our verification.

6. Conclusions and Outlook

Model checking withSMV proved to be very effective for the verification of the Tree Identify Protocol of the IEEE
1394 (FireWire) standard. We were able to model the system rather quickly. The formulation and verification of the
requirements was straightforward. Even with finite state model checking generic topologies can be verified. The next
step is to move from a fixed number of nodes and ports to an upper bound for these values. More experimental results
and application of our methodology during the design process are required.

References

[Ben01] B. Bentley: Validating the Intel Pentium 4 Microprocessor. In:Proceedings of the 38th conference on Design automation,June 18 –
22, 2001, Las Vegas, NV, USA. ACM Press, 2001.

[BBF+01] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen:Systems and Software Verification: Model-
Checking Techniques and Tools.Springer Verlag, 2001.

[BCF01] G. Berry, H. Comon, A. Finkel (eds.):Proceedings of the 13th International Conference on Computer Aided Verification,Paris,
France, July 18 – 22, 2001. Springer Verlag, 2001.

[BCCFZ99] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu: Symbolic Model Checking using SAT procedures instead of BDDs. In:
Proceedings of the 36th Design Automation Conference,New Orleans, LA, USA, June 21 – 25, 1999.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, Y. Zhu: Symbolic Model Checking without BDDs. In: W. R. Cleaveland (ed.):Proceedings of the
5th International Conference on Tools and Algorithms for the Construction and Analysis of Systems,Amsterdam, The Netherlands,
March 22 – 28, 1999. Springer Verlag, 1999.

[BLM01] P. Bjesse, T. Leonard, A. Mokkedem: Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers. In: [BCF01], pp. 454 –
464.

[Bor97] Arne Bor̈alv: The Industrial Success of Verification Tools Based on Stålmarck’s Method. In: [Gru97].
[Br86] R. E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation. In:IEEE Transactions on Computers8 (C-35) 1996,

pp. 677 – 691.
[Br91] R. E. Bryant: On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to

Integer Multiplication. In:IEEE Transactions on Computers2 (40) 1991, pp. 205 – 213.
[BCM92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang: Symbolic Model Checking: 1020 States and Beyond. In:

Information and Computation98 (2) 1992, pp. 142 – 170.
[CM01] M. Calder, A. Miller: Using SPIN to Analyse the FireWire Protocol - a Case Study. In: [MRS01], pp. 9 – 13.
[CCW+95] S. Campos, E. Clarke, W. Marrero, M. Minea: Verifying the Performance of the PCI Local Bus using Symbolic Techniques. In:

Proceedings of the International Conference on Computer Design,Austin, TX, USA, October 2 – 4, 1995.

12 V. Schuppan and A. Biere

[CCG+02] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella: NuSMV 2: An Open-
Source Tool for Symbolic Model Checking. In:Proceedings of the 14th International Conference on Computer Aided Verification,
Copenhagen, Denmark, July 27 – 31, 2002. Springer Verlag, 2002.

[CE81] E. M. Clarke, E. A. Emerson: Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic. In: D.
Kozen (ed.):Proceedings of the Workshop on Logics of Programs,Yorktown Heights, NY, May 1981, pp. 52 – 71. Springer Verlag,
1982.

[CFJ93] E. M. Clarke, T. Filkorn, S. Jha: Exploiting Symmetry In Temporal Logic Model Checking. In: [Cou93], pp. 450 – 462.
[CGH+93] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L. McMillan, L. A. Ness: Verification of the Futurebus+ cache

coherence protocol. In: D. Agnew, L. Claesen, R. Camposano (eds.):Proceedings of the 11th International Symposium on Computer
Hardware Description Languages and their Applications,Ottawa, Canada, April 26 – 28, 1993. North Holland, 1993.

[CGP99] E. M. Clarke, O. Grumberg, D. A. Peled:Model Checking.MIT Press, Cambridge, Massachusetts, 1999.
[CFF+01] F Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, M. Y. Vardi: Benefits of Bounded Model Checking at an Industrial

Setting. In: [BCF01], pp. 436 – 453.
[Cou93] C. Courcoubetis (ed.):Proceedings of the 5th Workshop on Computer-Aided Verification,Heraklion, Greece, June 28 – July 1, 1993.

Springer Verlag, 1993.
[DAC98] M. B. Dwyer, G. S. Avrunin, J. C. Corbett: Property Specification Patterns for Finite-State Verification. In: M. Ardis (ed.):Proceed-

ings of the Second Workshop on Formal Methods in Software Practice,Clearwater Beach, FL, USA, March 4 – 5, 1998. ACM Press,
1998.

[DDH+92] D. L. Dill, A. J. Drexler, A. J. Hu, C. H. Yang: Protocol Verification as a Hardware Design Aid. In:Proceedings of the 1992 IEEE
International Conference on Computer Design: VLSI in Computers and Processors,IEEE Computer Society, pp. 522 – 525.

[Eme90] E. A. Emerson: Temporal and Modal Logic. In: J. van Leeuwen (ed.):Handbook of Theoretical Computer Science, Volume B: Formal
Models and Semantics.Elsevier and MIT Press, 1990.

[ES93] E. A. Emerson, A. P. Sistla: Symmetry and Model Checking. In: [Cou93], pp. 463 – 478.
[ES00] E. A. Emerson, A. P. Sistla (eds.):Proceedings of the 12th International Conference on Computer Aided Verification,Chicago, IL,

USA, July 15 – 19, 2000. Springer Verlag, 2000.
[Gru97] O. Grumberg (ed.):Proceedings of the 9th International Conference on Computer Aided Verification,Haifa, Israel, June 22 – 25,

1997. Springer Verlag, 1997.
[Hol91] G. J. Holzmann:Design and Validation of Computer Protocols.Prentice-Hall, 1991.
[1394-1995] IEEE 1394-1995. Institute of Electrical and Electronics Engineers.IEEE Standard for a High Performance Serial Bus.Std 1394-

1995, August 1995.
[1394-2000] IEEE 1394-2000. Institute of Electrical and Electronics Engineers.IEEE Standard for a High Performance Serial Bus (Supplement).

Std 1394a-2000, 2000.
[ID96] C. N. Ip, D. L. Dill: Better Verification Through Symmetry. In:Formal Methods in System Design1/2 (9) 1996, pp. 41 – 75.
[KMM00] M. Kaufmann, P. Manolios, J. S. Moore:Computer-Aided Reasoning: An Approach.Kluwer Academic Publishers, 2000.
[MRS01] S. Maharaj, J. Romijn, C. Shankland (eds.):Proceedings of the International Workshop on Application of Formal Methods to IEEE

1394 Standard,Berlin, Germany, March 13, 2001. Department of Computing Science and Mathematics, University of Stirling, March
2001.

[MRS02] S. Maharaj, J. Romijn, C. Shankland: The IEEE 1394 Tree Identify Protocol.In this issue.
[McM93] K. L. McMillan: Symbolic Model Checking.Kluwer Academic Publishers, 1993.
[QS82] J. P. Quielle, J. Sifakis: Specification and Verification of Concurrent Systems in CESAR. In:Proceedings of the Fifth International

Symposium on Programming,Turin, Italy, April 6 – 8, 1982. Springer Verlag, 1982.
[Rom01] J. Romijn: False loop detection in the IEEE 1394 Tree Identify Phase. In: [MRS01], pp. 25 – 28.
[Sch01] J. M. Schumann:Automated Theorem Proving in Software Engineering.Springer Verlag, 2001.
[SB01] V. Schuppan, A. Biere: A Simple Verification of the Tree Identify Protocol with SMV. In: [MRS01], pp. 31 – 34.
[Sht00] O. Shtrichman: Tuning SAT checkers for Bounded Model Checking. In: [ES00], pp. 480 – 494.
[SS01] D. L. Simons, M. I. A. Stoelinga: Mechanical Verification of the IEEE 1394a Root Contention Protocol using Uppaal2k. In:Interna-

tional Journal on Software Tools for Technology Transfer4 (3) 2001, pp. 469 – 485. Springer Verlag, 2001.
[CSMV] Cadence SMV. Available athttp://www-cad.eecs.berkeley.edu/˜kenmcmil/smv/ .
[SMV] The SMV system. Available athttp://www.cs.cmu.edu/˜modelcheck/smv.html .
[YSMV] B. Yang: SMV 2.4b. Available athttp://www.cs.cmu.edu/˜bwolen/software/smv/ .
[TWC01] J. Tretmans, K. Wijbrans, M. Chaudron: Software Engineering with Formal Methods: The Development of a Storm Surge Barrier

Control System: Revisiting Seven Myths of Formal Methods. In:Formal Methods in System Design2 (19) 2001, pp. 195 – 215.
Kluwer Academic Publishers, 2001.

[URL] http://www.inf.ethz.ch/personal/schuppan/firewire .
[Zha97] H. Zhang: SATO: An efficient propositional prover. In: [Gru97].
[ZMM+01] L. Zhang, C. Madigan, M. Moskewicz, S. Malik: Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. In:Proceedings

of the 2001 International Conference on Computer-Aided Design,San Jose, CA, USA, November 4 – 8, 2001, pp. 279 – 285.

