Concurrent Cube-and-Conquer

Peter van der Tak Marijn J.H. Heule Armin Biere
Delft University of Technology, Delft University of Technology, Johannes Kepler University Linz,
The Netherlands The Netherlands Austria
|. INTRODUCTION prediction in the next section, and add these two features in

The concurrent cube-and-conquer (CCC) solver implemer®&ctions IV and V respectively. The submitted solver inekid
the ideas in the paper we submitted to the PoS 2012 wodl features.
shop [1]. This system description describes the main cdacep
a more detailed explanation is in the paper. 1. CONCURRENT CUBEAND-CONQUER

Recent work has introduced the cube-and-conquer (CC)ccc,, is implemented by sending messages between the
technique [2], which first partitions the search space intopCL and the lookahead solvers using two queues: the deci-
disjunctive sets of assumptions (cubes) using a lookahs®d (sjon queueQ,. i, and the result queu®,,,. . Whenever
solver (the cube phase) and then solves each cube usingye |ookahead solver assigns a decision variable, it pushes
CDCL solver (the conquer phase). It usesutoff heuristic to the tuple(cubec;q, literal l4.., backtracklevel) comprising a
control after what number of decisions the lookahead solvighiquely allocatedd, the decision literal, and the number of
should be cut off and store its decision variables (its eurrepreviously assigned decision variableéadktrackLevel). When
cube) for the CDCL solver to solve in the conquer phasghe CDCL solver reads the new decision from the queue, it
However, this heuristic is not ideal particularly because ry|ready knows all previous decision literals, and only seted
information about the performance of CDCL on the cubes jzcktrack to thévacktrackLevel and add dec @S @N assumption
present in the cube phase. Concurrent cube-and-conquer ¥§&tart solving:;,. Theid is used to identify the newly created
a synchronized LA and CDCL solver concurrently in the cubgpe.
phase to improve the cutoff heuristic. If the CDCL solver proves unsatisfiability of a cube before it

II. MOTIVATION receives another decision, it pushes theof the refuted cube

Cube-and-conquer shows strong performance on seve:)PalQS"lVEd' The solver then continues with the parent cube,

L . backtracking to the level where all but the last decision
hard application benchmarks [2], beating both the IOOkdheﬁt}(/aral were ass?gned. When the lookahead solver reads; the
and CDCL solv_ers that were used for the cuk_)e and CONAYm Q.oveds It backtracks to the level just above this cube’s
phases respectively. However, on many other mstancd:mrenla

lookahead or CDCL outperforms CC. We observed that f%rnS ;;;ﬁ;g;‘t;ﬂ?ﬁeeciﬁi ct:)c))/nittlggl?s its search as if itquov

benchmarks for which CC has relatively weak performance,_l_0 keep track of the cubes that are pending to be solved,

two |mportar_1t assumptions regarding the foundations of C:b%th solvers keep the trail of decision literals (or assuomst
do not hold in general.

: : . for the CDCL solver) and théd’s of the cubes up to and
First, in order for CC to perform well, lookahead heuris: ; 7 :)
. . : including each decision literal (or assumption). Whenever
tics must be able to split the search space into cubes tha PR

: ; either solver proves unsatisfiability of the empty cube, bew
combined, take less time for the conquer solver (CDCL) t9) N . .

) . L it finds a satisfying assignment, the other solver is aborted
solve. Otherwise, cube-and-conquer techniques are oisfe Th bmitted . f CCC first simplifies the inst
and CDCL would be the preferred solving technique. Second,. eLs_u rr|1_| € vedrstlr?n 0 wzwsgnpll_fs g’\ :&;.S ance
if lookahead can refute a cube, then this must mean t)’@{_‘rgz |2ng: 'ngb‘é?_ en usestlma_Tr_h [C]C(C) an vin-
nearby cubes can be efficiently solved using CDCL. When thi 2 []_ (.) concurren y- The €0 Vversion runs
arch rw with equivalence reasoning [3] enabled, CCCneq

assumption fails, the cube phase either generates too fawscy"

and leaves a potential performance gain unused, or geser h equivalence reasoning disabled, as this has shown to
too many cubes because cubes with fewer decisions are & SCt the performance of CCC.
easy for CDCL to solve.

CCC solves these problems separately. The first by pre-
dicting on which instances cube-and-conquer techniques ar One advantage of CC was that the conquer phase can be
ineffective and aborting in favor of a classical CDCL searclparallelized efficiently by using multiple CDCL solvers in
The second by also using a CDCL solver in the cube phasarallel, each solving a single cube. With CCQGhis is no
to better estimate the performance of CDCL on nearby cubé&mger possible, since the lookahead solver will continité w
This naturally cuts off easy cubes. We first discuss GCC a single branch until it is solved by either CDCL or lookahead
a simplified version of CCC with no cut off heuristic andAdditionally, CCC,, always uses twice as much CPU time as

IV. CUTOFF HEURISTIC

wall clock time, because the lookahead and CDCL solver run V. PREDICTION

in parallel. Since cube-and-conquer techniques do not work well on
To reduce this wasted resource utilization and allow fqQfj instances, CCC aims to detect quickly if an instance is
parallelization of the CDCL solver, we reintroduce the coe1q |,suitable. It does this based on two measurements.
phase by applying a suitable cutoff heuristic. As with CC, pirst |ookahead techniques appear effective if they can
we pass cubes from the cube phase to the conquer phgsge some cubes faster than CDCL. While running the
using the iCNE format (via the filesystem, unlike the shareqyokahead and CDCL solver in parallel, we count the number
memory queues in the cube phase), which is basicallyoftimes that lookahead is faster than CDCL. For benchmarks
concatenation of the original formul&’ and the generated oy \which this count is increased very slowly, say less than
cubes as assumptions. An incremental SAT solver iterat®s oypce per second, we observed that CC was generally not an
each cube;, in the file, and solved” A c¢;q until a solution gffective solving strategy.
is found or all cubes have been refuted. Second, if the variable heuristics are effective then each
The cutoff heuristic of CC is based on a rough predictiogscrepancy should result in a large reduction of the foamul
of the performance of CDCL on a cube. Given a cubg it Hence after a certain number of discrepancies the solver
computes its difficulty® d(cia) := |pacc|*-(|aee|+|¢imp|)/7 should be able to refute that branch. Preliminary experten
where [¢qec| and |¢imp| are the number of decision andsyggest that if CCC finds a leaf with over 20 discrepancies
implied variables respectively, and is the total number of garly in the search-tree, then lookahead variable hecsisti
free variables. 1fd(c;q) is high, the CDCL solver is expectedgnhould be considered as ineffective.
to solvec;q fast. These metrics are combined as follows. CCC runs the LA
The cutoff heuristic in CC focuses on identifying cubes thajng cDcCL solver for a few seconds concurrently. If the LA
are easy for CDCL to solve. It cuts off a branchdifcia) solver enters a branch with more than 20 discrepancies ter-
exceeds a dynamic threshold valtjg. Initially ¢.. = 1000, minate the solvers and use fallback solver pLingeling aubte
and it is multiplied by 0.7 whenever lookahead solves a culjeafter 5 seconds the solvers are still running and less than
(because it assumes that CDCL would have solved this cul® cupes were solved by lookahead, the solvers should also
faster) or when the number of decisions becomes too high {§g terminated in favor of pLingeling. Otherwise, CCC is the
avoid generating too many cubes). It is incremented by 5% @eferred solving method and the solvers can continue. For
every decision to avoid the value from dropping too low. cc, the same instances usually work well, but they cannot be

For CCC, the same heuristic does not work because e@ffected as early because CDCL is only used in the conquer
cubes are solved quickly by the CDCL solver. This makes thgase.

threshold very unstable so that it quickly converges to O or
infinity depending on the instance. We therefore use a differ VI. CONCLUSION
heuristic, but using the same difficulty mete€c;). Without performance prediction, cube-and-conquer tech-
Easy cubes can be detected better by CCC than by Gfiques are not competitive with current state-of-the-alters.
because CCC can detect for which cubes CDCL finds GCC's predictor is able to efficiently select instances fbich
solution before the lookahead solver does. CCC would igeaBube-and-conquer techniques are suitable and fall back to
cut off these cubes so that they can be solved in parallel. Tpkeingeling if not. This allows cube-and-conquer to compete
contrary goes for when the lookahead solver solves a cubéth other solvers. In addition, CCC improves over CC's
it then seems that lookahead contributes to the searchhwhperformance by using concurrency and improved heuristics i
means that it is not desirable to cut off. the cube phase.
CCC uses the same difficulty metrif{c;;) as CC, but a CCC uses marchw (LA) and the same versions of Lin-
different heuristic for determining the threshold valg.. If geling (simplification and CDCL), iLingeling (conquer), dn
a cubec;, is solved by CDCL, the value is updated towardpLingeling (fallback) submitted to this SAT challenge. All
s:=0.4-d(c;q), whereas it is updated towards= 3-d(c;q) sources are compiled into a single binary with -O3. Thregdin
if ¢;4 was solved by lookahead. To avoid too sudden changeés,implemented using pthreads, and communication in the
tece IS NOt changed tos directly but is filtered byt’.. := cube phase using lockless queues. Communication between
0.4 -5+ 0.6 - te.. To furthermore avoid the threshold fromthe simplification, cube, conquer, and fallback solversased
dropping too low, it is incremented for every cube that is cuia temporary CNF and iCNF files.
off.
The submitted implementation of CCC uses iLingeling to
solve the cubes that were cut off by the heuristic. iLin@Iin[ll P. van der Tak, M. J. H. Heule, and A. Biere, “Concurrenbewand-

. . . conquer,” 2012, submitted to PoS 2012.
basically submits these cubes to a number of mdepend?j]th J. H. Heule, O. Kullmann, S. Wieringa, and A. Biere, “Quland

REFERENCES

incremental Lingeling solvers in parallel. conquer: Guiding CDCL SAT solvers by lookaheads,” 2011 epted for
HVC.
http://users.ics.tkk.filswiering/icnf [3] M. J. H. Heule, “Smart solving: Tools and techniques fotigebility
2CC’s heuristic has been improved slightly since it was ifijtigoub- solvers,” Ph.D. dissertation, Delft University of Techogy, 2008.

[4] N. Eén and N. 8rensson, “An extensible SAT-solver,” iBAT 03, ser.

lished [2]; it now usedpqec|” instead offpaccl- LNCS, vol. 2919. Springer, 2004, pp. 502518

3The notation is ours.

