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Abstract. The employment of optimistic model versioning systems allows multi-
ple developers of a team to work independently on their local copies of a software
model. The merging process towards one consolidated version obviously turns
out to be challenging when performed without any tool support. Recently, several
sophisticated approaches for model merging have been presented. However, even
for multi-view modeling languages like UML, which distribute the information
on the system under development over different diagrams, diagrams of different
views are merged independently of each other. Hence, inconsistencies between
different views are likely to be introduced into the merged model. We suggest
to solve this problem by exploiting information stored in one view as constraint
for the computation of a consolidated version of another view. More specifically,
we demonstrate how state machines can guide the integration of parallel changes
performed on a sequence diagram. We give a concise formal description of this
problem and suggest a translation to propositional logic.

1 Introduction

At least since Brooks’ 1987 publication on software engineering, awareness has been
brought to the collective consent that software is inherently complex [7]. According to
Brooks, this complexity can be split into essential complexity introduced by the problem
domain itself, and accidental complexity emerging from inadequate representations of
the problem domain. Essential complexity is enclosed in the very nature of software, and
is thus hardly reducible. To mitigate accidental complexity, software engineering practice
is shifting from code-centric development to a model-driven engineering (MDE) [4]
paradigm, which is based on multi-view modeling languages like the Unified Modeling
Language (UML). In MDE, software models are not only employed as informal design
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sketches, but serve as full development artifacts used for automatic code generation.
UML introduces different views on the system under development in order to make
the complexity of large systems manageable. These views are represented as different
diagrams, each highlighting a certain aspect of the system, while abstracting from
others. For example, the internal behavior of objects is shown in state machines whereas
interactions between objects are specified by sequence diagrams.

However, not only the sofware itself, but also the process of building software is
inherently complex. Already 40 years ago [19], software engineering was defined as
the multi-person construction of multi-version software. The combination of multiple
persons and multiple versions of software is thus, in addition to the complexity of the
software itself, another important source of complexity. Consequently, tools supporting
team work and change management emerged [12], in particular, version control sys-
tems (VCS). Two different versioning paradigms are distinguished. On the one hand,
pessimistic versioning systems grant exclusive access to a resource by locking this re-
source for all but one developer, with the consequence that no conflicts are possible,
but also all but developer are interrupted in their work. On the other hand, optimistic
versioning systems manage parallel modifications of a software artifact by comparing
and merging independently evolved versions with a common ancestor. In the rest of this
paper, we consider optimistic versioning. Initially, VCS were applied only to textual
artifacts such as source code, but with the increasing importance of software models in
the software engineering process, the need to version control also the modeling artifacts
became evident. However, due to the graph-based nature of models, existing VCS, which
have been successfully employed for source code, are only of limited value for model
versioning. Thus, dedicated model versioning systems based on different algorithms, are
necessary. Several approaches have been presented recently [9], for both single-view and
for multi-view modeling languages like UML. As far as version control for multi-view
models is concerned, however, current approaches merge each diagram individually
and ignore valuable information spread across different diagrams. By ignoring this
information, false conflicts can be reported or unsatisfactory merge results returned, e.g.,
inconsistencies between different views of the software model are introduced.

In this paper, we suggest to consider constraints imposed by information distributed
over some diagrams when merging others. In particular, we show how two versions
of a sequence diagram can be consistently merged by taking the behavior expressed
by state machines into account. Since the merged version is not unique in general, the
goal is to precalculate a set of consistent merges to support the modeler to integrate the
modifications. Given a multi-view modeling language with several concepts as found in
UML, we give a formal specification of the merging problem, which allows for a direct
encoding of the merging problem to a formalism for which tool support is available. We
chose propositional logic as host language to represent the merging problem of sequence
diagrams in terms of a satisfiability problem (SAT), because the required constraints are
directly transferable to SAT and powerful tools, so-called SAT solvers, are available.

This paper is structured as follows. In Section 2, we discuss an example illustrating
the problems occurring during the merge of sequence diagrams. We review related work
in Section 3. In Section 4, we give an overview of the modeling language concepts
considered in this paper in terms of a graphical metamodel, which we then transform
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Fig. 1: State machines of an email client and an email server.

to a formal representation. On this basis, we give a concise definition of the sequence
diagram merging problem in Section 5. The translation of this problem to the satisfiability
problem of propositional logic is explained in Section 6. We present our implementation
and a first evaluation in Section 7. Finally, we conclude with an outlook to future work.

2 A Motivating Example

The following example on an email protocol is to motivate the approach developed in this
paper. Fig. 1 shows state machines of an email-client and an email-server, respectively,
implementing a simplified variant of the Simple Mail Transfer Protocol (SMTP). For the
sake of readability, only basic sending functionality is realized and no error handling is
included. The initial state of each state machine is indicated by an incoming arrow from
a black circle. States are connected to each other by transitions. Each transition carries
a label that consists of two parts, separated by a “/”. The string on the left indicates
a trigger, whose receipt in the source state of the transition causes the state machine
to change its state to the target state of the transition. The string on the right of each
transition indicates a set of effects, which are symbols that are sent when the transition
is executed and which may again trigger state transitions in the same or other state
machines. For example, the state machine Client starts in state Idle and waits until it
receives uCon, which causes its transition to state conPend. During the execution of
the transition, it sends the trigger sCon, which is received by the state machine Server,
and causes its transition from state waiting to accepting. During the execution of this
transition, Server triggers ok, which is again received by Client, triggering the transition
to state connected, and so on.

A valid model might only partially specify the system under consideration. For
example, the first transition on Client is triggered by a user, for which no state machine
is defined. In this case, an unconstrained state machine is assumed. Such a state machine
contains only one state from which any symbol is received and sent.

Communication scenarios between users, clients, and servers are modeled by se-
quence diagrams showing sequences of exchanged messages. Sequence diagrams de-
scribe interactions where the interaction partners, the lifelines, are instances of state
machines. Fig. 2 shows the three sequence diagrams SDo, SDα, and SDβ . The lifelines
are represented by the rectangles labeled with u:User, c:Client, and s:Server and vertical
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dashed lines. Each label contains the name of the lifeline on the left of the colon (e.g., c)
and the name of the state machine instantiated by the lifeline on the right of the colon
(e.g., Client A message is represented as arrow connecting two lifelines and contains
a symbol which can be found as effect on some transition of the state machine of the
sender as trigger on some transition of the state machine of the receiver. A sequence
diagram is consistent with the state machines that are instantiated by its lifelines, if
for each lifeline the sequence of received messages is a path in the state machine. For
example, for the uppermost diagram in Fig. 2, SDo, the sequence of received messages
for lifeline c:Client causes triggers uCon → ok → ok. This sequence is also found as
a path in the corresponding state machine, namely connecting states idle → conPend
→ connected→ identified. A similar argument holds for s:Server. Since for u:User we
assume an unconstrained state machine, no restriction is imposed on the messages, and
the order of the messages received by u:User. So this lifeline is also consistent.

Consider the following evolution scenario. Starting from the sequence diagram SDo

of Fig. 2, which shows the authentication process of an email protocol, two modelers,
Alice and Bob, independently perform some modifications. Alice extends the scenario
with a logout message resulting in the revised sequence diagram SDα, while Bob adds
the communication necessary to send an email, manifesting in revision SDβ . Trying to
merge the modifications of both modelers without any additional information, it is not
automatically decidable in which order the added messages from both revisions should
be arranged. Hence, we have a merge conflict.

It thus has to be decided manually how the changes are integrated. Several syn-
tactically correct merges of the sequence diagram are possible, namely all possible
permutations of the two concatenated sequences that preserve the relative order of the
messages. However, many of these options turn out to be inconsistent with the state
machines. When taking the state machines into account, then only one merged version
is possible: Alice’s modifications have to be appended after Bob’s changes, because
otherwise the sequence diagram would model a scenario which is not allowed by the
state machines.

3 Related Work

The requirements of model versioning systems strongly diverge from the requirements
of traditional versioning systems for text-based artifacts like source code [1–3]. In
consequence, several approaches to conflict detection algorithms and model merging
strategies have been presented over the last few years (cf. [9] for a detailed survey).
These approaches are either realized on the generic metamodeling level resulting in
language independent solutions, or use language specific information in order to yield
better support for a specific modeling language. Our approach falls into the latter
category. However, we are not aware of any approach dealing with the merge problem of
sequence diagrams where the sequence diagrams have to be kept consistent with the state
machine view. Westfechtel [26] discusses the merge of ordered features in EMF models
by aggregating elements into linearly ordered clusters. The order within a cluster is
determined either randomly or by a user. Since the merge is performed on the metamodel
level to keep the approach generic, the information available within the model cannot be
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Fig. 2: Evolution of a sequence diagram.

used for merging. Gerth et al. [16] provide dedicated merge support for business process
models ensuring a consistent outcome. They formalize process models as process terms
and utilize a term rewriting system to detect and interactively resolve merge conflicts.
However, there is no support to calculate all valid merge solutions. Cichetti et al. [11]
propose to define conflict patterns which might be tailored towards the application
on sequence diagrams. Such a conflict pattern might be equiped with a reconciliation
strategy for resolving the conflict. In [17] an approach for merging two state machines is
presented. This approach exploits syntactical as well as semantical information provided
by the models in order to compare variants and perform consistency checks.

Outside the research of model versioning several approaches have been presented to
verify the conformance between different views of a model and to eliminate inconsisten-
cies. Diskin et al. [13] present a framework based on category theory for consistency
checking of views. Therefore, they first integrate the relevant parts of the metamodels
into one global metamodel such that all instance models become instance models thereof.
These instance models may then be checked for inconsistencies. Van Der Straeten et
al. [24] use the SAT-based constraint solver Kodkod to detect and resolve inconsistencies
between class and sequence diagrams. Egyed [14] proposes to identify inconsistencies in
an incremental manner. Sabetzadeh et al. [21] present an approach to check consistency
between a set of different, but overlapping models. Therefore, they merge this set of
models to one model. Tsiolakis [23] suggests to collect constraints distributed over views
like the class diagram or state machines and integrate them in the sequence diagram in
terms of state invariants yielding pre- and postconditions for individual messages.

In the context of model versioning, these approaches may be used to check if the
merged version introduces inconsistencies, i.e., to perform quality control on the merge
result. In [8], we proposed to use model checking to validate the merged version of an
evolving sequence diagram. No support for the merging process itself is provided.
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4 The Modeling Language tMVML

In order to give a concise definition of the sequence diagram merging problem, an
explicit statement on the modeling language concepts is essential. Therefore, we define
the modeling language tMVML, the Tiny Multi-View Modeling Language in terms of
a metamodel. The concepts and terminology of tMVML are inspired by the Unified
Modeling Language (UML) of the OMG [18]. The compactness of the metamodel
allows not only a focused presentation of our approach, but also a direct technical
realization discussed in Section 7. Concepts to describe the static structure of a system as
found in a class diagram and specification facilities for behavior as offered by the activity
diagram are not relevant for this work and are omitted. However, interfaces to other
views and advanced concepts of state machines and sequence diagrams not discussed in
this paper are planned for later versions of tMVML.

In this section, we first define the language concepts handled by our approach in
terms of a metamodel. With the same motivation for the works on the formalization
of UML [15], we then present a formalization of the concepts of tMVML suitable for
our purposes. This formalization enables us to precisely define the sequence diagram
merging problem in the context of model versioning.

4.1 The tMVML Metamodel

The implementation of the tMVML metamodel is available at our project website5.
We consider the excerpt relevant for this work, depicted in Fig. 3. The metamodel
contains a root class Model which contains two classes representing views, namely
SequenceDiagramView and StateMachineView, and the class ActionSymbol. Instances
of ActionSymbol realize the communication between different state machines and are
used to describe possible communication sequences in sequence diagrams. For better
readability we typeset instances of metaclasses in standard lowercase font using the same

5 http://www.modelevolution.org/prototypes/sdmerge
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name as the metaclass, e.g., in order to to refer to an instance of the metaclass State we
simply write “state”.

A state machine describes the internal behavior of a lifeline. It consists of a set of
states, a transition relation between states, and a set of action symbols. Each transition
contains one action symbol. The receipt of such a symbol triggers the transition, and a
set of action symbols that are sent when the transition is executed. The sent symbols
may trigger transitions in other state machines.

Our definition of a sequence diagram is inspired by the UML sequence diagram [18].
It consists of a set of lifelines which communicate with each other via messages. Each
message contains a send and a receive event assigned to a lifeline. Events are totally
ordered with respect to their lifeline. The order of events imposes an order on the
messages attached to them. Each message is assigned an action symbol. In the state
machine modeling the behaviour of the lifeline which receives a certain message, this
action symbol triggers all transitions which carry the same action symbol as trigger. In
the following, we formalize the metamodel of tMVML which is required for a concise
specification of the sequence diagram merging problem. In this context, we give concrete
examples on the usage of the different language elements.

4.2 Formalization of the tMVML Metamodel

Let LA be the language describing tMVML models defined over the alphabet A =
(AS ,AA,AL,AM ,AE ) where AS denotes a set of states, AA denotes a set of action
symbols,AL denotes a set of lifelines,AM denotes a set of messages, andAE denotes a
set of events. Out of the three root elements of tMVML, ActionSymbol is an element ofAA

and the elements composing the classes StateMachineView and SequenceDiagramView,
sets of state machines respectively sequence diagrams, along with their components
and associations, are defined in the following. Besides the language concepts and their
interplay, we introduce and define important properties of a sequence diagram, namely
well-formedness, time consistency, lifeline conformance, and correctness, required to
formulated the sequence diagram merging problem.

By P(X) we refer to the power set of a set X and for any tuple Y = (y1, . . . , yn),
by πi(Y ) = yi with 1 ≤ i ≤ n, we refer to the projection to the i-th element. We
continue to typeset instances of metaclasses in standard lowercase font.

Definition 1 (State machine). Given the alphabet A, a state machine is a quadruple
(S ,Atr ,Aeff ,T ), where

– S ⊆ AS is a set of states,
– Atr ,Aeff ⊆ AA are sets of action symbols, and
– T ⊆ (S ×Atr ×P(Aeff )× S ) is a relation representing the transitions between

states.

A state machine consists of a set of states, two alphabets, and transitions be-
tween states. For a transition t ∈ T with t = (s, a,A, s′), s is the source state of
the transition, s′ the target state, a an action symbol that, when received, triggers
the execution of the transition, and A a set of action symbols that are sent to other
state machines when the transition is executed. The state machine Server of Fig. 1
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Fig. 4: Sequence diagram SDo from Fig. 2 with additional labels.

contains states S = {waiting,accepting,ready, fromRcvd,rcptRvd}, triggers Atr =
{sCon,sDone,sFrom, sRcpt,sData,sHello}, and effect Aeff = {ok}. Examples for transi-
tions are (waiting,sCon,{ok},accepting) and (ready,sDone,{},waiting). The formaliza-
tion of the communication between state machines is not relevant for this paper and is
therefore omitted. It can be found in [8].

Definition 2 (Sequence diagram). Given the alphabet A and a set SM of state ma-
chines, a sequence diagram is a quadruple (L,M, lprop,msg), where

– L ⊆ AL is a set of lifelines,
– M ⊆ AM is a set of messages,
– lprop : L→ (SM×P(AE )× P(AE )× P(AE ×AE )) describes lifelines,
– msg :M → (AA ×

⋃
l∈L π2(lprop(l))×

⋃
l∈L π3(lprop(l))) describes messages.

For a lifeline l with lprop(l) = (SM ,E snd ,E rcv , >), SM is the state machine
associated to l, E snd and E rcv are sets of send and receive events handeled by l, and
the relation > describes the {ordered} constraint of the association between the classes
lifeline and event in the tMVML metamodel. In the following, we assume that

– E snd and E rcv are disjoint,
– the relation > is transitive and antisymmetric,
– for all (e1, e2) ∈ >, it holds that e1, e2 ∈ E snd ∪ E rcv , and
– for two lifelines, the sets of send and receive events are pairwise disjoint.

For a message m with msg(m) = (a, s, r), a is the action symbol, s the send event, and
r the receive event associated to m.

Fig. 4 shows the sequence diagram SDo of Fig. 2 enriched with some informa-
tion available in the abstract syntax specification of the metamodel and in the for-
mal description of Definition 2. As usual for sequence diagrams, much information
is omitted in the concrete syntax as in Fig. 2 to avoid an information overflow. In
the sequence diagram SDo, the set L contains the lifelines u, c, and s. Lifelines c
and s are instances of the state machines Client and Server of Fig. 1. The state ma-
chine for u, User, is not shown. Each message is depicted as arrow between two life-
lines. Each arrowhead represents a receive event and each arrowtail a send event and
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it is possible that sender and receiver lifeline are identical. In Fig. 4, lifeline s han-
dles the four events sConRcv1, okSnd1, sHelloRcv1, and okSnd2, hence lprop(s) =
(Server,{okSnd1,okSnd2},{sConRcv1,sHelloRcv1}, >) with sConRcv1 > okSnd1 >
sHelloRcv1 > okSnd2. Further, msg(m2) = (sCon, sConSnd1, sConRcv1).

For ease of presentation, we additionally use the following functions to refer to
elements of the sequence diagram: Given the alphabet A and a sequence diagram
SD = (L,M, lprop,msg), let lprop(l) = (SM l,E

snd
l ,E rcv

l , >l) for each l ∈ L, and
E =

⋃
l∈L(E

snd
l ∪ E rcv

l ). Then we have:

– act : M → AA, snd : M → AE , and rcv : M → AE , such that act(m) =
π1(msg(m)), snd(m) = π2(msg(m)), and rcv(m) = π3(msg(m)), i.e. the action
symbol, send event and receive event of a message.

– symb : E → AA such that symb(e) = a iff
• e ∈ E snd

l for some l ∈ L and there exists an m ∈ M with act(m) = a and
snd(m) = e, or

• e ∈ E rcv
l for some l ∈ L and there exists an m ∈ M with act(m) = a and

rcv(m) = e,
i.e., the action symbol of the message an event is associated to. Note that each
function value is unique due to the pairwise disjointness of sets of events on lifelines
and distinctness of events on messages as described in Definition 2.

– life : E → L such that life(e) = l iff e ∈ π2(lprop(l)) ∪ π3(lprop(l)). Note that
each function value is unique due to the pairwise disjointness of sets of events on
lifelines as described in Definition 2.

We further define properties of sequence diagrams required to specify correct merge
results: First, the well-formedness of a sequence diagram enforces an order on the events
with respect to a lifeline.

Definition 3 (Well-Formedness). A sequence diagram (L,M, lprop,msg) is well-formed
iff for each l ∈ L the relation π4(lprop(l)) is total.

This total order over events per lifeline imposes an order over the messages of a
sequence diagram, which we need for the second property: A sequence diagram is time
consistent when any message m is not received after a message n if m has been sent
before n on the same lifeline, or in other words, messages cannot overtake one another.
We first define the message ordering relation over a sequence diagram, which describes
an order of a sequence diagram’s messages according to the order of its events. This
relation is then used to define time consistency.

Definition 4 (Message Ordering). Given a well-formed sequence diagram of the form
(L,M, lprop,msg), the message ordering relation�⊆M×M contains a pair (m,n) iff
for msg(m) = (am, sm, rm), msg(n) = (an, sn, rn), l = life(sm), >l= π4(lprop(l)),
k = life(rm), and >k= π4(lprop(k)) it holds that

– life(sn) = l and sm >l sn,
– life(rn) = l and sm >l rn,
– life(sn) = k and sm >k sn, or
– life(rn) = k and sm >k rn.
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In SDo of Fig. 2, the message order is given by m1 � m2 � m3 � m4 � m5.

Definition 5 (Time Consistency). A well-formed sequence diagram is called time con-
sistent iff the transitive closure of its message ordering relation � is antisymmetric.

The third property is called lifeline conformance and concerns the lifelines of a
sequence diagram and the state machines modeling their behaviour. Roughly, a lifeline
l is conformant with the state machine SM defined in π1(lprop(l)), if the sequence of
action symbols of the messages received by l occurs as path in SM .

Definition 6 (Lifeline Conformance). Let

– SD = (L,M, lprop,msg) be a well-formed, time consistent sequence diagram,
– l ∈ L be a lifeline with lprop(l) = (SM ,E snd ,E rcv , >l),
– SM = (S ,Atr ,Aeff , T ) be a state machine modelling the behaviour of l, and
– m = (e1, . . . , en) be the sequence of events where for all i, j with 1 ≤ i, j ≤ n it

holds that ei, ej ∈ E rcv and ei >l ej iff i > j.

Then, the lifeline l is conformant to SM iff there exists a sequence of transitions
(s1, a1, A1, s2), (s2, a2, A2, s3), . . . , (sn, an, An, sn+1) such that ai = symb(ei).

In Fig. 4, consider lifeline s of sequence diagram SDo. The state machine defined
for s is Server, shown in Fig. 1. The sequence e for s is (sConRcv1, sHelloRcv1). The
sequence resulting from the action symbols connected to these events, (sCon, sHello),
can be found as path in Server, namely connecting the states waiting to accepting and
accepting to ready. The lifeline s is therefore conformant with its state machine. If the
action symbol of m4 was sData instead of sHello, then s would not be conformant, as
from the only state that can be reached by a transition triggered by sCon there is no
outgoing transition triggered by sData. Note that effects are not considered because they
do not change the state of their sender.

Finally, a sequence diagram is correct, if it has the three discussed properties.

Definition 7 (Correctness of a Sequence Diagram). A sequence diagram SD is cor-
rect iff

1. SD is well-formed;
2. SD is time consistent;
3. all lifelines of SD are conformant to their state machine.

This concludes the specification of the relevant language concepts and their properties.
We provided a formal description, which will be necessary to define the sequence diagram
merging problem in the next section.

5 Problem Definition

In the context of optimistic model versioning, two versions of a concurrently evolved
model, the revisions, have to be combined into one consolidated version. We consider
the problem of merging two revisions of a sequence diagram into a consolidated, cor-
rect sequence diagram using information from the original sequence diagram and the
associated state machines.
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Definition 8 (Revision). A sequence diagram SDα = (Lα,M α, lpropα,msgα) is a
revision of a correct sequence diagram SDo = (Lo ,M o , lpropo ,msgo) iff

– Lo ⊆ Lα, M o ⊆ M α,
– for each l ∈ Lo it holds that lpropα(l) = lpropo(l),
– for each m ∈ M o it holds that msgα(m) = msgo(m), and
– SDα is correct.

In Fig. 2, the sequence diagrams SDα and SDβ are revision of sequence diagram
SDo. Please note that we consider only additions in this work. Deletions and updates
have to be treated respectively.

In the following, we use the position functionpos defined over messages for the
integration of two revisions of a sequence diagram. Given a correct sequence diagram
S = (L,M, lprop,msg), pos :M → {1, . . . , |M |} such that for all m,n ∈M it holds
that pos(m) = pos(n) iff m = n and pos(m) > pos(n) iff m � n.

A consolidated version of a sequence diagram and two revisions is a correct sequence
diagram that contains the messages and lifelines of the original sequence diagram and all
added messages and lifelines from the revisions. The relative order of messages of the
original diagram and the revisions is maintained. We define the function allow, which
returns for each message a set of positions at which the message can be placed such that
the relative order is kept.

Definition 9 (Allowed Positions). Given three correct sequence diagrams SDx =
(Lx,Mx, lpropx,msgx), for x ∈ {o, α, β}, SDα and SDβ being revisions of SDo ,
and the position function posx : Mx → {1, . . . , |Mx|} with x ∈ {o, α, β} for the
respective sequence diagram, let M = M o ∪M α ∪M β and I = {1, 2, . . . , |M |}. Then
allow :M → P(I ) assigns to each message m a set of positions, such that

– if m ∈ M o and poso(m) = posα(m) = posβ(m) then allow(m) = {poso(m)}
(m remains on the same position),

– if m ∈ M o and poso(m) 6= posα(m) or poso 6= posβ(m), then allow(m) =
{poso(m) + |N |} where N = {n ∈ M α | posα(n) < posα(m)} ∪ {n ∈ M β |
posβ(n) < posβ(m)}

– if m 6∈ M o and m ∈ Mx with x ∈ {α, β} then allow(m) = {i ∈ I | posx(m) +
|N ′| ≤ i ≤ posx(m) + |N ′′|} for

N ′ =

{
{n ∈My | posy(n) < posy(m′)} if ∃m′ ∈Mo with posx(m′) < posx(m)
∅ otherwise

for m′ ∈ M o , posx(m′) = maxn∈M o |posx(n)<posx(m) pos(n), y ∈ {α, β} and
y 6= x, and

N ′′ =

{
{n ∈My | posy(n) < posy(m′′)} if ∃m′′ ∈Mo with posx(m′′) > posx(m)
My \Mo otherwise

where m′′ ∈ M o , poso(m′′) = poso(m) + 1, y ∈ {α, β} and y 6= x.
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m poso(m) posα(m) posβ(m) allow(m)

o1 1 1 1 {1}
o2 2 2 2 {2}
o3 3 4 5 {6} N = {a4,b4,b5}
a4 - 3 - {3,4,5} N ′ = ∅, N ′′ = {b4,b5}
a5 - 5 - {7,8} N ′ = {b4,b5}, N ′′ = {b4,b5,b6}
b4 - - 3 {3,4} N ′ = ∅, N ′′ = {a4}
b5 - - 4 {4,5} N ′ = ∅, N ′′ = {a4}
b6 - - 6 {7,8} N ′ = {a4}, N ′′ = {a4,a5}

Table 1: Allowed positions for each message of Fig. 5.

Consider the sequence diagrams SDo , SDα and SDβ shown in the upper part of
Fig. 5, where SDα and SDβ are revisions of SDo . In SDα, the message a4, and in SDβ

the messages b4 and b5 are added between the original messages o2 and o3. In a merged
sequence diagram, each of a4, b4 and b5 must again be placed between o2 and o3. Also,
in order to maintain their order from the revisions, b5 must be placed after b4. Similar
conditions are given for the messages a5 and b6 inserted after o3. Table 1 shows the
values posx(m) and allow(m) for each message m in the upper part of Fig. 5.

If in the merged sequence diagram each message m is placed on one of the positions
defined in allow(m) and exactly one message has been placed at each position, the
merged sequence diagram is time consistent. However, in order for the merged sequence
diagram to be correct, the messages have to be placed such that the lifelines conform to
their state machines. If this is also the case, then the merged diagram is a consolidated
version, defined as follows:

Definition 10 (Consolidated Version). Given the correct sequence diagrams SDo =
(Lo ,M o , lpropo ,msgo), SDα = (Lα,M α, lpropα,msgα), as well as SDβ = (Lβ ,M β ,
lpropβ ,msgβ), where SDα and SDβ are revisions of SDo , a consolidated version
SDγ = (Lγ ,Mγ , lpropγ ,msgγ) is a sequence diagram such that

1. Lγ = Lα ∪ Lβ ,
2. Mγ = M α ∪M β ,
3. for each i ∈ {α, β, o} and for each m ∈M i it holds that msgγ(m) = msgi(m),
4. for each i ∈ {α, β, o} and for each l ∈ Li it holds that lpropγ(l) = lpropi(l),
5. for each m ∈Mγ it holds that pos(m) ∈ allow(m), and
6. Sγ is correct.

The source of complexity in the computation of a consolidated version arises from
the exponential number of possible message orderings under consideration of the allow
function and the constraint arising from the lifeline-conformance requirement.

Consider the example shown in Fig. 6 and 5. The upper part of Fig. 5 depicts an
original sequence diagram (SDo) and two revisions (SDα and SDβ) with the values of
the respective posx function. The revised diagrams contain added messages between
messages o2 and o3 and at the end of the diagram. The lower part of the figure depicts six
different time consistent merged diagrams. Fig. 6 depicts two state machines describing
the behavior of the lifelines. The two rightmost merged diagrams are also consolidated
versions, i.e. correct with respect to the state machines depicted in Fig. 6 E.g. the sequence
of actions on messages received by lifeline y of the rightmost diagram, (o1, b4, b5, a4, a5)
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x:X y:Y
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o3
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Fig. 5: Sequence diagram (SDo) and two revisions (SDα and SDβ) with its six time
consistent, but not necessarily lifeline-conformant, merges (below), and the values of the
respective posx function (left column).

X1 X2
b6/-

o2/-

o3/-

Y1 Y2

Y3

o1/-

a4/-

a5/-

b4/-b5/-

X

Y

Fig. 6: The state machines modeling the behavior of the lifelines in Fig. 5

occurs as path in state machine Y and so does the sequence of lifeline x (o2, o3, b6), but
in the leftmost diagram, for sequence (o1, a4, b4, b5, a5) of lifeline y this is not the case.

Definition 11 (Merging Problem). Given a triple (SDo ,SDα,SDβ) where SDo =
(Lo ,M o , lpropo ,msgo), SDα = (Lα,M α, lpropα,msgα), and SDβ = (Lβ ,M β , lpropβ ,
msgβ) are valid sequence diagrams, and SDα and SDβ are revisions of SDo , the merg-
ing problem is to find a consolidated version of SDo ,SDα,SDβ .

6 Encoding to SAT

We propose to translate the sequence diagram merging problem to a satisfiability problem
of propositional logic (SAT) [6]. Over the last years, propositional logic has proven to
be a powerful host language for a wide range of real-life problems like verification and
planning, not least because efficient and stable solvers for this problem, SAT solvers,
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are available [20]. For our merging problem, we also take advantage of this technology
which allows for a direct representation of the merging problem. Before we present
the encoding of the merging problem in propositional logic, we revisit the necessary
concepts of propositional logic.

6.1 Preliminaries

The language of propositional logic Prop is defined over a set of propositional variables
V, the truth constants > and ⊥, conjunction (∧), disjunction (∨), and negation (¬)
as follows. If x ∈ V ∪ {⊥,>}, then x ∈ Prop; if φ ∈ Prop, then ¬φ ∈ Prop; if
ψ1, ψ2 ∈ Prop, then ψ1 ◦ ψ2 ∈ Prop with ◦ ∈ {∨,∧}.

Most SAT solvers process only formulas of Prop, that are given in conjunctive
normal form (CNF), which imposes some syntactic restrictions on the formula structure.
A formula is in CNF, if it is a conjunction of clauses. A clause is a disjunction of literals.
A literal is a variable or its negation. For example the formula (x ∨ ¬y) ∧ (¬x ∨ y)
is in CNF, whereas the equivalent formula (¬x ∧ ¬y) ∨ (x ∧ y) is not. The usage of
CNF is advocated, because of its simpler data structure and the support of specific, very
efficient reasoning techniques. It can be shown that each non-CNF can be transformed
to a formula in CNF preserving satisfiability [22] with linear overhead.

The semantics of propositional logic is defined over variable assignments. A variable
assignment for a formula φ is a set I ⊆ vars(φ), where vars(φ) denotes the variables
occurring in φ. The truth value vI(φ) of formula φ under a variable assignment Iis
defined as follows.

– If φ = > (resp. φ = ⊥), then vI(φ) = 1 (resp. vI(φ) = 0);
– if φ = x with x ∈ Prop, then vI(φ) = 1 if x ∈ I, else vI(φ) = 0;
– if φ = ¬ψ, then vI(φ) = 1− vI(ψ);
– if φ = ψ1 ∧ ψ2, then vI(φ) = min(vI(ψ1), vI(ψ2));
– if φ = ψ1 ∨ ψ2, then vI(φ) = max(vI(ψ), vI(ψ2)).

A formula φ is called satisfiable, if there exists a variable assignment I such that
vI(φ) = 1, otherwise φ is called unsatisfiable. A variable assignment which satisfies
a formula is called model of the formula. In the following, we encode merging of two
revisions of a sequence diagram in a way that a SAT solver returns “unsatisfiable” if no
valid merge is possible and “satisfiable” otherwise. In the latter case, also a model of the
formula is returned which represents a solution of the merge problem, i.e. a correctly
merged sequence diagram.

6.2 Merging Sequence Diagrams

Given an instance (SDo ,SDα,SDβ) of the sequence diagram merging problem, with
SDx = (Lx,Mx, lpropx,msgx) for x ∈ {o, α, β}, defined over a set SM of state
machines, let

– Sall =
⋃

SM∈SM π1(SM ) be the set of all states of all state machines,
– M = M o ∪M α ∪M β be the set of all messages, and
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– k = |M | the total number of messages.

Then the non-CNF formula φ is built over the following sets of variables:

– vm = {mi | m ∈M ∧ i ∈ allow(m)}. Variables of this set encode the placement
of each message at each of its allowed positions. If mi evaluates to true, it means
that message m is placed at position i.

– vc = {csi | 1 ≤ i ≤ k , s ∈ Sall)}. Variables of this set encode the source state of
a state machine for each position before a message is received. If csi evaluates to
true, it means that at position i, before the message placed on i is received, the state
machine containing s is in state s, or in other words, s is the source state of the
transition triggered by the action symbol of the message placed on i.

– vt = {tsi | 1 ≤ i ≤ k , s ∈ Sall}. Variables of this set encode the target state of a
state machine for each position after a message has been received. If tsi evaluates to
true, it means that at position i, after the message placed on i has been received, the
state machine containing s is in state s, or in other words, s is the target state of the
transition triggered by the action symbol of the message placed on i.

According to Definition 10, a consolidated version §γ of SDo , SDα and SDβ has to
meet the following requirements:

1. Lγ = Lα ∪ Lβ ,
2. Mγ = M α ∪M β ,
3. for each i ∈ {α, β, o} and for each m ∈M i it holds that msgγ(m) = msgi(m),
4. for each i ∈ {α, β, o} and for each l ∈ Li it holds that lpropγ(l) = lpropi(l),
5. for each m ∈Mγ it holds that pos(m) ∈ allow(m), and
6. Sγ is correct: Sγ is well-formed, time consistent and all lifelines are conformant to

their state machines.

The first set of subformulas encodes that for each m ∈Mγ it holds that pos(m) ∈
allow(m) (point 5 of Definition 10), that each message is placed on a position (point 2 of
Definition 10, and that on each position exactly one message is placed (well-formedness
of point 6 of Definition 10).∧

m∈M

( ∨
i∈allow(m)

mi

)
∧
∧
m∈M

∧
i,j∈allow(m)

i 6=j

(
¬mi ∨ ¬mj

)

The next subformula encodes the requirement that Sγ is time consistent (Point 6 of
Definition 10).

– SDγ is time consistent. This requirement is encoded as follows.∧
x∈{o,α,β}

∧
m∈Mx

∧
i∈allow(m)

(
¬mi ∨

∨
n∈Mx,
n�m

∨
j>i,

j∈allow(n)

nj

)

– Each lifeline of SDγ must be conformant to its state machine. For m ∈ M and
msg(m) = (a, s, r), let
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• lprop(life(r)) = (SM ,E snd ,E rcv , >), i.e. the associations of the lifeline that
receives m,

• SM = (S ,Atr ,Aeff , T ) the state machine describing the behaviour of the
lifeline,

• S tr ,c
m = {s ∈ S | (s, a′, A, s′) ∈ T, a = a′} i.e. all source states of transitions

triggered by action a of message m,
• S tr ,t

m = {s′ ∈ S | (s, a′, A, s′) ∈ T, a = a′} i.e. all target states of transitions
triggered by action a of message m.

• S eff ,c
m = {s ∈ S | (s, a′, A, s′) ∈ T, a ∈ A} i.e. all source states of transitions

executing action a of message m,
• S eff ,t

m = {s′ ∈ S | (s, a′, A, s′) ∈ T, a ∈ A} i.e. all target states of transitions
executing action a of message m.

Then the encoding of this constraint is the conjunction of the following three
subformulas:
1. For each message m, the information about the states in which a transition can

be triggered by the action of m and to which states the triggered transitions
lead:

∧
m∈M

∧
i∈allow(m)

(¬mi ∨
∨

s∈S tr,c
m

csi

)
∧
(
¬mi ∨

∨
s∈Str,t

m

tsi

)
2. Before and after an action is received, some state machine must be in one of its

states:
k∧
i=1

( ∨
cs
i∈vc

csi

)
∨
( ∨

tsi ∈vt
tsi

)
3. If a state machine stops in state s at position i, then, when it eventually continues

at position i+ l, it must still be in state s. Other state machines may be placed at
positions i+j, j < k. We abbreviate the set of states π1(M) for a state machine
M by MS . This is the only non-CNF part of the encoding.
k−1∧
i=1

∧
M∈SM

∧
s∈MS(tsi → ∧
r∈MS\s

¬cri+1

)
∧
( i∧
j=1

(
tsi ∧

j∧
l=1

¬csl →
∧

r∈MS\s

¬crj+1

))
In this section, we clearly see the benefit of the extensive specification of the sequence

diagram merge problem of the previous section. On the basis of this specification, the
encoding to SAT is straight-forward and relies only on standard techniques of modeling
with propositional logic. In order to get an implementation of a sequence diagram
merging tool, only the mapping to this SAT encoding based on the involved tMVML
models has to be realized. The actual problem solving is completely handed over to a
SAT solver.
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7 Case Study

The concise problem description given in Section 5 allows us to encode the merging
problem of sequence diagrams as satisfiability problem of propositional logic (SAT).
Since the SAT represenation of such an encoding can become very large, tool support
for the automatic generation is required. We implemented a first prototype described in
the following. This prototype allowed us to conduct a first case study on a representative
test set.

7.1 Implementation

We implemented the presented approach in a prototype available at http://www.
modelevolution.org/prototypes/sdmerge. Our prototype consists of six
modules: The difference provider, the SAT encoder, the Tseitin transformer, the SAT
solver, the model merger, and the a model verifier. All modules, except for the SAT
solver are written by us and in Java. To solve SAT instances, we use the off-the-shelve
SAT solver PICOSAT-936 [5]. The difference provider and the model merger are based
on the Eclipse Modeling Framework (EMF)6.

From the provided original and revised sequence diagrams along with their state
machines, the SAT encoding is generated as described in Section 6. All models, sequence
diagrams as well as state machines, are expressed in Ecore and respect the metamodel of
tMVML. As PICOSAT-936 requires the input to be in CNF, we convert our encoding to
using the Tseitin transformation [22]. The code is than handed to PICOSAT-936 which
returns either falseor a model for the formula. If a model is returned (i.e. the formula is
true), we negate the model, add it to the encoding and hand it again to PICOSAT-936. We
repeat this until PICOSAT-936 returns false. Each of the returned models corresponds to
a consolidated version of our problem instance.

Finally, each model is translated back into Ecore and checked for its correctness by
the model verifier.

7.2 Evaluation

In order to study the impact of using the information provided by state machines to
guide the merging of two differently evolved sequence diagrams, we established a
representative benchmark set. Available benchmark sets as presented in [10], contain
only modeling scenarios of one single view and focus mainly on class diagrams. Since
versioning systems do not store the two revisions explicitly, but only the merged versions,
suitable test cases cannot be extracted from available projects.

Although the models of our benchmark set are formulated in tMVML, they might
be reused in other case studies, because they are realized as Ecore models. Hence, a
translation to other modeling languages like full UML can be achieved by the means of
model transformations. The benchmark set is available at our project website.

The benchmark set consists of three different families, each containing five different
versioning scenarios. The first family on a subset of the SMTP protocol is based on

6 http://www.eclipse.org/modeling/emf/
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Set # SM # action symbols # states # transitions
email 3 15 16 19
coffee 2 9 7 8
philosopher 2 8 7 8

Table 2: Statistics on state machines of benchmark sets.

the state machines presented in Section 2. The second family models the behavior of a
coffee machine and its users similar to the example presented in [8]. Finally, in the third
family we model the behavior of the famous dining philosophers problem, inspired by
the running example of [25]. For each versioning scenario, we distinguish between three
different cases: (1) All lifelines are fully specified by state machines, (2) some lifelines
are specified by state machines, and (3) no lifeline is specified by a state machine.

If no state machine is specified for a lifeline, we assume an unconstrained state
machine, which contains only one state, from which any action symbol can be received.

With this setup, we tested our approach with 45 test cases. Details of the different test
cases are shown in Table 2. The evaluation allows us to test correctness of the merged
version and get a first impression on scalability issues.

Table 3 shows statistics on the number of found solutions and runtimes of the
different instances. The leftmost columns describe the names, number of lifelines (LL),
and number of messages (Ms) of each instance, the three rightmost columns show the
number of found solutions (#Sol) and runtime (Time) of the instance. Those instances, for
which the number of solution exceeded 1,000 or the runtime exceeded 100s, we stopped
the algorithm, as having too many solutions is impractical. The instances philosopher 4
and philosopher 5 are test cases for the verifier and contain incorrect models, hence no
values are shown in the table.

For the instances where no state machines are defined, we can compute the number
of models with

∏
f∈F

(nf+mf )!
nf !mf !

where F is the set of fragments of the merged model.
Each fragment contains a set of messages inserted between two messages of the original
diagram or at the beginning or the end, nf is the number of messages in fragment f
inserted from one revision and mf the number of messages inserted from the other.

The evaluation shows that except for philosopher 3, cases where all state machines
are specified result in few solutions that are found quickly. With no specified state
machines, the exponential growth of the number of solutions can be seen particularly in
the instances of mail.

8 Conclusion and Future Work

In this paper, we demonstrated how information encoded in the state machine view of a
software model may be used to guide the merging of concurrently evolved versions of a
sequence diagram. Such merging support is urgently needed to realize optimistic model
versioning systems.

We illustrated our approach for the modeling language tMVML, which borrows many
concepts from UML. For tMVML, we specified a metamodel in Ecore, which provided
us with the powerful tool support of the Eclipse environment to build a prototype of our
approach. In order to give a formal specification of the merging problem itself, we first
formalized the concepts of tMVML along with some important properties of the sequence

18



Set ID
SDo SDα SDβ full SM some SM no SM

LL Ms LL Ms LL Ms # Sol Time # Sol Time # Sol Time

em
ai

l

1 3 5 3 7 3 12 1 2.0 1 1.0 55 2.8
2 3 5 3 8 3 15 0 1.7 2 1.2 110 7.2
3 3 5 3 14 3 14 2 3.6 2 1.5 >48,620 >10
4 3 5 4 14 3 16 2 3 2 2 167.690 >10
5 3 5 4 14 3 18 2 4.6 2 2.5 ∼ 1036 >10

co
ffe

e

1 2 5 2 6 2 9 2 0.3 2 0.3 5 0.5
2 2 5 2 6 2 6 0 0.1 0 0.1 2 0.1
3 2 0 2 2 2 2 2 0.7 6 0.4 6 0.3
4 2 5 2 9 2 9 2 0.4 70 3.7 70 3.2
5 2 5 2 9 2 9 34 2.1 34 1.9 70 3.2

ph
ilo

so
ph

er 1 4 0 4 2 4 5 6 0.5 15 1.0 15 0.8
2 4 0 4 1 4 5 0 0.1 5 0.5 5 0.30
3 4 0 4 9 4 9 506 83 > 1, 000 > 100s 48,010 > 100s
4 4 0 4 9 4 5 - - - - - -
5 4 0 4 9 4 5 - - - - - -

Table 3: Overview on benchmarks.

diagram. On this basis, we derived an exact problem specification which can be directly
encoded as a satisfiability problem of propositional logic, the prototypical problem for
NP. To solve such a problem, highly optimized solving tools, SAT solvers, are available.
This way, instead of implementing a complicated merging algorithm, our tool encodes
the constraints of a merging problem into a propositional formula and the computation
of a set of consolidated versions, that are correct sequence diagrams merged from two
different versions, is done by the SAT solver. From this set of sequence diagrams the
software modeler can select a convenient version. By this means, user effort is reduced
and merging errors are avoided.

As we showed in our experiments, usually there are many solutions representing
valid merges. It is subject to future work to develop ranking and filtering techniques
to offer helpful pre-selections. Further, it should be possible that the modeler specifies
additional constraints for the merged model in order to cut down the number of solutions.
Then extensive user experiments have to be conducted.

So far we represent the models only in abstract syntax. However, in an ongoing
project we are currently developing dedicated visualization techniques for sequence
diagram merging. First mockups are available at our project website.

We aim to extend tMVML and plan to consider more concepts like hierarchical states
for state machines or combined fragments for sequence diagrams. Also for the prototype
we allowed only additions as changes. In future work, we plan to include deletions and
updates. Overall, we realized a powerful approach for the merging of sequence diagrams
taking the information of the state machine view into account to support the evolution of
the sequence diagram view.
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