Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Efficient reduction of finite state model checking to reachability
analysis

Viktor Schuppan, Armin Biere
Computer Systems Institute, ETHich, CH-8092 Zurich, Switzerland, e-maflschuppan|biere  }@inf.ethz.ch

January 27, 2004

Abstract. Two types of temporal properties are usually dis- translation scheme introduced In [2], that allows an efficient
tinguished: safety and liveness. Recently we have shown howeformulation of liveness checking for finite state systems as
to verify liveness properties of finite state systems using safetgafety checking. The translation makes tools and techniques
checking. In this article we extend the translation scheme tdor safety checking applicable to liveness checking as well.
typical combinations of temporal operators. We discuss opti-  Safety is often characterized as “something bad never hap-
mizations that limit the overhead of our translation. Using thepens” while liveness means “something good eventually hap-
notions of predicated diameter and radius we obtain reviseghens” [25]. A counterexample to a liveness property is an
bounds for our translation scheme. These notions also give ifinite path where something good never happens. Such a
tight bound on the minimal completeness bound for simplepath must include a loop in a finite state system. If that loop
liveness properties. Experimental results show the feasibilitys extended infinitely, a lasso-shaped counterexample is ob-
of the approach for complex examples. For one example evetained. Essentially, our translation searches for such a lasso-
an exponential speed-up can be observed. shaped counterexample. It tries to guess the start of a loop,

saves it in a copy of the state variables and checks whether
Key words: Liveness — Safety — Linear temporal logic — the saved state occurs a second time. When this happens, a
Model checking loop has been found and the property is checked. Our trans-
lation is able to handle fairness. Thus, it is applicable to all
LTL properties via a standard automaton construction [13].
For several commonly used LTL properties such as the re-
guest/acknowledge templaB{r — Fa) we also give a direct
translation.

Our translation scheme can be applied even manually on
Sequential properties of systems are often formulated in temthe design entry-level, with the proviso that an observer au-
poral logics such as LTL. [12]. These properties fall into two tomaton be added, without changing the behavior of the orig-
categories: liveness and safety properties. Safety propertigsal system. The user does not need to have access to the
are invariants of the system and can be checked fairly easilgource code of the tool, e.g., the model checker, itself. This
by reachability analysis. Sophisticated algorithms and imple-could be useful in an industrial setting where the source code
mentations exist. On the other hand, many important systerof a tool is usually not available. To some extent it might
properties, for example absence of deadlock or livelock, arelso discourage tool vendors to charge extra license fees for
more naturally formulated as liveness properties. liveness support, if compromises with respect to capacity are

Many techniques, and in addition many implementations,acceptable.
target only safety properties or use optimizations thatare only  Some optimizations [28] 1] from bounded model check-
applicable to safety checking. Examples of such techniquegng [4] can be applied to our translation. When combined
are invariant checking [8.32], sequential automated test patwith a translation-specific optimization, the performance of
tern generation (ATPG) [28], and symbolic trajectory evalua-our approach is also acceptable on more involved examples,
tion (STE) [31] in its basic form. In this article we extend our in some cases even comparable with standard techniques. We

— : _ _ , _ give an example where our approach is exponentially faster.
* This is a preprint. The final version appeared in Springer . . .
STTT 5 (2004) 2, pf.— 2. or online ahttp://www.springerfink. Radius, diameter and reoccurrence diameter are charac-
com/ teristics of a Kripke structure that are used to give bounds
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on the number of iterations required for verification [4]. The

bounds on the maximal number of image computations nec-

essary to check liveness with our translation in BDD based

symbolic model checking [27] as stated[in [2] are formulated &——=0O -+ O——=&@——=0O --- O——=
using these notions. These bounds proved incorrect. In this

paper we give revised bounds using the new notions of predi- Fig. 1. A generic lasso-shaped counterexample.
cated radius and diameter. In addition, we extend the concept

of completeness threshold [23] and prove a tight bound on the

completeness bound for liveness properties which can immegn applying the state recording translation to artificial and
diately be applied to bounded model checking. real-world examples. Section 10 concludes.
The idea most closely related is the verification of live-
ness properties in bounded model checking [4]. The double
DFS [11] used in on-the-fly model checking [13] is somewhat2 Translating Simple Liveness into Safety
similar. However, depth first search tends to find counterex-
amples where the loop starts rather late. Our approach caf counterexample trace for a simple liveness propEiyis
be used with breadth first search symbolic model checking t@n infinite path whereg never holds along the path. If the
find shortest counterexamples and, at least in principle, doesumber of states in a system is finite, a counterexample trace
not need any change to the model checker. to a simple liveness property can be assumed to be lasso-
Our translation can also be viewed as an extension ofhaped: it consists of a finite prefix and an infinitely repeating
monitors as used in static or dynamic checking with addi-loop, see Fig.]1. Such a trace can always be derived from an
tional inputs that signal beginning and closing of a loop. Syn-arbitrary infinite trace by inserting a back loop from the first
chronous observers that check properties of a program argtate occurring the second time pfvas false for every state
proposed in[16] to verify reactive systems. The class of prop4n the original trace it will also hold nowhere in the lasso-
erties is restricted to safety, observers are required to be deteshaped trace.
ministic. This approach is adapted in[22] to provide a struc-  Thus, simple liveness propertiég of finite state sys-
tural translation from past time LTL into program fragments tems can be verified by finding all lasso-shaped traces and
in ESTEREL. In [19] a monitor based on a dynamic pro- checking whethep has been true somewhere on each trace
gramming algorithm is generated for Java from a past timeonce the loop is closed. Explicit state algorithms farcBi
LTL formula. Two different versions that produce monitors Automata[13] and unfolding liveness properties in bounded
for future time LTL adapted to finite traces are presented inmodel checking([4] are examples of model checking algo-
[18[1Z]. There, (non-)occurrence of eventualities is only con-rithms that use this observation. Instead of implementing this
sidered up to the end of a trace. observation in a special purpose algorithm we show in the
One standard optimization for BDD based model check-following how it can be used to transform a system and a
ing is forward model checking [21,20,5]. It uses a different liveness property such that reachability checking is sufficient
model checking algorithm which avoids to visit unreachableto verify that property.
states and often is able to find counterexamples faster. For In model checking applications it is often observed that
safety properties this optimization is implemented in mosta liveness propertpF p can further be restricted by adding
symbolic model checkers. The algorithm for general proper-a boundk on the number of steps within which the bogy
ties, in particular liveness properties, is usually not available has to hold. The bound is either given in the specification or
Therefore [[24] characterizes safety properties as propertiegay be determined by manual inspection. A bounded live-
with a finite violating prefix. These can be checked with effi- ness propertpF*pis defined as
cient algorithms using reachability analysis. As already noted AFKp=A
in [2], our translation allows to use this restricted version of
forward model checking for liveness properties as well. For
specific examples, checking a simple liveness property withand clearlyAF¥p implies AF p. The reverse direction is also
our approach is exponentially faster than forward (and backtrue if the bound is chosen large enough, in particular as
ward) model checking algorithms. large as the number of statks in the model, since all states
Section 2 presents the state recording translation and dexre reachable iff§ steps. A naive translation would just ex-
scribes some optimizations. In Section 3 we revise the necehangeAF p for AF¥p with k the number of states. However,
essary formal background. Section 4 introduces the notion ofhe expansion cAF*p in @) results in a very large formula,
predicated radius and diameter. In Section 5 we extend thespecially in the context of symbolic model checking.
completeness threshold to the more general notion of com- Assume instead, that the system is extended with a vari-
pleteness bound. Both notions are then used to give tightesible loopedthat indicates when a loop is closed and with
bounds for the minimal completeness bound of simple live-a variablelive that remembers whethgr has already been
ness properties. Correctness of the state recording translatidrue. Then, the liveness propeffyp in the original system is
is proved in Section 6. Section 7 proves revised bounds foequivalent to the safety proper@(looped— live) in the ex-
the verification with our translation. Sections 8 and 9 reporttended system. Implementidige is easy. In the rest of this

e k I I = e
(pVXpV---vXp),withX'p=X---Xp (1)

i—times
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A more general form of the counter-based translation can
use a fladinishedinstead oflooped That flag becomes true
0 % @) 3 once a sufficient number of transitions has been performed to
6 6 ensure thap would have occurred on a pathAp were true.

Fig. 2. A 2-bit counter with self-loops . .
2.2 State-Recording Translation

) ) . ) In principle, state space search is memory-less. Detecting a
section two implementations fdoopedare discussed. The |54, a5 s00n as it is closed can not be expressed directly in
first counter-based translatiois based on the verification of temporal logic. Instead, we add copies of all variables to the
bounded liveness only as described above. Our main contriyyqge|, enabling us to save a state that has previously been
bution is the secondtate-recording translatiothat can be isjted. Reoccurrence of a state can now be detected by com-
applied to arbitrary finite state systems and general LTL PrOPparing the present state to the saved copy. As the start of a
erties and can still be verified efficiently in many cases. loop is not known beforehand, an orasiaveis used to in-

As an example, consider the 2-bit counter with self-loopsicate when a copy of the present state should be saved. An

in Fig.[3. There,F (s = 3) does not hold. A counterexam- ,qitional flagsavedss needed to prevent overwriting a pre-
ple is given byrt=0,1,2,2,.... Figure[3 shows a model of viously saved copy.

the counter in the input language of the model che&el For simple liveness properties the counter-based and the

[27] in its original form and with the counter-based and the gi4te_recording translation differ only in the loop detection

statg—recordmg translation applled. Note that all three mOd_elfyart, see Fiff]3 (c). Here, it consists ofaveoracle, a copy

exphcnly enumerate lalllpossml_e values of the counter. Whilegt the original state variabldgs s, and asavedfiag to ensure

t.hls.makes the descrlptlon easierto undersj[and, itis eXPOnenat the state is saved only once on a path. dihdoop flag

tial in the number of bits of the counter. A linear description jjicates whether the presumed loop has started. It is used in

can be obtained by using a binary encoding o the decla-  ransations for more complex formulae, see b. 1.

ration of the variables and in the transition relation. When the loop closing conditioloped becomes true,
this means that current state was visited earlier. Therefore,

2.1 Counter-Based Translation the transformed specification does not need to take the current
value of the property into account. It suffices that tHeve

Instead of detecting a loop when it is closed, the counterflag remembers whethgr has been true in the past. Figure

based translation infers that a loop should have occurred ond# illustrates a run of the state-recording translation for the

a sufficient number of transitions has been performed. A courfiéneric counterexample from Hg. 1.

is added to the system that is incremented at each transition

and setdoopedto true once it reaches a predefined bound. 2.3 Translating Fairness and Hierarchy

A trivial bound valid for arbitrary systems and properties
is the overall number of states in the original system: any patfrairness conditions can be incorporated similar to liveness
of that length must include a loop. However, this requires anproperties. A fairness condition is a set of states in the original
impractically large number of iterations in a realistic systemmodel. A path is fair if it passes infinitely often through a state
as the property can only be checked when the counter hag each fairness condition. An additional state varidalg is
reached its bound. introduced for fairness conditidrthat observes, similarly to

For most systems and properties smaller bounds exist thaive, whether one of its fair states has been seen. Itis initially
still ensure correct results, see the examples given in[Sect. 5€t to false and becomes true when a fair state occurs on the
A smaller bound adds fewer state bits and should lead tdoop. The specification is required to hold at the end of a loop
faster verification. Presently, a practically efficient method toonly if all fairness conditions hold as well.
compute a minimal bound is not known for arbitrary systems  No special precautions are required for hierarchical mod-
and properties. Also note that, in general, the counter-baseells that can be flattened. If hierarchy should be preserved the
translation will not produce shortest counterexamples. save saved andon_loop signals are forwarded to each sub-

In Fig[3 (b) the state variables and the transition relationmodule. The submodules perform detection of loops and ob-
of the original system are left unchanged. Thep detec-  serving of fairness and specification properties locally. The
tion partimplements a counter for the number of transitions results are sent back to the main module that computes global
performed. Theproperty observing paradds the fladive. values forloopedandfair and then checks the specification.
Finally, the specification is modified as described. This enables translating models (possibly by hand) without

Note, that in our definition the last state in the loop mustseparate flattening before. For an example, see Appendix A.1.
have already been seen and does not add new information re-
garding the truth of the liveness property. Therefore, the resul2.4 General LTL
could be determined one cycle before this bound is actually
reached. This optimization has not been applied in[Fig. 3 (b)Generalized Bchi automata and thus LTL[13] can be trans-
to keep the presentation of both translations uniform. lated into fair Kripke structures. Therefore, our translation
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MODULE mai n MODULE mai n MODULE main
- unnodi fied part of the -- unnodi fied part of the
- original system -- original system
VAR VAR VAR
s: {0, 1, 2, 3}; s: {0, 1, 2, 3}; s: {0, 1, 2, 3};
ASSI GN ASSI GN ASSI GN
init(s) := 0; init(s) := 0; init(s) := 0;
next(s) := case next(s) := case next(s) := case
s = 0: {1, s}; s = 0: {1, s}; s = 0: {1, s};
s = 1: {2, s}; s = 1: {2, s}; s = 1: {2, s};
s = 2: {3, s}; s = 2: {3, s}; s = 2: {3, s}
s = 3: {0, s}; s = 3: {0, s}; s = 3: {0, s}
esac; esac; esac;
- | oop detection part -- |l oop detection part
VAR VAR
counter: 0..4; save: bool ean;
ASSI GN saved: bool ean;
init(counter) : = 0; l12s_s: {0, 1, 2, 3};
next(counter) := case ASSI GN
counter < 4: counter + 1; init(saved) := 0;
1: counter; next (saved) := on_|oop;
esac; init(l2s_s) :=s;
DEFI NE next(l2s_s) := case
| ooped := counter = 4; save & !saved: s;
1: |2s_s;
esac;
DEFI NE
looped := saved & (s = |2s_s);
on_loop := save | saved;
- property observing part -- property observing part
VAR VAR
live: bool ean; l'i ve: bool ean;
DEFI NE DEFI NE
found : = s = 3; found : = s = 3;
ASSI GN ASSI GN
init(live) :=0; init(live) :=0;
next(live) :=1live | found; next(live) :=1live | found;
- transformed specification -- transformed specification
SPEC SPEC SPEC
AF s = 3 AG (| ooped -> live) AG (| ooped -> live)
(a) original (b) counter-based (c) state-recording

Fig. 3. Original and transformed SMV code of 2-bit counter with self-loops

saved
state

Fig. 4. A run of the state-recording translation for the generic counterexample

applies to LTL model checking in general performing the fol-

constraint. The property that is actually verified states that

no fair path exists in the model.
3. Apply the state-recording translation.

lowing steps:

. . An example is given in Appendjx Al.2.
1. Translate the negated LTL formula into a generalizéd B P g PP

chi automaton. Algorithms for this purpose includel[13,

11], some of them are also described[inl[10,29]. Various2-5 Templates for Frequently Occurring Specifications

tools are available that implement more advanced algo-

rithms, see e.g.[34, 33]. A large fraction of the specifications found in practice can be
2. Build the cross-product of the model and the formula au-covered by a limited number of temporal formulae. T4Ble 1

tomaton. Each acceptance set is represented as a fairngsovides templates for the translation of some frequently used
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LTL formulae. This avoids having to use the explicit transla-  The second optimization is based on the monotonicity of
tion described above. Column 1 gives the (universally quana simple liveness properfyp — oncep has been found true
tified) LTL formula represented, column 2 states its (existen-on a path, the value of tHave-flag remains constant further
tially quantified) negation. For the former the translation seara@gn on this path, i.e., the truth of the form@dlooped—
a counterexample, a witness for the latter. The property obfive) will be true from then on. This fact allows to stall the
serving part and the specification of the translation are showstate machine of the original model completely ofige is
in the language of the model checl&¥IVin the last column.  true in a state. Thus, from that state no further states of the
The loop detection part is independent of the formula and carriginal model are reachable. For hardware systems, this cor-
be found in Fig.B. In each templapeandq can be replaced responds to adding a stall signal to each flip-flop that keeps
with arbitrary propositional formulae. its output at the current state. In effect, the radius of the trans-
A formal proof for the translation dfp follows in Sect{ §.  lated system is reduced (see Sefct. 7). In addition, the reach-
We do not prove the other translations but rather try to giveable state space might be cut. We call tinddt optimization
an intuitive understanding. The translationkgf is repeated
for reference. While not necessary for a simple safety prop-
erty, the translation oG p shows the symmetry to finite live- 3 pyeliminaries
ness. The translations 8Gp andGFp are similar whereby
the former considers, the latter requigeto hold on the loop
only. Intuitively, for FGpto be true p must hold on each state A Kripke structure K= (S T,1,L) consists of a set of states
of a loop while the prefix of the loop does not influence the S, a transition relatiom C Sx S, a set of initial states C S
truth of the formula.GFp can only be true in a finite state and a labeling functioh: S— P(A), whereP(A) is the power
system ifp holds on at least one state of a loop. The trans-set of the set of atomic propositiods= {p,q,...}. A state
lation of p U g combines the representations for a safety ands € Sis defined tdhave a transitiorif there existss' € Swith
a liveness propertyg must become true as long ass true  (s,5) € S ThenT is calledtotal if all s€ Shave a transition.
or whenp is false for the first time. The translation of the For technical reasons we also have to work with non total
request-response propei®(p — Fq) directly reflects that transition relations, and do not requifeo be total as is usu-
one or morep-states must be met or followed by at least oneally done. An important restriction for the rest of the article
g-state, where ang-state on the loop is sufficient. Finally, the is, that we only considdinite Kripke structuresvith |S| < co.
next-time operatoX is handled by shifting the point of view It is often convenient to describe the state spaa# a
one step forward in time first and then applying the transla-Kripke structure as product of the valuations of a set of vari-
tion of F. ablesV: S=V; x ... xVy,, n= [V| whereV is the set of valua-
tions of variables; € V. The transition relation is then given as
2.6 Optimizations a set of equations each defining the next state of a variable in
terms of the current and next state values of a set of variables:
Two optimizations can help to improve the performance ofV € f(U,U’), U CV. If the next state value of a variable is
verifying a translated model. They are source to source an@0t constrained by the transition relation it is calledigput
are applied after the translation has been performed. variable
Bounded model checking and the state-recording trans- A pathTt= (sp,Sy,...) of a Kripke structure is, whether
lation prove or disprove a liveness property by searching foifinite or infinite, a non-empty sequence of stages S. For
a lasso-shaped counterexample. Not all variables need to b#finite sequencesy, ...,s,) we define thdengthof 1tto be
considered when comparing states in the search for a loogm = n and|mj = o for an infinite sequence. For any path it
Both techniques can use the same static set of variables fa$ also required thais,s;1) € T for 0 <i < |r. Further let
loop detection. Kroening and Strichméan [23] proved in the (i) denote thé-th state of the sequence. Tharis the suffix
context of bounded model checking that input variables car{Ti(i), Ti(i + 1),...) of twith its firsti states chopped off. A
be ignored when comparing states in the search for a loogeathttis maximally expanded it is infinite, or if Ttis finite
Baumgartner et al.[1] observed that the diameter of a mode&nd the last stata(|r) of 1t does not have a transition. The
need only be computed for the variables in the cone of influ-set of all paths of a Kripke structure is denotedby
ence of the property. Thus, input variables and variables not A (partial) specification describes desired properties of a
in the cone of influence of the property under considerationsystem. We consider specifications giverliasar temporal
need neither be copied nor compared in our translation. Théogic (LTL) formulae. An LTL formula is made of atomic
correctness of the latter fact can also be seen in our contexiropositions fromA and the standard boolean operators for
by first applying cone of influence reduction to the original conjunction {\), disjunction {), negation {) and implica-
model and then performing the state recording translationtion (—). Additionally the following temporal operators are
Obviously, variables known to remain constant after initial- used: the unary operatonext-time(X), globally (G), finally
ization can also be ignored. The combination of these thre€F), and the binary temporal operatontil (U) and its dual
optimizations is referred to agriable optimization Note, releasgR). The validity of a temporal formul& over amax-
that finding a shortest counterexample is not guaranteed iimally expandeghath, writtenTt|= f, is defined recursively.
variable optimization is enabled. Letgandh be LTL formulae and € A.



Viktor Schuppan, Armin Biere: Efficient reduction of finite state model checking to reachability analysis

Formula Negation Translation
(counterexample) (witness)
ASSIGN init(live) :=0;
Fp G-p next(live) :=live | p;
SPEC AG (1 ooped -> live)
ASSI GN init(safe) :=1;
Gp F-p next (safe) : = safe & p;
SPEC AG (1 ooped -> safe)
ASSIGN init(live) :=0;
GFp FG-p next(live) :=1live | on_loop & p;
SPEC AG (| ooped ->live)
ASSI GN init(safe) :=1;
FGp GF—-p next (safe) := safe & (on_loop -> p);
SPEC AG (|1 ooped -> safe)
VAR safe_p: bool ean
ASSIGN init(live) :=0;
- - next(live) :=1live | safe_p & q;
pUq PR-q init(safe_p) := 1;
next (safe_p) := safe_p & p;
SPEC AG (|1 ooped -> live)
VAR l'i ve_q: bool ean;
ASSI GN init(safe) :=1;
G(p—Fq) F(pAG—Q) next(safe) :=!p &safe| q | live_qg;
P q P q init(live_q) := 0;
next(live_q) := live_gq | on_loop & q;
SPEC AG (1 ooped -> safe)
VAR | ast_p: bool ean;
ASSIGN init(live) :=0;
F(pPAXQ) G(-pVX—q) next(live) :=1live | last_p & q;
P q P q init(last_p) := 0;
next(last_p) := p;
SPEC AG (| ooped -> live)

= p

=g
= gAh
TEXg
nE=Fg
nmnE=Gg

mE=gUh

mE=gRh

iff

iff

Table 1. Property observing part and specification for frequently used LTL formulae

peL(m(0)
m#g
= gandmi=h

|l > 0andm =g

there existd < | with 15 =g
T =gforalli <|mf

there exists < |1 with

T |=handm =gforall j <i

forall i < |m eithert =hor
there existy < i with 1 =g

A pathmis defined to bénitializediff T(0) € |I. Then an LTL
formulaf is calledvalid, more preciselyniversallyvalid, for
a Kripke structuré, writtenK =y f, iff (/= f for all initial-
ized and maximally expanded pathof K. In particular, if

S= 0, then all LTL formulae are valid. Note, that our notion

of (universal) validity matches the classical semantics,is
total andl # 0. For the dual notion oéxistential validitywe

defineK =3 f iff there exists an initialized and maximally
expanded patht with Tt = f. If no doubt can arise, we write

Kl fforK =y f.

Note, that existential validity is slightly different from the
CTL semantics/[12] oEf, assumingef is a CTL formula.
ThenK = Ef in CTL semantics holds iffor all initial states
se |, the zero length patfs) can be expanded to a fully ex-
panded patmwith 1t|= f. In our definition of existential va-
lidity sis existentially quantified. The two notions only match
if there is a unique initial statel{ = 1).

If an LTL formula f does not hold in a Kripke structure
K, a maximally expanded path of K can be found, with
1= —f. If Ttis infinite we additionally assume thais lasso-
shapedas in [4]. A lasso-shaped path has the general struc-
ture shown in Fig. ]1: starting from an initial stasg the loop
states is reached aftek steps and aftek — | steps the loop
closing states; is reached from which there is a transition
back to the loop statg. In this case we define tremunterex-
amplefor f representingtto consist of the first+ 1 states of
mtand the backward loop positidn The length of the coun-
terexample is defined &s

A fairness constraint is a subset &fA pathtis called
fair wrt. onefairness constrainE' C Siff some state inF!
occurs infinitely often orrt If 1tis fair, thenttis infinite,
written |11 = . Formally we add a fifth componeft to a
Kripke structure, wher€ is a possibly empty list of fairness
constraintsd = (F1,...,F™). Then a path is fair foK iff it
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is fair wrt. everyF'. The semantics of structures with fair-
ness constraints is defined as in the unfair case, except that
all quantified paths are required to be fair.

Validity of CTL* formulae (and, hence, also LTL formu- p
lae) is preserved under bisimulation equivalence [6, 10]. Two
Kripke structure = (ST,I,L) andK = (§T,I,L) over the
same set of atomic propositions are bisimulation equivalent
iff there exists a relation- C Sx Swith the following prop-
erties: Lets € Sands'e Swith s~ &,

1. The labeling has to match, thatlits) = L($).

2. For alls e Swith T(s,s) there has to exist & Swith
T(598)ands ~ 9.

3. For all initial statess € | there has to be an initial state
sciwiths~8

Fig. 5. Kripke structure with constant radius but large diameter.

length of the longest shortest finite path. The radius is the
maximal number of transitions it takes to reach a state reach-
able from the initial states. As an example consider the Kripke
structure of Fig. p. It models a 2-bit counter with initial state 0
from which all the other states can be reached in one step. As
The dual properties of (2) and (3) whe¢eandK are reversed  usual, the initial states are marked by an incoming edge with-
have to hold as well. out source statd. is represented by marking states with sets
Bisimulation with fairness is defined by expanding the of atomic propositions, e.g., state 3 is the only state in which
transition based definition stated above to whole fair pathgp holds. In this example the diameter is 3, which is maximal,
as in [10]: the additional requirement is that for all fair paths since the only path that leads from state 1 back to the initial
e N there exists a fair patfic I with Tt~ 1, wherert~ 7t state 0 has a length of 3 transitions. The radius however is
iff 1i(i) ~ (i) for all i > 0. only 1. This example can be generalized toralit counter
The state space of a Kripke structure is usually constructewith diameter 2 — 1 and constant radius 1.
as the product of the valuations of a set of variables. For a The set of reachable stat®$K) is defined as all states
large fraction of the models occurring in practice the transi-that can be reached from an initial state. Since the validity of
tion relation can be written as a set of functions such that eachn LTL formula is always defined with respect to initialized
function defines the next state value of a variable in terms opaths, it is clear that we can simply remove all non reachable
the current valuations of some set of variables. Cone of influstates from a Kripke structure without affecting the validity
ence reduction [10] removes all variables from a model thaof LTL formulae. Formally, for anys C S we defineKg =
do not influence its behavior with respect to a given specifi-(S T,1,L) with T = TN (9?2, (=1 nSandl = L|s. Then it
cation. The cone of influence is defined as the smallest set a§ easy to see tha |= f iff Kg) [= f. Since the maximal
variables that includes all variables mentioned in the specifidistance ofll states may be much larger than the distance of
cation and, recursively, each variable mentioned in the nexteachable states, it is often advantageous in practice to restrict
state function of any variable in the cone of influence. For-model checking td&g.
mally, letK = (ST,1,L) be a Kripke structuref be a prop- LetL-L:A— P(S) be the reverse df, e.g.,sc L 1(p) iff
erty,U the set of variables mentioned fpanddep(v) be the  pc L(s). ThenL~1 s lifted to arbitrary boolean expressions
set of variables defining the next statevoThen,coi(K, f) is f overA by definingL—1(f) =L-Y(g)nL~1(h) for f =gAh
the smallest set such thdtC coi(K, f) and ifv € coi(K, f) andL~1(f) = S\L~1(g) for f = —g etc. and we writs for
thendep(v) C coi(K, f). Ki-1(1)-
Then we cald(K;) thepredicated diameteof K with re-
i i spect tof, or just f-diameter. Similarly th@redicated radius
4 Radius and Diameter of K with respect tof is r(K¢). In particular we are inter-
ested inK-p which is obtained fronK by deleting all states
A pathTtof a Kripke structur& = (S T,1,L) leadsfrom state  in which p holds. Then the-p’-diameter ofK turns out to be
sto statet, if it is finite, 1(0) = sandm(|m]) =t. In this case  the longest shortest finite pathknon whichp does not hold.
t is calledreachablefrom s. Similarly we sayt is reachable In the n-bit counterexample generalized from Hig. 5, where
from a setSC S, if there is ars € Sandt is reachable frons. p only holds in state 2— 1 the -p’-diameter is 2 — 3, for
Thedistanced(K, s,t) betweens andt in K is the length  n> 1, which is the length of the single path that leads from
|| of a pathmtin K with minimal length that leads from  state 1 to state™- 2.
tot. The distance is infinite, writted(K,s,t) = oo, if t is not The Kripke structure of Fig.|6 models a variant of a 2-bit
reachable frons. Thediameter dK) of a Kripke structureK counter with an additional set-state. The counter starts in state
is the maximal distance between two reachable stat& in 0 and increments the state index up to 3 and then wraps back
The distanceS(K,ét) of a statet from a set of state§C'S  to 0. Additionally, at any instant of time, the counter may
is the minimum3(K,st) of all s & Finally theradiusis  transition to the set-state *, from which after the following
defined as the maximalK,1,t) of all t reachable fron. time step any other state can be reached. This example can
Thus the diameter is the maximal number of transitionsagain be generalized for arbitrary The diameter and the
it takes to reach all states reachable from a state, or just theadius are both constant, because every state can be reached
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5.1 Completeness Bound

LetK be a Kripke structure, let be an LTL formula, let,m n
be natural numbers. Semantic approximatiois a function

V: (K, f,i) — {falsgtrue}.

V is stable at niff

vm.m>n= (V(K,f,m < V(K,f,n)).

Fig. 6. Kripke structure with constant diameter but largep’-diameter.

If a semantic approximatio¥ is stable at some then the
limit im(V,K, f) :=limj_.V(K, f,i) exists.V is correctfor
after at most two steps from any other state, by going over the and, iff it is stable at soma and
set-state if necessary. _
It is particular interesting about this example, that the lim(V,K, f) &K f.
jp-d|ameter 'S 2._ 1 and 'Fhus exponential in. I.t IS ob- Finally, we callV averification functionfor K and f iff it is
tained by calculating the diameter after removing the set-a correct semantic aporoximation frand f. Informallv. a
state, the only state in which holds. The opposite is also P i Y.

Do . : . ; verification function converges to the correct answét te f
possible: consider a Kripke structure in which states far away any increasing sequence of parameter values

from the initial states are only reachable through states, that luai I bourid d
are close to the initial states and in whiptholds. Then re- A parameter va uais acompleteness bou rv,Kan
' f, denotecth(V, K, f), iff V is correct and stable at We are

moving those close states will cut of all the far away states ; . . -
making them unreachable. This will result in a much Sma"er‘partlcularly interested in the minimal completeness bound for
; K andf, denotectbmin(V, K, f).

radius, which is the-p’-radius of the original Kripke struc-

ture. Remark 1.In other words, we know that we have reached a
Note, in the construction dfg, which is essential for the  completeness bound fab(V, K, f), and thus, thav (K, f,n)

proof of our diameter bounds further dowinbeing total does  is the correct answer 1 |= f, if further increasing the value

not imply the totality ofT. This is the reason, why we could of the parameten will not lead to a different result.

not assume a total transition relation in the beginning and had

to give non standard semantics. Most verification functions are monotonically increasing
In the rest of the article we assume thatohiginal Kripke ~ Or decreasing in for the orderfalse< truefor a given model

structure under consideration has a total transition relationand property. Then, a correct result is obtained as soadh as

Then all maximally expanded paths are infinite and all coun-changes frontrue to falseor vice versa:

terexamples can be assumed to be Iasso-_sh_aped. On_ly f@orollary 1. LetV(K,T,i)

K-p wethave to take maximally expanded finite paths iNO+tonic ini. Then

account.

be a verification function mono-

Emn.m<nA VK, f,m < VK, f,n))) =
VK, f,neKET)
5 Completeness Bounds for Simple Safety and Liveness o
The notion introduced above can be extended to sequences

Some verification algorithms work in an iterative manner by?rf othe{\r ;f)artlgllgl ordereg fsetz T plgramfetler valge;,] e.gt., tto
increasing the value of a parameter until truth or falsity of € Set ot variables used for detection of loops 1n the state-

a formula can be concluded. For example, bounded moderleCOrOIing translation (see also Spct] 2.6). Note, that if the or-

checking [[4] searches for counterexamples up to a speciﬁeger is not linear a minimal completeness bound of a model
length. This parameter is increased until a bound on the max"Zmd a property might not be unique.

imal length of a potential counterexample has been reached.

The number of image computations performed in BDD-based.2 Safety Properties

reachability checking [27] is a similar example. Performing

only a minimal number of iterations while still ensuring a Given a concrete Kripke structure the (universal) validity of
correct result can help to limit the resources required for versimple safety propertiesf the formGp can be checked by
ification. This idea is captured by the notionaeimpleteness traversing all reachable states and checking whetteslds
thresholdintroduced by Kroening and Strichman [n_[23] in for each state reached. In symbolic model checking [27] the
the context of bounded model checking. In the following we search is usually organized as breadth first search (BFS), start-
generalize their notion to a broader class of verification al-ing with the set of initial states and adding images. An image
gorithms and parameters. The new notion is then used tés calculated as the set of states that can be reached in one
rephrase the well-known fact that the radius of a Kripke struc-step from the set of states reached so far. This process is con-
ture is a sufficient bound to verify safety properties and a newtinued until no new states can be added or a state violating
bound is derived for simple liveness properties. is found.
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Using the notation introduced above we can define a functhe diameter is constant, but the length of the single coun-
tion smggase that yieldsfalseiff a violating state is reachable terexample is linear in2 the number of states. As this ex-
from an initial state in at moststeps. LeK = (ST,I,L) be  ample shows the search for a lasso-shaped counterexample
a Kripke structure, lef = Gp be a simple safety property. has to be restricted ti-,. This leads to one of our main

Then results: the minimal completeness bound for simple liveness
smaaeK, f,i) = propertieskp is linear in the ~p’-predicated diameter. The
afalsé i 3scl dtes. 5(K,st) <iAp&L(t) exact relation is stated in the following:
{true otherwise Theorem 1.
Clearly,smgaseis a verification function monotonic in If f Chimin(bMawe, K, FP) < 1(Kp) +d(Kp) = O(d(K-p))

holds inK, smgateis true for eachi. If K = f, thensmgGase

is true as long as is smaller than the distance of the clos- proof. r(K-,)+d(K-p) is a sufficient bound on the length
est violating statefalsefor any otheti. Therefore, for simple  of counterexamples fdfp in K. The proof works as follows:
safety properties the minimal completeness bound is 0 if thgjiven an arbitrary counterexample of lend¢hwhich repre-
property holds, the distance of the closest violating state othsents an infinite initialized patit of K with 1T}= —Fp, we
erwise. construct an infinite initialized pati* of K with Tt* = —Fp.

Neither the truth of the property nor the distance of the Then we show that* is represented by a counterexample of
closest violating state are usually known in advance. With-maximal lengthr (K-p) +d(K-p).

out additional information verification terminates when ei- For the construction, lett= (so,...,S,...,S,...) With
ther a violating state is found (Cpt. 1) or all reachable stateg < | < k and (s,5) € T. Without loss of generality we as-
have been traversed (Rem. 1). In the latter case the states wiymes, + s, if | < k. Otherwisek is decremented until the
the largest distance to the set of initial states determine thessumption is fulfilled. Clearlp does not hold in any of the
number of image computations. This number turns out to b&tates ofitand, sincek -, still contains all states violating,
exactly the radius of the Kripke structure. It is a complete-this implies thatrtis also an initialized path iK_. Therefore

ness bound fosmease and any Kripke structure and simple there exists an |n|t|al|zed patfiin K_, of maximal length
safety property. In the same manner the radius can be used AR p) with 7(|TY) =

maximal bound for bounded model checking of simple safety  |fin mtthereis a se|f loop at the looping state, esg= S,

properties. then the infinite initialized patit* = ft- (§)%, is still a path in
K-p andtt* = —Fp. It consists of the prefixtand an infinite
5.3 Liveness Properties repetition of the looping statg and can be represented by a

counterexample of lengthi < r(K-p). Otherwise let < k

In bounded model checking, a generic counterexample of lengfil thuss # s, after the assumption above. Then we can find
kis represented symbolically by a boolean formula. The for-a second pathtin K-, with (0) = § andfi(|ft) = s. This
mula is a conjunction dk copies of the symbolic representa- Path leads us frors to sc and is not necessarily initialized.
tion of the (total) transition relation, an initial state constraint Its length can only be bounded kiyK-p).
and a loop closing condition. Then, to falsify a simple live- ~ There is a transition back froms to 5. Thereforert® =
ness property, of the forfp, e.g., disprove its validity, with 7t T - (f9® is an initialized infinite path oK., and thus
respect to the universal semantics, the states are further re¢ = —Fp. It consists of the prefixt concatenated with,
stricted to fulfill -p. From a satisfying assignment for the re- which isftwith its first state, the looping stasg chopped off,
sulting boolean formula a counterexample can be extracted.and an infinite repetition a’t The length of the counterexam-
However, if the liveness property is valid for the given ple representingt’ is |71 + 17 < r( K-p) +d(K-p). The rest
Kripke structure, then for ani the generated boolean for- follows fromr(K-p) < d(K-p). O
mula remains unsatisfiable. Since we can not test infinitely ) )
many values ok, the question is, up to whick do boolean As a corollary we obtain, that the maximal bound for
formulae have to be generated and checked for unsat|sf|ab|FheCk'”9Fp in BMC is r(K-p) +d(K-p). Note again, that
ity before validity of the liveness property can be concluded. d(K) andd(K-) are in general not comparable and there are
We can define a monotonic verification functibmaye examples, see above, where either one is much larger than the
similar as above that yieldalseif a lasso-shaped counterex- Other.
ample of length< i exists. The minimal completeness bound
is 0 if the property holds for a model, the length of the shortest
counterexample otherwise. 6 Correctness
In [4,123] it has been observed that tleeurrence diam-
eter, which is the longest cycle free path, and its initialized In this section we formally establish the correctness of the
variant, therecurrence radiusare upper bounds for the mini- state recording translation for simple liveness properties. For
mal completeness bound of simple liveness properties. Notehe proof we show that adding the loop detection part and the
that the diameter isotan upper bound for the minimal com- property observing part preserves bisimulation equivalence
pleteness bound &%p, as the example in Fig] 6 shows, where between the original and the transformed system. For this
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purpose we introduce the notion of an observer extensionwhich operates on the first state component like the origi-

Then, it remains to construct a counterexample for the orig-hal transition relation. In the second state component a previ-

inal system and specification from one for the transformedously reached original state may be recorded, nondeterminis-

system and specification and vice versa. tically, but at most once. We further assume thais a new
state that does not already occuSirt is easy to see that"

6.1 Observer Extensions is an observer extension Kfand therefore we have

Lemma 2. K and K- are bisimulation equivalent.

Both, the Ioop detection part and the property observing Part  Note thatTt is monotonic in its second component for
add sta}te varlgbles to a system. The newly added 'varlableﬁ;]e order<t C (SU{L})2 with s<lt iff s—t ors— L.
determine their next-state values in terms of the variables o

the original system but do not interfere with the original sys- ] ]

tem. In particular, they neither change the transition relationf-3 Adding Property Observing

of the original system nor do they introduce dead ends. This

is called an observer [16] or monitor [19].
LetK = (S T,I,L) be a Kripke structure, léd be a set of
statesk® = (P, TC,19,L°) is anobserver extensioaf K

The next step adds a flag that remembers whethers ever
been valid on the path so far:

KS = (S5 TS,15,LS)

with O, iff

1. £ =5x0 with - _ 9 {01

2. ((s0),(8,0))eTO= (s eT TS — {((s/live),(,live)) ) |
3.¥(s8)eT.Yoc0.30 €0.((s,0),(5,0))eT® (s.5) € TtA

4. scl+(Joe0.(s0) €l (Ifthcleonelil;/egsil

5. L9((s,0) ) =L(s) else live' = live)}

IS =1t x {0}

LS( (s live) ) = L-(s)

Requirements (2) and (3) ensure that the transition re-
lation of the original system is respected and that the en-
hanced system can proceed if the original system can. The
fourth requirement guarantees that each initial state of th&® is an observer extension &¢. With Lemma 2 and tran-
enhanced system has a counterpart in the original system arsdfivity of bisimilarity we have
yice versa. The labeling of the states in Fh_e enhanced systeiMmma 3. K and KS are bisimulation equivalent.
is defined by the component from the original system.

Let K = (ST,I,L) be a Kripke structureQ be a set of
states, an&© = (S°, T°,1°,L°) be an observer extension of
K with O. Letp be the projection o8° onS, i.e.,p( (s,0) ) =
s. Then

Note, that althoughkS depends on the property being veri-
fied, the translations for all other formulae in Tabje 1 are also
observer extensions. Since validity of CTL* formulae is pre-
served under bisimulation equivalencé [6,10], we obtain the
equivalence oK = Fp andKS = Fp.

TSis also monotonic in its second component, in this case
forO< 1.

Lemma 1. K and K° are bisimulation equivalent.

Proof. Consider~C Sx S° withs~s® < s=p(s®). O

] . 6.4 Proving Equivalence for Simple Liveness
6.2 Adding Loop Detection

The final step in our translation for simple liveness consists
The loop detection part is common for all translations. Letof adding a new atomic propositiamwith

K =(SI1,T,L) be a Kripke structure. Then we construct
s=t — live=1

qelS(((st),live)) < (2)

K-=(S, T 15 LY

Theorem 2.
s =Sx (SU{L}) Proof. It only remains to show the equivalence 6f =5
Tt ={((s1),(s,1")) | G-p andKS =5 F-q. First assuméS =3 G-p. Then there
(s,8)eTA exists an infinite initialized patite NS with p ¢ LS(m(i)) for
(I=LAl"=s)vI'=1)} alli > 0. Since the number of states$¥is finite, there have
L = {(s1)|sel} to exist indicesk > | > 0 with Tk+ 1) = 1(l). Let (i) =
L ((s,t),live;) for i > 0 and define(i) = ((s,f),live;) with
L-((s1)) =L(s) fi= Lforo<i<landf=sgforl <i<k+1.
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Clearlyftis an initialized legal path okS. By definition The number of added state bits grows linearly in the num-
we havesg,; =1 =5 andlivei =0 for 0<i <k+1, since  bermof fairness constraints. This directly corresponds to the
p & LS(71(j)) = L(sj) = LS(n(j)) for 0 < j < k. From @) we increase in size of the input for symbolic model checking.
getq ¢ LS(fik + 1)) andft proves to be a witness fdi—q, The state spackg itself grows exponentially. So does the
assumingtis extended to an infinite path in the obvious way. diameter and the radius. The approach seems to be feasible,
Note thatT*S is total sinceT is assumed to be total and our at least for explicit model checking, only for a small number

translation does not introduce dead ends. of fairness constraints. However, checki@gje will always
For the reverse direction assuifeq holds inKS. With- find shortest counterexamples.
out loss of generality we find an initialized patte NS with An alternative approach counts the number of fairness

|1 = Kk+ 1 andmr(k+ 1) = —q. With (i) = ((s;,ti),live;) we  constraints satisfied so far, similar to the well known trans-
deduce from[(R) thas,1 = tx1 andlivex,1 = 0. From the  lation of generalized Bchi automata into ordinary&hi au-
monotonicity of TS in its second state component, we ob- tomata. It produces a liveness property with a single fairness
tain anl with 0 < | <k, such thatlL. =ty =... =t and  constraint, which in turn is translated into a safety property.
§ =t41=... =ty 1. Now we construct an infinite patf This approach is more space efficient. It requires only a log-
with (i) = ((§,1), live)) as follows: for 0< i < kwe simply  arithmic number of additional state bits. However, it fails to
setfi(i) = m(i). If i > kwe define; =t,1, live; = liver,1 and  generate counterexample traces of minimal length. In addi-
§ =g cwithc=(i—I)mod(k+1—1). From the monotonic- tion, it is not clear how thidinary encoding performs for

ity of TS in its second state component, we héive, 1 = symbolic model checking versus tle@e-hotencoding dis-

... =liveg = 0, which impliess = —p for 0 <i <k. Since  cussed before.

these original states determine the non-validitypdbr ev-

ery 7i(i), andftis a legal initialized infinite path, it serves as

witness forG—-p. 0O 7 Complexity

6.5 Adding Fairness After correctness has been established, we can now state the
theoretical bounds on the overhead for verification that is in-

Our translation is able to incorporate fairness. To handle a faiffoduced into a model by our translation. Our objective was to
Kripke structurek (S I, T, L, F ) we construck S(SS, 1S, TS, LS Fs)enable checking liveness properties with techniques and tools

whereSS 1S TS andLS are defined as above afdis ex-  Previously only used for reachability calculation or safety
tended to checking. The impact of our translations on the complexity

for model checking or reachability calculation is quite rea-

FS=(F'x (SU{L})x{0,1},...,F™x (SU{L})x{0,1}).  Sonable.
As sketched with the example of Fig. 3, the size of a non-

We definekS = (2,13, TS,LE) with £ = S°x {0,1}Mand  canonical symbolic description in program code, increases
IS =15x{(0,...,0)} by replacing each fairness constrat ~ only by a small constant factor. In global (explicit) model
with a state bit that remembers whether a loop stafe imas ~ checking [9] the complexity is governed by the number of
been reached. Lé&f be the natural extension bf as before. ~ states, which increases quadratically:
Let (st,x,v), (3,t/,X,V) € S withs s € St,t' e SU{L}, )
x,X € {0,1} andv,v € {0,1}™. The transition relatior;> S° =18 -1SU{L}]-1{0,1}| = |5 - (IS +1)- 2= O(|SP)
is satisfied for(s,t,x,v) and(s,t’,x,V') as current and next

state iff In the case of on-the-fly (explicit) model checkirng [13]
only the size of the reachable state spR¢KS) is of inter-
TS(((s,t),X), ((S,t'),X)) A est. A reachable stafe t) € R(K!) either contains. as sec-
Ay (V) = V(i) V (£ L A se FiA V(i) = 1)) ond componert, ort is reachable ifK since only reachable

states are recorded. Theref®€K") is bounded byR(K)| -

which is again monotonic in the new fairness components of [R(K)[+1). This bound is tight: aLmodulo counter, like
the state space. We further add a new atomic proposigion the modelin Fig. p fon = 4, hasiR(K" )| = n- (n+ 1) reach-

with able states. Ih = 4 then every combination df0,...,3} x
{L1,0,...3} can be reached. Introducing tlige-recording
O €LE((st,xV)) & flag at most doubles the number:
V(1) =...=v(m=1) — qeL3(((s1),x))

IR(K®)| < 2-R(K")| < 2-[R(K)| - (IR(K)| +1) = O(IR(K) *)
whereq is defined as foKS. We can prove a correctness re-

sult like before, now including fairness. Regarding symbolic model checking with BDDs [27] we
have two results. First we relate the size of reduced ordered
Theorem 3. BDDs for the transition relation df, K- andKS. Assuming

S Sis encoded witth = [log, |S|] state bits, we can encod
KEFp & KEEGGO with 2n+ 1 boolean variables. It is important to interleave the
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blocked interleaved To determine the correct radiu$ of KS consider an ini-
tial statess = (so, L,0) and a target stat§® = (s,X,y) with
n | #nodes | #nodes| #nodes 5,55 € Sx (SU{L}) x {0,1}. If §° is reachable frons, s5
- . S . .
10 5146 61 | 6.1 is reachable fronﬁ in at mostr= steps. This is denoted as
follows:
12 20512 73 | 6.08333 S s [ &
§ =| L S—r> X | = s,tS
14 81958 85 | 6.07143 - 0 y -
16| 327724 97| 6.0625 Both enhancements to the original state space are monotonic
18 | 1310770 109 | 6.05556 in the added component. Therefore, dependingc@md y
20 | 5242936 121 | 6.05 four cases can be distinguished: either a state is saved exactly
32 * 193 | 6.03125 once k< S or not k= 1), and either a state fulfilling
198 § 260 | 6.00781 is encountgredy(changes to_l once a.nd remains so) or not
(y = 0). This gives the following cases:
512 * 3073 | 6.00195 ]
2048 i} 12289 | 6.00049 1. x= 1, y=0: no state is saveq) must be false on each

Table 2.BDD sizes for Eqn.ma)»(: memory limit of 1GB reached).

boolean variables for the first and second component. Other-
wise the size of the BDD for the term 5

®3)

in the definition ofT- may explode. With an interleaved or-
der it is linear inn with a factor of approx. 6. The factor has
been determined empirically for large state spaces as shown

in Table[2. The first column shows the original numhesf

state bits. The second and third columns contain the number

of BDD nodes necessary to represent Efjh. (3) using a non-

interleaved (blocked) or interleaved order respectively. The3.
exact number of nodes depends on the details of the encod-
ing of L.

Thus the size of the BDD foF- can be bounded roughly
by 6-n the size of the BDD forT by using the fact from
[7] that computing any boolean binary operation on BDDs
will produce a BDD that is linear in size with factor 1 in the
size of the argument BDDs. Finally, the size of the BDD for
TS compared to the size of the BDD fd- may increase
by a linear factor in the size of the BDD representing the set
of states in whichp holds, which in practice is usually very 4
small. '

Similar calculations for the set of initial states show that
the size of BDDs representirig® can be bound to be linear
in the size of the BDDs representiig linear in the number
of state bits, and linear in the size of the BDD representing
the set of states in whicp holds.

Thesestaticbounds do not say anything about the size of
the BDDs in the fixpoint iterations. The radius of a Kripke
structure is an upper bound for the number of iterations nec-
essary to reach a fixed point (see Jgct. 5). The results derived
for the radius and the diameter KP stated in Theorem 4.4
of [2] are incorrect ifd, > d[f] As shown in Sect|4 the pred-
icated diameter can be much larger than the diameter itself.
This is taken into account in cases 1 and 2 below.

(=LAl =9)VI'=1)

1 We use the following short-hand notations if no doubt can adse:
d(K), dS=d(KS), d_p = d(K_p) and similarly forr.

state on the path frorm to §. The length of such a path

is bounded by -p:
) o &
L] —14L
0 0

X =19, Y= 0: stateg is saved,p is false on each state
on the path frong to 5. Now, § must be reached first.
From its successog, the target stats is reached. No
p-state may be visited on the path. This results in a bound

of rop+dp+1:
P () 2 (3) 2 (o
0 0 0 0

x= 1,y =1:no state is saved, at least opstates; is
crossed on the way 1. s can be reached from in at
mostr steps. The " in the third component denotes a
don't care another state, with p € L(Sp) may be tra-
versed beforgy, is visited, havindive already made true.
From s’p, § can be reached id steps giving a bound of

(225 =C)

X =g, y=1: stateg is saved, at least ong-states; is
crossed on the way tg. If s, is reached first, this takes
at mostr steps. From its successgy,can be reached in
d steps, andx in further d steps froms. This gives an
overall bound of +2d + 2:

S

S

1

BRORERERG
;

<r
_

PRI

<d
—

The result is the same  is reached first:

(2)=(2)+(1)=(3) (%)«

<r
s

Bounds on the diamete? can be obtained similarly by start-
ing in an arbitrary stat@ = (Ss,%s,Ys). This leads to the fol-
lowing reformulation of Theorem 4.4 ih|[2]:
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Length in # states
Theorem 4 property model live 12s
Fp 1394-2-2-false 13 10
s 1394-3-2-false 11 11
r><max{r+2d+2,r-p+d-p+1} =0O(maxXd,dp}) 1304-4 2 false 19 16
dme-04-false 1 1
dme-05-false — 1
an d GFp reactor-bc57-sensors-2{| 103 103
reactor-motors-stuck-2 319 315
s G(p— Fq) prod-cons-1 39 24
d®> <max3d+2,2d-p+1} =O(maxd,d-p}). prod-cons-3 27 24

Table 6. Length of counterexamples

Note, that if halt optimization is applied, the radiuskot
is reduced byd in cases 3 and 45 = maxX{r +d+2,r_p+
dp+1}. N

pIf breadth-first search is used for reachability analysis ofor of [8] if one was provided. A good position for the prop-

K S the algorithm will either reach a fixed point or find a coun- €rty observing variables depends on the property being ver-
terexample after at mosf + 1 iterations. However, if the ified. We did not apply further optimizations but placed the
property under consideration is false there is always a shorte¥@riables from the property observing part and the remain-
counterexample whose length is equal tolthegye-minimal |ng.var|ables from the loop detection part at the end of the
completeness bound fd¢ and Fp. As the state-recording Variable order.
translation finds a shortest counterexample the fixed point Verification of the translated model is feasible. The most
computation may already terminate aftein(bmaye, K, Fp) + optimized version is usually 5 to 50 times slower and requires

1 iterations. Note that the translated system needs one step 0 30 times more memory than the usual liveness checking
detect a loop and update ttiee flag. algorithm. Note, that it was not our intention to provide an

improved algorithm for liveness checking but to make live-
ness checking possible if reachability analysis is the only
available option. Still, in the optimized translated model a
bug in thedmemodel is found much faster than with stan-
dard liveness checking.
In this section we report on a series of experiments with ex-  Both optimizations yield performance improvements in
amples of non-trivial complexity. Most examples were takenmost cases. Variable optimization can speed up verification
from a collection of benchmarks [B5] by Bwolen Yang for by more than two orders of magnitude. Within the given re-
SMV, one is from previous work of the authofs [30]. Three source bounds thdmemodel could not be verified in the
classes of properties were check&gq, GFp, andG(p — translated version without variable optimization. Our trans-
Fq). lated specification refers to each variable that is copied and

The experiments were performed wifladence SMVbuild compared. All such variables are included in the cone of in-
08-20-01)[[26] on a PC with an Intel Pentium 11l at 800 MHz fluence of the translated specification. Variables not in the
and 1.5 Gbytes RAM running Linux 2.2.19. Model checking cone must not be used for loop detection if cone of influence
was restricted to the reachable states, a variable order wasduction is to be applied. An example is thlep model. It
provided explicitly in each case. We set a wall clock limit contains a data-path of variable width (1 and 4 bits in our
of 1h. Tables B -{ give the results. In each table the firstexperiments), that is not in the cone of influence of the prop-
column states the class of the property checked. The secoretty verified. With variable optimization (and, as enabled by
column gives the name of the model. Apart from Tab. 6 thedefault, cone of influence reduction in Cadence SMV) verifi-
third column states whether the property is true or false. Thecation time and space are independent of the number of bits in
remaining columns list the results. The headingsliassfor the data-path, exponential otherwise. Halt optimization short-
the original model using standard liveness checkigfor ens the radius of the model if the property is true for all but
the translated, unoptimized model, avat, halt, andvar + one model (see Tgb, 4). The reachable state space is cut for
halt for the translated model with variable, halt, and both op-both, true and false properties (Tgb. 5). The resulting speed-
timizations applied. Tablg]3 shows time and space requireup is usually between 2 and 10. Most valid instances of the
ments. Tabl¢ 4 states the number of iterations performed teeactor model cannot be verified without halt optimization.
check the property, that is, excluding iterations to construct éBoth optimizations are independent and may be combined.
counterexample. The number of variables in the cone of influ-  Often, a shorter counterexample is produced for the trans-
ence and the size of the reachable state space is given [f] Tabldted model, see T4B. 6. F&B94 the counterexample given
for selected examples. Finally, Tab.6 compares the lengthby the original liveness algorithm includes an invocation of a
of counterexamples found for the original and the translatedsub-protocol not necessary to falsify the property. The coun-
model. terexamples obtained fgrod-consby the original and the

To obtain a good variable order, the original variablestransformed models are semantically different. In addition,
were interleaved with their copies introduced by the trans-the counterexamples produced by the original algorithm con-
lation. Some trials showed that a good variable order for theain a number of context switches between processes where
original model also seems to give good results for the transthe target process cannot act (i.e., nothing changes between
lated model. Therefore, we used the variable ordel of [35}two states apart from theinningvariable).

8 Real-World Examples
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CPU time [s] # BDD nodes
property model truth live var + halt halt var 12s live var + halt halt var 12s
Fp 1394-2-2-true t 0.60 1.13 2.20 1.42 3.27 66584 127148 195691 150631 25135
t 7.63 11.08 20.59 16.47 32.11 656916 666821 1101901 973403 1740630
t 382.72 316.92 707.57 731.53 1313.78 12748065 11612358 22156965 20665581 37671970
f 1.06 1.13 2.16 1.18 222 84661 121640 199030 125386 225251
f 6.73 7.44 14.50 11.25 17.53 538562 552084 804731 725920 15579
f 397.73 270.76 536.86 453.28 801.4! 12968071 10886232 18262702 20654223 26241966
dme-03-true t 112.48 369.47 — 1142.82 — 336311 5987369 — 21848216
dme-04-true t 414.44 — — — — 1282565 — — —
dme-05-true t 1537.88 - — — — 5116176 —_ — —
dme-03-false f 404.29 1.48 —_ 137 —_ 308902 202179 — 198982
dme-04-false f 2351.86 1.87 — 2.40 — 1079160 284297 — 428931
dme-05-false f — 5.39 — 4.18 — — 687726 — 641885
p-queue t 0.20 0.23 0.26 1.04 5.37 31214 48630 53176 102627
GFp abpl t 0.08 0.49 3.87 0.71 7.83 3573 42782 189528 57747
abp4 t 0.09 0.51 74.85 0.70 597.89| 3573 42782 2880808 57747 2129913
reactor-base-1 t 119 13.56 13.47 517.22 524.01 87849 322271 324984 5751743 5982628
reactor-base-2 t 174 145.93 161.10 525.17 537.2 102961 2604819 2710108 5672905 5419344
reactor-bc56-sensors-1J t 6.25 107.12 106.88 — — 373993 1660326 1920631 — —
reactor-bc56-sensors-2) t 7.88 2319.06 2454.00 - - 400194 22702256 23314130 - —
reactor-bc57-sensors-1| t 12.35 268.85 280.82 — — 701793 5150899 5373528 — —
reactor-bc57-sensors-2| f 191.28 229.00 266.02 213.72 224.3! 1151399 6778798 7314282 6251219 6288691
reactor-motors-stuck-1 t 12.28 152.90 148.60 — — 917665 3051950 2954656 — —
reactor-motors-stuck-2 f 33.44 670.01 669.09 1309.38 1247.58 1109592 14863244 14367833 28770893 30509639
reactor-valves-gates-1 t 38.15 939.44 1003.61 — — 1429572 13039409 10237659 — —
reactor-valves-gates-2 t 43.53 — — — — 2001444 — — — —
G(p— Fq) guidance t 0.46 8.21 95.63 49.43 707.02 41014 504831 2062249 2959929 13377306
prod-cons-1 T 4.43 7.67 15.07 12.00 27.79 172894 468930 769734 623875 1214313
prod-cons-3 f 0.66 3.66 7.46 6.98 25.00 39951 219839 437287 432719 1311126
prod-cons-4 t 0.38 11.72 31.96 1899.24 —]| 31542 498038 975382 44680697 —
production-cell-1 t 0.28 2.94 2.96 9.64 9.94 36148 158262 158262 429259 42925p
production-cell-3 t 0.25 0.83 0.90 7.66 7.34 35278 82648 82648 375484 375484
Table 3. Time and memory needed for verification
# iterations [all (fw + bw)]
property model truth live var + halt halt var 12s
Fp 1394-2-2-true T 54 (15 + 39) 15 (15 + 0) 15 (15 + 0) 19 (19 + 0) 19 (19 + 0
1394-3-2-true t 60 (17 + 43) 16 (16 + 0) 16 (16 + 0) 19 (19 + 0) 19 (19 + 0]
1394-4-2-true t 116 (27 + 89) 27 (27 + 0) 27 (27 + 0) 31 (31 + 0) 31 (31 + O
1394-2-2-false f 30 (15 + 15) 10 (10 + 0) 10 (10 + 0) 10 (10 + 0) 10 (10 + 0
1394-3-2-false f 33 (17 + 16) 11 (11 + 0) 11 (11 + 0) 11 (11 + 0) 11 (11 + O]
1394-4-2-false f 61 (27 + 34) 16 (16 + 0) 16 (16 + 0) 16 (16 + 0) 16 (16 + 0
dme-03-true t 13138 (96 + 13042) 247 (247 + 0) — — — = 301 (301 + 0) — ——
dme-04-true t 22167 (117 + 22050) _ ——— - ——— _ ——— - ———
dme-05-true t 38734 (142 + 38592) _ —_——— —_ —_——— _— —_——— _ —_———
dme-03-false f 47532 (96 + 47436) 1 @1+0) - - 1 @1+0) - ——
dme-04-false f 129681 (117 + 129564) 1 (1+0) — — 1 (1+0) - ——
dme-05-false f — —— — 1 (1+0) — —— — 1 (1 +0) _ = ——
p-queue t 16 (12 + 4) 2 (2 +0) 3 (3+0) 16 (16 + 0) 18 (18 + 0)|
GFp abpl T 87 (19 + 68) 31 (31 + 0) 34 (34 + 0) 21 (41 + 0) 28 (48 + 0
abp4 t 87 (19 + 68) 31 (31 + 0) 34 (34 + 0) 41 (41 + 0) 48 (48 + 0
reactor-base-T t 298 (271 + 27) 272 (272 + 0) 272 (272 + 0) 661 (661 + 0) 661 (661 + D)
reactor-base-2 t 369 (271 + 98) 381 (381 + 0) 381 (381 + 0) 661 (661 + 0) 661 (661 + D)
reactor-hc56-sensors-1| t 429 (390 + 39) 391 (391 + 0) 391 (391 + 0) - ——— - ———
reactor-hc56-sensors-2| t 496 (390 + 106) 592 (592 + 0) 592 (592 + 0) _ === —_ ——
reactor-bc57-sensors-1| t 369 (302 + 67) 303 (303 + 0) 303 (303 + 0) _ ——— —- ———
reactor-bc57-sensors-2  f 5020 (302 + 4718) 103 (103 + 0) 103 (103 + 0) 103 (103 + 0) 103 (103 + [0)
reactor-motors-stuck-1 t 456 (401 + 55) 407 (407 + 0) 407 (407 + 0) _ == —_ ———
reactor-motors-stuck-2 f 589 (401 + 188) 315 (315 + 0) 315 (315 + 0) 315 (315 + 0) 315 (315 + D)
reactor-valves-gates-1 t 644 (616 + 28) 617 (617 + 0) 617 (617 + 0) —_ —_——— —_ ——
reactor-valves-gates-2 t 726 (616 + 110) _ ——— _ —— — _ ——— _ —— —
G(p—Fq) guidance t 68 (41 + 27) 56 (56 + 0) 82 (82 + 0) 76 (76 + 0) 106 (106 + 0]
prod-cons-1 f 58 (48 + 10) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0
prod-cons-3 f 114 (48 + 66) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0
prod-cons-4 t 132 (48 + 84) 68 (68 + 0) 69 (69 + 0) 120 (120 + 0) — — ——
production-cell-1 t 112 (81 + 3I) 110 (110 + 0) 110 (110 + 0) 173 (173 + 0) 173 (173 + D)
production-cell-3 t 90 (81 + 9) 83 (83 + 0) 83 (83 + 0) 146 (146 + 0) 146 (146 + Q
Table 4. Iterations performed to check property
# state holding booleans # reachable states
property model truth live var 12s live var + halt halt var 12s
Fp 1394-2-2-true t 60 96 128 1.07856e+08 1.09334e+08 5.40174e+08 1.1707e+08 1.21886¢+09
1394-2-2-false f 60 96 128 1.07856e+08 1.10073e+08 5.91601e+08 1.14829e+08 9.86541¢+08
dme-03-true t 54 164 — 6579 2.3233e+20 — 4.67112e+20 —
dme-03-false f 54 161 — 6579 1.80144e+16 — 1.80144e+16 —
p-queue t 39 79 86 1824 275 15510 64739 6.06062e+0
GFp abpl t 17 39 50 180 11202 229326 18622 661506
abp4 t 17 39 74 180 11202 9.81073e+09 18622 3.02828e+10
reactor-base-1 t 65 142 144 398 2912 2912 264889 264889
reactor-base-2 t 65 142 144 398 102293 102293 264157 26415
reactor-bc56-sensors-1] t 69 150 152 6023 80860 80888 - -
reactor-bc56-sensors-2| t 69 150 152 6023 3.60834e+06 3.6133e+06 — —
reactor-valves-gates-1 t 77 166 168 1.80469e+06 4.03702e+07 4.08945e+07 s T
reactor-valves-gates-2 t 77 — — 1.80469e+06 — — — —
G(p— Fq) guidance t 55 113 193 3.29395e+10 5.10475e+18 2.59509e+25 5.45806e+19 3.05457¢+26
prod-cons-1 f 28 56 62 211144 3.9479e+07 2.42509e+08 1.72519e+08 1.08308e09
production-cell-T t 54 11T 11T 8T 1257 1257 6415 6415

Table 5. Size of state space
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, only few variables copied and compared in the translation and
% o @ p adds further variables until the formula is either proved true
\ or all variables have been added.

Our tight bounds on the minimal completeness bound for
liveness properties may potentially lead to faster algorithms
for liveness checking in general. The performance of the coun-
ter based translation should be evaluated for low complete-
ness bounds. Future research could evaluate how our transla-
9 A Forward Jumping Counter tion can be applied to other formalisms such as process alge-

bras. Another direction for research is to look into structural
Our translation may lead to a model that can be verified exalgorithms to determine bounds on they'-predicated diam-
ponentially faster. Consider timebit counter shown in Fif]7.  eter, similar to the algorithms for plain diametersiih [1].
It can jump forward from staté to an arbitrary statg§ > Finally we would like to thank Ofer Strichman for sharing
i. Only in the last statep is true. For the correct version some of his insights on the completeness threshold with us.
Fp holds, self-loops are added to generate an erroneous ver-
sion. A standard algorithm for symbolic model checking [10]
need<D(2") backward iterations to verify the correct counter, Réferences
If the state-recording translation is applied, a constant num-
ber of forward iterations suffices as_p,d,d-p < 2. 1 J Baymgartner, A Khlmamn, andJ. Ab.raham. Property check-

We used the model checker of thtSsystem (v. 1.4)[15] mg via structural analysus. _ _In E Brinksma _and K. Larsen,
to verify the forward jumping counter. Apart from backward edltors,Qomputer Aided Verification, Proceedings of the 14th
(standard) model checkingSalso provides an implementa- International Conference, CAV 2002, Copenhagen, Denmark,

. . . . July 27-31, 2002volume 2404 ol ecture Notes in Computer
tion of the forward model checking algorithm by Iwashita et Sciencepages 151-165. Springer, 2002.

a!. [21]. The experiments were performed on an Intel PQ run- A Biere, C. Artho, and V. Schuppan. Liveness checking as

ning at 800 MHz with 1.5 Gbytes RAM, a wall clock limit safety checking. In R. Cleaveland and H. Garavel, edifs,

was set at i mal Methods for Industrial Critical Systems, Proceedings of
The results confirm that standard and forward model check- the 7th International ERCIM Workshop, FMICS’02 AMga,

ing require exponentially many iterations while the translated  Spain, July 12-13, 200Electronic Notes in Theoretical Com-

version is verified with a constant number of iterations in the ~ puter Science, 66(2). Elsevier, 2002.

correct case. All algorithms can find a counterexample with a 3- A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic
constant number of iterations. model checking using SAT procedures instead of BDDs. In

i 3 ; _ Design Automation, Proceedings of the 36th ACM/IEEE Con-
Fig [g shows that both classical and forward model check ference, DAC'99, New Orleans, Louisiana, United States, June

mhg nl:ae((jj _tln?_e equnentlarl] i Thedtradnsllateq r\]/arlf':mt can bhe 21-25, 1999pages 317—320. ACM Press, 1999.
checked in linear time. The standar a.gorlt mis more than, p Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model
25 % faster than forward model checking. A counterexam- checking without BDDs. In R. Cleaveland, editdnols and

Fig. 7. Forward jumping counter

ple_is found in the erroneous version in ”near_ time_ by 6_1” _a" Algorithms for Construction and Analysis of Systems, Proceed-

gorithms. Standard and forward model checking give similar  ings of the 5th International Conference, TACAS '99, Amster-

results for the translated variant. dam, The Netherlands, March 22-28, 1998lume 1579 of
Lecture Notes in Computer Sciengages 193—-207. Springer,
1999.

10 Conclusion 5. A. Biere, E. Clarke, and Y. Zhu. Multiple state and single state

tableaux for combining local and global model checking. In

We h ded lati fli hecki b E.-R. Olderog and B. Steffen, editoSprrect System Design,
e have extended our translation of liveness checking prob- Recent Insight and Advance®lume 1710 of_ecture Notes in

lems into safety checking problems for finite state systems.  computer Sciencgages 163-179. Springer, 1999.

To improve applicability of our method in practice, we have 6. M. Browne, E. Clarke, and O. Grumberg. Characterizing finite

provided translations for more complex formulae and opti-  Kripke structures in propositional logi@heoretical Computer

mizations to speed up verification. The feasibility of our ap-  Science59(1-2):115-131, 1988.

proach is underlined by a series of experiments. In one exam-7. R. Bryant. Graph-based algorithms for boolean function ma-

ple an exponential speedup is observed. Using the new no- nipulation. IEEE Transactions on Computer35(8):677-691,

tions of predicated radius and completeness bound we have 1986. o _

derived revised bounds for BDD based model checking. 8. A.Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV:
The current optimizations ensure that only variables are aaneevl Zé?_bfg; model verifier. In Halbwachs and Peled [17],

removed from the translation that don'tinfluence the truth of ¢ pag '

A - : . E. Clarke and A. Emerson. Design and synthesis of syn-
the formula. While removing further variables may produce  cnronization skeletons using branching time temporal logic.

SPU.riOUS Cquntel’ examples, considerable speed-ups can be In D. Kozen, editorLogic of Programs, Workshop, Yorktown
achieved with these reduced models. We have very promis-  Heights, New York, May 198%olume 131 ofLecture Notes in
ing initial results on an incremental procedure that starts with  Computer Scienc@ages 52—71. Springer, 1982.
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N

{crit, try, non}

N
(n2) {uy}

{try, non}
S

Fig. 10.Biichi automaton foG((s=try) — (F(s=crit)))

A Example Translations

A.1 Fairness and Hierarchy

Fig.[9 shows an example of our translation that includes fair-
ness and hierarchy. Two tasks are trying to enter a critical sec-
tion. If both are in theitry-state a non-deterministic choice
decides which task is allowed to proceed. Fairness ensures
that each task eventually gets its turn.

A.2 Using a Bichi Automaton

The example in Fig. 11 shows the translation of the mutex
model with a specification given as diéhi automaton. The
original specificatiorG(t0.s=try) — (F(t0.s= crit)) states
that if task O is trying to enter its critical section, it will even-
tually be able to do so. The negated specification was trans-
lated into a generalized{®hi automaton with Wring v1.1.0
(available from[[33]). The resulting automaton is shown in

Fig.[10.


ftp://vlsi.colorado.edu/pub/Wring-1.1.0.tar.gz
http://www.cs.cmu.edu/~bwolen/software/smv-models/
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MODULE task(id, turn)

VAR
s: {non, try, crit};
ASSI GN
init(s) := non;
next(s) := case

S = non: try,

s =try & (id = turn): crit;
s =try &!(id =turn): try;
s = crit: non;
esac;
FAI RNESS
turn = id
SPEC
AF s = crit
MODULE mai n
VAR
turn: 0..1;

t0: task(0, turn);
tl: task(1, turn);

(a) original

MODULE task(id, turn, save, saved, on_| oop)

-- unnodi fied part

VAR
s: {non, try, crit};
ASSI GN
init(s) := non;
next(s) := case

S = non: try,

s =try & (id = turn): crit;
s =try &!(id =turn): try;
s = crit: non;

esac;

-- |l oop detection part

VAR
12s_s: {non, try, crit};
ASSI GN
next(l2s_s) := case
save & !saved: s;
1: 12s_s;
esac;
DEFI NE
| ooped := saved & s = |2s_s;

-- property observing part

VAR

fair: bool ean;
ASSI GN

init(fair) :=0;

next(fair) :=fair | on_loop & turn = id;
VAR

live: bool ean;
ASSI GN

init(live) :=0;

next(live) :=1live | s = crit;
MODULE mai n

-- decl aration part with signal forwarding
VAR
turn: 0..1;
t0: task(O, turn, save, saved, on_|l oop);
tl: task(1, turn, save, saved, on_|l oop);

-- |l oop detection part
VAR

save:
saved:

bool ean;
bool ean;

ASSI GN
init(saved)
next ( saved)

DEFI NE

DEFI NE

SPEC

SPEC

=0
:= on_|loop;

on_loop := save | saved;
looped := t0.looped & t1.|ooped;

-- property observing part
fair :=t0.fair & tl.fair;
-- transformed specifications
AG ((looped & fair) -> t0.live)

AG ((looped & fair) -> tl.live)

(b) state-recording

Fig. 9. Original and transformed SMV code of mutex
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MODULE task(id, turn)

-- unnodi fied part

VAR
s: {non, try, crit};
ASSI GN
init(s) := non;
next(s) := case
S = non: try;
s =try & (id = turn): crit;
s=try &!(id =turn): try;
s = crit: non;
esac;
MODULE nain
VAR
turn: 0..1;

t0: task(0, turn);
tl: task(1, turn);

-- buechi automaton

VAR
b: {n1, n2, n3, sink};
ASSI GN
init(b) := {n2, n3};
next(b) := case
b=n1& (t0.s =non | tO0.s = crit): {nl};
b=nl1&t0.s =try: {n2, nl};
(b=n2 | b=n3) & (t0.s=non | tO0.s=try): {n3};
1: si nk;
esac;
FAI RNESS
turn = 0

-- buechi specification
FAI RNESS

b =n3
SPEC

AF 0

(a) original

MODULE task(id, turn, save, saved, on_| oop)

-- unnodi fied part

VAR
s: {non, try, crit};
ASSI GN
init(s) := non;
next(s) := case

S = non: try;
s =try & (id = turn): crit;
s try & !(id =turn): try;
s = crit: non;

esac;

-- |l oop detection part
VAR
12s_s: {non, try, crit};
ASSI GN
next(l2s_s) := case
save & !saved: s;
1: 12s_s;
esac;
DEFI NE
| ooped := saved & s = |2s_s;

MODULE mai n

-- declaration part with signal forwarding
VAR
turn: 0..1;
t0: task(O, turn, save, saved, on_|l oop);
tl: task(1, turn, save, saved, on_l oop);

-- buechi automaton

VAR
b: {n1, n2, n3, sink};
ASSI GN
init(b) := {n2, n3};
next(b) := case
b=n1& (t0.s =non | tO0.s = crit): {nl};
b=n1&t0.s =try: {n2, nl};
(b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
1: sink;
esac;

-- |l oop detection part
VAR

save: bool ean;

saved: bool ean;

12s_b: {nl, n2, n3, sink};
ASSI GN

init(saved) := 0;

next (saved) := on_|loop;

next(l2s_b) := case
save & !saved: b;
1: 12s_b;

esac;

DEFI NE
on_loop := save | saved;

looped := saved & b = 12s_b & t0.looped & t1.1|ooped;

-- property observing part
VAR

fair: bool ean;

b_fair: bool ean;

ASSI GN
init(fair) :=0;
next(fair) :=fair | on_loop & turn = 0;
init(b_fair) := 0;
next(b_fair) := b_fair | on_loop & (b = n3);

-- transformed buechi specification
SPEC
AG ((looped & fair & b_fair) -> 0)

(b) state-recording

Fig. 11.Original and transformed SMV code of mutex with specification giveniashBautomaton

19



	Introduction
	Translating Simple Liveness into Safety
	Preliminaries
	Radius and Diameter
	Completeness Bounds for Simple Safety and Liveness
	Correctness
	Complexity
	Real-World Examples
	A Forward Jumping Counter
	Conclusion
	Example Translations

