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Abstract. Two types of temporal properties are usually dis-
tinguished: safety and liveness. Recently we have shown how
to verify liveness properties of finite state systems using safety
checking. In this article we extend the translation scheme to
typical combinations of temporal operators. We discuss opti-
mizations that limit the overhead of our translation. Using the
notions of predicated diameter and radius we obtain revised
bounds for our translation scheme. These notions also give a
tight bound on the minimal completeness bound for simple
liveness properties. Experimental results show the feasibility
of the approach for complex examples. For one example even
an exponential speed-up can be observed.
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1 Introduction

Sequential properties of systems are often formulated in tem-
poral logics such as LTL [12]. These properties fall into two
categories: liveness and safety properties. Safety properties
are invariants of the system and can be checked fairly easily
by reachability analysis. Sophisticated algorithms and imple-
mentations exist. On the other hand, many important system
properties, for example absence of deadlock or livelock, are
more naturally formulated as liveness properties.

Many techniques, and in addition many implementations,
target only safety properties or use optimizations that are only
applicable to safety checking. Examples of such techniques
are invariant checking [3,32], sequential automated test pat-
tern generation (ATPG) [28], and symbolic trajectory evalua-
tion (STE) [31] in its basic form. In this article we extend our
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translation scheme introduced in [2], that allows an efficient
reformulation of liveness checking for finite state systems as
safety checking. The translation makes tools and techniques
for safety checking applicable to liveness checking as well.

Safety is often characterized as “something bad never hap-
pens” while liveness means “something good eventually hap-
pens” [25]. A counterexample to a liveness property is an
infinite path where something good never happens. Such a
path must include a loop in a finite state system. If that loop
is extended infinitely, a lasso-shaped counterexample is ob-
tained. Essentially, our translation searches for such a lasso-
shaped counterexample. It tries to guess the start of a loop,
saves it in a copy of the state variables and checks whether
the saved state occurs a second time. When this happens, a
loop has been found and the property is checked. Our trans-
lation is able to handle fairness. Thus, it is applicable to all
LTL properties via a standard automaton construction [13].
For several commonly used LTL properties such as the re-
quest/acknowledge templateG(r → Fa) we also give a direct
translation.

Our translation scheme can be applied even manually on
the design entry-level, with the proviso that an observer au-
tomaton be added, without changing the behavior of the orig-
inal system. The user does not need to have access to the
source code of the tool, e.g., the model checker, itself. This
could be useful in an industrial setting where the source code
of a tool is usually not available. To some extent it might
also discourage tool vendors to charge extra license fees for
liveness support, if compromises with respect to capacity are
acceptable.

Some optimizations [23,1] from bounded model check-
ing [4] can be applied to our translation. When combined
with a translation-specific optimization, the performance of
our approach is also acceptable on more involved examples,
in some cases even comparable with standard techniques. We
give an example where our approach is exponentially faster.

Radius, diameter and reoccurrence diameter are charac-
teristics of a Kripke structure that are used to give bounds
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on the number of iterations required for verification [4]. The
bounds on the maximal number of image computations nec-
essary to check liveness with our translation in BDD based
symbolic model checking [27] as stated in [2] are formulated
using these notions. These bounds proved incorrect. In this
paper we give revised bounds using the new notions of predi-
cated radius and diameter. In addition, we extend the concept
of completeness threshold [23] and prove a tight bound on the
completeness bound for liveness properties which can imme-
diately be applied to bounded model checking.

The idea most closely related is the verification of live-
ness properties in bounded model checking [4]. The double
DFS [11] used in on-the-fly model checking [13] is somewhat
similar. However, depth first search tends to find counterex-
amples where the loop starts rather late. Our approach can
be used with breadth first search symbolic model checking to
find shortest counterexamples and, at least in principle, does
not need any change to the model checker.

Our translation can also be viewed as an extension of
monitors as used in static or dynamic checking with addi-
tional inputs that signal beginning and closing of a loop. Syn-
chronous observers that check properties of a program are
proposed in [16] to verify reactive systems. The class of prop-
erties is restricted to safety, observers are required to be deter-
ministic. This approach is adapted in [22] to provide a struc-
tural translation from past time LTL into program fragments
in ESTEREL. In [19] a monitor based on a dynamic pro-
gramming algorithm is generated for Java from a past time
LTL formula. Two different versions that produce monitors
for future time LTL adapted to finite traces are presented in
[18,14]. There, (non-)occurrence of eventualities is only con-
sidered up to the end of a trace.

One standard optimization for BDD based model check-
ing is forward model checking [21,20,5]. It uses a different
model checking algorithm which avoids to visit unreachable
states and often is able to find counterexamples faster. For
safety properties this optimization is implemented in most
symbolic model checkers. The algorithm for general proper-
ties, in particular liveness properties, is usually not available.
Therefore [24] characterizes safety properties as properties
with a finite violating prefix. These can be checked with effi-
cient algorithms using reachability analysis. As already noted
in [2], our translation allows to use this restricted version of
forward model checking for liveness properties as well. For
specific examples, checking a simple liveness property with
our approach is exponentially faster than forward (and back-
ward) model checking algorithms.

Section 2 presents the state recording translation and de-
scribes some optimizations. In Section 3 we revise the nec-
essary formal background. Section 4 introduces the notion of
predicated radius and diameter. In Section 5 we extend the
completeness threshold to the more general notion of com-
pleteness bound. Both notions are then used to give tighter
bounds for the minimal completeness bound of simple live-
ness properties. Correctness of the state recording translation
is proved in Section 6. Section 7 proves revised bounds for
the verification with our translation. Sections 8 and 9 report
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Fig. 1.A generic lasso-shaped counterexample.

on applying the state recording translation to artificial and
real-world examples. Section 10 concludes.

2 Translating Simple Liveness into Safety

A counterexample trace for a simple liveness propertyFp is
an infinite path wherep never holds along the path. If the
number of states in a system is finite, a counterexample trace
to a simple liveness property can be assumed to be lasso-
shaped: it consists of a finite prefix and an infinitely repeating
loop, see Fig. 1. Such a trace can always be derived from an
arbitrary infinite trace by inserting a back loop from the first
state occurring the second time. Ifp was false for every state
in the original trace it will also hold nowhere in the lasso-
shaped trace.

Thus, simple liveness propertiesFp of finite state sys-
tems can be verified by finding all lasso-shaped traces and
checking whetherp has been true somewhere on each trace
once the loop is closed. Explicit state algorithms for Büchi
Automata [13] and unfolding liveness properties in bounded
model checking [4] are examples of model checking algo-
rithms that use this observation. Instead of implementing this
observation in a special purpose algorithm we show in the
following how it can be used to transform a system and a
liveness property such that reachability checking is sufficient
to verify that property.

In model checking applications it is often observed that
a liveness propertyAFp can further be restricted by adding
a boundk on the number of steps within which the bodyp
has to hold. The bound is either given in the specification or
may be determined by manual inspection. A bounded live-
ness propertyAFkp is defined as

AFkp≡ A(p∨Xp∨·· ·∨Xkp), with X i p≡ X · · ·X︸ ︷︷ ︸
i−times

p (1)

and clearlyAFkp impliesAFp. The reverse direction is also
true if the bound is chosen large enough, in particular as
large as the number of states|S| in the model, since all states
are reachable in|S| steps. A naive translation would just ex-
changeAFp for AFkp with k the number of states. However,
the expansion ofAFkp in (1) results in a very large formula,
especially in the context of symbolic model checking.

Assume instead, that the system is extended with a vari-
able looped that indicates when a loop is closed and with
a variablelive that remembers whetherp has already been
true. Then, the liveness propertyFp in the original system is
equivalent to the safety propertyG(looped→ live) in the ex-
tended system. Implementinglive is easy. In the rest of this



Viktor Schuppan, Armin Biere: Efficient reduction of finite state model checking to reachability analysis 3

1 2 30

Fig. 2.A 2-bit counter with self-loops

section two implementations forloopedare discussed. The
first counter-based translationis based on the verification of
bounded liveness only as described above. Our main contri-
bution is the secondstate-recording translationthat can be
applied to arbitrary finite state systems and general LTL prop-
erties and can still be verified efficiently in many cases.

As an example, consider the 2-bit counter with self-loops
in Fig. 2. There,F (s = 3) does not hold. A counterexam-
ple is given byπ = 0,1,2,2, . . .. Figure 3 shows a model of
the counter in the input language of the model checkerSMV
[27] in its original form and with the counter-based and the
state-recording translation applied. Note that all three models
explicitly enumerate all possible values of the counter. While
this makes the description easier to understand, it is exponen-
tial in the number of bits of the counter. A linear description
can be obtained by using a binary encoding ofs in the decla-
ration of the variables and in the transition relation.

2.1 Counter-Based Translation

Instead of detecting a loop when it is closed, the counter-
based translation infers that a loop should have occurred once
a sufficient number of transitions has been performed. A counter
is added to the system that is incremented at each transition
and setsloopedto true once it reaches a predefined bound.

A trivial bound valid for arbitrary systems and properties
is the overall number of states in the original system: any path
of that length must include a loop. However, this requires an
impractically large number of iterations in a realistic system
as the property can only be checked when the counter has
reached its bound.

For most systems and properties smaller bounds exist that
still ensure correct results, see the examples given in Sect. 5.
A smaller bound adds fewer state bits and should lead to
faster verification. Presently, a practically efficient method to
compute a minimal bound is not known for arbitrary systems
and properties. Also note that, in general, the counter-based
translation will not produce shortest counterexamples.

In Fig. 3 (b) the state variables and the transition relation
of the original system are left unchanged. Theloop detec-
tion part implements a counter for the number of transitions
performed. Theproperty observing partadds the flaglive.
Finally, the specification is modified as described.

Note, that in our definition the last state in the loop must
have already been seen and does not add new information re-
garding the truth of the liveness property. Therefore, the result
could be determined one cycle before this bound is actually
reached. This optimization has not been applied in Fig. 3 (b)
to keep the presentation of both translations uniform.

A more general form of the counter-based translation can
use a flagfinishedinstead oflooped. That flag becomes true
once a sufficient number of transitions has been performed to
ensure thatp would have occurred on a path ifFp were true.

2.2 State-Recording Translation

In principle, state space search is memory-less. Detecting a
loop as soon as it is closed can not be expressed directly in
temporal logic. Instead, we add copies of all variables to the
model, enabling us to save a state that has previously been
visited. Reoccurrence of a state can now be detected by com-
paring the present state to the saved copy. As the start of a
loop is not known beforehand, an oraclesaveis used to in-
dicate when a copy of the present state should be saved. An
additional flag,savedis needed to prevent overwriting a pre-
viously saved copy.

For simple liveness properties the counter-based and the
state-recording translation differ only in the loop detection
part, see Fig. 3 (c). Here, it consists of asaveoracle, a copy
of the original state variablesl2s s, and asavedflag to ensure
that the state is saved only once on a path. Theon loop flag
indicates whether the presumed loop has started. It is used in
translations for more complex formulae, see Tab. 1.

When the loop closing conditionloopedbecomes true,
this means that current state was visited earlier. Therefore,
the transformed specification does not need to take the current
value of the propertyp into account. It suffices that thelive
flag remembers whetherp has been true in the past. Figure
4 illustrates a run of the state-recording translation for the
generic counterexample from Fig. 1.

2.3 Translating Fairness and Hierarchy

Fairness conditions can be incorporated similar to liveness
properties. A fairness condition is a set of states in the original
model. A path is fair if it passes infinitely often through a state
in each fairness condition. An additional state variablefair i is
introduced for fairness conditioni that observes, similarly to
live, whether one of its fair states has been seen. It is initially
set to false and becomes true when a fair state occurs on the
loop. The specification is required to hold at the end of a loop
only if all fairness conditions hold as well.

No special precautions are required for hierarchical mod-
els that can be flattened. If hierarchy should be preserved the
save, saved, andon loop signals are forwarded to each sub-
module. The submodules perform detection of loops and ob-
serving of fairness and specification properties locally. The
results are sent back to the main module that computes global
values forloopedandfair and then checks the specification.
This enables translating models (possibly by hand) without
separate flattening before. For an example, see Appendix A.1.

2.4 General LTL

Generalized B̈uchi automata and thus LTL [13] can be trans-
lated into fair Kripke structures. Therefore, our translation
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MODULE main

VAR
  s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: {1, s};    
    s = 1: {2, s};
    s = 2: {3, s};    
    s = 3: {0, s};
  esac;

SPEC
  AF s = 3

MODULE main

-- unmodified part of the
-- original system
VAR
  s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: {1, s};    
    s = 1: {2, s};
    s = 2: {3, s};    
    s = 3: {0, s};
  esac;

-- loop detection part
VAR
  counter: 0..4;
ASSIGN
  init(counter) := 0;
  next(counter) := case
    counter < 4: counter + 1;
    1: counter;
  esac;
DEFINE
  looped := counter = 4;

-- property observing part
VAR
  live: boolean;
DEFINE
  found := s = 3;
ASSIGN
  init(live) := 0;
  next(live) := live | found;

-- transformed specification
SPEC
  AG (looped -> live)

MODULE main

-- unmodified part of the 
-- original system
VAR
  s: {0, 1, 2, 3};
ASSIGN
  init(s) := 0;
  next(s) := case
    s = 0: {1, s};    
    s = 1: {2, s};
    s = 2: {3, s};    
    s = 3: {0, s};
  esac;

-- loop detection part
VAR
  save: boolean;
  saved: boolean;
  l2s_s: {0, 1, 2, 3};
ASSIGN
  init(saved) := 0;
  next(saved) := on_loop;
  init(l2s_s) := s;
  next(l2s_s) := case
    save & !saved: s;
    1: l2s_s;
  esac;
DEFINE
  looped := saved & (s = l2s_s);
  on_loop := save | saved;

-- property observing part
VAR
  live: boolean;
DEFINE
  found := s = 3;
ASSIGN
  init(live) := 0;
  next(live) := live | found;

-- transformed specification
SPEC
  AG (looped -> live)

(a) original (b) counter-based (c) state-recording

Fig. 3.Original and transformed SMV code of 2-bit counter with self-loops
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Fig. 4.A run of the state-recording translation for the generic counterexample

applies to LTL model checking in general performing the fol-
lowing steps:

1. Translate the negated LTL formula into a generalized Bü-
chi automaton. Algorithms for this purpose include [13,
11], some of them are also described in [10,29]. Various
tools are available that implement more advanced algo-
rithms, see e.g. [34,33].

2. Build the cross-product of the model and the formula au-
tomaton. Each acceptance set is represented as a fairness

constraint. The property that is actually verified states that
no fair path exists in the model.

3. Apply the state-recording translation.

An example is given in Appendix A.2.

2.5 Templates for Frequently Occurring Specifications

A large fraction of the specifications found in practice can be
covered by a limited number of temporal formulae. Table 1
provides templates for the translation of some frequently used



Viktor Schuppan, Armin Biere: Efficient reduction of finite state model checking to reachability analysis 5

LTL formulae. This avoids having to use the explicit transla-
tion described above. Column 1 gives the (universally quan-
tified) LTL formula represented, column 2 states its (existen-
tially quantified) negation. For the former the translation searches
a counterexample, a witness for the latter. The property ob-
serving part and the specification of the translation are shown
in the language of the model checkerSMV in the last column.
The loop detection part is independent of the formula and can
be found in Fig. 3. In each templatep andq can be replaced
with arbitrary propositional formulae.

A formal proof for the translation ofFp follows in Sect. 6.
We do not prove the other translations but rather try to give
an intuitive understanding. The translation ofFp is repeated
for reference. While not necessary for a simple safety prop-
erty, the translation ofGp shows the symmetry to finite live-
ness. The translations ofFGp andGFp are similar whereby
the former considers, the latter requiresp to hold on the loop
only. Intuitively, forFGp to be true,p must hold on each state
of a loop while the prefix of the loop does not influence the
truth of the formula.GFp can only be true in a finite state
system ifp holds on at least one state of a loop. The trans-
lation of p U q combines the representations for a safety and
a liveness property:q must become true as long asp is true
or when p is false for the first time. The translation of the
request-response propertyG(p → Fq) directly reflects that
one or morep-states must be met or followed by at least one
q-state, where anyq-state on the loop is sufficient. Finally, the
next-time operatorX is handled by shifting the point of view
one step forward in time first and then applying the transla-
tion of F.

2.6 Optimizations

Two optimizations can help to improve the performance of
verifying a translated model. They are source to source and
are applied after the translation has been performed.

Bounded model checking and the state-recording trans-
lation prove or disprove a liveness property by searching for
a lasso-shaped counterexample. Not all variables need to be
considered when comparing states in the search for a loop.
Both techniques can use the same static set of variables for
loop detection. Kroening and Strichman [23] proved in the
context of bounded model checking that input variables can
be ignored when comparing states in the search for a loop.
Baumgartner et al. [1] observed that the diameter of a model
need only be computed for the variables in the cone of influ-
ence of the property. Thus, input variables and variables not
in the cone of influence of the property under consideration
need neither be copied nor compared in our translation. The
correctness of the latter fact can also be seen in our context
by first applying cone of influence reduction to the original
model and then performing the state recording translation.
Obviously, variables known to remain constant after initial-
ization can also be ignored. The combination of these three
optimizations is referred to asvariable optimization. Note,
that finding a shortest counterexample is not guaranteed if
variable optimization is enabled.

The second optimization is based on the monotonicity of
a simple liveness propertyFp — oncep has been found true
on a path, the value of thelive-flag remains constant further
down on this path, i.e., the truth of the formulaG(looped→
live) will be true from then on. This fact allows to stall the
state machine of the original model completely oncelive is
true in a state. Thus, from that state no further states of the
original model are reachable. For hardware systems, this cor-
responds to adding a stall signal to each flip-flop that keeps
its output at the current state. In effect, the radius of the trans-
lated system is reduced (see Sect. 7). In addition, the reach-
able state space might be cut. We call thishalt optimization.

3 Preliminaries

A Kripke structure K= (S,T, I ,L) consists of a set of states
S, a transition relationT ⊆ S×S, a set of initial statesI ⊆ S
and a labeling functionL:S→P(A), whereP(A) is the power
set of the set of atomic propositionsA = {p,q, . . .}. A state
s∈ S is defined tohave a transitionif there existss′ ∈ Swith
(s,s′) ∈ S. ThenT is calledtotal if all s∈ Shave a transition.
For technical reasons we also have to work with non total
transition relations, and do not requireT to be total as is usu-
ally done. An important restriction for the rest of the article
is, that we only considerfinite Kripke structureswith |S|< ∞.

It is often convenient to describe the state spaceS of a
Kripke structure as product of the valuations of a set of vari-
ablesV: S=V1× . . .×Vn, n= |V|whereVi is the set of valua-
tions of variablevi ∈V. The transition relation is then given as
a set of equations each defining the next state of a variable in
terms of the current and next state values of a set of variables:
v′i ∈ f (U,U ′), U ⊆V. If the next state value of a variable is
not constrained by the transition relation it is called aninput
variable.

A path π = (s0,s1, . . .) of a Kripke structure is, whether
finite or infinite, a non-empty sequence of statessi ∈ S. For
a finite sequence(s0, . . . ,sn) we define thelengthof π to be
|π| = n and|π| = ∞ for an infinite sequence. For any path it
is also required that(si ,si+1) ∈ T for 0≤ i < |π|. Further let
π(i) denote thei-th state of the sequence. Thenπi is the suffix
(π(i),π(i + 1), . . .) of π with its first i states chopped off. A
pathπ is maximally expandedif it is infinite, or if π is finite
and the last stateπ(|π|) of π does not have a transition. The
set of all paths of a Kripke structure is denoted byΠ.

A (partial) specification describes desired properties of a
system. We consider specifications given aslinear temporal
logic (LTL) formulae. An LTL formula is made of atomic
propositions fromA and the standard boolean operators for
conjunction (∧), disjunction (∨), negation (¬) and implica-
tion (→). Additionally the following temporal operators are
used: the unary operatorsnext-time(X), globally (G), finally
(F), and the binary temporal operatoruntil (U) and its dual
release(R). The validity of a temporal formulaf over amax-
imally expandedpathπ, writtenπ |= f , is defined recursively.
Let g andh be LTL formulae andp∈ A.
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Formula Negation Translation
(counterexample) (witness)

Fp G¬p
ASSIGN init(live) := 0;
       next(live) := live | p;
SPEC   AG (looped -> live)

Gp F¬p
ASSIGN init(safe) := 1;
       next(safe) := safe & p;
SPEC   AG (looped -> safe)

GFp FG¬p
ASSIGN init(live) := 0;
       next(live) := live | on_loop & p;
SPEC   AG (looped -> live)

FGp GF¬p
ASSIGN init(safe) := 1;
       next(safe) := safe & (on_loop -> p);
SPEC   AG (looped -> safe)

p U q ¬p R ¬q

VAR    safe_p: boolean;
ASSIGN init(live) := 0;
       next(live) := live | safe_p & q;
       init(safe_p) := 1;
       next(safe_p) := safe_p & p;
SPEC   AG (looped -> live)

G(p→ Fq) F(p∧G¬q)

VAR    live_q: boolean;
ASSIGN init(safe) := 1;
       next(safe) := !p & safe | q | live_q;
       init(live_q) := 0;
       next(live_q) := live_q | on_loop & q;
SPEC   AG (looped -> safe)

F(p∧Xq) G(¬p∨X¬q)

VAR    last_p: boolean;
ASSIGN init(live) := 0;
       next(live) := live | last_p & q;
       init(last_p) := 0;
       next(last_p) := p;
SPEC   AG (looped -> live)

Table 1.Property observing part and specification for frequently used LTL formulae

π |= p iff p∈ L(π(0))

π |= ¬g iff π 6|= g

π |= g∧h iff π |= g andπ |= h

π |= X g iff |π|> 0 andπ1 |= g

π |= F g iff there existsi ≤ |π| with πi |= g

π |= G g iff πi |= g for all i ≤ |π|

π |= g U h iff there existsi ≤ |π| with
πi |= h andπ j |= g for all j < i

π |= g R h iff for all i ≤ |π| eitherπi |= h or
there existsj < i with π j |= g

A pathπ is defined to beinitialized iff π(0) ∈ I . Then an LTL
formula f is calledvalid, more preciselyuniversallyvalid, for
a Kripke structureK, writtenK |=∀ f , iff π |= f for all initial-
ized and maximally expanded pathsπ of K. In particular, if
S= /0, then all LTL formulae are valid. Note, that our notion
of (universal) validity matches the classical semantics, ifT is
total andI 6= /0. For the dual notion ofexistential validitywe
defineK |=∃ f iff there exists an initialized and maximally
expanded pathπ with π |= f . If no doubt can arise, we write
K |= f for K |=∀ f .

Note, that existential validity is slightly different from the
CTL semantics [12] ofE f , assumingE f is a CTL formula.
ThenK |= E f in CTL semantics holds ifffor all initial states
s∈ I , the zero length path(s) can be expanded to a fully ex-
panded pathπ with π |= f . In our definition of existential va-
lidity s is existentially quantified. The two notions only match
if there is a unique initial state (|I |= 1).

If an LTL formula f does not hold in a Kripke structure
K, a maximally expanded pathπ of K can be found, with
π |=¬ f . If π is infinite we additionally assume thatπ is lasso-
shapedas in [4]. A lasso-shaped path has the general struc-
ture shown in Fig. 1: starting from an initial states0, the loop
statesl is reached afterl steps and afterk− l steps the loop
closing statesk is reached from which there is a transition
back to the loop statesl . In this case we define thecounterex-
amplefor f representingπ to consist of the firstk+1 states of
π and the backward loop positionl . The length of the coun-
terexample is defined ask.

A fairness constraint is a subset ofS. A pathπ is called
fair wrt. one fairness constraintF i ⊆ S iff some state inF i

occurs infinitely often onπ. If π is fair, thenπ is infinite,
written |π| = ∞. Formally we add a fifth componentF to a
Kripke structure, whereF is a possibly empty list of fairness
constraintsF = (F1, . . . ,Fm). Then a path is fair forK iff it
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is fair wrt. everyF i . The semantics of structures with fair-
ness constraints is defined as in the unfair case, except that
all quantified paths are required to be fair.

Validity of CTL* formulae (and, hence, also LTL formu-
lae) is preserved under bisimulation equivalence [6,10]. Two
Kripke structuresK = (S,T, I ,L) andK̂ = (Ŝ, T̂, Î , L̂) over the
same set of atomic propositions are bisimulation equivalent
iff there exists a relation∼ ⊆ S× Ŝwith the following prop-
erties: Lets∈ Sandŝ∈ Ŝwith s∼ ŝ.

1. The labeling has to match, that isL(s) = L̂(ŝ).
2. For alls′ ∈ S with T(s,s′) there has to exist ˆs′ ∈ Ŝ with

T̂(ŝ, ŝ′) ands′ ∼ ŝ′.
3. For all initial statess∈ I there has to be an initial state

ŝ∈ Î with s∼ ŝ.

The dual properties of (2) and (3) whereK andK̂ are reversed
have to hold as well.

Bisimulation with fairness is defined by expanding the
transition based definition stated above to whole fair paths
as in [10]: the additional requirement is that for all fair paths
π ∈Π there exists a fair patĥπ ∈ Π̂ with π ∼ π̂, whereπ ∼ π̂
iff π(i)∼ π̂(i) for all i ≥ 0.

The state space of a Kripke structure is usually constructed
as the product of the valuations of a set of variables. For a
large fraction of the models occurring in practice the transi-
tion relation can be written as a set of functions such that each
function defines the next state value of a variable in terms of
the current valuations of some set of variables. Cone of influ-
ence reduction [10] removes all variables from a model that
do not influence its behavior with respect to a given specifi-
cation. The cone of influence is defined as the smallest set of
variables that includes all variables mentioned in the specifi-
cation and, recursively, each variable mentioned in the next
state function of any variable in the cone of influence. For-
mally, let K = (S,T, I ,L) be a Kripke structure,f be a prop-
erty,U the set of variables mentioned inf , anddep(v) be the
set of variables defining the next state ofv. Then,coi(K, f ) is
the smallest set such thatU ⊆ coi(K, f ) and if v∈ coi(K, f )
thendep(v)⊆ coi(K, f ).

4 Radius and Diameter

A pathπ of a Kripke structureK = (S,T, I ,L) leadsfrom state
s to statet, if it is finite, π(0) = s andπ(|π|) = t. In this case
t is calledreachablefrom s. Similarly we sayt is reachable
from a setŜ⊆ S, if there is ans∈ Ŝandt is reachable froms.

Thedistanceδ(K,s, t) betweens andt in K is the length
|π| of a pathπ in K with minimal length that leads froms
to t. The distance is infinite, writtenδ(K,s, t) = ∞, if t is not
reachable froms. Thediameter d(K) of a Kripke structureK
is the maximal distance between two reachable states inK.
The distanceδ(K, Ŝ, t) of a statet from a set of stateŝS⊆ S
is the minimumδ(K,s, t) of all s∈ Ŝ. Finally the radius is
defined as the maximalδ(K, I , t) of all t reachable fromI .

Thus the diameter is the maximal number of transitions
it takes to reach all states reachable from a state, or just the

p0 1 2 3

Fig. 5.Kripke structure with constant radius but large diameter.

length of the longest shortest finite path. The radius is the
maximal number of transitions it takes to reach a state reach-
able from the initial states. As an example consider the Kripke
structure of Fig. 5. It models a 2-bit counter with initial state 0
from which all the other states can be reached in one step. As
usual, the initial states are marked by an incoming edge with-
out source state.L is represented by marking states with sets
of atomic propositions, e.g., state 3 is the only state in which
p holds. In this example the diameter is 3, which is maximal,
since the only path that leads from state 1 back to the initial
state 0 has a length of 3 transitions. The radius however is
only 1. This example can be generalized to ann-bit counter
with diameter 2n−1 and constant radius 1.

The set of reachable statesR(K) is defined as all states
that can be reached from an initial state. Since the validity of
an LTL formula is always defined with respect to initialized
paths, it is clear that we can simply remove all non reachable
states from a Kripke structure without affecting the validity
of LTL formulae. Formally, for anyŜ⊆ S we defineKŜ ≡
(Ŝ, T̂, Î , L̂) with T̂ ≡ T ∩ (Ŝ)2, Î ≡ I ∩ ŜandL̂ ≡ L|Ŝ. Then it
is easy to see thatK |= f iff KR(K) |= f . Since the maximal
distance ofall states may be much larger than the distance of
reachable states, it is often advantageous in practice to restrict
model checking toKR(K).

Let L−1:A→P(S) be the reverse ofL, e.g.,s∈ L−1(p) iff
p∈ L(s). ThenL−1 is lifted to arbitrary boolean expressions
f overA by definingL−1( f )≡ L−1(g)∩L−1(h) for f = g∧h
andL−1( f )≡ S\L−1(g) for f = ¬g etc. and we writeK f for
KL−1( f ).

Then we calld(K f ) thepredicated diameterof K with re-
spect tof , or just f -diameter. Similarly thepredicated radius
of K with respect tof is r(K f ). In particular we are inter-
ested inK¬p which is obtained fromK by deleting all states
in which p holds. Then the ‘¬p’-diameter ofK turns out to be
the longest shortest finite path inK on whichp does not hold.
In the n-bit counterexample generalized from Fig. 5, where
p only holds in state 2n−1 the ‘¬p’-diameter is 2n−3, for
n > 1, which is the length of the single path that leads from
state 1 to state 2n−2.

The Kripke structure of Fig. 6 models a variant of a 2-bit
counter with an additional set-state. The counter starts in state
0 and increments the state index up to 3 and then wraps back
to 0. Additionally, at any instant of time, the counter may
transition to the set-state *, from which after the following
time step any other state can be reached. This example can
again be generalized for arbitraryn. The diameter and the
radius are both constant, because every state can be reached
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p*

1 2 30

Fig. 6.Kripke structure with constant diameter but larger ‘¬p’-diameter.

after at most two steps from any other state, by going over the
set-state if necessary.

It is particular interesting about this example, that the
‘¬p’-diameter is 2n− 1 and thus exponential inn. It is ob-
tained by calculating the diameter after removing the set-
state, the only state in whichp holds. The opposite is also
possible: consider a Kripke structure in which states far away
from the initial states are only reachable through states, that
are close to the initial states and in whichp holds. Then re-
moving those close states will cut of all the far away states,
making them unreachable. This will result in a much smaller
radius, which is the ‘¬p’-radius of the original Kripke struc-
ture.

Note, in the construction ofKŜ, which is essential for the
proof of our diameter bounds further down,T being total does
not imply the totality ofT̂. This is the reason, why we could
not assume a total transition relation in the beginning and had
to give non standard semantics.

In the rest of the article we assume that theoriginal Kripke
structure under consideration has a total transition relation.
Then all maximally expanded paths are infinite and all coun-
terexamples can be assumed to be lasso-shaped. Only for
K¬p we have to take maximally expanded finite paths into
account.

5 Completeness Bounds for Simple Safety and Liveness

Some verification algorithms work in an iterative manner by
increasing the value of a parameter until truth or falsity of
a formula can be concluded. For example, bounded model
checking [4] searches for counterexamples up to a specified
length. This parameter is increased until a bound on the max-
imal length of a potential counterexample has been reached.
The number of image computations performed in BDD-based
reachability checking [27] is a similar example. Performing
only a minimal number of iterations while still ensuring a
correct result can help to limit the resources required for ver-
ification. This idea is captured by the notion ofcompleteness
thresholdintroduced by Kroening and Strichman in [23] in
the context of bounded model checking. In the following we
generalize their notion to a broader class of verification al-
gorithms and parameters. The new notion is then used to
rephrase the well-known fact that the radius of a Kripke struc-
ture is a sufficient bound to verify safety properties and a new
bound is derived for simple liveness properties.

5.1 Completeness Bound

LetK be a Kripke structure, letf be an LTL formula, leti,m,n
be natural numbers. Asemantic approximationis a function

V : (K, f , i) 7→ {false, true}.

V is stable at niff

∀m . m≥ n⇒ (V(K, f ,m)⇔V(K, f ,n)).

If a semantic approximationV is stable at somen then the
limit lim(V,K, f ) := lim i→∞V(K, f , i) exists.V is correct for
K and f , iff it is stable at somen and

lim(V,K, f )⇔ K |= f .

Finally, we callV a verification functionfor K and f iff it is
a correct semantic approximation forK and f . Informally, a
verification function converges to the correct answer toK |= f
for any increasing sequence of parameter values.

A parameter valuen is acompleteness boundfor V, K and
f , denotedcb(V,K, f ), iff V is correct and stable atn. We are
particularly interested in the minimal completeness bound for
K and f , denotedcbmin(V,K, f ).

Remark 1. In other words, we know that we have reached a
completeness bound forcb(V,K, f ), and thus, thatV(K, f ,n)
is the correct answer toK |= f , if further increasing the value
of the parametern will not lead to a different result.

Most verification functions are monotonically increasing
or decreasing inn for the orderfalse< true for a given model
and property. Then, a correct result is obtained as soon asV
changes fromtrue to falseor vice versa:

Corollary 1. Let V(K, f , i) be a verification function mono-
tonic in i. Then

(∃m,n . m< n∧ (V(K, f ,m)⇔¬V(K, f ,n)))⇒
(V(K, f ,n)⇔ K |= f )

The notion introduced above can be extended to sequences
of other partially ordered sets of parameter values, e.g., to
the set of variables used for detection of loops in the state-
recording translation (see also Sect. 2.6). Note, that if the or-
der is not linear a minimal completeness bound of a model
and a property might not be unique.

5.2 Safety Properties

Given a concrete Kripke structure the (universal) validity of
simple safety propertiesof the formGp can be checked by
traversing all reachable states and checking whetherp holds
for each state reached. In symbolic model checking [27] the
search is usually organized as breadth first search (BFS), start-
ing with the set of initial states and adding images. An image
is calculated as the set of states that can be reached in one
step from the set of states reached so far. This process is con-
tinued until no new states can be added or a state violatingp
is found.
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Using the notation introduced above we can define a func-
tion smcsafe that yieldsfalse iff a violating state is reachable
from an initial state in at mosti steps. LetK = (S,T, I ,L) be
a Kripke structure, letf = Gp be a simple safety property.
Then

smcsafe(K, f , i) ={
false if ∃s∈ I ∃t ∈ S. δ(K,s, t)≤ i∧ p 6∈ L(t)
true otherwise

Clearly,smcsafe is a verification function monotonic ini. If f
holds inK, smcsafe is true for eachi. If K 6|= f , thensmcsafe

is true as long asi is smaller than the distance of the clos-
est violating state,falsefor any otheri. Therefore, for simple
safety properties the minimal completeness bound is 0 if the
property holds, the distance of the closest violating state oth-
erwise.

Neither the truth of the property nor the distance of the
closest violating state are usually known in advance. With-
out additional information verification terminates when ei-
ther a violating state is found (Cor. 1) or all reachable states
have been traversed (Rem. 1). In the latter case the states with
the largest distance to the set of initial states determine the
number of image computations. This number turns out to be
exactly the radius of the Kripke structure. It is a complete-
ness bound forsmcsafe and any Kripke structure and simple
safety property. In the same manner the radius can be used as
maximal bound for bounded model checking of simple safety
properties.

5.3 Liveness Properties

In bounded model checking, a generic counterexample of length
k is represented symbolically by a boolean formula. The for-
mula is a conjunction ofk copies of the symbolic representa-
tion of the (total) transition relation, an initial state constraint
and a loop closing condition. Then, to falsify a simple live-
ness property, of the formFp, e.g., disprove its validity, with
respect to the universal semantics, the states are further re-
stricted to fulfill¬p. From a satisfying assignment for the re-
sulting boolean formula a counterexample can be extracted.

However, if the liveness property is valid for the given
Kripke structure, then for anyk the generated boolean for-
mula remains unsatisfiable. Since we can not test infinitely
many values ofk, the question is, up to whichk do boolean
formulae have to be generated and checked for unsatisfiabil-
ity before validity of the liveness property can be concluded.

We can define a monotonic verification functionbmclive

similar as above that yieldsfalseif a lasso-shaped counterex-
ample of length≤ i exists. The minimal completeness bound
is 0 if the property holds for a model, the length of the shortest
counterexample otherwise.

In [4,23] it has been observed that therecurrence diam-
eter, which is the longest cycle free path, and its initialized
variant, therecurrence radius, are upper bounds for the mini-
mal completeness bound of simple liveness properties. Note,
that the diameter isnot an upper bound for the minimal com-
pleteness bound ofFp, as the example in Fig. 6 shows, where

the diameter is constant, but the length of the single coun-
terexample is linear in 2n, the number of states. As this ex-
ample shows the search for a lasso-shaped counterexample
has to be restricted toK¬p. This leads to one of our main
results: the minimal completeness bound for simple liveness
propertiesFp is linear in the ‘¬p’-predicated diameter. The
exact relation is stated in the following:

Theorem 1.

cbmin(bmclive,K,Fp) ≤ r(K¬p)+d(K¬p) = O(d(K¬p))

Proof. r(K¬p)+ d(K¬p) is a sufficient bound on the length
of counterexamples forFp in K. The proof works as follows:
given an arbitrary counterexample of lengthk, which repre-
sents an infinite initialized pathπ of K with π |= ¬Fp, we
construct an infinite initialized pathπ∗ of K with π∗ |= ¬Fp.
Then we show thatπ∗ is represented by a counterexample of
maximal lengthr(K¬p)+d(K¬p).

For the construction, letπ = (s0, . . . ,sl , . . . ,sk, . . .) with
0≤ l ≤ k and(sk,sl ) ∈ T. Without loss of generality we as-
sumesl 6= sk if l < k. Otherwisek is decremented until the
assumption is fulfilled. Clearlyp does not hold in any of the
states ofπ and, sinceK¬p still contains all states violatingp,
this implies thatπ is also an initialized path inK¬p. Therefore
there exists an initialized patĥπ in K¬p of maximal length
r(K¬p) with π̂(|π̂|) = sl .

If in π there is a self loop at the looping state, e.g.,sl = sk,
then the infinite initialized pathπ∗ ≡ π̂ ·(sl )ω, is still a path in
K¬p andπ∗ |= ¬Fp. It consists of the prefix̂π and an infinite
repetition of the looping statesl and can be represented by a
counterexample of length|π̂| ≤ r(K¬p). Otherwise letl < k
and thussl 6= sk after the assumption above. Then we can find
a second patĥ̂π in K¬p, with ˆ̂π(0) = sl and ˆ̂π(| ˆ̂π|) = sk. This
path leads us fromsl to sk and is not necessarily initialized.
Its length can only be bounded byd(K¬p).

There is a transition back fromsk to sl . Thereforeπ∗ ≡
π̂ · ˆ̂π1 · ( ˆ̂π)ω is an initialized infinite path ofK¬p and thus
π∗ |= ¬Fp. It consists of the prefix̂π concatenated witĥ̂π1,
which is ˆ̂π with its first state, the looping statesl , chopped off,
and an infinite repetition of̂̂π. The length of the counterexam-
ple representingπ∗ is |π̂|+ | ˆ̂π| ≤ r(K¬p)+ d(K¬p). The rest
follows from r(K¬p)≤ d(K¬p). ut

As a corollary we obtain, that the maximal bound for
checkingFp in BMC is r(K¬p) + d(K¬p). Note again, that
d(K) andd(K¬p) are in general not comparable and there are
examples, see above, where either one is much larger than the
other.

6 Correctness

In this section we formally establish the correctness of the
state recording translation for simple liveness properties. For
the proof we show that adding the loop detection part and the
property observing part preserves bisimulation equivalence
between the original and the transformed system. For this
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purpose we introduce the notion of an observer extension.
Then, it remains to construct a counterexample for the orig-
inal system and specification from one for the transformed
system and specification and vice versa.

6.1 Observer Extensions

Both, the loop detection part and the property observing part
add state variables to a system. The newly added variables
determine their next-state values in terms of the variables of
the original system but do not interfere with the original sys-
tem. In particular, they neither change the transition relation
of the original system nor do they introduce dead ends. This
is called an observer [16] or monitor [19].

Let K = (S,T, I ,L) be a Kripke structure, letO be a set of
states.KO = (SO,TO, IO,LO) is anobserver extensionof K
with O, iff

1. SO = S×O

2. ( (s,o),(s′,o′) ) ∈ TO ⇒ (s,s′) ∈ T

3. ∀(s,s′) ∈ T . ∀o∈O . ∃o′ ∈O . ( (s,o),(s′,o′) ) ∈ TO

4. s∈ I ⇔ (∃o∈O . (s,o) ∈ IO)

5. LO( (s,o) ) = L(s)

Requirements (2) and (3) ensure that the transition re-
lation of the original system is respected and that the en-
hanced system can proceed if the original system can. The
fourth requirement guarantees that each initial state of the
enhanced system has a counterpart in the original system and
vice versa. The labeling of the states in the enhanced system
is defined by the component from the original system.

Let K = (S,T, I ,L) be a Kripke structure,O be a set of
states, andKO = (SO,TO, IO,LO) be an observer extension of
K with O. Let ρ be the projection ofSO onS, i.e.,ρ( (s,o) ) =
s. Then

Lemma 1. K and KO are bisimulation equivalent.

Proof. Consider∼⊆ S×SO with s∼ sO ⇔ s= ρ(sO). ut

6.2 Adding Loop Detection

The loop detection part is common for all translations. Let
K = (S, I ,T,L) be a Kripke structure. Then we construct

KL = (SL ,TL , IL ,LL )

with

SL = S× (S∪{⊥})
TL = {( (s, l),(s′, l ′) ) |

(s,s′) ∈ T∧
((l =⊥∧ l ′ = s)∨ l ′ = l)}

IL = {(s,⊥) | s∈ I}
LL ( (s, l) ) = L(s)

which operates on the first state component like the origi-
nal transition relation. In the second state component a previ-
ously reached original state may be recorded, nondeterminis-
tically, but at most once. We further assume that⊥ is a new
state that does not already occur inS. It is easy to see thatKL

is an observer extension ofK and therefore we have

Lemma 2. K and KL are bisimulation equivalent.

Note thatTL is monotonic in its second component for
the order≤L ⊆ (S∪{⊥})2 with s≤L t iff s= t or s=⊥.

6.3 Adding Property Observing

The next step adds a flag that remembers whetherp has ever
been valid on the path so far:

KS = (SS,TS, IS,LS)

with
SS = SL ×{0,1}
TS = {( (s, live),(s′, live′) ) |

(s,s′) ∈ TL∧
(if p∈ LL (s)

then live′ = 1
else live′ = live)}

IS = IL ×{0}
LS( (s, live) ) = LL (s)

KS is an observer extension ofKL . With Lemma 2 and tran-
sitivity of bisimilarity we have

Lemma 3. K and KS are bisimulation equivalent.

Note, that althoughKS depends on the property being veri-
fied, the translations for all other formulae in Table 1 are also
observer extensions. Since validity of CTL* formulae is pre-
served under bisimulation equivalence [6,10], we obtain the
equivalence ofK |= Fp andKS |= Fp.

TS is also monotonic in its second component, in this case
for 0 < 1.

6.4 Proving Equivalence for Simple Liveness

The final step in our translation for simple liveness consists
of adding a new atomic propositionq with

q∈ LS( ((s, t), live) ) ⇔ s= t → live = 1 (2)

Theorem 2.

K |= Fp ⇔ KS |= G q

Proof. It only remains to show the equivalence ofKS |=∃
G¬p andKS |=∃ F¬q. First assumeKS |=∃ G¬p. Then there
exists an infinite initialized pathπ∈ΠS with p 6∈ LS(π(i)) for
all i ≥ 0. Since the number of states ofSS is finite, there have
to exist indicesk ≥ l ≥ 0 with π(k+ 1) = π(l). Let π(i) =
((si , ti), livei) for i ≥ 0 and definêπ(i) = ((si , t̂i), livei) with
t̂i =⊥ for 0≤ i ≤ l andt̂i = sl for l < i ≤ k+1.
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Clearly π̂ is an initialized legal path ofKS. By definition
we havesk+1 = t̂k+1 = sl andlivei = 0 for 0≤ i ≤ k+1, since
p 6∈ LS(π̂( j)) = L(sj) = LS(π( j)) for 0≤ j ≤ k. From (2) we
get q 6∈ LS(π̂(k+ 1)) and π̂ proves to be a witness forF¬q,
assuminĝπ is extended to an infinite path in the obvious way.
Note thatTS is total sinceT is assumed to be total and our
translation does not introduce dead ends.

For the reverse direction assumeF¬q holds inKS. With-
out loss of generality we find an initialized pathπ ∈ ΠS with
|π|= k+1 andπ(k+1) |= ¬q. With π(i) = ((si , ti), livei) we
deduce from (2) thatsk+1 = tk+1 and livek+1 = 0. From the
monotonicity ofTS in its second state component, we ob-
tain an l with 0 ≤ l ≤ k, such that⊥ = t0 = . . . = tl and
sl = tl+1 = . . . = tk+1. Now we construct an infinite patĥπ
with π̂(i) = ((ŝi , t̂i), livei) as follows: for 0≤ i ≤ k we simply
setπ̂(i) = π(i). If i > k we definêti = tk+1, ˆlivei = livek+1 and
ŝi = sl+c with c= (i− l) mod(k+1− l). From the monotonic-
ity of TS in its second state component, we havelivek+1 =
. . . = live0 = 0, which impliessi |= ¬p for 0≤ i ≤ k. Since
these original states determine the non-validity ofp for ev-
ery π̂(i), andπ̂ is a legal initialized infinite path, it serves as
witness forG¬p. ut

6.5 Adding Fairness

Our translation is able to incorporate fairness. To handle a fair
Kripke structureK(S, I ,T,L,F) we constructKS(SS, IS,TS,LS,FS)
whereSS, IS, TS, andLS are defined as above andF is ex-
tended to

FS = (F1×(S∪{⊥})×{0,1}, . . . ,Fm×(S∪{⊥})×{0,1}).

We defineKS
F = (SS

F , IS
F ,TS

F ,LS
F) with SS

F = SS×{0,1}m and
IS
F = IS×{(0, . . . ,0)} by replacing each fairness constraintF i

with a state bit that remembers whether a loop state inF i has
been reached. LetLS

F be the natural extension ofLS as before.
Let (s, t,x,v), (s′, t ′,x′,v′) ∈ SS

F with s,s′ ∈ S, t, t ′ ∈ S∪{⊥},
x,x′ ∈ {0,1} and v,v′ ∈ {0,1}m. The transition relationTS

F
is satisfied for(s, t,x,v) and(s′, t ′,x′,v′) as current and next
state iff

TS( ((s, t),x) , ((s′, t ′),x′) ) ∧∧m
i=1

(
v′(i) = v(i) ∨ (t ′ 6=⊥ ∧ s∈ F i ∧ v′(i) = 1)

)
which is again monotonic in the new fairness components of
the state space. We further add a new atomic propositionqF

with

qF ∈ LS
F( (s, t,x,v) ) ⇔

(v(1) = . . . = v(m) = 1) → q∈ LS( ((s, t),x) )

whereq is defined as forKS. We can prove a correctness re-
sult like before, now including fairness.

Theorem 3.

K |= Fp ⇔ KS
F |= G qF

The number of added state bits grows linearly in the num-
bermof fairness constraints. This directly corresponds to the
increase in size of the input for symbolic model checking.
The state spaceKS

F itself grows exponentially. So does the
diameter and the radius. The approach seems to be feasible,
at least for explicit model checking, only for a small number
of fairness constraints. However, checkingG qF will always
find shortest counterexamples.

An alternative approach counts the number of fairness
constraints satisfied so far, similar to the well known trans-
lation of generalized B̈uchi automata into ordinary B̈uchi au-
tomata. It produces a liveness property with a single fairness
constraint, which in turn is translated into a safety property.
This approach is more space efficient. It requires only a log-
arithmic number of additional state bits. However, it fails to
generate counterexample traces of minimal length. In addi-
tion, it is not clear how thisbinary encoding performs for
symbolic model checking versus theone-hotencoding dis-
cussed before.

7 Complexity

After correctness has been established, we can now state the
theoretical bounds on the overhead for verification that is in-
troduced into a model by our translation. Our objective was to
enable checking liveness properties with techniques and tools
previously only used for reachability calculation or safety
checking. The impact of our translations on the complexity
for model checking or reachability calculation is quite rea-
sonable.

As sketched with the example of Fig. 3, the size of a non-
canonical symbolic description in program code, increases
only by a small constant factor. In global (explicit) model
checking [9] the complexity is governed by the number of
states, which increases quadratically:

|SS|= |S| · |S∪{⊥}| · |{0,1}|= |S| · (|S|+1) ·2 = O(|S|2)

In the case of on-the-fly (explicit) model checking [13]
only the size of the reachable state spaceR(KS) is of inter-
est. A reachable state(s, t) ∈R(KL ) either contains⊥ as sec-
ond componentt, or t is reachable inK since only reachable
states are recorded. ThereforeR(KL ) is bounded by|R(K)| ·
(|R(K)|+ 1). This bound is tight: a modulon counter, like
the model in Fig. 2 forn= 4, has|R(KL )|= n· (n+1) reach-
able states. Ifn = 4 then every combination of{0, . . . ,3}×
{⊥,0, . . .3} can be reached. Introducing thelive-recording
flag at most doubles the number:

|R(KS)| ≤ 2· |R(KL )| ≤ 2· |R(K)| ·(|R(K)|+1) = O(|R(K)|2)

Regarding symbolic model checking with BDDs [27] we
have two results. First we relate the size of reduced ordered
BDDs for the transition relation ofK, KL andKS. Assuming
S is encoded withn = dlog2 |S|e state bits, we can encodeSL

with 2n+1 boolean variables. It is important to interleave the
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blocked interleaved

n #nodes #nodes #nodes/n

10 5146 61 6.1

12 20512 73 6.08333

14 81958 85 6.07143

16 327724 97 6.0625

18 1310770 109 6.05556

20 5242936 121 6.05

32 ∗ 193 6.03125

128 ∗ 769 6.00781

512 ∗ 3073 6.00195

2048 ∗ 12289 6.00049

Table 2.BDD sizes for Eqn. (3) (∗ = memory limit of 1GB reached).

boolean variables for the first and second component. Other-
wise the size of the BDD for the term

((l =⊥∧ l ′ = s)∨ l ′ = l) (3)

in the definition ofTL may explode. With an interleaved or-
der it is linear inn with a factor of approx. 6. The factor has
been determined empirically for large state spaces as shown
in Table 2. The first column shows the original numbern of
state bits. The second and third columns contain the number
of BDD nodes necessary to represent Eqn. (3) using a non-
interleaved (blocked) or interleaved order respectively. The
exact number of nodes depends on the details of the encod-
ing of⊥.

Thus the size of the BDD forTL can be bounded roughly
by 6· n the size of the BDD forT by using the fact from
[7] that computing any boolean binary operation on BDDs
will produce a BDD that is linear in size with factor 1 in the
size of the argument BDDs. Finally, the size of the BDD for
TS compared to the size of the BDD forTL may increase
by a linear factor in the size of the BDD representing the set
of states in whichp holds, which in practice is usually very
small.

Similar calculations for the set of initial states show that
the size of BDDs representingKS can be bound to be linear
in the size of the BDDs representingK, linear in the number
of state bits, and linear in the size of the BDD representing
the set of states in whichp holds.

Thesestaticbounds do not say anything about the size of
the BDDs in the fixpoint iterations. The radius of a Kripke
structure is an upper bound for the number of iterations nec-
essary to reach a fixed point (see Sect. 5). The results derived
for the radius and the diameter ofKS stated in Theorem 4.4
of [2] are incorrect ifd¬p > d.1 As shown in Sect. 4 the pred-
icated diameter can be much larger than the diameter itself.
This is taken into account in cases 1 and 2 below.

1 We use the following short-hand notations if no doubt can arise:d =
d(K), dS = d(KS), d¬p = d(K¬p) and similarly forr.

To determine the correct radiusrS of KS consider an ini-
tial statesS

0 = (s0,⊥,0) and a target statesS
t = (st ,x,y) with

sS
0,s

S
t ∈ S× (S∪{⊥})×{0,1}. If sS

t is reachable fromsS
0, sS

t

is reachable fromsS
0 in at mostrS steps. This is denoted as

follows:

sS
0 =

 s0
⊥
0

 ≤ rS

−→

 st

x
y

 = sS
t

Both enhancements to the original state space are monotonic
in the added component. Therefore, depending onx and y
four cases can be distinguished: either a state is saved exactly
once (x ∈ S) or not (x = ⊥), and either a state fulfillingp
is encountered (y changes to 1 once and remains so) or not
(y = 0). This gives the following cases:

1. x = ⊥, y = 0: no state is saved,p must be false on each
state on the path froms0 to st . The length of such a path
is bounded byr¬p:  s0

⊥
0

 ≤ r¬p−→

 st

⊥
0


2. x = sl , y = 0: statesl is saved,p is false on each state

on the path froms0 to st . Now, sl must be reached first.
From its successor,s′l , the target statest is reached. No
p-state may be visited on the path. This results in a bound
of r¬p +d¬p +1: s0

⊥
0

 ≤ r¬p−→

 sl
⊥
0

 1−→

 s′l
sl
0

 ≤ d¬p−→

 st

sl
0


3. x = ⊥, y = 1: no state is saved, at least onep-statesp is

crossed on the way tost . sp can be reached froms0 in at
mostr steps. The “−” in the third component denotes a
don’t care: another statêsp with p ∈ L(ŝp) may be tra-
versed beforesp is visited, havinglive already made true.
From s′p, st can be reached ind steps giving a bound of
r +d+1: s0

⊥
0

 ≤ r−→

 sp

⊥
−

 1−→

 s′p
⊥
1

 ≤ d−→

 st

⊥
1


4. x = sl , y = 1: statesl is saved, at least onep-statesp is

crossed on the way tost . If sp is reached first, this takes
at mostr steps. From its successor,sl can be reached in
d steps, andst in further d steps froms′l . This gives an
overall bound ofr +2d+2: s0
⊥
0

 ≤ r−→

 sp

⊥
−

 1→

 s′p
⊥
1

 ≤ d−→

 sl
⊥
1

 1→

 s′l
sl
1

 ≤ d−→

 st

sl
1


The result is the same ifsl is reached first: s0
⊥
0

 ≤ r−→

 sl
⊥
−

 1→

 s′l
sl
−

 ≤ d−→

 sp

sl
−

 1→

 s′p
sl
1

 ≤ d−→

 t
sl
1


Bounds on the diameterdS can be obtained similarly by start-
ing in an arbitrary statesS

s = (ss,xs,ys). This leads to the fol-
lowing reformulation of Theorem 4.4 in [2]:
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Theorem 4.

rS≤max{r +2d+2, r¬p +d¬p +1} = O(max{d,d¬p})

and

dS≤max{3d+2,2d¬p +1} = O(max{d,d¬p}).

Note, that if halt optimization is applied, the radius ofKS

is reduced byd in cases 3 and 4:rS = max{r + d + 2, r¬p +
d¬p +1}.

If breadth-first search is used for reachability analysis of
KS the algorithm will either reach a fixed point or find a coun-
terexample after at mostrS + 1 iterations. However, if the
property under consideration is false there is always a shortest
counterexample whose length is equal to thebmclive-minimal
completeness bound forK and Fp. As the state-recording
translation finds a shortest counterexample the fixed point
computation may already terminate aftercbmin(bmclive,K,Fp)+
1 iterations. Note that the translated system needs one step to
detect a loop and update thelive flag.

8 Real-World Examples

In this section we report on a series of experiments with ex-
amples of non-trivial complexity. Most examples were taken
from a collection of benchmarks [35] by Bwolen Yang for
SMV, one is from previous work of the authors [30]. Three
classes of properties were checked:Fp, GFp, andG(p →
Fq).

The experiments were performed withCadence SMV(build
08-20-01) [26] on a PC with an Intel Pentium III at 800 MHz
and 1.5 Gbytes RAM running Linux 2.2.19. Model checking
was restricted to the reachable states, a variable order was
provided explicitly in each case. We set a wall clock limit
of 1h. Tables 3 – 6 give the results. In each table the first
column states the class of the property checked. The second
column gives the name of the model. Apart from Tab. 6 the
third column states whether the property is true or false. The
remaining columns list the results. The headings arelive for
the original model using standard liveness checking,l2s for
the translated, unoptimized model, andvar, halt, andvar +
halt for the translated model with variable, halt, and both op-
timizations applied. Table 3 shows time and space require-
ments. Table 4 states the number of iterations performed to
check the property, that is, excluding iterations to construct a
counterexample. The number of variables in the cone of influ-
ence and the size of the reachable state space is given in Tab. 5
for selected examples. Finally, Tab. 6 compares the lengths
of counterexamples found for the original and the translated
model.

To obtain a good variable order, the original variables
were interleaved with their copies introduced by the trans-
lation. Some trials showed that a good variable order for the
original model also seems to give good results for the trans-
lated model. Therefore, we used the variable order of [35]

Length in # states
property model live l2s

Fp 1394-2-2-false 13 10
1394-3-2-false 11 11
1394-4-2-false 19 16
dme-03-false 1 1
dme-04-false 1 1
dme-05-false — 1

GFp reactor-bc57-sensors-2 103 103
reactor-motors-stuck-2 319 315

G(p→ Fq) prod-cons-1 39 24
prod-cons-3 27 24

Table 6.Length of counterexamples

or of [8] if one was provided. A good position for the prop-
erty observing variables depends on the property being ver-
ified. We did not apply further optimizations but placed the
variables from the property observing part and the remain-
ing variables from the loop detection part at the end of the
variable order.

Verification of the translated model is feasible. The most
optimized version is usually 5 to 50 times slower and requires
3 to 30 times more memory than the usual liveness checking
algorithm. Note, that it was not our intention to provide an
improved algorithm for liveness checking but to make live-
ness checking possible if reachability analysis is the only
available option. Still, in the optimized translated model a
bug in thedmemodel is found much faster than with stan-
dard liveness checking.

Both optimizations yield performance improvements in
most cases. Variable optimization can speed up verification
by more than two orders of magnitude. Within the given re-
source bounds thedmemodel could not be verified in the
translated version without variable optimization. Our trans-
lated specification refers to each variable that is copied and
compared. All such variables are included in the cone of in-
fluence of the translated specification. Variables not in the
cone must not be used for loop detection if cone of influence
reduction is to be applied. An example is theabp model. It
contains a data-path of variable width (1 and 4 bits in our
experiments), that is not in the cone of influence of the prop-
erty verified. With variable optimization (and, as enabled by
default, cone of influence reduction in Cadence SMV) verifi-
cation time and space are independent of the number of bits in
the data-path, exponential otherwise. Halt optimization short-
ens the radius of the model if the property is true for all but
one model (see Tab. 4). The reachable state space is cut for
both, true and false properties (Tab. 5). The resulting speed-
up is usually between 2 and 10. Most valid instances of the
reactor model cannot be verified without halt optimization.
Both optimizations are independent and may be combined.

Often, a shorter counterexample is produced for the trans-
lated model, see Tab. 6. For1394, the counterexample given
by the original liveness algorithm includes an invocation of a
sub-protocol not necessary to falsify the property. The coun-
terexamples obtained forprod-consby the original and the
transformed models are semantically different. In addition,
the counterexamples produced by the original algorithm con-
tain a number of context switches between processes where
the target process cannot act (i.e., nothing changes between
two states apart from therunningvariable).
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CPU time [s] # BDD nodes
property model truth live var + halt halt var l2s live var + halt halt var l2s

Fp 1394-2-2-true t 0.60 1.13 2.20 1.42 3.27 66584 127148 195691 150631 251357
1394-3-2-true t 7.63 11.08 20.59 16.47 32.11 656916 666821 1101901 973403 1740630
1394-4-2-true t 382.72 316.92 707.57 731.53 1313.78 12748065 11612358 22156965 20665581 37671970
1394-2-2-false f 1.06 1.13 2.16 1.18 2.22 84661 121640 199030 125386 225251
1394-3-2-false f 6.73 7.44 14.50 11.25 17.53 538562 552084 804731 725920 1557995
1394-4-2-false f 397.73 270.76 536.86 453.28 801.45 12968071 10886232 18262702 20654223 26241966
dme-03-true t 112.48 369.47 — 1142.82 — 336311 5987369 — 21848216 —
dme-04-true t 414.44 — — — — 1282565 — — — —
dme-05-true t 1537.88 — — — — 5116176 — — — —
dme-03-false f 404.29 1.48 — 1.37 — 308902 202179 — 198982 —
dme-04-false f 2351.86 1.87 — 2.40 — 1079160 284297 — 428931 —
dme-05-false f — 5.39 — 4.18 — — 687726 — 641885 —
p-queue t 0.20 0.23 0.26 1.04 5.37 31214 48630 53176 102627 289409

GFp abp1 t 0.08 0.49 3.87 0.71 7.83 3573 42782 189528 57747 340689
abp4 t 0.09 0.51 74.85 0.70 597.89 3573 42782 2880808 57747 21299133
reactor-base-1 t 1.19 13.56 13.47 517.22 524.07 87849 322271 324984 5751743 5982628
reactor-base-2 t 1.74 145.93 161.10 525.17 537.21 102961 2604819 2710108 5672905 5419344
reactor-bc56-sensors-1 t 6.25 107.12 106.88 — — 373993 1660326 1920631 — —
reactor-bc56-sensors-2 t 7.88 2319.06 2454.00 — — 400194 22702256 23314130 — —
reactor-bc57-sensors-1 t 12.35 268.85 280.82 — — 701793 5150899 5373528 — —
reactor-bc57-sensors-2 f 191.28 229.00 266.02 213.72 224.35 1151399 6778798 7314282 6251219 6288691
reactor-motors-stuck-1 t 12.28 152.90 148.60 — — 917665 3051950 2954656 — —
reactor-motors-stuck-2 f 33.44 670.01 669.09 1309.38 1247.58 1109592 14863244 14367833 28770893 30509639
reactor-valves-gates-1 t 38.15 939.44 1003.61 — — 1429572 13039409 10237659 — —
reactor-valves-gates-2 t 43.53 — — — — 2001444 — — — —

G(p→ Fq) guidance t 0.46 8.21 95.63 49.43 707.02 41014 504831 2062249 2959929 13377306
prod-cons-1 f 4.43 7.67 15.07 12.00 27.75 172894 468930 769734 623875 1214313
prod-cons-3 f 0.66 3.66 7.46 6.98 25.00 39951 219839 437287 432719 1311126
prod-cons-4 t 0.38 11.72 31.96 1899.24 — 31542 498038 975382 44680697 —
production-cell-1 t 0.28 2.94 2.96 9.64 9.94 36148 158262 158262 429259 429259
production-cell-3 t 0.25 0.83 0.90 7.66 7.34 35278 82648 82648 375484 375484

Table 3.Time and memory needed for verification

# iterations [all (fw + bw)]
property model truth live var + halt halt var l2s

Fp 1394-2-2-true t 54 (15 + 39) 15 (15 + 0) 15 (15 + 0) 19 (19 + 0) 19 (19 + 0)
1394-3-2-true t 60 (17 + 43) 16 (16 + 0) 16 (16 + 0) 19 (19 + 0) 19 (19 + 0)
1394-4-2-true t 116 (27 + 89) 27 (27 + 0) 27 (27 + 0) 31 (31 + 0) 31 (31 + 0)
1394-2-2-false f 30 (15 + 15) 10 (10 + 0) 10 (10 + 0) 10 (10 + 0) 10 (10 + 0)
1394-3-2-false f 33 (17 + 16) 11 (11 + 0) 11 (11 + 0) 11 (11 + 0) 11 (11 + 0)
1394-4-2-false f 61 (27 + 34) 16 (16 + 0) 16 (16 + 0) 16 (16 + 0) 16 (16 + 0)
dme-03-true t 13138 (96 + 13042) 247 (247 + 0) — — — — 301 (301 + 0) — — — —
dme-04-true t 22167 (117 + 22050) — — — — — — — — — — — — — — — —
dme-05-true t 38734 (142 + 38592) — — — — — — — — — — — — — — — —
dme-03-false f 47532 (96 + 47436) 1 (1 + 0) — — — — 1 (1 + 0) — — — —
dme-04-false f 129681 (117 + 129564) 1 (1 + 0) — — — — 1 (1 + 0) — — — —
dme-05-false f — — — — 1 (1 + 0) — — — — 1 (1 + 0) — — — —
p-queue t 16 (12 + 4) 2 (2 + 0) 3 (3 + 0) 16 (16 + 0) 18 (18 + 0)

GFp abp1 t 87 (19 + 68) 31 (31 + 0) 34 (34 + 0) 41 (41 + 0) 48 (48 + 0)
abp4 t 87 (19 + 68) 31 (31 + 0) 34 (34 + 0) 41 (41 + 0) 48 (48 + 0)
reactor-base-1 t 298 (271 + 27) 272 (272 + 0) 272 (272 + 0) 661 (661 + 0) 661 (661 + 0)
reactor-base-2 t 369 (271 + 98) 381 (381 + 0) 381 (381 + 0) 661 (661 + 0) 661 (661 + 0)
reactor-bc56-sensors-1 t 429 (390 + 39) 391 (391 + 0) 391 (391 + 0) — — — — — — — —
reactor-bc56-sensors-2 t 496 (390 + 106) 592 (592 + 0) 592 (592 + 0) — — — — — — — —
reactor-bc57-sensors-1 t 369 (302 + 67) 303 (303 + 0) 303 (303 + 0) — — — — — — — —
reactor-bc57-sensors-2 f 5020 (302 + 4718) 103 (103 + 0) 103 (103 + 0) 103 (103 + 0) 103 (103 + 0)
reactor-motors-stuck-1 t 456 (401 + 55) 407 (407 + 0) 407 (407 + 0) — — — — — — — —
reactor-motors-stuck-2 f 589 (401 + 188) 315 (315 + 0) 315 (315 + 0) 315 (315 + 0) 315 (315 + 0)
reactor-valves-gates-1 t 644 (616 + 28) 617 (617 + 0) 617 (617 + 0) — — — — — — — —
reactor-valves-gates-2 t 726 (616 + 110) — — — — — — — — — — — — — — — —

G(p→ Fq) guidance t 68 (41 + 27) 56 (56 + 0) 82 (82 + 0) 76 (76 + 0) 106 (106 + 0)
prod-cons-1 f 58 (48 + 10) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0)
prod-cons-3 f 114 (48 + 66) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0) 24 (24 + 0)
prod-cons-4 t 132 (48 + 84) 68 (68 + 0) 69 (69 + 0) 120 (120 + 0) — — — —
production-cell-1 t 112 (81 + 31) 110 (110 + 0) 110 (110 + 0) 173 (173 + 0) 173 (173 + 0)
production-cell-3 t 90 (81 + 9) 83 (83 + 0) 83 (83 + 0) 146 (146 + 0) 146 (146 + 0)

Table 4. Iterations performed to check property

# state holding booleans # reachable states
property model truth live var l2s live var + halt halt var l2s

Fp 1394-2-2-true t 60 96 128 1.07856e+08 1.09334e+08 5.40174e+08 1.1707e+08 1.21886e+09
1394-2-2-false f 60 96 128 1.07856e+08 1.10073e+08 5.91601e+08 1.14829e+08 9.86541e+08
dme-03-true t 54 164 — 6579 2.3233e+20 — 4.67112e+20 —
dme-03-false f 54 161 — 6579 1.80144e+16 — 1.80144e+16 —
p-queue t 39 79 86 1824 275 15510 64739 6.06062e+06

GFp abp1 t 17 39 50 180 11202 229326 18622 661506
abp4 t 17 39 74 180 11202 9.81073e+09 18622 3.02828e+10
reactor-base-1 t 65 142 144 398 2912 2912 264889 264889
reactor-base-2 t 65 142 144 398 102293 102293 264157 264157
reactor-bc56-sensors-1 t 69 150 152 6023 80860 80888 — —
reactor-bc56-sensors-2 t 69 150 152 6023 3.60834e+06 3.6133e+06 — —
reactor-valves-gates-1 t 77 166 168 1.80469e+06 4.03702e+07 4.08945e+07 — —
reactor-valves-gates-2 t 77 — — 1.80469e+06 — — — —

G(p→ Fq) guidance t 55 113 193 3.29395e+10 5.10475e+18 2.59509e+25 5.45806e+19 3.05457e+26
prod-cons-1 f 28 56 62 211144 3.9479e+07 2.42509e+08 1.72519e+08 1.08308e+09
production-cell-1 t 54 111 111 81 1257 1257 6415 6415

Table 5.Size of state space
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Fig. 7.Forward jumping counter

9 A Forward Jumping Counter

Our translation may lead to a model that can be verified ex-
ponentially faster. Consider then-bit counter shown in Fig. 7.
It can jump forward from statei to an arbitrary statej >
i. Only in the last statep is true. For the correct version
Fp holds, self-loops are added to generate an erroneous ver-
sion. A standard algorithm for symbolic model checking [10]
needsO(2n) backward iterations to verify the correct counter.
If the state-recording translation is applied, a constant num-
ber of forward iterations suffices asr, r¬p,d,d¬p ≤ 2.

We used the model checker of theVISsystem (v. 1.4) [15]
to verify the forward jumping counter. Apart from backward
(standard) model checkingVISalso provides an implementa-
tion of the forward model checking algorithm by Iwashita et
al. [21]. The experiments were performed on an Intel PC run-
ning at 800 MHz with 1.5 Gbytes RAM, a wall clock limit
was set at 1h.

The results confirm that standard and forward model check-
ing require exponentially many iterations while the translated
version is verified with a constant number of iterations in the
correct case. All algorithms can find a counterexample with a
constant number of iterations.

Fig. 8 shows that both classical and forward model check-
ing need time exponential inn. The translated variant can be
checked in linear time. The standard algorithm is more than
25 % faster than forward model checking. A counterexam-
ple is found in the erroneous version in linear time by all al-
gorithms. Standard and forward model checking give similar
results for the translated variant.

10 Conclusion

We have extended our translation of liveness checking prob-
lems into safety checking problems for finite state systems.
To improve applicability of our method in practice, we have
provided translations for more complex formulae and opti-
mizations to speed up verification. The feasibility of our ap-
proach is underlined by a series of experiments. In one exam-
ple an exponential speedup is observed. Using the new no-
tions of predicated radius and completeness bound we have
derived revised bounds for BDD based model checking.

The current optimizations ensure that only variables are
removed from the translation that don’t influence the truth of
the formula. While removing further variables may produce
spurious counter examples, considerable speed-ups can be
achieved with these reduced models. We have very promis-
ing initial results on an incremental procedure that starts with

only few variables copied and compared in the translation and
adds further variables until the formula is either proved true
or all variables have been added.

Our tight bounds on the minimal completeness bound for
liveness properties may potentially lead to faster algorithms
for liveness checking in general. The performance of the coun-
ter based translation should be evaluated for low complete-
ness bounds. Future research could evaluate how our transla-
tion can be applied to other formalisms such as process alge-
bras. Another direction for research is to look into structural
algorithms to determine bounds on the ‘¬p’-predicated diam-
eter, similar to the algorithms for plain diameters in [1].

Finally we would like to thank Ofer Strichman for sharing
some of his insights on the completeness threshold with us.
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n3 {try, non}

n1

n2 {try}

{crit, try, non}

Fig. 10.Büchi automaton forG((s= try)→ (F(s= crit )))

A Example Translations

A.1 Fairness and Hierarchy

Fig. 9 shows an example of our translation that includes fair-
ness and hierarchy. Two tasks are trying to enter a critical sec-
tion. If both are in theirtry-state a non-deterministic choice
decides which task is allowed to proceed. Fairness ensures
that each task eventually gets its turn.

A.2 Using a B̈uchi Automaton

The example in Fig. 11 shows the translation of the mutex
model with a specification given as a Büchi automaton. The
original specificationG(t0.s= try)→ (F(t0.s= crit )) states
that if task 0 is trying to enter its critical section, it will even-
tually be able to do so. The negated specification was trans-
lated into a generalized B̈uchi automaton with Wring v1.1.0
(available from [33]). The resulting automaton is shown in
Fig. 10.

ftp://vlsi.colorado.edu/pub/Wring-1.1.0.tar.gz
http://www.cs.cmu.edu/~bwolen/software/smv-models/
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MODULE task(id, turn)

VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

FAIRNESS
  turn = id

SPEC
  AF s = crit

MODULE main

VAR
  turn: 0..1;
  t0: task(0, turn);
  t1: task(1, turn);

MODULE task(id, turn, save, saved, on_loop)

-- unmodified part
VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

-- loop detection part
VAR
  l2s_s: {non, try, crit};
ASSIGN
  next(l2s_s) := case
    save & !saved: s;
    1: l2s_s;
  esac;
DEFINE
  looped := saved & s = l2s_s;

-- property observing part
VAR
  fair: boolean;
ASSIGN
  init(fair) := 0;
  next(fair) := fair | on_loop & turn = id;
VAR
  live: boolean;
ASSIGN
  init(live) := 0;
  next(live) := live | s = crit;

MODULE main

-- declaration part with signal forwarding
VAR
  turn: 0..1;
  t0: task(0, turn, save, saved, on_loop);
  t1: task(1, turn, save, saved, on_loop);

-- loop detection part
VAR
  save: boolean;
  saved: boolean;
ASSIGN
  init(saved) := 0;
  next(saved) := on_loop;
DEFINE
  on_loop := save | saved;
  looped := t0.looped & t1.looped;

-- property observing part
DEFINE
  fair := t0.fair & t1.fair;

-- transformed specifications
SPEC
  AG ((looped & fair) -> t0.live)
SPEC
  AG ((looped & fair) -> t1.live)

(a) original (b) state-recording

Fig. 9.Original and transformed SMV code of mutex
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MODULE task(id, turn)

-- unmodified part
VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

MODULE main

VAR
  turn: 0..1;
  t0: task(0, turn);
  t1: task(1, turn);

-- buechi automaton
VAR
  b: {n1, n2, n3, sink};
ASSIGN
  init(b) := {n2, n3};
  next(b) := case
    b = n1 & (t0.s = non | t0.s = crit): {n1};
    b = n1 & t0.s = try: {n2, n1};
    (b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
    1: sink;
  esac;

FAIRNESS
  turn = 0

-- buechi specification
FAIRNESS
  b = n3
SPEC
  AF 0

MODULE task(id, turn, save, saved, on_loop)

-- unmodified part
VAR
  s: {non, try, crit};
ASSIGN
  init(s) := non;
  next(s) := case
    s = non: try;
    s = try & (id = turn): crit;
    s = try & !(id = turn): try;
    s = crit: non;
  esac;

-- loop detection part
VAR
  l2s_s: {non, try, crit};
ASSIGN
  next(l2s_s) := case
    save & !saved: s;
    1: l2s_s;
  esac;
DEFINE
  looped := saved & s = l2s_s;

MODULE main

-- declaration part with signal forwarding
VAR
  turn: 0..1;
  t0: task(0, turn, save, saved, on_loop);
  t1: task(1, turn, save, saved, on_loop);

-- buechi automaton
VAR
  b: {n1, n2, n3, sink};
ASSIGN
  init(b) := {n2, n3};
  next(b) := case
    b = n1 & (t0.s = non | t0.s = crit): {n1};
    b = n1 & t0.s = try: {n2, n1};
    (b=n2 | b=n3) & (t0.s=non | t0.s=try): {n3};
    1: sink;
  esac;

-- loop detection part
VAR
  save: boolean;
  saved: boolean;
  l2s_b: {n1, n2, n3, sink};
ASSIGN
  init(saved) := 0;
  next(saved) := on_loop;
  next(l2s_b) := case
    save & !saved: b;
    1: l2s_b;
  esac;
DEFINE
  on_loop := save | saved;
  looped := saved & b = l2s_b & t0.looped & t1.looped;

-- property observing part
VAR
  fair: boolean;
  b_fair: boolean;
ASSIGN
  init(fair) := 0;
  next(fair) := fair | on_loop & turn = 0;
  init(b_fair) := 0;
  next(b_fair) := b_fair | on_loop & (b = n3);

-- transformed buechi specification
SPEC
  AG ((looped & fair & b_fair) -> 0)

(a) original (b) state-recording

Fig. 11.Original and transformed SMV code of mutex with specification given as Büchi automaton
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