
Concurrent Cube-and-Conquer
Peter van der Tak

Delft University of Technology,
The Netherlands

Marijn J.H. Heule
Delft University of Technology,

The Netherlands

Armin Biere
Johannes Kepler University Linz,

Austria

I. I NTRODUCTION

The concurrent cube-and-conquer (CCC) solver implements
the ideas in the paper we submitted to the PoS 2012 work-
shop [1]. This system description describes the main concepts,
a more detailed explanation is in the paper.

Recent work has introduced the cube-and-conquer (CC)
technique [2], which first partitions the search space into
disjunctive sets of assumptions (cubes) using a lookahead (LA)
solver (the cube phase) and then solves each cube using a
CDCL solver (the conquer phase). It uses acutoff heuristic to
control after what number of decisions the lookahead solver
should be cut off and store its decision variables (its current
cube) for the CDCL solver to solve in the conquer phase.
However, this heuristic is not ideal particularly because no
information about the performance of CDCL on the cubes is
present in the cube phase. Concurrent cube-and-conquer uses
a synchronized LA and CDCL solver concurrently in the cube
phase to improve the cutoff heuristic.

II. M OTIVATION

Cube-and-conquer shows strong performance on several
hard application benchmarks [2], beating both the lookahead
and CDCL solvers that were used for the cube and conquer
phases respectively. However, on many other instances, either
lookahead or CDCL outperforms CC. We observed that for
benchmarks for which CC has relatively weak performance,
two important assumptions regarding the foundations of CC
do not hold in general.

First, in order for CC to perform well, lookahead heuris-
tics must be able to split the search space into cubes that,
combined, take less time for the conquer solver (CDCL) to
solve. Otherwise, cube-and-conquer techniques are ineffective
and CDCL would be the preferred solving technique. Second,
if lookahead can refute a cube, then this must mean that
nearby cubes can be efficiently solved using CDCL. When this
assumption fails, the cube phase either generates too few cubes
and leaves a potential performance gain unused, or generates
too many cubes because cubes with fewer decisions are also
easy for CDCL to solve.

CCC solves these problems separately. The first by pre-
dicting on which instances cube-and-conquer techniques are
ineffective and aborting in favor of a classical CDCL search.
The second by also using a CDCL solver in the cube phase
to better estimate the performance of CDCL on nearby cubes.
This naturally cuts off easy cubes. We first discuss CCC∞,
a simplified version of CCC with no cut off heuristic and

prediction in the next section, and add these two features in
sections IV and V respectively. The submitted solver includes
all features.

III. C ONCURRENT CUBE-AND-CONQUER

CCC∞ is implemented by sending messages between the
CDCL and the lookahead solvers using two queues: the deci-
sion queueQdecision and the result queueQsolved. Whenever
the lookahead solver assigns a decision variable, it pushes
the tuple〈cubecid, literal ldec, backtrackLevel〉 comprising a
uniquely allocatedid, the decision literal, and the number of
previously assigned decision variables (backtrackLevel). When
the CDCL solver reads the new decision from the queue, it
already knows all previous decision literals, and only needs to
backtrack to thebacktrackLevel and addldec as an assumption
to start solvingcid. Theid is used to identify the newly created
cube.

If the CDCL solver proves unsatisfiability of a cube before it
receives another decision, it pushes thecid of the refuted cube
to Qsolved. The solver then continues with the parent cube,
by backtracking to the level where all but the last decision
literal were assigned. When the lookahead solver reads thecid
from Qsolved, it backtracks to the level just above this cube’s
last decision variable and continues its search as if it proved
unsatisfiability of the cube by itself.

To keep track of the cubes that are pending to be solved,
both solvers keep the trail of decision literals (or assumptions
for the CDCL solver) and theid’s of the cubes up to and
including each decision literal (or assumption). Whenever
either solver proves unsatisfiability of the empty cube, or when
it finds a satisfying assignment, the other solver is aborted.

The submitted version of CCC first simplifies the instance
using Lingeling, and then uses marchrw [3] (LA) and Min-
iSAT 2.2 [4] (CDCL) concurrently. The CCCeq version runs
march rw with equivalence reasoning [3] enabled, CCCneq
with equivalence reasoning disabled, as this has shown to
affect the performance of CCC.

IV. CUTOFF HEURISTIC

One advantage of CC was that the conquer phase can be
parallelized efficiently by using multiple CDCL solvers in
parallel, each solving a single cube. With CCC∞ this is no
longer possible, since the lookahead solver will continue with
a single branch until it is solved by either CDCL or lookahead.
Additionally, CCC∞ always uses twice as much CPU time as

wall clock time, because the lookahead and CDCL solver run
in parallel.

To reduce this wasted resource utilization and allow for
parallelization of the CDCL solver, we reintroduce the conquer
phase by applying a suitable cutoff heuristic. As with CC,
we pass cubes from the cube phase to the conquer phase
using the iCNF1 format (via the filesystem, unlike the shared
memory queues in the cube phase), which is basically a
concatenation of the original formulaF and the generated
cubes as assumptions. An incremental SAT solver iterates over
each cubecid in the file, and solvesF ∧ cid until a solution
is found or all cubes have been refuted.

The cutoff heuristic of CC is based on a rough prediction
of the performance of CDCL on a cube. Given a cubecid, it
computes its difficulty23 d(cid) := |ϕdec|

2·(|ϕdec|+|ϕimp|)/n,
where |ϕdec| and |ϕimp| are the number of decision and
implied variables respectively, andn is the total number of
free variables. Ifd(cid) is high, the CDCL solver is expected
to solvecid fast.

The cutoff heuristic in CC focuses on identifying cubes that
are easy for CDCL to solve. It cuts off a branch ifd(cid)
exceeds a dynamic threshold valuetcc. Initially tcc = 1000,
and it is multiplied by 0.7 whenever lookahead solves a cube
(because it assumes that CDCL would have solved this cube
faster) or when the number of decisions becomes too high (to
avoid generating too many cubes). It is incremented by 5% at
every decision to avoid the value from dropping too low.

For CCC, the same heuristic does not work because easy
cubes are solved quickly by the CDCL solver. This makes the
threshold very unstable so that it quickly converges to 0 or
infinity depending on the instance. We therefore use a different
heuristic, but using the same difficulty metricd(cid).

Easy cubes can be detected better by CCC than by CC,
because CCC can detect for which cubes CDCL finds a
solution before the lookahead solver does. CCC would ideally
cut off these cubes so that they can be solved in parallel. The
contrary goes for when the lookahead solver solves a cube:
it then seems that lookahead contributes to the search, which
means that it is not desirable to cut off.

CCC uses the same difficulty metricd(cid) as CC, but a
different heuristic for determining the threshold valuetccc. If
a cubecid is solved by CDCL, the value is updated towards
s := 0.4 · d(cid), whereas it is updated towardss := 3 · d(cid)
if cid was solved by lookahead. To avoid too sudden changes,
tccc is not changed tos directly but is filtered byt′

ccc
:=

0.4 · s + 0.6 · tccc. To furthermore avoid the threshold from
dropping too low, it is incremented for every cube that is cut
off.

The submitted implementation of CCC uses iLingeling to
solve the cubes that were cut off by the heuristic. iLingeling
basically submits these cubes to a number of independent
incremental Lingeling solvers in parallel.

1http://users.ics.tkk.fi/swiering/icnf
2CC’s heuristic has been improved slightly since it was initially pub-

lished [2]; it now uses|ϕdec|
2 instead of|ϕdec|.

3The notation is ours.

V. PREDICTION

Since cube-and-conquer techniques do not work well on
all instances, CCC aims to detect quickly if an instance is
unsuitable. It does this based on two measurements.

First, lookahead techniques appear effective if they can
solve some cubes faster than CDCL. While running the
lookahead and CDCL solver in parallel, we count the number
of times that lookahead is faster than CDCL. For benchmarks
for which this count is increased very slowly, say less than
once per second, we observed that CC was generally not an
effective solving strategy.

Second, if the variable heuristics are effective then each
discrepancy should result in a large reduction of the formula.
Hence after a certain number of discrepancies the solver
should be able to refute that branch. Preliminary experiments
suggest that if CCC finds a leaf with over 20 discrepancies
early in the search-tree, then lookahead variable heuristics
should be considered as ineffective.

These metrics are combined as follows. CCC runs the LA
and CDCL solver for a few seconds concurrently. If the LA
solver enters a branch with more than 20 discrepancies ter-
minate the solvers and use fallback solver pLingeling instead.
If after 5 seconds the solvers are still running and less than
10 cubes were solved by lookahead, the solvers should also
be terminated in favor of pLingeling. Otherwise, CCC is the
preferred solving method and the solvers can continue. For
CC, the same instances usually work well, but they cannot be
detected as early because CDCL is only used in the conquer
phase.

VI. CONCLUSION

Without performance prediction, cube-and-conquer tech-
niques are not competitive with current state-of-the-art solvers.
CCC’s predictor is able to efficiently select instances for which
cube-and-conquer techniques are suitable and fall back to
pLingeling if not. This allows cube-and-conquer to compete
with other solvers. In addition, CCC improves over CC’s
performance by using concurrency and improved heuristics in
the cube phase.

CCC uses marchrw (LA) and the same versions of Lin-
geling (simplification and CDCL), iLingeling (conquer), and
pLingeling (fallback) submitted to this SAT challenge. All
sources are compiled into a single binary with -O3. Threading
is implemented using pthreads, and communication in the
cube phase using lockless queues. Communication between
the simplification, cube, conquer, and fallback solvers is done
via temporary CNF and iCNF files.

REFERENCES

[1] P. van der Tak, M. J. H. Heule, and A. Biere, “Concurrent cube-and-
conquer,” 2012, submitted to PoS 2012.

[2] M. J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Cube and
conquer: Guiding CDCL SAT solvers by lookaheads,” 2011, accepted for
HVC.

[3] M. J. H. Heule, “Smart solving: Tools and techniques for satisfiability
solvers,” Ph.D. dissertation, Delft University of Technology, 2008.

[4] N. Eén and N. S̈orensson, “An extensible SAT-solver,” inSAT’03, ser.
LNCS, vol. 2919. Springer, 2004, pp. 502–518.

