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Abstract

In previous work we have developed a syntactic reduction of repeated reachability
to reachability for finite state systems. This may lead to simpler and more uniform
proofs for model checking of liveness properties, help to find shortest counterexam-
ples, and overcome limitations of closed-source model-checking tools. In this paper
we show that a similar reduction can be applied to a number of infinite state systems,
namely, (ω−)regular model checking, push-down systems, and timed automata.
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1 Introduction

While model checking of safety properties can be reduced to computing the
set of reachable states of a system [16], verification of general LTL properties
is typically performed by searching for infinite paths in the product of the
system and an automaton representing the property [22].

In [19] we have developed a syntactic reduction from computing repeated
reachability to computing reachability for finite state systems. This reduction
has been used to develop a BDD-based method to find shortest counterexam-
ples [20]. On selected examples a significant speed up compared to traditional
liveness checking can be observed [19,21]. It can also help to simplify proofs
if a proof for safety properties is easier than the corresponding proof for gen-
eral LTL properties. It may finally discourage tool vendors from charging
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separately for liveness-enabled versions of their verification tools. For further
motivation and related work on finite state systems see [19].

In this paper we develop similar reductions for a number of infinite state
systems. Classes of infinite state systems, which have received considerable at-
tention in the past and for which verification tools are available (e.g., [1,12,17]),
are (ω−)regular model checking [15,23,7,5], pushdown systems [6,13,11], and
timed automata [3].

Early work on liveness for regular model checking includes [7,18]. Pnueli
and Shahar [18] also use a copy of a current state to detect bad cycles in param-
eterized systems. However, this is not performed as syntactic transformation
of a model but as part of a dedicated liveness checking algorithm. A variant of
LTL geared towards parameterized systems is proposed in [2]. [8] gives details
on how to encode a broader set of properties than [2] for (ω−)regular model
checking, which can be used in conjunction with our reduction. Algorithms
to compute repeated reachability, on which we also base our reductions, can
be found for pushdown systems, e.g., in [6], and for timed automata in [3].

After some notation common to all classes of systems in Sect. 2, Sect. 3
presents the basic idea of our reduction using finite state systems as an exam-
ple. It is extended to (ω−)regular model checking in Sect. 4 and to pushdown
systems in Sect. 5. Due to space constraints the construction for timed au-
tomata can only be sketched in Sect. 6. The last section concludes.

2 Common Notation

The set of Booleans is denoted by IB = {0, 1}; IN and IR are naturals and
reals, respectively. Elements of a tuple are separated by commas. Elements of
a sequence typically have no operator between them, ◦ is used only if ambiguity
might arise. For a sequence ρ, ρ(i) denotes the i-th element of the sequence
(starting with ρ(0)). The length of a sequence, |ρ|, is defined as the number
of its elements. If S is a set, S∗ and Sω are the sets of finite and infinite
sequences of elements of S.

We introduce an operator µ, which forms a sequence of tuples from a
tuple of sequences. Given two words v, w ∈ Σ∗ with |v| ≤ |w| we define
µ(v, w) = (v(0), w(0)) . . . (v(|v| − 1), w(|v| − 1)) ∈ (Σ× Σ)∗.

3 Liveness Checking as Safety Checking – Finite Case

In this section we briefly restate the main result from [19] to explain the basic
idea and notation of our reduction.

3.1 Preliminaries

Let AP be a finite set of atomic propositions. A Kripke structure, see, e.g.,
[9], is a four tuple M = (S, S0, R, L) where S is a finite set of states, S0 ⊆ S
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Definition 3.1 Let M = (S, S0, R, L) be a Kripke structure. Then MS =
(SS, S0

S, RS, LS) is defined as:

SS = S × S × IB× IB

S0
S = {(s0, ŝ0, 0, 0) | s0 ∈ S0} ∪ {(s0, s0, 1, 0) | s0 ∈ S0}

RS = {((s, ŝ, lb, lc), (s′, ŝ′, lb′, lc′)) | (s, s′) ∈ R ∧
((¬lb ∧ ¬lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŝ = ŝ′) ∨ (1)

(¬lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ s′ = ŝ′) ∨ (2)

(lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŝ = ŝ′) ∨ (3)

(lb ∧ lb′ ∧ ¬lc ∧ lc′ ∧ ŝ = s′ = ŝ′) ∨ (4)

(lb ∧ lb′ ∧ lc ∧ lc′ ∧ ŝ = ŝ′))} (5)

LS((s, ŝ, lb, lc)) = L(s)

is the set of initial states, R ⊆ S×S is a transition relation, and L : S 7→ 2AP

is a labeling of the states.

A run is a (finite or infinite) sequence of states ρ = ρ(0)ρ(1) . . . where
∀0 ≤ i < |ρ| . (ρ(i), ρ(i + 1)) ∈ R. ρ is initialized if ρ(0) ∈ S0, Runs(M)
denotes the set of runs of M .

3.2 Reduction

A liveness property Fp, where p is propositional, is violated in a finite state
system iff there exists a lasso-shaped path where p never holds on that path.
Finding such loop is a key ingredient of many model checking algorithms for
LTL, e.g., [22,4]. Our reduction integrates the detection of a loop into the
model to be verified by nondeterministically saving the current state (i.e.,
guessing a potential loop start) and then watching for a second occurrence of
that state (i.e., detecting closure of the loop). For this purpose, the reduction
extends a state s in the original model with a component to store a previously
seen state, ŝ, and two flags lb (loop body) and lc (loop closed). lb is set to
true when a state is saved and prevents future overwriting of the stored state.
lc indicates that a second occurrence of ŝ has been found.

Definition 3.1 shows the construction. The transitions of RS are partitioned
into subsets. Subset (1) covers the case when no state has been saved so far.
Saving happens either at the initial state or via a transition from set (2).
Transitions from the third set (3) are taken as long as no second occurrence
of the stored state has been seen. A second occurrence is finally detected by
a transition in (4). After that only transitions from the last set (5) are taken.

Theorem 3.2 Let M = (S, S0, R, L) be a Kripke structure, let MS be defined
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as above. Assume k > l ≥ 0.

(s0 . . . sl−1)(sl . . . sk−1)
ω ∈ Runs(M)

⇔

(s0, ŝ0, 0, 0) . . . (sl−1, ŝ0, 0, 0)(sl, sl, 1, 0) . . . (sk−1, sl, 1, 0)(sk, sl, 1, 1)

∈ Runs(MS)

Proof. “⇒”: Let ρ = (s0 . . . sl−1)(sl . . . sk−1)
ω be a run in M . We construct

ρS as follows. If l > 0 choose ρS(0) = (s0, ŝ0, 0, 0) with arbitrary ŝ0. Construct
(s0, ŝ0, 0, 0) . . . (sl−1, ŝ0, 0, 0) by taking transitions from subset (1). Proceed to
(sl, sl, 1, 0) via a transition from (2). Continue to (sk−1, sl, 1, 0) with k − l −
1 transitions from (3). Finally, as k > l, there exists sk = sl, so take a
transition from (4) to (sk, sl, 1, 1). Otherwise, if l = 0, start with (s0, s0, 1, 0)
and continue with k − 1 transitions from (3) and one from (4) as before.

“⇐”: Let ρS = (s0, ŝ0, 0, 0) . . . (sl−1, ŝ0, 0, 0)(sl, sl, 1, 0) . . . (sk−1, sl, 1, 0) ◦
(sk, sl, 1, 1) be a run in MS such that k > l. From the construction of MS,
ρ′ = s0 . . . sl−1sl . . . sk−1sk is a finite run in M with sk = sl. Hence, ρ =
(s0 . . . sl−1)(sl . . . sk−1)

ω is a run in M as desired. 2

Remark 3.3 Checking properties given as Büchi automata requires finding
fair loops. This can be achieved by adding a flag for each fairness constraint,
for details see [19]. The infinite cases can be handled similarly.

3.3 Complexity

Intuitively, MS consists of |S| parallel copies of M . Hence, we immediately
have the following result.

Proposition 3.4 Let M = (S, S0, R, L) be a Kripke structure. MS has
O(|S|2) states and O(|S||R|) transitions.

Proof. Each state in SS stores, in addition to the original state s, another
state ŝ and flags lb, lc. RS contains O(|S|) transitions tS per transition t ∈ R
in subsets (1), (3), and (5), and O(1) tS per t ∈ R in subsets (2) and (4). 2

As reachability in a Kripke structure can be determined in O(|S| + |R|)
time and O(|S|) space, SS can be checked in O(|S|2+|S||R|) time and O(|S|2)
space. For results on other parameters that are important when using BDD-
based symbolic model checking, e.g., radius, diameter, or BDD size, see [19].

4 Regular Model Checking

4.1 Preliminaries

The notation in this section is mostly borrowed from [7]. Let Σ be a finite
alphabet. Regular sets (respectively relations) can be represented as finite-
state automata (resp. transducers). These are given as four tuple (Q, q0, δ, F )
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Definition 4.1 Let P = (Σ,ΦI , R) be a program. Then PS = (ΣS,ΦI
S, RS) is

defined as

ΣS = IB ∪ (Σ× Σ)

ΦI
S = {0} ◦ {0} ◦ {µ(w, ŵ) ∈ (Σ× Σ)∗ | |w| = |ŵ| ∧ w ∈ ΦI} ∪

{1} ◦ {0} ◦ {µ(w,w) ∈ (Σ× Σ)∗ | w ∈ ΦI}

RS = {((lb lc µ(w, ŵ)), (lb′ lc′ µ(w′, ŵ′))) ⊆ (IB ◦ IB ◦ (Σ× Σ)∗)2 |
|w| = |ŵ| = |w′| = |ŵ′| ∧ (w,w′) ∈ R ∧
((¬lb ∧ ¬lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŵ = ŵ′) ∨ (1)

(¬lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ w′ = ŵ′) ∨ (2)

(lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ŵ = ŵ′) ∨ (3)

(lb ∧ lb′ ∧ ¬lc ∧ lc′ ∧ ŵ = w′ = ŵ′) ∨ (4)

(lb ∧ lb′ ∧ lc ∧ lc′ ∧ ŵ = ŵ′))} (5)

where Q is a finite set of states, q0 is the initial state, δ : (Q × Σ) 7→ 2Q

(resp. δ : (Q × (Σ × Σ)) 7→ 2Q) is the transition function, and F ⊆ Q is the
set of accepting states.

A relation R ⊆ Σ∗ × Σ∗ is length-preserving iff ∀(w, w′) ∈ R . |w| = |w′|.
A program is a triple P = (Σ, ΦI , R) where ΦI ⊆ Σ∗ is a regular set of initial
configurations and R ⊆ Σ∗ × Σ∗ is a regular, length-preserving transition
relation.

A configuration of a program P is a word w over Σ. Runs are finite or
infinite sequences of configurations ρ = ρ(0)ρ(1) . . ., such that ∀0 ≤ i < |ρ| .
(ρ(i), ρ(i + 1)) ∈ R. A run is initialized if ρ(0) ∈ ΦI . Runs(P) is the set of
runs of P .

4.2 Reduction

In the finite case the state to be saved was simply added as a separate com-
ponent to the state of the transformed system. A finite automaton can only
remember a finite amount of information. Hence, in order to apply the reduc-
tion to regular model checking it is not possible to construct an automaton
that first reads a state of the original program and compares that with a saved
copy. Instead, we extend the alphabet of the program to tuples of letters to
store and compare states position by position of a word. Other than that the
construction in Def. 4.1 is exactly the same as in the finite case.

Lemma 4.2 If P = (Σ, ΦI , R) is a program, so is PS = (ΣS, ΦI
S, RS).

Proof. Assume that ΦI is given by (QI , q0I , δI , FI). To represent an automa-
ton (not) saving the initial state we use separate copies of (QI , q0I , δI , FI),
(Q6=

I , q0
6=
I , δ 6=I , F 6=

I ) and (Q=
I , q0

=
I , δ=

I , f=
I ). Then (QI

S, q0I
S, δI

S, FI
S) with
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QI
S = Q6=

I ∪Q=
I ∪ {qlb , q

6=
lc , q

=
lc},

q0I
S = qlb ,

δI
S = {(qlb , 0, q

6=
lc ), (q

6=
lc , 0, q0

6=
I )} ∪ {(q 6=, (a, â), q 6=′) | (q 6=, a, q 6=′) ∈ δ 6=I } ∪

{(qlb , 1, q
=
lc ), (q

=
lc , 0, q0

=
I )} ∪ {(q=, (a, a), q=′) | (q=, a, q=′) ∈ δ=

I }, and

FI
S = F 6=

I ∪ F=
I ,

is a finite automaton accepting ΦI
S.

Similarly, if R is given by (QR, q0R, δR, FR), we construct a finite transducer
(QR

S, q0R
S, δR

S, FR
S) to accept RS. We use separate copies of (QR, q0R, δR, FR)

to leave the saved word unchanged (superscript 135, corresponding to disjuncts
1, 3, and 5 in Def. 4.1), save a word (sup. 2, corr. to subset (2)), and compare
current and stored word (sup. 4, corr. to subset (4)).

QR
S = Q135

R ∪Q2
R ∪Q4

R ∪ {qlb , q
1
lc, q

2
lc, q

345
lc },

q0R
S = qlb ,

δR
S = {(qlb , (0, 0), q1

lc), (qlb , (0, 1), q2
lc), (qlb , (1, 1), q345

lc )} ∪
{(q1

lc, (0, 0), q135
0 ), (q2

lc, (0, 0), q2
0), (q

345
lc , (0, 0), q135

0 ),

(q345
lc , (0, 1), q4

0), (q
345
lc , (1, 1), q135

0 )} ∪
{(q135, ((a, â), (a′, â)), q135′) | (q135, (a, a′), q135′) ∈ δ135

R } ∪
{(q2, ((a, â), (a′, a′)), q2′) | (q2, (a, a′), q2′) ∈ δ2

R} ∪
{(q4, ((a, a′), (a′, a′)), q4′) | (q4, (a, a′), q4′) ∈ δ4

R}, and

FR
S = F 135

R ∪ F 2
R ∪ F 4

R
2

Theorem 4.3 Let P = (Σ, ΦI , R) be a program, PS be defined as above, and
ŵI ∈ Σ∗ with |ŵI | = |w0|. Assume k > l ≥ 0.

(w0 . . . wl−1)(wl . . . wk−1)
ω ∈ Runs(P)

⇔

(0 0 µ(w0, ŵI)) . . . (0 0 µ(wl−1, ŵI))(1 0 µ(wl, wl)) . . .

. . . (1 0 µ(wk−1, wl))(1 1 µ(wk, wl)) ∈ Runs(PS)

Proof. Analogous to the proof of Thm. 3.2. 2

Remark 4.4 Bouajjani et al. developed a technique to compute the transitive
closure of a regular relation R [7,14]. A sufficient criterion for termination
of that computation is bounded local depth [7,14] of R. Our construction
preserves that property. Intuitively, a relation has local depth k if for any
(w, w′) ∈ R+ each position in w needs to be rewritten no more than k times.
Note that in any run ρS of PS the projection of ρS onto (lb, lc) will be a prefix
of (0, 0)∗ (1, 0)+ (1, 1)+. Furthermore, ŵ changes its value in ρS at most once
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at the transition of (lb, lc) from (0, 0) to (1, 0). Hence, with similar reasoning
as for radius and diameter in [19] we can infer that, if R has local depth k,
RS has local depth ≤ 3k + 2.

Remark 4.5 The ideas of regular model checking have been extended to infi-
nite words [5] by regarding the finite automata used to represent sets of states
and the transition relation as Büchi automata on infinite words. The tech-
niques of [5] require the Büchi automata to be weakly deterministic. A Büchi
automaton is weak (1) if each of its strongly connected components contains
either only accepting or only non-accepting states and (2) if the set of states
can be partitioned into an ordered set of subsets such that each path in the
automaton progresses in descending order through these subsets. From the
proof of Lemma 4.2 it’s easy to see that, if B is a weakly deterministic Büchi
automaton (for the set of initial configurations) or transducer (for the transi-
tion relation), so is BS. Clearly, repeated reachability may not be sufficient
to verify general LTL properties for ω−regular programs.

5 Pushdown Systems

5.1 Preliminaries

Notation in this section is along the lines of [11]. A pushdown system M is a
four tuple M = (P, Γ, ∆, CI) where P is a finite set of control locations, Γ is a
finite stack alphabet, ∆ ⊆ (P ×Γ)× (P ×Γ∗) is a finite set of transition rules,
and CI ⊆ P × Γ is a finite set of initial configurations.

A configuration is a pair 〈p, w〉 with p ∈ P and w ∈ Γ∗. A run is a (finite
or infinite) sequence of configurations ρ = ρ(0)ρ(1) . . ., where ρ(i) = 〈pi, wi〉,
such that ∀i < |ρ| − 1 . ∃γi ∈ Γ,∃ui, vi ∈ Γ∗ . wi = γivi ∧ wi+1 = uivi ∧
((pi, γi), (pi+1, ui)) ∈ ∆. A run is initialized if ρ(0) ∈ CI . Runs(M) is the set
of runs of M .

A head is a pair 〈p, γ〉 with p ∈ P and γ ∈ Γ. If c = 〈p, γw〉 is a con-
figuration, head(c) = 〈p, γ〉. A head 〈p, γ〉 is repeating if there exist a run ρ
in M and w ∈ Γ∗ such that |ρ| > 1, ρ(0) = 〈p, γ〉, and ρ(|ρ| − 1) = 〈p, γw〉.
heads(ρ) denotes the sequence of heads derived from a run ρ.

Bouajjani et al. proved [6] that (1) every run that ends in a configuration
with a repeating head can be extended to an infinite run, and (2) from every
infinite run ρ a run στ can be derived such that |σ| < ∞ and heads(τ) =
(〈p0, γ0〉 . . . 〈pl−1, γl−1〉)ω. I.e., if there exists an infinite run in M , then there
also exists one whose sequence of heads forms a lasso.

5.2 Reduction

Based on the results of [6] it is sufficient to find repeating heads when checking
LTL formulae on pushdown systems. Hence, a reduction of repeated reacha-
bility to reachability need only store and watch out for a second occurrence
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of a repeating head 〈p, γ〉 rather than an entire configuration. However, to
infer from the second occurrence of a head that this head is indeed repeating,
one has to ensure that the stack height between the first and the second oc-
currence never fell below the stack height at the first occurrence. To this end
the stack alphabet is extended such that each stack symbol has an additional
flag bs (bottom of stack) to remember a given stack height. When saving a
head this flag is set for the bottom element pushed on the stack in the post-
configuration. Whenever an element with bs = 1 is removed from the stack
without being replaced in the same transition a loop error flag le is set.

In the previous examples, lc signals a second occurrence of a state imme-
diately at that occurrence. However, the definition of the transition rules for
pushdown systems may not give access to the topmost element of the stack
in the post-configuration. If no new element is pushed on the stack a com-
parison with a stored stack element cannot be performed. For this reason we
introduce a one-state delay in the case of pushdown systems for lb, lc, and
the stored head. Hence, there is no need for an initial configuration with that
configuration already saved.

Definition 5.1 shows the entire reduction. The transition relation is parti-
tioned into 5 sets again. While no state has been saved (subset (1)), flags lb, lc,
and le remain false, the initial values for p̂ and γ̂ are just copied, and no stack
height need be remembered (bs0 is false). Saving a state (subset (2)) can only
occur if a non-empty word is pushed back on the stack — otherwise, the next
transition would immediately violate the above-mentioned condition for the
stack height of a repeating head. Taking a transition from subset (2) saves the
head (p, γ) (in the pre-configuration) in p̂ and γ̂ (in the post-configuration),
sets lb to true, and marks the current stack height by setting bs to true for the
bottom element pushed on the stack. Transitions from subset (3) are taken
while a second occurrence of the stored head has not been seen, hence, the
flags lb, lc, as well as p̂ and γ̂ keep their values. In addition, the condition
not to fall below the stack height at the time of saving is checked. When this
is the case, i.e., when an element with bs true is popped from the stack and
only an empty word is pushed back, the loop error flag le is set to true. This
prevents signalling a repeating head when a second occurrence of the stored
head could be detected in the future by restricting subsequent transitions to
subset (3). When the stack height remains above the required level, le keeps
its value and the flag bs is set in the bottom element of the word pushed onto
the stack iff it was set in the symbol popped from the stack. A second occur-
rence of (p, γ) is signalled by setting lc to true when taking a transition from
subset (4). lb, le, p̂, and γ̂ keep their values. Any remembered stack height
is discarded. Transitions of the last subset (5) keep all additional location
components constant.

In the following we prove correctness of the reduction.

Theorem 5.2 Let M = (P, Γ, ∆, cI) be a pushdown system and MS be de-
fined as above. There exists an initialized run ρ to a repeating head 〈p0, γ〉

8



Schuppan, Biere

Definition 5.1 Let M = (P,Γ,∆, CI) be a pushdown system, let (p̂I , γ̂I) ∈ P × Γ
be arbitrary but fixed. Then, MS = (PS,ΓS,∆S, CI

S) is defined as
PS = P × P × Γ× IB3

ΓS = Γ× IB

∆S = {(((p, p̂, γ̂, lb, lc, le), (γ, bs)), ((p′, p̂′, γ̂′, lb′, lc′, le′), µ(w′, bs′
h . . . bs′

0))) |

(((p, γ), (p′, w′)) ∈ ∆) ∧ (|w′| > 1 → ¬bs′
h ∧ . . . ∧ ¬bs′

1) ∧

((¬lb ∧ ¬lb′ ∧ ¬lc ∧ ¬lc′ ∧ ¬le ∧ ¬le′ ∧ p̂ = p̂′ ∧ γ̂ = γ̂′ ∧ (|w′| > 0 → ¬bs′
0)) ∨ (1)

(¬lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ¬le ∧ ¬le′ ∧ p = p̂′ ∧ γ = γ̂′ ∧ (|w′| > 0) ∧ bs′
0) ∨ (2)

(lb ∧ lb′ ∧ ¬lc ∧ ¬lc′ ∧ ((|w′| = 0 ∧ bs ∨ le) ↔ le′) ∧
p̂ = p̂′ ∧ γ̂ = γ̂′ ∧ (|w′| > 0 → (bs ↔ bs′

0))) ∨ (3)

(lb ∧ lb′ ∧ ¬lc ∧ lc′ ∧ ¬le ∧ ¬le′ ∧ p = p̂ = p̂′ ∧ γ = γ̂ = γ̂′ ∧ (|w′| > 0 → ¬bs′
0)) ∨ (4)

(lb ∧ lb′ ∧ lc ∧ lc′ ∧ ¬le ∧ ¬le′ ∧ p̂ = p̂′ ∧ γ̂ = γ̂′ ∧ (|w′| > 0 → ¬bs′
0)))} (5)

CI
S = {〈(pI , p̂I , γ̂I , 0, 0, 0), (γI , 0)〉 | 〈pI , γI〉 ∈ CI}

in M if and only if there exists an initialized run ρS in MS with ρS(|ρS| −
2) = 〈(p0, p0, γ, 1, 0, 0), w|ρS|−2〉, where w|ρS|−2(0) = γ, and ρS(|ρS| − 1) =
〈(p, p0, γ, 1, 1, 0), w|ρS|−1〉.

Proof. “⇒”: Assume a run ρ to a repeatable head 〈p0, γ〉. Hence, there exist
l ≥ 0, q0, . . . , ql−1 ∈ P , w0, . . . , wl−1 ∈ Γ∗, v ∈ Γ∗ where ∀i < l . ρ(i) = 〈qi, wi〉
and ρ(l) = 〈p0, γv〉.

By the definition of a repeating head there are k > l, p1, . . . , pk−l−1 ∈ P ,
u0, . . . , uk−l ∈ Γ+, where u0 = uk−l(0) = γ, such that ρ can be extended to an
infinite run ρ∞ ∈ Runs(M):

∀i < l . ρ∞(i) = ρ(i)

∀i ≥ l . ρ∞(i) = 〈p(i−l) mod (k−l),

u(i−l) mod (k−l)(uk−l(1) . . . uk−l(|uk−l| − 1))(i−l) div (k−l)v〉

From that we construct a finite run ρS as follows:

∀i < l . ρS(i) = 〈(qi, p̂I , γ̂I , 0, 0, 0), µ(wi, 0|wi|)〉

ρS(l) = 〈(p0, p̂I , γ̂I , 0, 0, 0), (γ, 0) µ(v, 0|v|)〉

ρS(l + 1) = 〈(p1, p0, γ, 1, 0, 0), µ(u1, 0|u1|−11) µ(v, 0|v|)〉

∀l + 1 < i < l + k . ρS(i) = 〈(pi−l, p0, γ, 1, 0, 0), µ(ui−l, 0|ui−l|−11) µ(v, 0|v|)〉

if |uk−l| > 1

ρS(k) = 〈(p0, p0, γ, 1, 0, 0), (γ, 0) µ(uk−l(1) . . . uk−l(|uk−l| − 1), 0|uk−l|−2 1) µ(v, 0|v|)〉

ρS(k + 1) = 〈(p1, p0, γ, 1, 1, 0),

µ(u1, 0|u1|) µ(uk−l(1) . . . uk−l(|uk−l| − 1), 0|uk−l|−2 1) µ(v, 0|v|)〉

otherwise

ρS(k) = 〈(p0, p0, γ, 1, 0, 0), (γ, 1)µ(v, 0|v|)〉

ρS(k + 1) = 〈(p1, p0, γ, 1, 1, 0), µ(u1, 0|u1|) µ(v, 0|v|)〉
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“⇐”: Assume an initialized run ρS to ρS(|ρS|−2) = 〈(p0, p0, γ, 1, 0, 0), w|ρS|−2〉,
where w|ρS|−2(0) = γ, and ρS(|ρS| − 1) = 〈(p1, p0, γ, 1, 1, 0), w|ρS|−1〉. By

Def. 5.1, ∃0 < l < |ρS| − 2 such that ρS(l) = 〈(p0, p̂I , γ̂I , 0, 0, 0), µ(wl, 0
|wl|)〉

and wl(0) = γ. Clearly, the projection of ρS(0 . . . l) on the first components of
its state and stack is a run in M to a repeatable head. 2

5.3 Complexity

Proposition 5.3 Let M = (P, Γ, ∆, CI) be a pushdown system. MS has
O(|P ||Γ||P |) locations and O(|P ||Γ||∆|) transition rules.

Proof. The locations of M are extended in MS to store another location, a
stack symbol, and three flags. For ∆S, there are O(|∆|) transition rules in
subsets (1), (2), and (4), and O(|P ||Γ||∆|) in (3) and (5). 2

Algorithm 3 in [11] can be used to check reachability for a pushdown system
M = (P, Γ, ∆, CI) where (p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2. It computes the set of
reachable configurations in O(|P ||∆|2 + |δ|) time and space.

Proposition 5.4 Let M = (P, Γ, ∆, CI) be a pushdown system such that
(p, γ, p′, w′) ∈ ∆ ⇒ |w′| ≤ 2. Algorithm 3 in [11] runs on MS, with AMS

accepting CI
S, in time and space

O(|P ||Γ|(|P ||∆|2) + |δ|)

Proof. See the full version of this paper. 2

6 Timed Automata

In this section we briefly give the idea of how to apply our reduction to timed
automata [3]. Details can be found in the full version of this paper. In addition
to a finite set of control locations, timed automata have a finite set of real-
valued clocks. Transitions are labeled with integer clock constraints of the
form c ∼ n where c is a clock variable, ∼∈ {<,≤, =,≥, >}, and n ∈ IN.

Alur and Dill showed [3] that for model checking of LTL the precise value
of the clocks is not relevant. Rather, clock valuations fall into a finite number
of equivalence classes called regions. Model checking is then performed on the
abstract region automaton.

We use this fact in our reduction as follows. We do not store the precise
valuation of the clocks but the clock region. This requires a variable in the
range {0, . . . , cx} and a flag for each clock x, where cx is the maximal integer
x is compared with in a clock constraint. Furthermore, we store the order of
the fractional parts of the clocks. This requires k variables of range 0 . . . k− 1
if there are k clocks and k − 1 flags to indicate equality between each pair of
successors in the order.

10
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7 Conclusion

We have extended our reduction of repeated reachability to reachability to
some popular classes of infinite state systems. For these classes the reductions
“pull the original algorithm into the model”. To explore the limits of our
method we are looking for systems where liveness can still be reduced to
repeated reachability, but where our method might not seem applicable. It
is clear that the construction for the finite case can not always be lifted to
infinite state systems. In general, counterexamples to liveness properties in
infinite state systems can not necessarily be restricted to have lasso shape. In
some cases, abstractions [18] or simulations [8] might help. Maybe our method
can also provide additional insight why liveness is undecidable for some classes
of systems. Finally, experiments need to prove the viability of our approach.
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