
Minimizing Learned Clauses

Niklas Sörensson1 and Armin Biere2

1 Chalmers University of Technology, Göteborg, Sweden.
2 Johannes Kepler University, Linz, Austria.

Abstract. Minimizing learned clauses is an effective technique to reduce
memory usage and also speed up solving time. It has been implemented
in MINISAT since 2005 and is now adopted by most modern SAT solvers
in academia, even though it has not been described in the literature
properly yet. With this paper we intend to close this gap and also provide
a thorough experimental analysis of it’s effectiveness for the first time.

Introduction

Learning clauses [9] is an essential part in modern SAT solvers [6, 8, 10]. Learn-
ing is used for forward pruning search space and in combination with a conflict-
driven assignment loop [8, 9] also allows to skip redundant decisions during back-
tracking. The 1-UIP learning scheme [9] is considered to work best [4, 18]. It is
possible to increase the efficiency of the 1-UIP scheme, by removing additional
literals from learned clauses. This can either be done locally [2] or recursively
[11, 16]. The latter was first implemented in MiniSAT in 2005 but has not been
properly described in the literature yet.

Learning is usually explained with the help of implication graphs [8], which
has assigned variables as nodes connected through antecedents [8]. The analy-
sis starts with a clause in which all literals are assigned to false, formally the
antecedent of the conflict κ [8], and resolves in antecedents from its implied
[8] variables recursively. Several termination conditions are possible [18]. In the
simplest scheme the process continues until only decisions are left. The standard
algorithm [9] makes sure that learned clauses derived this way contain exactly
one literal from the current decisions level. This is usually referred to as that the
learned clause must be asserting.

If antecedents are resolved in reverse assignment order, the first derived as-
serting clause, is called the first unique implication point (1-UIP) clause [8, 9].
Learning 1-UIP clauses is considered to be the best learning scheme [4, 18]. In
extensions [4, 7, 9, 13] additional learned clauses are not asserting, and are added
as complement to the 1-UIP clause. However, a proper subset of the 1-UIP clause
will necessarily be more successful at pruning future search. This is our original
motivation for the algorithms in this paper.

The 1-UIP clause is minimized by resolving more antecedents without adding
literals. A similar idea appears in [2], which we call local minimization. A general
version was discovered independently by the first author and implemented in
MINISAT 1.13 [16]. This recursive minimization is now part of many SAT solvers.



top−level

decision

decision

decision

decision

k

c

f

r

a

d

g

l

unit

t

= 1 @ 0

= 1 @ 1

= 1 @ 2

= 1 @ 1

= 1 @ 3

= 1 @ 4 = 1 @ 4

= 1 @ 3 = 1 @ 3

= 1 @ 2 i = 1 @ 2

κ

unit

conflict

e = 1 @ 1

b = 1 @ 0

h = 1 @ 2

y = 1 @ 4s = 1 @ 4

= 1 @ 4 z = 1 @ 4x

Fig. 1. An implication graph with two top-level unit clauses, and four decisions. The
1-UIP scheme, resolves from the antecedent (y ∨ z) of the conflict as few as possible
literals until exactly one literal from the current decision level, the 1-UIP s, is left. The
resulting 1-UIP clause is (d ∨ g ∨ h ∨ i ∨ s). Depending on the definition, e.g. whether
all literals in the derived clause are decisions, or just the UIP on the current decision
level, the decision UIP clause either is comprised of the negations of all the decisions
(c ∨ f ∨ k ∨ r) or is obtained from the 1-UIP clause, replacing s by l ∨ r. In any case,
all four non top-level decision levels are “pulled” into the decision UIP clause, while
the 1-UIP clause allows to jump over the decision level of k. Local minimization of the
1-UIP clause removes i, since its single antecedent literal h already occurs in the 1-UIP
clause. This is an instance of self-subsuming resolution, resolving (d ∨ g ∨ h ∨ i ∨ s)
with (h∨ i) to obtain (d∨ g ∨ h∨ s). No other local minimization is possible. Top-level
assigned literals can be ignored. Thus the nodes d and g together dominate h. As a
consequence h can be deleted using recursive minimization to obtain (d ∨ g ∨ s).

Minimization

The example in Fig. 1 applies the original 1-UIP scheme and the decision scheme.
It also explains how the 1-UIP clause can be minimized locally or recursively.
More precisely, the 1-UIP clause can be minimized locally by resolving out a
literal, which has other literals in its antecedent already in the 1-UIP clause.
This gives a first version of an algorithm for locally minimizing learned clauses:

Generate the 1-UIP clause. Apply self-subsuming resolution, in reverse
assignment order, using antecedent clauses for self-subsuming resolution.

This algorithm actually produces a regular and linear resolution derivation of
the minimized clause. In general, resolving antecedents can not introduce cycles,
even if resolved out-of-order with respect to assignment order, in contrast to
[1]. Furthermore, tree-like resolution can be made regular [17]. Thus literals can
actually be deleted in an arbitrary order. This simplifies implementation consid-
erably and results in the following modified algorithm for local minimization:



Generate the 1-UIP clause. Mark all its literals. Remove those implied
variables which have all their antecedent literals marked.

On the current decision level, enforcing traversal in assignment order presents
no overhead, since literals of the current decision level have to be unassigned
anyhow. Traversing the trail [6] backward gives the desired topological ordering.
Traversing all literals on the trail of previous decision levels is more costly.

It is possible to continue resolving out literals, as long all newly introduced
literals are eventually resolved out. A literal can be deleted if its antecedent
literals are, in the implication graph, dominated by other literals from the 1-UIP
clause. The recursive minimization algorithm can be formulated as follows:

Generate the 1-UIP clause. Mark its literals. Implied variables in 1-UIP
clause are candidates for removal. Search implication graph. Start from
antecedent literals of candidate. Stop at marked literals or decisions. If
search always ends at marked literals then the candidate can be removed.

Soundness can be proven by simulating graph traversal with resolution. The
only issue is, if literals are resolved out, not respecting the reverse chronological
assignment order. Again these irregularities can be eliminated by reorganizing
the derivation [17]. The result is a regular tree-shaped resolution derivation.

As optimizations successful removals should be cached and we can termi-
nate the search through the implication graph early as soon as a literal from
a decision level that is not present in the 1-UIP clause is encountered. This
early termination condition can be implemented by marking decision levels of
the 1-UIP clause, if decision levels are represented explicitly in the SAT solver,
or as in MINISAT and PICOSAT, by an over-approximation technique based on
signatures as in subsumption algorithms [5].

Experiments

To empirically compare the effectiveness of recursive versus local minimization
versus no minimization of learned clauses at all, we used the same set of 100
benchmarks as in the SAT Race’08 [14]. The run times were obtained on our 15
node cluster with Pentium 4 CPUs running at 2.8 GHz with 2 GB main memory.
The space limit was 1.5 GB and the time limit 1800 seconds.

In order to obtain a statistically valid evaluation, we first employed two
different SAT solvers. Additionally we used two versions of each SAT solver, one
with preprocessing enabled and one version in which it was disabled. Second
we use all 100 SAT Race’08 instances. Third, we injected noise using a random
number generator to influence decision heuristics. The same set of benchmarks
was then run 10 times with different seeds for each of the four configurations,
i.e. one out of two SAT solvers with and without preprocessing. Altogether we
have 4000 runs for each of the three variants of the minimization algorithm. The
worst case accumulated execution time would have been 3 ·4000 ·1800 seconds =
6000 hours. Since many instances finished before the time limit was reached it
actually only took 2513 hours of compute time to finish all 12000 runs.



As first SAT solver we use an internal version of MINISAT [6], a snapshot from
November 11, 2008. It is almost identical to the one described in [15] the winner
of the SAT Race’08. It additionally allows to perturbate the initial variable
ordering slightly using a pseudo random number generator. The second SAT
solver is PICOSAT [3] version 880, an improved version of PICOSAT [3]. The major
improvement was to separate garbage collection of learned clauses from restart
scheduling. One out of 1000 decisions is a random decision in PICOSAT. The
seed for the random number generator is specified on the command line. Table 1
shows our main experimental results. In Tab. 2, we focus on two configurations.
More details can be found at http://fmv.jku.at/papers/minimize.7z.

Conclusion

In this paper we discussed algorithms for minimizing learned clauses. Our ex-
tensive experimental analysis proves the effectiveness of clause minimization.

References

1. G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais. A generalized
framework for conflict analysis. In Proc. SAT’08.

2. P. Beame, H Kautz, and A Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artif. Intell. Res. (JAIR), 22, 2004.

3. A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), 4, 2008.

4. N. Dershowitz, Z. Hanna, and A. Nadel. Towards a better understanding of the
functionality of a conflict-driven SAT solver. In Proc. SAT’07.

5. N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause
elimination. In Proc. SAT’05.

6. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT’03.
7. H. S. Jin and F. Somenzi. Strong conflict analysis for propositional satisfiability.

In Proc. DATE’06.
8. J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT

solvers. In Handbook of Satisfiability. IOS Press, 2009.
9. J. Marques-Silva and K. Sakallah. GRASP: A Search Algorithm for Propositional

Satisfiability. IEEE Trans. on Computers, 48(5), 1999.
10. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proc. DAC’01.
11. A. Nadel. Understanding and Improving a Modern SAT Solver. PhD thesis, Tel

Aviv University, 2008. Submitted.
12. S. Pilarski and G. Hu. Speeding up SAT for EDA. In Proc. DATE’02.
13. K. Pipatsrisawat and A. Darwiche. A new clause learning scheme for efficient

unsatisfiability proofs. In Proc. AAAI’08.
14. C. Sinz. SAT-Race’08. http://baldur.iti.uka.de/sat-race-2008.
15. N. Sörensson and N. Eén. MS 2.1 and MS++ 1.0 — SAT Race 2008 editions.
16. N. Sörensson and N. Eén. MiniSat v1.13 – A SAT solver with conflict-clause

minimization, 2005.
17. A. Urquhart. The complexity of propositional proofs. Bull. of EATCS, 64, 1998.
18. L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven

learning in boolean satisfiability solver. In Proc. ICCAD’01.



solved time space out of deleted
instances in hours in GB memory literals

MINISAT recur 788 9% 170 11% 198 49% 11 89% 33%
with local 774 7% 177 8% 298 24% 72 30% 16%

preprocessing none 726 192 392 103

MINISAT recur 705 13% 222 8% 232 59% 11 94% 37%
without local 642 3% 237 2% 429 24% 145 26% 15%

preprocessing none 623 242 565 196

PICOSAT recur 767 10% 182 13% 144 45% 10 60% 31%
with local 745 6% 190 9% 188 29% 10 60% 15%

preprocessing none 700 209 263 25

PICOSAT recur 690 6% 221 8% 105 63% 10 68% 33%
without local 679 5% 230 5% 194 31% 10 68% 14%

preprocessing none 649 241 281 31

recur 2950 9% 795 10% 679 55% 42 88% 34%
altogether local 2840 5% 834 6% 1109 26% 237 33% 15%

none 2698 884 1501 355

Table 1. Experiments with MINISAT and PICOSAT on SAT Race’08 benchmarks. The
first column specifies the configuration, e.g. which of the two SAT solvers is used and
whether preprocessing is enabled or disabled. The last three rows summarize these
four configurations. The next column specifies the minimization algorithm: “recur” is
recursive minimization, the default in MINISAT and PICOSAT. Then there are rows with
“local” minimization for each configuration and “none” denotes the base case, in which
learned clauses are not minimized at all. The third column gives the number of solved
instances out of 1000, respectively 4000 in the last three rows. Each row corresponds
to the 10 runs with different seeds over the 100 instances. The next column gives the
improvement in number of solved instances with respect to the base case. The number
of solved instances increases by roughly 10% for recursive minimization, and half that
much for local minimization only. The difference in run-time, shown in the next two
columns, gives a similar picture. The percentage in the 6th column is calculated as
the amount of time the minimizing algorithm finishes earlier relative to the base case.
An unsolved instance contributes 1800 seconds. In the next two columns we report on
memory usage, calculated as the sum of the maximum main memory used in each run,
at most 1.5 GB per run. Half of the memory can be saved using recursive minimization,
with local minimization one quarter. This effect is even more dramatic with respect to
the number of times a run reached the space limit, which is shown in columns 9 and 10
next, particularly in the case of MINISAT. PICOSAT uses more compact data structures
than MINISAT, for instance to store binary clauses [12]. Minimization also reduced the
number of space-outs by more than 60%. Finally, the last column, shows the average
number of deleted literals per learned clause. This is calculated with respect to the
size of the 1-UIP clause, which would have been generated without minimization, even
though the 1-UIP clause is minimized afterwards. This is different from comparing the
average length of learned clauses with and without minimization, since these statistics
are computed within the minimizing solver. This gives an explanation why memory
savings are almost twice as much as savings due to deleted literals only. Minimization
not only saves space, but also reduces the search space.



MINISAT PICOSAT
with preprocessing with preprocessing

seed solved time space mo del seed solved time space mo del

recur 8 82 16 19 1 33% recur 9 79 17 14 1 31%
recur 6 81 17 20 1 33% recur 0 78 18 14 1 31%
local 0 81 16 29 7 16% recur 3 78 18 14 1 31%
local 7 80 17 29 8 15% recur 8 78 18 14 1 31%
recur 4 80 17 20 1 33% recur 2 77 19 14 1 31%
recur 1 79 17 20 1 33% local 7 77 19 19 1 15%
recur 9 79 17 20 1 34% recur 6 77 18 14 1 31%
local 5 78 18 29 7 16% local 3 77 18 18 1 15%
local 1 78 17 29 6 16% recur 7 76 18 14 1 31%
recur 0 78 17 20 1 34% local 4 75 19 19 1 15%
recur 5 78 17 19 1 33% local 1 75 19 19 1 15%
local 3 77 18 31 7 16% recur 4 75 18 14 1 31%
local 8 77 18 30 8 16% recur 5 75 18 14 1 30%
recur 7 77 17 20 1 34% local 2 74 19 19 1 15%
recur 3 77 17 20 1 34% local 8 74 19 19 1 15%
recur 2 77 17 20 2 33% recur 1 74 19 14 1 31%
none 7 76 19 39 9 0% local 5 74 19 18 1 15%
local 2 76 18 31 8 16% local 6 73 20 19 1 15%
local 4 76 18 31 7 16% local 0 73 20 19 1 15%
local 6 76 18 30 7 16% local 9 73 19 19 1 16%
local 9 75 19 29 7 16% none 5 72 21 26 4 0%
none 9 74 19 39 10 0% none 3 72 20 26 3 0%
none 6 73 19 40 12 0% none 7 72 20 26 2 0%
none 3 73 19 39 10 0% none 8 71 21 27 2 0%
none 8 72 20 39 11 0% none 9 71 20 25 3 0%
none 0 72 20 39 11 0% none 1 70 21 27 1 0%
none 1 72 19 39 9 0% none 4 69 21 26 2 0%
none 5 72 19 39 10 0% none 0 69 21 26 4 0%
none 2 71 20 40 11 0% none 6 68 21 26 2 0%
none 4 71 19 39 10 0% none 2 66 22 27 2 0%

Table 2. Even for 100 benchmarks there is a great variance for different seeds. The
columns are as in Tab. 1. Even though the space reduction and also the percentage
of deleted literals is consistent for different seeds, the run-time and the number of
solved instances vary widely. Both, for MINISAT and PICOSAT, it would be possible
to draw the conclusion that local minimization is better than recursive minimization,
by picking two specific seeds, for instance MINISAT/local/0 vs. MINISAT/recur/2, and
PICOSAT/local/7 vs. PICOSAT/recur/1. The relative space usage is consistent over dif-
ferent runs of the same algorithm, as is the percentage of deleted literals. For empirical
evaluations of heuristics of SAT solvers, we suggest, to enforce identical search behavior
[3], or to use a very large set of benchmarks, definitely more than 100. However, it is
probably necessary to randomize the algorithms and run them with different seeds a
sufficient number of times. Another option is to use secondary statistics directly related
to the proposed heuristics, like the number of deleted literals in our case, in addition
to the number of solved instances, time usage, or a scatter plot.


