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Abstract. Shorter counterexamples are typically easier to understand. The length
of a counterexample, as reported by a model checker, depends on both the algo-
rithm used for state space exploration and the way the property is encoded. We
provide necessary and sufficient criteria for i@cBi automaton to accept shortest
counterexamples. We prove thaifiéhi automata constructed using the approach

of Clarke, Grumberg, and Hamaguchi accept shortest counterexamples of future
time LTL formulae, while an automaton generated with the algorithm of Gerth
et al. (GPVW) may lead to unnecessary long counterexamples. Optimality is lost
in the first case as soon as past time operators are included. Adapting a recently
proposed encoding for bounded model checking of LTL with past, we construct a
Buchi automaton that accepts shortest counterexamples for full LTL. We use our
method of translating liveness into safety to find shortest counterexamples with a
BDD-based symbolic model checker without modifying the model checker itself.
Though our method involves a quadratic blowup of the state space, it outperforms
SAT-based bounded model checking on a number of examples.

1 Introduction

Counterexamples are a salient feature of model checking that help developers to under-
stand the problem in a faulty design. Most counterexamples still need to be interpreted
by humans, and shorter counterexamples will, in general, be easier to understand.

As LTL is defined over infinite paths counterexamples are, in principle, infinitely
long. In a finite state system every failing LTL property also has a lasso-shaped coun-
terexamplefy® [27]. Such a counterexample can be finitely represented, where its
length is defined as the sum of the lengths of the gBeamd loopy [7]. Counterex-
amples to safety properties also have finite bad prefixes that are more useful for a de-
veloper than a corresponding infinite path. In [17] Kupferman and Vardi showed how to
recognize the shortest bad prefix using an automaton of size doubly exponential in the
size of the corresponding formula. In this paper we concentrate on shortest lasso-shaped
counterexamples for general LTL properties.

BDD-based symbolic techniques usually proceed breadth first and can find shortest
bad prefixes for many safety properties [17]. For more general specifications, finding
a shortest counterexample amounts to finding a shortest fair cycle, which is an NP-
complete problem [7]. Most BDD-based model checkers offer only heuristics to mini-
mize the length of counterexamples to such properties. For a comparative study on their



performance and the length of the generated counterexamples see [20]. In explicit state
model checking a double DFS [8] is typically used to search the state space. It does not
find shortest counterexamples. Gastin et al. propose an algorithm [11] to minimize the
length of counterexamples, which may visit a state an exponential number of times.

The first technique in widespread use that can produce shortest counterexamples
for general LTL properties is SAT-based bounded model checking [3]. While [3] was
restricted to future time LTL, more recent implementations cover full LTL [2], [5],
[19]. Whether shortest counterexamples can be reported depends also on the encoding
of the property. Both, [2] and [19] find shortest counterexamples. [5] achieves higher
performance than [2] but sacrifices shortest counterexamples. A detailed experimental
comparison of [5] and [19] is not yet available. As SAT-based model checking does not
perform equally well on all examples as the BDD-based variant and vice versa [1], an
efficient BDD-based technique that produces shortest counterexamples is desirable.

We recently proposed a method to translate liveness into safety [22], which finds
shortest lassos and performs well on a number of examples in a BDD-based model
checker. The automaton-based approach to model checking [27] employs such loop
detection but requires translation of an LTL property intoiecB automaton. Hence,
not only must the shortest lasso be found, but the property automaton must also accept
a shortest counterexample [11, 1]. So far, size @€l automata was a more important
criterion than length of the resulting counterexamples, and little is known about the
latter.

In this paper we establish necessary and sufficient criteria fimhBautomata to
accept shortest counterexamples. We prove that the approach by Clarke et al. [6] gener-
ates Bichi automata that satisfy these criteria for future time LTL. This is not the case
if past time is included, and we establish a quadratic bound on the excess length. We
give an example that the algorithm by Gerth et al. [12] and many of its descendants do
not generate shortest counterexamples even for future time LTL.

Past time operators do not add expressive power to future time LTL [15]. Still, a
specification that includes past time operators may be more natural than the pure future
variant, and it can be exponentially more succinct [18]. We are not aware of an efficient,
easy-to-implement algorithm to translate a past time LTL formula into its future time
equivalent. We instead construct &dhi automaton that accepts shortest counterexam-
ples for full LTL by adapting a recent, simple and efficient encoding for bounded model
checking with past [19]. We then use our transformation from liveness to safety to find
shortest counterexamples with a BDD-based symbolic model checker. The transforma-
tion itself does not require modifications to the model checker but is purely on the model
and the specification to be checked. The only requirement is a breadth-first reachability
check. Our experiments show that finding shortest counterexamples in the transformed
model with the BDD-based algorithm of NuSMV [4] can be significantly faster than
SAT-based bounded model checking of the original model.

In the following section we introduce our notation. In Sect. 3 we define shortest
counterexamples and investigate whicticBi automata can accept them. We present
our construction of a Bchi automaton that accepts shortest counterexamples in Sect. 4
and give some hints on our implementation in Sect. 5. Experimental results are reported
in Sect. 6. The last section concludes.



2 Preliminaries

Let be afinite set, latt be a finite or infinite sequence overThelengthof a sequence
a is defined asa| = n+ 1 if a = 0g01...0y is finite, o otherwise.a(i) denotes the
element atindexk q; is the suffixa(i)a(i+1) ... of a with its firsti states chopped off.
We also call sequences ovewordsoverX. The crossproduct of two sequenees [3
is defined componentwise.

Let B, y be finite sequences. A sequencis a (B, y)-lassowith stemp andloopYy iff
o = By®. We sometimes writéa, 3) instead of3®. Thelengthof a lasso is defined as
|(B,y)| = |B| + ly|. A lasso(B,y) is minimalfor a iff a = By* andvf',y . a = p'Y* =
|(B.y)| < [{B',Y)|- Thetype[18] of a (B,y)-lasso is defined aype((B,v)) = (IBl.[Y])-
A sequence can be mapped to a set of typemea) = {typg(B,y)) | a = By*°}. We
state the following fact about sequences (proved in the full version of this paper [23]).

Lemma 1. Let (B,y) be a minimal lasso fon, (f',y) a minimal lasso forn’, and
o” =a x a’. Then there are finite sequend®sy’ such that{p”,y") is a minimal lasso

for o, |B"| = max ||, |B']), and|y"| = lem(}y], [V |)°.

2.1 Kripke Structures

Following [16] we define a faiKripke structureas tupleK = (V,1,T,F). V is a finite
set of state variables jy each ranging over a finite €t A state sis a valuation of
the variables iV, the set of all states iS. | is theinitial condition that defines the set
of initial states ofK. Thetransition relation Tis also given as a predicate, referring
to valuations of the variables in the current stategnd in the successor stage,F =
{F1,...,Fn} is a set of (weak) fairness constraints. The value of s is denoted by
v(s). If sis clear from the context; also denotes the value win the current state, and
V' that in the successor state. We assume a set of atomic propogifoihat relates
variables to their potential valuations, each of the ferm c; with ¢; € V. A mapping
L is implicitly given that maps a statgo the set of atomic propositions truesn

A non-empty sequence of states ipathin K if VO <i < |m . (s,54+1) =T. If
S E |, misinitialized. An infinite pathmtis fair if Ve F.Vj . 3k> j. (k) K. N
is the set of paths iK. Via L a path implicitly defines a sequence ovéf2

The synchronous product of two Kripke structukes= (V1,11,T1,F1) andKy =
(2,12, T, ) is a Kripke structureK; x Ko = (Vi UV, I3 Alo, Te A To,FLUR). The
projection of a state onto a set of variableg’ is denoteds|y.

2.2 PLTL

We consider specifications given in Propositional LTL with both future and past time
operators (PLTLB) [9]. The syntax of PLTLB is defined over a set of atomic proposi-
tionsAP. If @ andy are PLTLB formulae, so are@, Vv U, X@, U Y, Y@, S Y. The
semantics of PLTLB is defined recursively on infinite sequences dVeinZFig. 1.

If the past time operatoré andS are excluded, we obtain future time LTL formulae
(PLTLF). Similarly, a past time formula (PLTLP) has no occurrenceX aihdU. For

3 Jcm(a, b) denotes théeast common multiplef a andb.
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Fig. 1. The semantics of PLTLB

this reason, when we speak about future or past we include present. We have the follow-
ing usual abbreviationst = pVv —p, L =T, QAP = ~(=@V —), 0— Y= -0V Y,
PpoP=(@—-PYAW =9, oRY=-(-0U ~p), Fp=T U @ Go=-F-,
Zo=-Y-@, 0T Y=-(-9S—y), Op=T S¢, andHp= -0O—-q.

A PLTLB property @ holds universallyin a Kripke structureK, denotedK =y @,
iff it holds for every initialized fair path. 1K f~y ¢, each initialized fair pathtin K
with Tt|= —@is acounterexampléor @. @ holds existentiallyK =3 @, iff there exists an
initialized fair path that fulfillsp. Each such path iswitnessfor ¢. For every finiteK,
if K &y @, then there exists a fa{f, y)-lassoa in K such thatr = @[27]. A finite path
Thre iS abad prefixfor Qiff VTnt . (|Thnf| = 0 = ThreTint &= @) [17].

For U andSthere exist recursive expansion formulae (e.g. [16]):

=W U Yy 15 = @iff (15 [=Y2) V(5 = Y1) A (T = @)
P=Y1 Sy 1 T = @iff (5 = P2) V(i > 0) A (TE = Y1) A (Th-1 = @)

The expansion df) is not sufficient to guarantee proper semantics: additional measures
must be taken to select the desired fixed point, e.g., by adding fairness constraints.

Finally, thepast operator deptf2] of a formulag, h(¢), is the maximal number of
nested past operatorsqn

0 iff @ AP

h(w) iff @=oW, whereo € {—,X}
h(g) = ¢ maxth(y1),h(yz))  iff @=Uaroyz, whereo € {V,U}

1+h(y) iff =Yy

14+maxth(a),h(d2)) iff @= 1 SY»

The authors of [18, 2] proved independently that a PLTLB propgdan distinguish
at mosth(@) loop iterations of a lasso. We restate Lemma 5.2 of [18] for PLTLB:

Lemma 2. For any lassart of type(ls, 1)), for any PLTLB propertyp with at most i)
nested past-time modalities, and any is+ (@), 15 = @< T4, = @.

2.3 Blchi Automata

A Biichi automatorover a set of variablegX with a corresponding set of stat8§ is a
Kripke structureB = (V,1,T,F), whereV = VK UV. A run p of a Biichi automatorB

on an infinite wordx over X, denoted = a, is an initialized fair path iB such that
Vi.a(i) =p(i)lyx. The set of all runs oB is RungB). A word isacceptedby B iff B

has a run omi. The set of words accepted Bydefines itdanguage Lan¢B).
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Table 1. Property-dependent part of diéhi automaton constructed with CGH+

In the automaton-based approach to model checking [2GBautomaton that
recognizes counterexamples to the specification is constructed. In other words, the lan-
guage of the automaton is precisely the set of witnesses for the negation of the specifi-
cation. Then, an initialized fair path in the synchronous product of the model and that
automaton indicates failure of the specification. Formally, to check whéther, @
holds for some modek and LTL formula¢, we negatep and construct a &chi au-
tomatonB™? with Lang(B™®) = {a | a = —@}. Any initialized fair path inK x B™®is a
counterexample fop.

In this scenarid/K corresponds to the set of atomic propositions:i wheread/
depends on the specific algorithm used to obBai®ur definition of a Bichi automaton
is similar to a state-labeled, generalizeddBi automaton but splits states according to
the variables invK. This is more convenient in a symbolic setting, where this split
happens anyway when the synchronous product with the model automaton is formed.
It does not restrict the generality of the results in Sect. 3 and 4.

An approach to construct aliBhi automaton tailored to symbolic model checking
(used, e.g., in NuSMV [4]) is by Clarke, Grumberg, and Hamaguchi [6]. The original
version deals only with future time formulae, but extensions to PLTLB are available,
see. e.g., [16, 21]. We refer to this extended versio@@sl+ below. An automaton
Bés,. is constructed aBlgy,, = (V9,19A X, T, F9) whereV®, |9, T, andF?® are
defined recursively in Tab. 1. Ak, are Boolean. On every rup on a worda the
valuation of a state variabley of B@GHJF reflects the validity of the corresponding
subformulay of @, i.e., xy(p(i)) < ai = Y. By [6,16,21] we haveLang(BgeHJr) =
{a | a = @}. Note that, for a uniform explanation, Tab. 1 uses state variables also for
Boolean connectives. In [6, 16, 21] these are replaced by macros.

3 Bichi Automata to Detect Shortest Counterexamples

3.1 Shortest Counterexamples for PLTLB

We have defined PLTLB over infinite paths, hence we need to specify what should
be considered a shortest counterexample. Given that we are only interested in finite



representations, and a failing PLTLB property in a finite state system always has a lasso-
shaped counterexample [27], we adopt the following definition from [7]: a shortest
counterexample is one that has a most compact representation as a lasso.

Definition 1. Let K= (V,I,T,F) be a Kripke structure, lep be a PLTLB property. A
patha in K is ashortest counterexampler @in K iff

lL.ake
2. By (a=ByYAVRY . (BY® e NABYY = 0= [(By) <I(B.Y)])

This definition is not optimal. First, an early position of the violation (if that can be
clearly attributed) need not coincide with the least number of states required to close a
loop. Second, apart from length, ease of understanding is not a criterion either.

The first problem is most relevant for properties that also have finite bad prefixes,
i.e., properties that are a subset of a safety property [17]. Finding the shortest bad prefix
for safety formulae can be done in parallel, using the (doubly exponential) method pro-
posed in [17]. The solution to the second problem is left as future work; for approaches
and more references see [13].

3.2 Tight Buchi Automata

In the automaton-based approach to model checking, a PLTLB property is verified by
searching for loops in the synchronous product of a Kripke struéturepresenting the
model, and a Bchi automatoB, accepting counterexamples for the property. Hence, if
shortest counterexamples are desired, the product of the model aniaidineeBtomaton
must have an initialized fair path= (y,v) that can be represented as lasso of the same
length as the shortest counterexamale- (B,y). Kupferman and Vardi [17] call an
automaton on finite wordgght if it accepts shortest prefixes for violations of safety
formulae. We extend that notion taiBhi automata on infinite words.

Definition 2. Let B be a Bichi automaton. B iight iff

Va € Lang(B) . VB,y. ({B,y) is minimal fora =
3peRungB). A 1v. (PEa A A=axp=p® A (V)] =|(BV))

Consider the scenarios in Fig. 2. The automaBoim the left scenario has a run
ot® of the same structure as the counterexanfgtein K, leading to an equally short
counterexamplép x 0)(y x 1)% in the producK x B. The run of the Bichi automaton
in the right scenario has an unnecessarily long stem and loop.

K L L e e e e e e L e N S o S S
B \ y \ B y \ y \i y
B o e 0 eleeelec e el 0000000 0loeoeoooefoeoel -
g T T T o T T T
K x B : : : : cee : : .o
Bxo YXT  yXT - yXT (BYY(9)) x (0) VDYW(0)) x (tTT)

Fig. 2. Scenarios with shortest and non-optimal counterexample

From Lemma 1 it can be inferred that a path of the same lendth«iB as the coun-
terexample irK implies that the corresponding rgn= ot® in B can be represented as



the same type a&,y). The left scenario in Fig. 2 suggests another, alternative for-
mulation, which may be more intuitive and is easier to prove for some automata: the
subsequences of starting at indices #,10,.. .. are the same, as are those beginning at
57,11,...,and §9,12 .... On the other hand, the subsequences starting at the respec-
tive indices in a single iteration are all different — otherwise a part of the loop could be
cut out, contradicting minimality. Hence, & is tight, there must be a rymon a with

the following property: for each pair of indicesj, if the subsequences of starting

ati and j have the same future{ = a;), thenp mapsi and | to the same state iB

(p(i) = p(j))- Theorem 1 establishes the equivalence of the criteria.

Theorem 1. Let B be a Bichi automaton. The following statements are equivalent:

1. Bis tight.
2. Ya € LangB) . VB,y. ({B,y) is minimal fora =
Jp € RungB) . (p = antype((B,y)) € type(p)))
3. Ya e LangB) . ((FB,y.a =By*) =
(Gp€RungB) . (p=an(Vi,j.ai=aj=p(i)=p(j)))))

Proof. 1=-2: Assume a rup = o1® such tha = a x p = pv® with [(1, V)| = |{B,Y)].
Let (0’,T") be minimal forp. Lemma 1 givegd’| < |B| and|T’| divides|y|. Now it's
easy to findo”,1” with a”1”® = o1%, andtype((a”,1")) = typg (B, Y)).

2 = 1: Assume a rump with typg(B,y)) € type(p). By definition of type, there exist
0,1 such thap = o1%, |B| = |o], and|y| = |1|. Hence, withu= x o andv =y x T, we
haveh = a x p = w® and|(,v)| = [{B,V)|-

2= 3: Leta € Lang(B), assum€B,y) minimal for a, and letp = ot® be a run oro
such thatB| = |o] and|y| = [t|. Leti, j with a; = aj. It remains to show tha(i) = p(j).
This is done by case distinction according to the positiorisaoid j w.r.t. to3 andy in
a. The casé = j is obvious, the other cases either contradict the minimalit{3of)
for o or can be reduced to a previous case. Details are given in the full version [23].

3= 2:Leta =Py* € Lang(B) andp a run ona with Vi, j . o = aj = p(i) = p(j). Let
(B,y) be minimal fora.
o =By = Vi <|y|, VK. a1 = Vi = || 4ty
= Vi < |V, VK. p(|B[+1) = p(IB +i+ |vk)
Leto =p(0),...,p(|B| —1) andt = p(|B)),-.-,P(|B| + |y — 1). Hence,p = a1® such
that|o| = |B| and|t| = |y]. O

3.3 (Non-) Optimality of Specific Approaches

The approach by Gerth et al. (GPVW) [12] for future time LTL forms the basis of
many algorithms to construct smalliBhi automata, which benefits explicit state model
checking but is also used, e.g., for symbolic model checking in VIS [14]. Figure 3 shows
an example that GPVW does not, in general, lead to tight automata. Subsequences start-
ing from the initial state of the &chi automaton fulfillp A XGq, those starting from the



other state satisf$5g. The model has a single, infinite path satisfy@gpAq) — a
counterexample of length 1 to the specificatiofp A XGq). Note that adding transi-
tions or designating more initial states is not enough to make the automaton in Fig. 3
tight: an additional state is required. Non-optimality of GPVW is shared by many of its
descendants, e.g., [26].

model

Biichi automaton
péd ’ P.XGa.p&XGa)

Fig. 3. Model and Richi automaton to recognize counterexamples=fgo A XGq) resulting in
non-optimal counterexample

In a Biichi automatorBZ,,, each state variable corresponds to a subfornpuid
¢ (see Tab. 1). This directly proves tightnessB@EHJr for a PLTLF formulag.

Proposition 1. Let ¢ be a future time LTL formula, let®,,, be defined as above.
Then Bgy,, is tight.

Proof. Every two states iB%g,,, differ in the valuation of at least one state variable,
and therefore specify a different, non-overlapping future. According to Thm. tichiB
automatorB is tight iff for each accepted word there exists a rup on a in B with
Vi,j . (ai=aj=p(i) =p(j)). Clearly,a; = a; have the same future, hence, on each
run inB we havea; = a; = p(i) = p(j). O

What is useful for future time hurts tightness as soon as past operators are included:
B@GH . may also distinguish states of an accepted word that have different past but
same future. Lemma 2 states that a past time formula can distinguish only finitely many
iterations of a loop. This can be used to establish an upper bound on the excess length
of a counterexample produced by CGH+ for a PLTLB formula:

Proposition 2. Let K be a Kripke structurep a PLTLB property with K4y @, and
Bogy,. @ Buchi automaton constructed with CGH+. Leet= (B,y) be a shortest coun-

terexample in K. Then, there is an initialized fair lagse= (i, v) in K x BZ&,, with
W < [B+ (h(=¢) + 1)yl and|v] = |y|.

The proof is given in the full version [23]. For an example that exhibits excess
length, which is quadratic in the length of the shortest counterexample, consider the
simple modulon counter and property in Fig. 4 (adapted from [2]). The innermost
formulaO(c = n—1) remains true from the end of the first loop iteration in the counter,
O((c=n—2)A(O(c=n-1))) becomes and remains troe- 1 steps later, etc. Hence,

a loop inB(;‘(‘_i,,_,+ is only reached afte®(n?) steps of the counter have been performed.
Clearly, the shortest counterexample is a single iteration of the loopQyith steps.

Every PLTLB formula can be transformed into a future time LTL formula equivalent
at the beginning of a sequence [10]. Due to [18] we can expect an at least exponential
worst-case increase in the size of the formula. Rather than translating an LTL formula
with past into a pure future version, we follow a different path in the next section.



((c=1)
% G)9 %@% O(c=n-1)
).4.

Fig. 4. Simple modulor counter with property

4 A Tight Look at LTL Model Checking

Proposition 2 states that diBhi automaton constructed with CGH+ accepts a shortest
counterexample with a run that may have an overly long stem but a loop of the same
length as that of the counterexample. Bounded model checking [3] has been extended
recently to include past time operators [2, 5, 19]. Of these, [2, 19Vingel unrolling

of the transition relation to find shortest counterexamples if past time operators are
present. Inspired by [19], we adapt this approach to construct a tig¢hiBautomaton

for PLTLB based on CGH+.

4.1 Virtual Unrolling for Bounded Model Checking of PLTLB

In bounded model checking, the model checking problem, which asks whetherp
holds, is translated into a sequence of propositional formulae of the|fdtng, k]| in

the following way:|[M, @,K]| is satisfiable iff a finite informative bad prefix [17] or
lasso-shaped counterexampief lengthk exists. In the case of a lasso-shaped coun-
terexample, a loop is assumed to be closed between the lastitatend some suc-
cessorm(l + 1) of a previous occurrence of that last staié) = (k). The resulting
formulae are then handed to a SAT solver for increasing bolnotdil either a coun-
terexample is found, absence of a counterexample is proved, or a user defined resource
threshold is reached. Typically, one fresh Boolean variapjgis introduced for each
pair of relative position in the path (@ j <Kk) and subformulap of ¢, such thak;  is
true iff P holds at position.

On a lasso-shaped path, the truth of a future time formpaligpositionk may depend
on the truth of some of its subformulgeat positions> k. While those are not available
directly, the truth of a future time formula at a given position within the loop does not
change between different iterations of the loop. Hence, the truth valyieadposition
0<m< k—Iinany iteration > 0 of the loop can be substituted with the truth value of
Y at positionmiin the first iterationTy . j_i)+m = ¥ < Tm = Y. A single unrolling
of the loop is therefore sufficient, resulting in a shortest counterexample.

When past time operators are admitted, this is no longer true. By Lemma 2, the
truth of a subformulap may change between the fitgty) + 1 iterations of the loop
before it stabilizes. Hence, only afta(y) + 1 iterations can the truth value df in
some iteration > h(y) + 1 of the loop be replaced by the truth valueyofn iteration
h(Y) + L T 4ik—1)+m F W & TG (hy)+1)k-1)+m = Y. A naive approach for checking a
past time formulapwould still have one Boolean variable per pair of relative position in
the path and subformula. However, the approach would have to ensure that the path ends



with h(g) + 1 copies of the loop. This would lead to a more complicated formulation of
loop detection and would not allow to find shortest counterexamples. A less naive, but
still suboptimal solution might not guarantee a high enough number of loop unrollings
directly but could include the variables representing the truth of properties in the loop
detection. That approach could not ensure shortest counterexamples either.

Benedetti and Cimatti [2] showed how to do better: note, that some subformulae
W of @ have lower past operator depth, and, therefore, require fewer loop iterations to
stabilize. In particular, atomic propositions remain stable from the first iteration onward.
It is sufficient to perform a single unrolling of the loop. Rather than having only one
Boolean variable; y per pair of relative position in the path and subformulp, there
are now as many variables per pgiry) as iterations of the loop are required for that
subformula to stabilize. Each variable corresponds to the truth valeadvthe same
relative positionj but in a different iteration of the loop:x;j yi < Tik-1) = ¥ with
0<j<kAO<i<h(y) (the value ofx; y; may not be well-defined if > 0A j < 1).
Thisvirtual unrolling of the loop leads to shortest counterexamples.

4.2 A Tight Buchi Automaton for PLTLB

A Buchi automaton constructed with CGH+ suffers from similar problems as the naive
approaches to bounded model checking of PLTLB. The automaton has a single variable
representing the truth of a subformula in a given state. For a loop in the product of the
model and the automaton to occur, the truth of all subformulae must have stabilized.
Hence, we can adopt the same idea as outlined above to obtain ailigitaBitomaton.

We construct a Behi automatomBs = (Ve |25 Tog Foap) for a PLTLB formulagas
follows: Vidg = VOU {Ib,le} with LB = LE = { L, T}, 1&5 =19 A X0, Tdg = T®A (Ib —
Ib"), andFds = FPU {{Ib Ale}}, whereV?, I?, T® andF® are defined recursively in
Tab. 2.

Each subformulap of @is represented blg(ys) + 1 state variablesy ;. We refer to
thei in xy i asgenerationbelow. Two more state variablés (for loopbody) andle (for
loopend) are added. As long dtsis false (on the stem), only variables in generation 0
are constrained according to the recursive definition of PLTLB. Whdrecomes true
(on the loop), the definitions apply to all generations. Whilis false (the end of a loop
iteration is not yet reachedyy ; is defined in terms of current and next-state values of
variables in the same generation. Wieis true (at the end of a loop iteration), the next-
state values are obtained from the next generation of variables if the present generation
is not already the last. The fairness constraints, which guarantee the correct fixed point
for U formulae, are only applied to the last generation of the corresponding variables.

The intuition is as follows. Starting with generation 0 on the stem and the first
iteration of the loop, each generatiorf xy; represents the truth a in one loop
iteration, the end of which is signaled Hiy A le being true. Formally, foi < h(y),
Xy, (j) holds the truth ofp at positionj of a word iff Ib A le has been true on that path
times prior to the current state. From th@y)-th occurrence ob Ale, Xy ) continues
to represent the truth af.

Note thatlb andle are oracles. The valuation of these variables on an arbitrary
run may not correspond to the situations they are named after. Howevég jdo



U] definition
V¥ = {xpo}, whereXpo={L,T}
p TY = Xp,0 < P
v =T FY=0
V¥ — v UU| {xqJ }, whereXyj={L,T}
P [TV = TN /\/\|:0) (Xy,i = ~Xy,,i)
v — 0 FY=F%
VY = vy uU {xqJ i}, whereXy; ={L,T}
WiV | TV = TW ATY2 A /\Iio) (Xy,i < Xy min(i,h(Wy)) \/XllJz-,mln(i-,h(Lllz)))
IV = W p W2 =Ly Y =1
V¥ = v g UMW, i1, whereXyi = {L, T}
TV = TV A (=lb — (g0 < X/LIJLO))
h(w)—
Xt AllIbA—le) — ALY g X, 1)
h(g)-1
Al(bAle) — AN (i < X 111)
Al — (X ) = Xy, hg)))
v = FY=F%
V¥ = vdigvizy Urﬂé>{x¢,i}, whereXyi = {J_,T}
TY = TWATY2 A (-lb h—> (Xy,0 < Xyp,0 V (Xyy, 0/\Xw o))
A((Ib A—le) — /\i (Xqu < Xy, min(i.h(w2)) Y Xy min(i h(wn)) A X))
YU h(p)—
Al(Io A1) — A ™ (ki o Xy mintin)) V g minti. ) A Xi1)))
A(Ib = Xy h(w) < Xuo.h(wz) ¥ Ky hiws) A X))
1V = W p W2 FY =FY1yFY2 U{{ﬁxw,h(w) \/lez,h(qu)}}
V¥ = v UMW (xy i}, whereXyi = {1, T}
TV =T A(-b— (xLIJ 0 - xlpl 0))
A(Ib A-le) — Ky e X))
Y'-IJ:]_ h(w),z /XL|J Rl 1,0
A(IbAle) = ALy “(Kyiv1 < X))
|b—> Xll,lh <_>XLIJ1hlIJ1)))
v —Iq’lA(x¢0<—>J_) FY=FW%
V¥ = v oy UMW (1}, whereXy; = {1, T}
TV = T ATY2 A (~Ib — (% quHszoV(leoAXw)))
h(p)-1
015U Ao A=le) — AL (i = X, minti-nwa)) ¥ Kowmingi.nun)) A X))

h(p)—1
/\((Ib A Ie) Ay :<q(;> (X(p i+1 XL|,|2,m|n (i+1.h(y2)) (X/Lplﬁmm(l-t,-lﬁh (V1)) /\qu,i)))

AIB = (K ) = Xpoe) Y i) M Xwhw)))
W = WA T2 A (X0 < Xypo)  F¥ = FUURY:

Table 2. Property-dependent part of a tighti€hi automaton




correctly recogniz€a | o = @}, it is not relevant which generation holds the truth at a
given position. It is only required that at each position some generation represents truth
correctly, each generation passes on to the next at some point, and ultimately, depending
ony, the last generatioh() continues to hold the proper values.

For tightness, the variables of a given generation need to be able to take on the
same values in every iteration of the loop, regardless of whether they currently hold
the truth or not. This requires breaking the links to previous iterations for variables of
generation O representing and S formulae at each start of a loop iteration after the
first. In addition,Y - andS-variables of generations 0 may not be constrained by past
values at the beginning of the loop body. On a shortest run on some lasso-shaped word
a, Ib andle will correctly signal loop body and loop end.

Theorem 2. Let@be a PLTLB formula, let & be defined as above. Then, L&B§g) =
{o| a = @} and B s tight.

Proof. By Lemma 3 and 4.

Lemma 3. LangBZyp) = {a | a = ¢}

d

Proof. (Correctness) We show that on every fair patiVg, 19, Tas, Fog) the values of
Xy,i; () represent the validity of the subformulaat positionj, whereij is either the
number ofle’s seen so far oh(W), whichever is smaller. Formally, lgtbe a run oro
in (V5 19, TS, FSL). For each positionj in a, leti; = min(|{k | (k < j —1) Alb(p(k)) A
le(p(k)) }|,h(W)). Inspection of Tab. 2 shows that the constraints onxthe(j) are
the same as the constraints on the corresporxljiig) in Tab. 1. Henceqj = ¢ &
leJ,ij (p(]))

(Completeness) We show that there is a rufMg;, 1%, TS5, FSp) for each worda.
Choose a set of indicé$ = {jo, j1,...} such thale(j) < j € U. Further, choosés <
jo and setlb(j) < j > Is. We inductively construct a valuation fog;(j) for each
subformulay of ¢, i < h(y), andj > 0. If Y is an atomic propositiom, setxyo(j) <
(aj = p). If the top level operator af) is Boolean, the valuation follows directly from
the semantics of the operator. F¥r eachxy(j) is defined exactly once in Tab. 2.
W = Y is similar. Note thah(y) = h(y;) + 1. Thereforej runs only up toh(y) —
2 if IbAle; i =h(y) —1 is covered by the case fdp in the line below.xy;(j) is
unconstrained if =0andj—1cU aswellasifi > 1 andj <Is. Fory = (3 U 3,
start with generatiom(). If Xy, n«y,) remains false from somgy on, assignvj >
jm - Xy h(y) (J) <> L. Now work towards decreasirigfrom eachj, with Xy, n(y,) (in) <
T, using line 4 in the definition of for U. Continue with generatioh(y) — 1. Start
at eachj € U by obtainingxy ny)—1(j) from the previously assignexi, ny(j + 1)
via line 3. Then work towards decreasifggain, using lines 1 or 2 in the definition
of T until Xy ny)—1 IS assigned for alj. This is repeated in decreasing order for each
generation G6< i < h(g) — 1. ForS, start withxy o(0) and proceed towards increasing
j, also increasingwhenj € U (lines 1 — 3 in the definition of for S). Wheni = h(y)
is reached, assigry ) for all j using the fourth line in the definition of. Then,
similar toU, work towards decreasirigand j from eachj € U. Fairness follows from
the definition ofU, Is, and the valuation chosen fo.

The claim is now immediate by the definition Icg’(3 a



Lemma 4. B;is tight.

Proof. We show inductively that the valuations of the variablgg(j) can be chosen
such that the valuation at a given relative position in a loop iteration is the same for each
iteration in a generation Formally, leta = By® with a |= ¢@. There exists a rup such

that for all subformula&) of ¢

Vi <h().Vj1,j2>|Bl. (Fk>0. j2—ji=Kly]) = (Xyi(P(j1)) < Xpi(p(i2))))

Atomic propositions, Boolean connectives, atdre clearY is also easy, we only have
to assign the appropriate value from other iterations wigij) is unconstrained. For
Y = Y1 U Yz, by the induction hypothesisy, ny,) is either always false (in which
case we assignexd, n (J) to false according to the proof of Lemma 3) or becomes
true at the same time in each loop iteration. Hence, the claim holds for gendvagpipn
From there we can proceed to previous generations in the same manner as in the proof
of Lemma 3. ForS we follow the order of assignments from the proof of Lemma 3.
By induction, the claim holds for generatidriy). From there, we proceed towards
decreasing andi. We use, by induction, the same valuations of subformulae and the
same equations (though in reverse direction) as we used to gek{yef@) to genera-
tion h(y). O

BY; hasO(21%) states. A symbolic representation can be constructe@(jp2)
time and space. Note, that the size of @&cBi automaton that is tight in the original
sense of [17] (i.e., it recognizes shortest violating prefixes of safety properties) is doubly
exponential ing| [17].

The same optimization as used in Sect. 2 for CGH+ can be applied. It replaces state
variables for Boolean connectives with macros in order to reduce the number of BDD
variables in the context of symbolic model checking with BDDs.

5 Finding Shortest Counterexamples with Symbolic Model
Checking

We implemented the Bhi automaton described in the previous section for NUSMV
[4]. We use our reduction of finite state model checking to reachability analysis [22] to
find a shortest counterexample. For efficiency reasons, the encoding of the automaton is
tightly integrated with the symbolic loop detection, which is at the heart of [22]. As an
example, the signals for loop body and loop end are provided directly by the reduction
rather than being separate input variables.

In fact, our implementation started as an adaptation of the very elegant encoding of
PLTLB in [19] to our reduction. Only then we extracted a tiglitdi automaton from
the construction. We kept our original implementation for its superior performance but
chose to provide the more abstract view in the previous section, as, in our opinion, it
provides better understanding and is also more widely applicable.

6 Experimental Results

In this section we compare our implementation to find shortest counterexamples with
symbolic model checking from Sect. 5 with bounded model checking using the encod-



ing of [19] and the standard LTL model checking algorithm of NuSMV [4]. For our
translation, we performed invariant checking with NuUSMV 2.2.2. For standard LTL,
alsoin NuSMV 2.2.2, forward search on the reachable state space was applied. Bounded
model checking was performed with the implementation of Timo Latvala in a modified
NuSMV 2.1.2. If cone of influence reduction is to be used with our translation, the re-
duction must be applied before the translation. However, NUSMV 2.2.2 doesn’t seem
to provide a direct way to output the reduced model. Therefore, cone of influence re-
duction was disabled in all experiments. Otherwise, NuSMV 2.2.2 would find shorter
loops, involving only the variables in the cone of the property, in the reduced model.
Platform was an Intel Pentium IV at 2.8 GHz with 2 GB RAM running Linux 2.4.18.
Timeout for each experiment was set to 1 hour, memory usage was limited to 1.5 GByte.
As the focus of this paper is on producing lasso-shaped counterexamples, only prop-
erties were chosen that proved false with such a counterexample. Results are shown in
Tab. 3. The experiments include all real-world models used in [19]: abp4, brp, dme?,
pci, and srg5. If the property checked in [19] has a lasso-shaped counterexample, it
was used unmodified in our experiments (“L"). We also used the negated version of that
property if that yields such a counterexample ("). Some of the properties were made
a liveness property by prefixing them wikh(requiring a loop to prove false) or were
enhanced to make part of the property non-volatile (yielding a more interesting coun-
terexample), marked “nv”. In addition, we chose some of the models from our previous
work [22], with some properties already verified there and with new, more complicated
properties. Templates of the properties are shown in the full version of this paper [23].
Columns 3 — 5 give the results for standard LTL model checking (“LTLI¥ the
length of the counterexample, time is in seconds, and memory usage in thousand BDD
nodes allocated. The 6th col. gives the length of a shortest counterexample as reported
by our translation and bounded model checking. Columns 7 and 8 give run time and
memory usage for our algorithm (“L2S”). The last three columns indicate run time for
bounded model checking (“BMC"). The first of these is the time for the last unsuccess-
ful iteration of the bounded model checker alone (not yet producing a counterexample),
the second is the time for the first successful iteration alone (giving the shortest coun-
terexample), and the last column is the time for all bounds from 1 until a counterexam-
ple is found. The implementation of [19] is not incremental [25], i.e., the SAT solver
cannot benefit from results of previous iterations. We use the time required for the last
unsuccessful iteration (“Timke— 1") to estimate the amount of work that an incremen-
tal implementation would at least have to do. If our algorithm needs less time than that,
we conclude that our algorithm is faster. “t.0.” or “m.o.” indicate time- or memory-out.
Both, L2S and BMC, find significantly shorter counterexamples than LTL. Our al-
gorithm often outperforms BMC with respect to time. On the other hand, L2S needs
more memory than standard LTL in most cases. L2S may even give a speed up when
compared to the standard algorithm on some examples.

7 Conclusions

We have presented a method to find shortest lasso-shaped counterexamples for full LTL.
Experimental results show competitive performance with bounded model checking. We



LTL [ L2S BMC
’model ‘propenJ[ " time[memony] || time[memony[timel —I[timelJtime 1...T|

1394-3-2 0 16| 72.8 119| 11]| 7.9 1267 9.3 3.1 54.3
1 12| 17.0 157|| 11|| 6.8 1556 9.4| 3.7 60.0
1394-4-2 0 to| to. t.o.|| 16[[462.1] 34695 219.7 13.6) 1233.4
1 20| 812.6 2356 16((429.0 44177 314.6 14.9 14999
abp4 L 37 <1 234]| 16| 16.3 844 78.8 8.4 340.2
brp -L 6 4.8 46| 1| <1 192 <1 <1 <1
-L,nv |l 68 15.0 122|| 24{|]104.9 1560/ 1005.0260.§ 3171.
dme2 -L 1 <1 123 1f| <1 128 <1 <1 <1
-L,nv |l 40] 23 408| 39|| 1.2 52 97.4 7.9 502.9
dme5 - L 1| 11.3 112 1f| 1.1 186 <1 <1 <1
- L, nv ||344{1533.] 330|| 99(|384.8 1396 to.| to. t.o.
dme6 -L 1| 29.1 183[| 1f| 1.6 362 <1 <1 <1
=L, nv || to. t.o. t.0./(119(|1926.4 2093 to.| t.o. t.o0.
pci FL 22| 231.4 341]| 18| t.o. t.0. 771.2965.4 1879.69
prod-cons 0 69 3.1 311]] 26[] 16.5 722 442.4 417 551.8
1 33 2.0 250|| 21|| 1.8 162 25.0 11.1 126.2
2 58/ 71.0 216|| 24|| 3.1 221 7.6 10.9 178.9
3 42| 7.9 241| 24|| 2.6 224 28.0 8.93 361.6
production-cell0 85 <1 300|| 81|| 9.8 220 59.1107.8 t.o.
1 146 1.4 241|| 81| t.o. t.0. 23.4 30.0 t.o.
bc57-sensors [0 112) 141.3 213|103({194.1 4382 1143.1201.9 t.0.
srg5 -L 6] <1 120/ 1f| <1 74 <1l <1 <1
-Lnv| 15 <1 31| 6 1.5 217, <1l <1 <1

Table 3.Real-world examples

have established general criteria fotidi automata to accept shortest lasso-shaped
counterexamples, extending the notion of a tight automaton from [17]. We have pre-
sented a construction of aiBhi automaton that is tight for full LTL.

Our construction generate$iBhi automata with a high number of states. In ongoing
work we apply virtual unrolling to obtain tight i&hi automata from the subclass of
automata that, like automata constructed with CGH+, accepts counterexamples with an
overly long stem but shortest loop. This should result in tight automata with fewer states
and may help to facilitate application also in explicit state model checking employing,
e.g., the algorithm of [11]. Further options include using transition-labeled instead of
state-labeled automata [1] as well as more deterministic automata [24].

Acknowledgementd/Ve thank Timo Latvala for providing us with his modified variant
of NuSMV 2.1.2 including a very timely bug fix and Roderick Bloem for pointing us to
the problem of a shortest informative vs. any shortest counterexample.
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