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Abstract. We present a formal framework to certify k-induction-based
model checking results. The key idea is the notion of a k-witness circuit
which simulates the given circuit and has a simple inductive invariant
serving as proof certificate. Our approach allows to check proofs with an
independent proof checker by reducing the certification problem to pure
SAT checks and checking a simple QBF with one quantifier alternation.
We also present Certifaiger, the resulting certification toolkit, and
evaluate it on instances from the hardware model checking competition.
Our experiments show the practical use of our certification method.

1 Introduction

In many verification applications, k-induction [34] (also known as temporal
induction) is used as a powerful technique that reduces model checking to a series
of SAT problems. It has been extensively investigated as an effective approach
for unbounded model checking [18,22]. As a generalisation of simple induction,
for a given safety property, the k-induction method concerns a base case and an
inductive case: the base case is a bounded model checking problem with a depth
of k; the inductive case assumes the property holds for k consecutive steps, then
checks it also holds for k + 1 steps. The safety property is said to be k-inductive if
both conditions are satisfied. The nature of the k-induction algorithm allows it to
be integrated with modern SAT/SMT solvers. For example, reduction techniques
such as preprocessing have been investigated with k-induction in an incremental
setting [17]. The present state-of-the-art also concerns combining k-induction
with existing SAT-based model checking (SMC) techniques including interpo-
lation and property directed reachability [23,27]. Furthermore, k-induction has
also been extended to the context of infinite-state systems [13,19,26,32], as well
as software verification [16]. Another variant of this line of research is the use of
k-induction in sequential equivalence checking [31].

Model checking has been an effective technique for the verification of safety-
critical systems. In particular, applications deployed in industrial settings such
as nuclear facilities, increasingly utilise model checking to gain trust in the cor-
rectness of their designs [20,30,36]. In such ultra safety-critical applications the
certification that the model checking results are in fact correct is crucial. We
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argue that in model checking generic machine checkable certification is still in
its infancy in contrast to related fields. For instance in SAT competitions [2,24],
certifiable proofs are mandatory. This has helped to improve the trust we have
in SAT solving results as well as the quality of SAT solvers tremendously.

Even though counterexample validation is commonly used in model check-
ing to certify negative verification results through simulation, producing a
generic machine checkable proof on success is less straight-forward. To miti-
gate this problem, certification of model checking has been suggested earlier
in [14,21,23,29,33,36,37], but the methods presented in these works are either
not directly applicable to k-induction (in its vanilla form), produce k-induction
specific certificates (fail to provide an inductive invariant), or are considered to
have exponential certificates. This apparently made it hard to, e.g., require all
model checkers to produce proofs in the hardware model checking competitions.

As symbolic model checking of bit-level properties for hardware circuits is
PSPACE-complete, we introduce in this paper a novel certification framework
for k-induction-based model checking. Our proposed approach generates a fixed
number of SAT problems together with a one-alternation only QBF, which
are verified by an independent certifier, thereby enabling the certification of k-
induction proofs at lower complexity. Our method efficiently extends the given
model checking problem to finding a simple inductive invariant of a larger circuit
as a proof of k-induction of the original circuit. In particular, the certificate size
(as a circuit) is shown to be linear in size of the given model, and the inductive
depth. We present Certifaiger, which works as a complete tool suite for certi-
fication, independent of any model checker. Experimental results show that our
technique works efficiently and can be adapted for practical use.

The rest of the paper is organised as follows: In Sect. 2 we introduce the
notion of combinational simulation in the context of circuits. In Sect. 3, we study
the formal property of combinational simulation and define k-induction-based
model checking with an example. In Sect. 4, we present our proposed certification
approach followed by theoretical results in terms of k-induction. We describe the
implementation of our tool suite in Sect. 5, and report on experimental results
in Sect. 6. Finally, we conclude in Sect. 7.

2 Circuits

In this section, we present a slightly non-standard notation to formalize sys-
tems. It allows us to represent systems and particularly circuits symbolically in
a compact way and is crucial to reduce notational clutter in the following.

Let B(V ) be the set of Boolean expressions (propositional formulas) over
the Boolean variables V . We also write B(I, L) to denote the set of Boolean
expressions over I ∪ L, where I and L are two sets of Boolean variables. Given
two Boolean expressions f(V ), g(V ) ∈ B(V ) we call them equivalent, written
f(V ) ≡ g(V ), if they have the same models. This notation is also applied to
Boolean expressions over different sets of variables by simply interpreting them
over the union of their variables. We use “�” for syntactic equivalence [15],
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“→” for syntactic implication, and “⇒” for semantic implication. To define
semantical concepts or abbreviations we stick to equality “=”.

In the context of this paper, models are expressed in the form of finite logical
circuits, where states can be seen as truth assignments to latches and inputs.
Initial states are defined by the reset values of latches, in our case, represented by
their reset functions. For each latch l in L, there is a reset function rl(L) which
is a formula (Boolean expression) over a set of latches L, thus allowing cyclic
definitions. Note that a cyclic definition can lead to unsatisfiable reset formulas,
in which case there are simply no initial states. Additionally, for some L′′ ⊆ L, we
define R(L′′) =

∧

l∈L′′
l � rl(L) to allow us to analyse reset functions of individual

subsets of latches. The transition relation is expressed as a “next state” formula
associated with each latch, whereas non-determinism comes from inputs (which
act as the environment). The successor value of each latch is defined by applying
its transition function on the current values of latches and inputs. Intuitively, a
safety property specifies that the system must not violate certain behaviours, i.e.,
only “good states” are reachable. In this paper we focus on such simple safety
properties and leave liveness properties (see e.g., [29]) etc. for future work.

Definition 1 (Circuit). A circuit C = (I, L,R, F, P ) is defined as follows:

1. I: the set of Boolean input variables.
2. L: the set of Boolean latch variables.
3. R = {rl(L) | l ∈ L} is a set of reset function formulas.
4. F = {fl(I, L) | l ∈ L} is a set of transition function formulas, such that for

every latch l ∈ L, there is a transition function formula fl(I, L) ∈ B(I, L).
5. P (I, L) ∈ B(I, L) is a formula encoding the (good states) property.

The reset functions characterise the initialisation of the circuit. Such defini-
tion of reset abstracts the way how circuits are reset. As a short-hand we use
L′ � F (I, L) to denote a conjunction of the corresponding equivalences, i.e., it is
interpreted as

∧

l∈L′
l′ � fl(I, L). For clarity, we use subscripts as in Li to denote

a copy of the latch variables L in the temporal direction at some timestamp i,
where L0 is the set of latches at timestamp 0 when the circuit is supposed to
be initialised. Note that, using such transition functions to describe transition
relations implies that there will always be a successor state. The temporal evo-
lution of a system is expressed using the notion of unrolling, which has a specific
length and follows the transition relation at each step.

Definition 2 (Unrolling). For an unrolling depth m ∈ N, the unrolling of a
circuit C of length m is defined as the formula Um =

∧

i∈[0,m)

(Li+1 � F (Ii, Li)).

Note that in this definition, we use Ii and Li as sets of variables, whereas Um is
a formula. For m = 0, the conjunction is empty thus the formula is trivial.

Definition 3 (Initialised unrolling). An initialised unrolling of a circuit C,
with C = (I, L,R, F, P ), is defined as Um ∧ R(L0), where Um is an unrolling.
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We say an unrolling is safe if and only if the property holds at every time-
stamp along the whole length of the unrolling.

Definition 4 (Safe unrolling). Unrolling Um of a circuit C = (I, L,R, F, P )
is said to be safe if

Um ⇒
∧

i∈[0,m]

P (Ii, Li).

Definition 5 (Safe initialised unrolling). An initialised unrolling Um ∧
R(L0) of a circuit C = (I, L,R, F, P ) is said to be safe if

Um ∧ R(L0) ⇒
∧

i∈[0,m]

P (Ii, Li).

We are now ready to introduce the notion of a combinational extension
between two circuits. It is purely syntactic based on sharing inputs and latches.

Definition 6 (Combinational extension). Given circuits C = (I, L,R, F, P )
and C ′ = (I ′, L′, R′, F ′, P ′), C ′ combinationally extends C if I = I ′ and L ⊆ L′.

As noticed above, this definition allows us to interpret the inputs and latches
of a circuit as being part of another circuit. In practice for instance we simply
assume that the first |L| latches of the circuit C ′ are mapped to those of C
assuming some ordering of the latches, as it is for instance the case in the AIGER
format [7] used in the Hardware Model Checking Competition (HWMCC) [5].

To tackle the problem of generating a proof certificate for k-induction of the
safety of a circuit C, as is the main goal of this paper, we extend it to a larger
circuit C ′ with additional “book-keeping” behaviours [1] for which we can show
the same property by using standard induction. To ensure that the resulting
extended circuit C ′ preserves the original property, we provide a formalization
through a combinational simulation relation between two circuits, which needs to
be formally verified by a certifier. One important aspect of our design principles
is to keep the complexity of the required certification procedure low, in other
words, to be done via pure SAT solver checks or by solving a QBF with at most
one quantifier alternation. This leads to a more complicated non-standard design
of the certification approach, the details of which will be described in Sect. 4.

From a practical perspective, under combinational simulation defined below
in Definition 7, we require that the transition functions on the “common” parts
of the two circuits are equivalent. For the new latches, the transition functions
are always satisfiable (as they are functions), and thus we need no constraints
on them. As second condition we require that if the safety property P ′ holds in
the extended circuit, then the property P holds in the original circuit. The last
condition we need to check is that all the new latches of the extended circuit can
be initialised with some values whenever the original circuit can be initialised
and using the same values for initialising the common latches. In other words,
for all initialisations of the original circuit there is at least one initialisation of
the extended circuit with the same values for common latches.
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Under these conditions Theorem 1 in Sect. 3 shows that if the extended cir-
cuit (in this sense) combinationally simulates the original one and the extended
circuit is safe then the original circuit is safe as well.

With some abuse of notation, we use ∃L in a Quantified Boolean Formula
(QBF) to denote existential quantification over variables in L. As usual, free
variables are (implicitly) assumed to be quantified universally.

Definition 7 (Combinational simulation). Given circuits C = (I, L,R, F,
P ) and C ′ = (I ′, L′, R′, F ′, P ′) where C ′ combinationally extends C, we say that
C ′ combinationally simulates C, if the following holds:

1. fl(I, L) ≡ f ′
l (I, L′) for l ∈ L, “transition”

2. P ′(I, L′) ⇒ P (I, L), and “property”
3. R(L) ⇒ ∃(L′\L)R′(L′). “reset”

In later context when verifying the combinational simulation relation between
two circuits, we refer to Definition 7.1 as the transition check, Definition 7.2 as
the property check, and Definition 7.3 as the reset check.

3 Model Checking

In this section, we consider model checking via k-induction. The model checking
problem for safety properties concerns determining whether, given a circuit with
a property P , it is the case that P holds in all reachable states, i.e., the initialised
unrolling of a circuit of any arbitrary length is safe.

Definition 8 (Safe circuit). Let Um be the unrolling of circuit C, C is safe
iff Um ∧ R(L0) ⇒ ∧

i∈[0,m]

P (Ii, Li) holds for all m ∈ N.

Based on the above definition, we say the property P “holds” in C if the
circuit is safe with respect to P .

Theorem 1. Assume that the circuit C ′ combinationally simulates the cir-
cuit C. If C ′ is safe, then C is safe.

Proof. We do a proof by contradiction. Let m ∈ N be a bound for which the
claim does not hold. Thus the unrolling of length m of C ′ is safe w.r.t. P , and
therefore U ′

m ∧ R′(L′
0) ⇒ ∧

i∈[0,m]

P ′(I ′
i, L

′
i) holds. To obtain the contradiction we

assume there is a satisfying assignment s of Um∧R(L0)∧¬ ∧

i∈[0,m]

P (Ii, Li), which

would make C not to be safe. Thus R(L0) needs to be satisfiable. Now the reset
check of Definition 7.3 implies that R′(L′

0) ∧ R(L0) is guaranteed to be satisfi-
able with L0 being a subset of L′

0. Moreover, by Definition 7.1, the unrolling U ′
m

of C ′ is also satisfiable with the transition function F applied on the projected
(“common”) component on both circuits. Also for the new latches the fact that
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we use a transition function for them, they are also satisfiable (transition func-
tions guarantee that there is always a successor state for all states). Therefore
the initialised unrolling R′(L′

0) ∧ U ′
m is satisfiable. Furthermore, by our assump-

tion,
∧

i∈[0,m]

P ′(I ′
i, L

′
i) holds. By Definition 7.1 and Definition 7.3, the projected

latches of C ′ stay the same as Li for all i ∈ [0,m], and thus by Definition 7.2 we
have that

∧

i∈[0,m]

P (Ii, Li) holds. ��

As usual, we call a formula φ to be an inductive invariant φ of a circuit C if φ
satisfies the following conditions: (1) R(L) ⇒ φ(I, L), (2) φ(I, L) ⇒ P (I, L), and
(3) U1 ∧ φ(I0, L0) ⇒ φ(I1, L1). As a generalisation, k-induction looks at k steps
of evolution rather than 1 step by assuming the property holds in k consecutive
timestamps at the induction step.

Definition 9 (k-inductive). Given a circuit C with a property P , define the
formula Sk =

∧

i∈[0,k)

P (Ii, Li). Then P is called k-inductive in C if and only if

the following two conditions hold:

1. Uk−1 ∧ R(L0) ⇒ Sk, and “initiation”
2. Uk ∧ Sk ⇒ P (Ik, Lk). “consecution”

The first condition Definition 9.1 in this definition is called initiation check,
also bounded model checking check or simply BMC check on the initialised
unrolling of length k−1, whereas the second condition Definition 9.2 is referred to
as the consecution check for the unrolling of k. Note that a 1-inductive invariant
is equivalent to an inductive invariant when φ(I, L) ≡ P (I, L).

Fig. 1. The SMV code for the Counter example.

Example 1. We consider a simple example of an N -bit counter, where the counter
counts up to a modulo bound m, then it resets to zero. There is also a reset signal
which works as an enabler, such that when the signal is set to 1, the counter
is forced to reset. The property checks whether the counter value reaches b.
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Fig. 2. The transition diagram of the Counter example. The initial state is “000”
(colored yellow). In the (gray) “bad” State “110” the property does not hold. (Color
figure online)

Here the exact modulo check makes the model checking problem k-inductive
(k = b − m + 1). More precisely, for N = 3, the formal description of a 3-bit
counter is given in the SMV language in Fig. 1, where m = 5, b = 6. (Note that
our example can be easily extended to integers too.) The state diagram of this
system is shown in Fig. 2. The input values are specified with the transition
relations. This model is 2-inductive.

4 Certification

In our suggested approach, certifying model checking results concerns finding and
checking an inductive invariant which implies the original specification, which
in our case, is the safety property P . To tackle the problem of certifying k-
induction-based model checking for any given circuit, in this section, we redirect
the problem to generating a simple inductive invariant from a k-witness circuit,
in which the original circuit is combinationally simulated.

We start by defining the formalism of a k-witness circuit. The main idea is
to record the previous k − 1 states and inputs of the circuit observed during the
execution, “flattening” the k-induction procedure back to normal induction of
a larger circuit. As a result, the size of the circuit increases by a factor of k,
where k is the constant used in the k-induction scheme. The k-witness circuit
has k local components of inputs and latches. Each component can be seen as
representing a state in the original circuit. Whenever a new state is saved, the
oldest one is discarded.

One of the key technical challenges is the proper initialisation of the k-witness
circuit. We use an additional k initialisation bits for indicating which components
of the circuit have been initialised. This helps accomplishing the combinational
simulation relation later. We say a component is initialised if its initialisation
bit is 
. At initialisation, the k-witness circuit can be either fully or partially
initialised. Figure 3 displays three ways of initialising the components. In the case
of full initialisation, the circuit pre-computes k steps of the original circuit as
the initial state of the k-witness circuit. Thus intuitively in the full initialisation
case the initial state of the k-witness circuit encodes the states reachable in the
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k-step initialised BMC unrolling of the original circuit. In partial initialisation
scenarios the circuit instead pre-computes an initialised BMC unrolling for fewer
steps, where some components are left uninitialised. In the final case where there
are no pre-computed steps, the circuit simply runs from an original initial state,
leaving all the other components fully uninitialised.

In the definitions below, we use the superscript of i in Li to denote a copy
of latches L in the spacial direction, such that we introduce a set of new latch
variables for every Li, where li ∈ Li is the corresponding copy of l ∈ L, and
similarly for inputs. We refer to li as some latch in Li, where i is the index
of a latch set Li. The formal definition of k-witness circuit is given below. We
continue to use subscripts for the temporal direction.

Definition 10 (k-witness circuit). Given a circuit C = (I, L,R, F, P ), and
k ∈ N

+, the k-witness circuit C’=(I’, L’, R’, F’, P’) of C is defined as follows:

1. I’ = I. For simplicity we also refer to I ′ as Xk−1.
2. L’ = X0 ∪ · · · ∪ Xk−2 ∪ L0 ∪ · · · ∪ Lk−1 ∪ B, such that,

(a) Xi is a copy of the original inputs, for all i ∈ [0, k − 2].
(b) Li is a copy of the original latches, for all i ∈ [0, k − 1].
(c) B = {b0, . . . , bk−1} is the set of initialisation bits.

3. The reset function R’ = {r′
l(L

′) | l ∈ L′} is defined as follows:
(a) For x ∈ X0 ∪ · · · ∪ Xk−2, r′

x = x.
(b) For i ∈ [1, k − 1), ui = R(Li) ∨ ui+1, and uk−1 = R(Lk−1).
(c) For l ∈ L0, r′

l = ite(u1, l, rl(L0)).
(d) For i ∈ [1, k), r′

li = ite(ui, li, fli(Xi−1, Li−1)).
(e) r′

bk−1 = 
.
(f) r′

b0 = ¬u1.
(g) For i ∈ [1, k − 1), r′

bi = bi−1 ∨ (R(Li) ∧ ¬ui+1).
4. F’ = {f ′

l (I
′, L′) | l ∈ L′} is defined as follows:

(a) For i ∈ [0, k − 1), f ′
xi(I ′, L′) = xi+1.

(b) For l ∈ Lk−1, f ′
l (I

′, L′) = fl(Xk−1, Lk−1).
(c) For i ∈ [0, k − 1), f ′

li(I
′, L′) = li+1.

(d) For i ∈ [0, k − 1), f ′
bi(I

′, L′) = bi+1, and f ′
bk−1(I ′, L′) = bk−1.

5. The property P’ is defined as P ′(I ′, L′) =
∧

i∈[0,4]

pi(I ′, L′) such that:

(a) For i ∈ [0, k − 1), hi = (Li+1 � F (Xi, Li)).
(b) p0(I ′, L′) =

∧

i∈[0,k−1)

(bi → bi+1).

(c) p1(I ′, L′) =
∧

i∈[0,k−1)

(bi → hi).

(d) p2(I ′, L′) =
∧

i∈[0,k)

(bi → P (Xi, Li)).

(e) p3(I ′, L′) =
∧

i∈[1,k)

((¬bi−1 ∧ bi) → R(Li)).

(f) p4(I ′, L′) = bk−1.
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In Definition 10 we list five parts of the k-witness circuit. For clarity, we
explain each part in more details in the following text:

1. The set of inputs is identical to that of the original circuit.
2. The set of latches consists of the original latches, k initialisation bits, and

an additional k − 1 copies of inputs and latches which are introduced to save
observations of previous states.

3. The reset function is defined to allow non-deterministic initialisation (see
Fig. 3), where we use helper variables ui for a more compact encoding. The
formula ui is satisfied whenever a component younger than the ith has the
same reset value as the original circuit. The reset functions of the Xi latches
(for i < k − 1) ensure they are initialised in a non-deterministic fashion. As
for the initialisation bits B, their reset values are deterministic, depending
on the initialisation status of the components.

4. The transition function of the (k − 1)th copy of latches is identical to the
original transition function, while every older component simply saves the
value of its one timestep younger component.

5. Finally, the property is composed of five sub-properties, where hi is satisfied
whenever the two adjacent components follow the original transition relation.

Figure 4 illustrates a comparison of variable structures of the original circuit
and its k-witness (this also suggests their combinational extension relation). The
area marked yellow (left box and top right box on the right) consists of the same
set of variables. We consider each pair (Xi, Li) as a component in the circuit
and refer to (Xk−1, Lk−1) as the most recent component (youngest copy), and
(X0, L0) as the oldest component (copy). Additionally we also refer to the inputs
I ′ as Xk−1 for convenience.

The property P ′ is comprised of five sub-properties. The monotonicity prop-
erty p0 expresses the monotonic nature of the initialisation bits. Intuitively, if
a component is initialised, all components younger than it should also be ini-
tialised. The transition property p1 expresses the property that every initialised
component has to follow the transition relation in the original circuit. Of partic-
ular interest is the k-safety property p2, which says the original property P needs
to be satisfied in every initialised component. The reset property p3 expresses
the property that in the case of partial initialisation, the oldest initialised com-
ponent needs to satisfy the original reset function. Finally, p4 expresses that at
least the youngest component should have the initialisation bit set.

We now show the combinational simulation relation between the original
circuit and its k-witness circuit.

Theorem 2. The circuit C is combinationally simulated by its k-witness circuit.

Proof. By the construction in Definition 10, the inputs stay the same in the
k-witness circuit C ′, and the new latches are a superset of the original ones (the
youngest component in C ′). Thus by Definition 6, C ′ combinationally extends C.
Based on Definition 10.4, the transition function of Lk−1 is identical to the orig-
inal one, which satisfies Definition 7.1. In the new property, p4 and p2 together
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s0C : . . . si . . . sk−1

C′ : −1. . . . − s0

0 . . . 0 1

−2. . . . − s0 . . . si

0 . . . 0 1 . . . 1

s03. . . . sk−1

1 . . . 1

F F F F

Fig. 3. The diagram shows three possible initial states of C′. Here (1) illustrates 1-
initialisation, (2) is i-initialisation, and (3) full initialisation. The grey area are the
uninitialised components (the “don’t care”s).

I, LC : X0, L0C′ : ... Xk−1, Lk−1

b0 ... bk−1 } B

Fig. 4. The structure of input and latch variables in C and C′. (Color figure online)

imply P (Xk−1, Lk−1). In other words, the original property holds in the most
recent component. This then satisfies Definition 7.2. By Definition 10, for every
satisfiable assignment of R(L), the same assignment satisfies R′(L) on the com-
mon latches (the youngest component). For all the new latches we observe the
following. Because the reset of the newest component is satisfiable with the same
assignment as in the original circuit, we can see that uk−1 is true in the k-witness
circuit and therefore all other ui are also true. Therefore all the ite-statements
of the reset definition become trivially satisfiable. To complete the argument,
by Definition 10.3, all the initialisation bits can be now set to ⊥ except bk−1

which can be set to 
. A satisfying assignment of R′(L′) can thus be directly
constructed (deterministically in polynomial time) from any satisfying assign-
ment of R(L). This implies the reset condition of Definition 7.3 holds. (Sidenote:
This implies that the QBF check needed in the combinational simulation rela-
tion could potentially be solved easily in practice for these k-witness circuits.)
Therefore C ′ combinationally simulates C. ��

In the following, we present the main result of this paper on the relationship
between a circuit C and its k-witness circuit C ′ in terms of k-induction.

Theorem 3. Given a circuit C, a fixed k ∈ N
+, and its k-witness circuit C ′, P

is k-inductive in C iff P ′ is 1-inductive in C ′.
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Proof. We consider the two k-inductive checks in Definition 9 for both directions.
In Theorem 4 we show that the BMC check (of the initialised unrolling of length
k − 1) in C passes, if and only if the same check (of the initialised unrolling of
length 0) in C ′ also passes. In Theorem 5 we prove that if the consecution check
of C ′ passes, then the consecution check also passes in C. Lastly, Theorem 6
shows that if P is k-inductive in C, then the consecution check of P ′ using the
unrolling of length 1 passes in C ′. By combining them together, we conclude P
is k-inductive in C iff P ′ is 1-inductive in C ′. ��

For the BMC check in the two circuits, we need to analyse three separate cases
as shown inFig. 3,which correspond toLemmas 2, 3, and 4, respectively. But before
this we need a technical Lemma 1 on the initialisation bits. In the following context,
we consider a given circuit C, and its k-witness circuit C ′ with a fixed k.

Lemma 1. For the initialised unrolling of length 0 of the k-witness circuit C ′,
the reset values of the initialisation bits B0 are deterministic and depend only
on the component with the largest index i ∈ [0, k) for which R(Li

0) is satisfied.

Proof. Firstly, we define S = {i | R(Li
0)}, based on which we consider two cases.

(1). By Definition 10.3(c), if ¬u1
0, then 0 ∈ S. In this case, b00 = 
 by

Definition 10.3(f), and by Definition 10.3(e)(g), b10, ..., b
k−1
0 are all set to 
.

(2). Otherwise we consider u1
0, where S contains at least some i ∈ [1, k).

Let m be the maximum index in S, and m �= 0. Since R(Lm
0 ), um

0 is satisfied,
so are um−1

0 , ..., u1
0, while um+1

0 , ..., uk−1
0 are not. In Definition 10.3(g), for all

i ∈ S, R(Li
0) ∧ ¬ui+1 is only satisfied when i = m, thus bm0 = 
. Therefore

bi0 = 
 for all i ∈ [m + 1, k). By Definition 10.3(f), b00 = ⊥, therefore for all
i ∈ [1,m), bi0 = ⊥. ��

Initialisation bits are indicators for the initialisation status of the k-witness
circuit. We observe that the sub-properties p0, ..., p3 of the k-witness circuit
trivially hold for uninitialised components (i.e., those for which the initialisation
bit is 0), while p4 solely depends on bk−1.

Lemma 2. If the initialised unrolling of length k −1 of the original circuit C is
safe, the initialised unrolling of length 0 of the k-witness circuit C ′ is also safe,
in the case of 1-initialisation.

Proof. Assume Uk−1∧R(L0) ⇒ ∧

i∈[0,k)

P (Ii, Li) such that the initialised unrolling

of C is safe. In the case of 1-initialisation, we consider R′(L′
0) ∧ R(Lk−1

0 ) as the
initialised unrolling of C ′, as U ′

0 is trivial. By Lemma 1 and Definition 10.3, for
the initialisation bits, only bk−1

0 is set to 
 and the rest remain ⊥. The values of
B0 then satisfy p0(I ′

0, L
′
0), p1(I

′
0, L

′
0), p4(I

′
0, L

′
0) trivially. Every satisfying assign-

ment of R′(L′
0)∧R(Lk−1

0 ) satisfies R(L0) with L0 = Lk−1
0 , I0 = Xk−1

0 . Similar to
our argument in Theorem 1, Uk−1∧R(L0) is then also satisfiable. By our assump-
tion, P (Xk−1

0 , Lk−1
0 ) is thus satisfied. The premise of p2(I ′

0, L
′
0) is only satisfied

for bk−1
0 , and with the same assignment satisfying P (Xk−1

0 , Lk−1
0 ), p2(I ′

0, L
′
0) is

also satisfied. Lastly, the premise of p3(I ′
0, L

′
0) is only satisfied for ¬bk−2

0 ∧ bk−1
0 ,

and since R(Lk−1
0 ), p3(I ′

0, L
′
0) is satisfied. Therefore we have P ′(I ′

0, L
′
0). ��
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Lemma 3. If the initialised unrolling of length k −1 of the original circuit C is
safe, the initialised unrolling of length 0 of the k-witness circuit C ′ is also safe,
in the case of i-initialisation.

Proof. Firstly, we assume Uk−1 ∧ R(L) ⇒ ∧

i∈[0,k)

P (Ii, Li). In the case of i-

initialisation, we consider R′(L′
0) ∧ R(Lm

0 ) ∧ ¬um−1 as the initialised unrolling
of C ′, where m ∈ [1, k − 1) is the largest index for which R(Lm

0 ) is satis-
fied. As we showed in Lemma 1, bm0 , ..., bk−1

0 are set to 
 while b00, ...b
m−1
0 are

⊥. Following Definition 10.3, Li
0 � F (Xi−1

0 , Li−1
0 ) for all i ∈ (m, k), while

all components older than m are uninitialised. Every satisfying assignment of
R′(L′

0) ∧ R(Lm
0 ) ∧ ¬um−1 also satisfies

∧

i∈[0,k−m−1)

(Li+1 � F (Ii, Li)) ∧ R(L0)

with Ii−m = Xi
0, Li−m = Li

0 for all i ∈ [m, k). In the rest of the proof, we fix
the assignment satisfying R′(L′

0) ∧ R(Lm
0 ) ∧ ¬um−1. Similar to our argument

in Theorem 1, Uk−1 ∧ R(L0) is satisfiable with our fixed assignment. By our
assumption,

∧

i∈[m,k)

P (Xi
0, L

i
0) is then satisfied. We now consider P ′(I ′

0, L
′
0). As

the premise of p2(I ′
0, L

′
0) is only satisfied for bm0 , ..., bk−1

0 , p2(I ′
0, L

′
0) is satisfied.

Similarly for the transition property, with Li
0 � F (Xi−1

0 , Li−1
0 ) for all i ∈ (m, k),

p1(I ′
0, L

′
0) is satisfied. Given the values of B0, the monotonicity property is sat-

isfied. In addition, p4(I ′
0, L

′
0) is also satisfied as bk−1

0 = 
. Finally, the premise
of p3(I ′

0, L
′
0) is only satisfied for ¬bm−1

0 ∧ bm0 , and as we already have R(Lm
0 ), p3

is satisfied. ��
Lemma 4. If the initialised unrolling of length k −1 of the original circuit C is
safe, the initialised unrolling of length 0 of the k-witness circuit C ′ is also safe,
in the case of full initialisation.

Proof. We assume Uk−1 ∧ R(L) ⇒ ∧

i∈[0,k)

P (Ii, Li) for the original circuit. Since

we consider full initialisation, R′(L′
0) ∧ R(L0

0) ∧ ¬u1
0 is the initialised unrolling

of C ′. Following Definition 10.3, Li
0 � F (Xi−1

0 , Li−1
0 ) for all i ∈ [1, k). Every

satisfying assignment of R′(L′
0) ∧ R(L0

0) ∧ ¬u1
0 satisfies Uk−1 ∧ R(L0) with

Ii = Xi
0, Li = Li

0 for all i ∈ [0, k). The rest of the proof follows the same logic
as in Lemma 3. ��
Lemma 5. If the BMC check for the unrolling of length k − 1 of the original
circuit C passes, then the BMC check for the unrolling of length 0 of the k-witness
circuit C ′ also passes.

Proof. Based on Definition 10.3, we consider the BMC check for all possible
initial states. Lemma 2, 3 and 4 cover the case-split over all initial states of C ′

based on whether each component satisfies the original reset function R(Li
0) or

not. We show that the BMC check of C ′ passes under the same assumption for
three initialisation cases respectively. In particular, our construction in Defini-
tion 10.3 does not allow all components to be uninitialised, in which case R′(L′

0)
becomes unsatisfiable (more specifically, R′(L0

0) is unsatisfiable). We conclude
the BMC check of the initialised unrolling of length 0 passes in C ′. ��
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We proceed to prove the opposite direction of the BMC check for C and C ′

by considering the reset status in the k-witness circuit.

Lemma 6. If the BMC check for the unrolling of length 0 of the k-witness circuit
C ′ passes, then the BMC check for the unrolling of length k − 1 of the original
circuit C also passes.

Proof. We assume the BMC check passes in the k-witness circuit, R′(L′
0) ⇒

P ′(I ′
0, L

′
0). We do a proof by contradiction by assuming the BMC check of length

k − 1 fails for the original circuit. Thus there exists a satisfying assignment s
of Uk−1 ∧ R(L0) ∧ ¬ ∧

i∈0,k)

P (Ii, Li). We can construct a satisfying assignment of

R′(L′
0) as follows. Let a ∈ [0, k) be some index for which ¬P (Ia, La) is satisfied.

Let m ∈ [0, a] be the index for which R(Lm) ∧ ¬ ∨

i∈(m,a]

R(Li) is satisfied. Let

Xk−1−i
0 = Ia−i, L

k−1−i
0 = La−i, b

k−1−i
0 = 
 for all i ∈ [0, a − m]. The rest of

initialisation bits of B0 are set to ⊥. By Definition 2, we have Li+1 � F (Ii, Li)
for all i ∈ [m,a), which satisfies Definition 10.3(d). As our construction satisfies
R′(L′

0), by our assumption, P ′(I ′
0, L

′
0) is satisfied. By Theorem 2, P (Ia, La) is

satisfied. Since we assume s satisfies ¬P (Ia, La), we have reached a contradiction.
��

As an immediate consequence of Lemma 5 and 6, the BMC check of C passes
iff the same check passes in C ′. We record the result in the following Theorem.

Theorem 4. The BMC check for the unrolling of length 0 of the k-witness cir-
cuit C ′ passes, if and only if the BMC check for the unrolling of length k − 1 of
the original circuit C passes.

. . .C : si . . . si+k−1 si+k . . .

C′ :
si . . . si+k−1

1 . . . 1
. . .

si+1 . . . si+k−1 si+k

1 . . . 1 1
. . .

F F F F F

F ′

Fig. 5. The diagram shows the consecution check in C and C′.

We show in Fig. 5 an illustration of the consecution check in both circuits.

Theorem 5. If the consecution check for the unrolling of length 1 of the k-
witness circuit C ′ passes, then the consecution check for the unrolling of length
k of the original circuit C passes too.
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Proof. We assume U ′
1 ∧ P (I ′

0, L
′
0) ⇒ P (I ′

1, L
′
1) holds. We then do a proof by

contradiction by assuming that the consecution check for the original circuit fails.
Thus there is a satisfying assignment s of the formula Uk ∧ ∧

i∈[0,k)

P (Ii, Li) ∧
¬P (Ik, Lk). Based on s, we have a satisfying assignment for U ′

1 ∧ P ′(I ′
0, L

′
0)

as follows. Let Xi
0 = Ii, L

i
0 = Li, and bi0 = 
 for all i ∈ [0, k). Let Xi−1

1 =
Ii, L

i−1
1 = Li, b

i−1
1 = 
 for all i ∈ [1, k]. We now show this satisfies L′

1 �
F ′(I ′

0, L
′
0). Since Xi−1

1 = Ii = Xi
0 and Li−1

1 = Li = Li
0 for all i ∈ [1, k),

Definition 10.4(a) and Definition 10.4(c) are satisfied. Since s satisfies Uk, by
Definition 2, it satisfies Lk � F (Ik−1, Lk−1). With Xk−1

0 = Ik−1, L
k−1
0 = Lk−1,

and Lk−1
1 = Lk, we have Lk−1

1 � F (Xk−1
0 , Lk−1

0 ), and thus Definition 10.4(b).
As for the initialisation bits, since all of them are set to 
 in both B0 and B1,
Definition 10.4(d) is satisfied. As a result, U ′

1 is satisfied, and we continue to
show the same assignment satisfies P ′(I ′

0, L
′
0). Similar to our proof in Lemma 3,

the values of B0 satisfy p0(I ′
0, L

′
0) and p4(I ′

0, L
′
0) immediately. As the premiss

of p3(I ′
0, L

′
0) is unsatisfiable, p3(I ′

0, L
′
0) trivially holds. Since Uk is satisfied, by

Definition 2, we have Li+1 � F (Ii, Li) which satisfies hi
0 for all i ∈ [0, k−1), thus

also p1(I ′
0, L

′
0). Lastly, since P (Ii, Li) is satisfied for all i ∈ [0, k), the original

property is satisfied in every component P (Xi
0, L

i
0), resulting in the satisfaction

of p2(I ′
0, L

′
0). By our initial assumption, P ′(I ′

1, I
′
1) is satisfied. By Theorem 2,

we have P (Xk−1
1 , Lk−1

1 ), thus P (Ik, Lk). We reach a contradiction here. We can
therefore conclude the consecution check of the original circuit passes. ��
Lemma 7. If the safety property P is k-inductive in the original circuit C, the
consecution check of the unrolling of length 1 passes in the k-witness circuit C ′,
given that L′

0 is partially initialised.

Proof. Assume P is k-inductive in C. Let U ′
1 be the unrolling of C ′, and

m ∈ [1, k) is some index such that b00, ..., b
m−1
0 are set to ⊥, while bm0 , ..., bk−1

0

are set to 
 (as we consider partial initialisation here). We do a proof by con-
tradiction, and assume there is a satisfying assignment s of the negation of
the consecution check formula U ′

1 ∧ P ′(I ′
0, L

′
0) ∧ ¬P ′(I ′

1, L
′
1). Since we assume

P ′(I ′
0, L

′
0), it implies R(Lm

0 ), based on p3(I ′
0, L

′
0). We also have Li+1

0 � F (Xi
0, L

i
0)

for i ∈ [m, k − 1), based on p1(I ′
0, L

′
0). Furthermore, U ′

1 implies L′
1 � F ′(I ′

0, L
′
0),

and by Definition 10.4, Lk−1
1 � F (Xk−1

0 , Lk−1
0 ). Therefore the same assignment

satisfies Uk−1 ∧ R(L0) where Ii−m = Xi
0, Li−m = Li

0 for all i ∈ [m, k), and
Ik−m = I ′

1, Lk−m = Lk−1
1 . By our assumption that the BMC check passes in C,

we have P (Xi
0, L

i
0) for all i ∈ [m, k) and P (I ′

1, L
k−1
1 ).

We can then proceed to prove P ′(I ′
1, L

′
1) is indeed satisfied. Similar to our

proof in Theorem 5, based on Definition 10.4, bi1 = 
 for all i ∈ [m, k) while
bi1 = ⊥ for all i ∈ [0,m). Additionally, Xi

1 = Xi+1
0 , Li

1 = Li+1
0 for i ∈ [0,m − 1).

The rest of the proof follows the same logic as Theorem 5 for showing P ′(I ′
1, L

′
1) is

satisfied. We then reach a contradiction here, and thus conclude the consecution
check for C ′ passes in this case. ��
Lemma 8. If the consecution check for the unrolling of length k passes in the
original circuit C, the consecution check for the unrolling of length 1 passes in
the k-witness circuit C ′, given that L′

0 is fully initialised.
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Proof. Let U ′
1 be the unrolling of C ′ with b00, ..., b

k−1
0 all set to 
. Similar

to Lemma 7, we do a proof by contradiction, and assume there is a satis-
fying assignment s of U ′

1 ∧ P ′(I ′
0, L

′
0) ∧ ¬P ′(I ′

1, L
′
1). By the transition prop-

erty p1(I ′
0, L

′
0), the components follow the transition function F , such that

Li+1
1 � F (Xi

0, L
i
0) for all i ∈ [0, k − 1). Similar to our argument in Lemma 7, U ′

1

implies Lk−1
1 � F (I ′

0, L
k−1
0 ). We also have

∧

i∈[0,k)

P (Xi
0, L

i
0) based on p2(I ′

0, L
′
0)

and the values of B0. The same assignment thus satisfies Uk ∧ ∧

i∈[0,k)

P (Li, Li)

where Li = Li
0 ∧ Ii = Xi

0 for all i ∈ [0, k) and Ik = I ′
1, Lk = Lk−1

1 . Based on our
assumption that the consecution of C passes, we have P (I ′

1, L
k−1
1 ). Following

the same reasoning in Lemma 7, after one transition, bi1 = 
 for all i ∈ [0, k),
and Xi

1 = Xi+1
0 , Li

1 = Li+1
0 for i ∈ [0, k − 1).

We can now show P ′(I ′
1, L

′
1) is satisfied. The k-safety property p2(I ′

1, L
′
1) is

satisfied as we have proved p(Xi
1, L

i
1) for all i ∈ [0, k). The transition property

p1(I ′
0, L

′
0) is preserved, as Uk is satisfied which implies Li+1

1 � F (Xi
1, L

i
1). Based

on the values of B1, p0(I ′
1, L

′
1), p3(I

′
1, L

′
1), p4(I

′
1, L

′
1) are satisfied immediately.

We conclude the P ′(I ′
1, L

′
1) is satisfied thus we reach a contradiction. Therefore

the consecution check for C ′ passes in this case. ��
Theorem 6. If both k-induction checks pass in the original circuit C, then the
consecution check of the unrolling of length 1 in the k-witness circuit C ′ passes.

Proof. First of all, we assume both checks pass in C. We then do a proof by con-
tradiction by assuming there is a satisfying assignment s for the negation of the
consecution check U ′

1 ∧P ′(I ′
0, L

′
0)∧¬P ′(I ′

1, L
′
1). Since s satisfies U ′

1 ∧P ′(I ′
0, L

′
0),

we consider two separate cases where the property P ′(I ′
0, L

′
0) is satisfied: full

initialisation or partial initialisation. Note when all b00, ..., b
k−1
0 are set to ⊥,

P ′(I ′
0, L

′
0) is not satisfied. Therefore applying Lemma 8 and Lemma 7 together,

we conclude if both k-induction checks pass in C, the consecution check of the
unrolling of length 1 in the k-witness circuit also passes. ��

We briefly discuss why the k-witness circuit is linear in the size of the original
circuit, and the value k. If we consider the circuit size in terms of gate numbers,
the number of latches and inputs increase by a factor of approximately k. The
transition functions are copied k − 1 times, i.e., k − 2 times for reset in Defini-
tion 10.3(d), and once more in 10.4(b), while the k − 2 copies in the property
part 10.5(a) have the same arguments and can be shared. For the reset predi-
cates, defining R(Li) is linear in the number of the latches, while ui is linear in
k. We apply the same logic when defining the property, therefore we conclude
our construction is linear in the size of the circuit and k.

5 Implementation

Based on our new construction we implemented Certifaiger [12], which works
as a tool suite comprised of multiple components as shown in Fig. 6. The tool
takes as inputs a circuit which contains a safety property given in AIGER for-
mat [7] and a value k provided by a k-induction-based model checker which
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outputs a positive model checking result. Upon invocation, internally the inputs
are passed on to the k-witness generator that parses the AIGER file and gener-
ates a k-witness circuit as defined in Definition 10. The new safety property is a
simple inductive invariant (to be verified) for the k-witness circuit. We extended
the reset logic definition of the existing AIGER format defined by the authors
of [7] to enable reset functions, whereas all previous AIGER versions only allow
reset values to be 0, 1, or uninitialised. The k-witness circuit from the k-witness
generator is given in this extended AIGER format.

k

C

k-witness
generator C′

combinational
simulation
checker

inductive
invariant
checker

ϕpropϕreset ϕtrans ϕconsecϕconsist ϕinit

SAT
solver

QBF
solver

SAT
solver

SAT
solver

SAT
solver

SAT
solver

T/F S/U S/U S/U S/US/U

Certifaiger

Fig. 6. The architecture of Certifaiger. C is the input circuit in AIGER format and
k is the value given by a k-induction-based model checker. The final outputs of the
SAT solvers are given in the form of S/U , for satisfiable or unsatisfiable. The QBF
solver outputs true or false (T/F ) as the result.

To verify the inductive invariant φ(I, L), as discussed in Sect. 3, our certifier
generates three conditions. (Note that here we are only looking at extended
circuits, therefore we use L instead of L′.)

Condition Formula The inductive invariant . . .

“initiation” R(L) ⇒ φ(I, L) . . . must hold at all initial states

“consistency” φ(I, L) ⇒ P (I, L) . . . must hold at all good states

“consecution” U1 ∧ φ(I0, L0) ⇒ φ(I1, L1) . . . is preserved during the transition

In our implementation, the latch variables used in the inductive invariant
are updated with their next state literals after each transition. The consistency
condition is rather trivial here, as the inductive invariant is exactly the property
in the k-witness circuit, although this is only specific to our case.
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Our certifier generates for each of the three conditions a (combinational)
AIGER circuit which is then checked by a SAT solver. In our implementation,
we used the SAT solver Kissat [6] for checking validity of the formulas after they
have been converted to CNF by invoking aigtocnf from the AIGER library.

Furthermore, we implemented the combinational simulation checker for veri-
fying the combinational simulation relation described in Definition 7. The checker
takes as inputs the original circuit and the k-witness circuit. It generates two
AIGER files for the transition check and the property check, as well as a
QAIGER file for the reset check, as defined in Definition 7. Similar to the induc-
tive invariant checker, the AIGER files are then converted to CNFs and verified
by Kissat. QAIGER is a standard format used in QBF Competitions. In our
experiments the formula is verified with the QBF solver QuAbS [35].

The tool Certifaiger returns “success” as a result if all six formulas hold,
meaning that the circuit C ′ combinationally simulates C and C ′ is safe by the
1-induction proof. Thus by Theorem 1 the original circuit C is also safe. Note
that this result holds regardless of how C ′ is constructed.

Given a scenario where we would want to place trust on the correctness
of the extended circuit mapping inside the k-witness generator (to trust that
the k-witness circuit construction of Definition 10 is correct and the program
implementing it is also provably correct), all three combinational simulation
checks (one QBF and two SAT checks) could be skipped in the certification
procedure.

Intuitively, given a faulty generation of the k-witness circuit C ′, the error
would either be caught by the combinational simulation check (due to an erro-
neous under-approximation of the set of reachable states) or the inductive invari-
ant check (due to an erroneous over-approximation of the set of reachable states).
Furthermore, we have also done a sanity check of certification on failure, where
the model checking results are falsified by Certifaiger. An incorrect value of k
is detected by a negative result of ϕconsec, whereas ϕinit does not hold in cases
where an initial state is a bad state.

6 Experiments

As described in previous sections, the complexity of extending the original cir-
cuit into k-witness is linear in the size of the circuit, and the inductive depth.
To evaluate the practicality of our tool, we now report the experimental results
obtained by evaluating Certifaiger against a number of widely used bench-
marks. The benchmarks were first run on the open source k-induction-based
model checker McAiger [3], which was modified to give the values of k explicitly.
All experiments were carried out on an Intel R© Coretm i9-9900 CPU 3.60 GHz
computer with 32 GB RAM running Manjaro with kernel version 5.4.72-1.

We start with the TIP suite benchmarks which were originally used in [18].
The benchmarks were converted from .smv to AIGER by invoking smvtoaig
from the AIGER library. Table 1 reports the certification results obtained, where
the file names are associated by the origin of the problems explained in [18]. The
table displays the following information in each column:
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(a) (b)

Fig. 7. The time (a) and file size (b) comparison results for the TIP suite. The bench-
mark names are shown on the x-axis. Average values are shown as the blue horizontal
line in each plot. The y-axis of (a) displays the time ratio of total certification time
and model checking time. The y-axis of (b) shows the expansion factor indicating the
comparison of circuit sizes (k-witness circuit v.s the original). (Color figure online)

1. the name of the AIGER file,
2. the verification time on McAiger,
3. the size of the original circuit, in terms of the number of gates (thousands),
4. the k-inductive value k given by the model checker,
5. the size of the k-witness circuit,
6. the time taken on the k-witness generator, and
7. the size and solving time (seconds) of each condition.

Note here we selected benchmarks that gave a positive model checking result,
only in which case the original property is k-inductive. Moreover, three instances
that require simple paths constraints (also called loopFree constraints in [34])
were ruled out. Handling these constraints is an interesting area for future study.
We retrieved the inductive depths k from the model checker McAiger, and com-
pared with the results in [18] to ensure the values are identical. As shown in
Table 1, the values of k vary between 4 and 96. The SAT solver was able to
handle the proof checking without experiencing time-outs. We observe that the
k-witness circuit generation time is rather small, compared with the model check-
ing time as well as the proof checking time. In the proof checking stage, Table 1
suggests that the SAT-solving time for ϕconsec is much higher than the rest of
the formulas. This is as expected, as the formula ϕconsec is in general more com-
plicated than the rest, and appears to be the most difficult formula to solve. In
addition, QBF solving times are also worth-noting: in a few cases QBF solving
time is longer than for other formulas, however, in most cases, it is rather small.
To compare certification time with model checking time, we plotted the results
in Fig. 7a, where the y-axis shows the ratio of certification and model checking.
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Table 1. Experimental results for the TIP suite.

Here certification time is the sum of time taken on each component, assum-
ing the six conditions are computed in parallel. As shown in the diagram, the
average time ratio is around 8, which is quite promising. Furthermore, Fig. 7b
shows a comparison of circuit sizes, where the expansion factor ε is computed
by #C′

#C×k (alternatively, #C ′ = ε · #C · k). The average value observed here is
around 1.5. This is consistent with Definition 10, as we expected the size of the
k-witness circuit to grow linearly with respect to the original circuit and the
value of k.

Fig. 8. Certification time vs. model checking time obtained by running HWMCC’10
benchmarks.

We also used benchmarks from the Hardware Model Checking Competition
(HWMCC) 2010 [4]. The benchmarks were pre-filtered by running on McAiger
with a time-out of 15 min. A total of 513 instances were solved by McAiger,
from which we selected from the 216 unsat instances with a meaningful k (i.e.,
k ≥ 2). We also observed only 7 out of the 216 instances require simple path
constraints. The results in Fig. 8 are sorted by the benchmark names, which
enables us to compare individual benchmarks from the same family. In most
cases, similar to our previous observation from the TIP suite, the SAT solving
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Fig. 9. The k-witness circuit size vs. the original circuit size.

time of ϕconsec takes much longer than the rest, while in very few cases it is less
than the QBF solving time for ϕreset. The average time ratio is 30, where we
excluded 4 outliers in the plot coming from the pj20 family, that give a worse
result (total certification time ≥15 min). We observe that this was due to the
high format conversion time from QAIGER to QCIR [25] before the QBF solving
handled by QuAbS, while the actual QBF solving time was significantly smaller
and more feasible. We believe this can be overcome by generating an alternative
format directly in practice. Finally, similar to our previous TIP results, Fig. 9
shows the values of the expansion factor with an average of 1.5.

In the final experiments, to further inspect the expansion factor, we generalise
the Counter example in Example 1, where we scale the number of bits to 500
with a modulo value 32. To clarify the complexity of our construction for the
k-witness circuit, we ran experiments with different values of k. The results are
shown in Fig. 10, where the x-axis shows the values of b up to 431, meaning the
value of k was scaled up to 400. The expansion factor gradually converges to a
constant as we increase the value of b, as we expected.

Fig. 10. The experimental results of the Counter example. The values of b are shown
on the x-axis.
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As noticed above, overall our approach works efficiently in the certification
stage, in particular, in our implementation we adopted the linear construction
of k-witness circuit in Definition 10, thus the size of the resulting AIGER circuit
is linear in the size of the original circuit, and the value of k. Each component in
the tool suite works independently from each other when performing verification,
which increases trust in the verification results.

7 Conclusion

We propose an approach to certify k-induction-based model checking results,
by extending the model to produce an inductive invariant. The resulting tool,
Certifaiger, was evaluated experimentally on multiple sets of widely used
benchmarks. The analysis showed our approach can be adapted to use in practice.

Our certificates are linear in size of the original problem and k. Validation
requires several SAT checks and solving a simple QBF. In related work [8,23]
the worst case is considered to be exponential. It is an interesting open question
whether our notion of combinational simulation requiring a QBF check for the
reset condition can be changed to use only SAT checks.

Further, we only considered k-induction without simple paths constraints,
even though such constraints on executions of the original model can in princi-
ple be handled by adding unique state constraints to our k-witness circuit. For
simplicity we stick to models without such constraints, a restriction also made
for instance in the hardware model checking competition. Thus certifying k-
induction with simple path constraints is left to future work as well as handling
different types of properties such as liveness properties.

We also want to extend our approach to common preprocessing techniques
including temporal decomposition [11] or retiming [28] with the goal to obtain a
single certificate (witness circuit). This goal is particularly challenging for com-
plex multi-engine model checkers [9,10]. Furthermore, we believe our approach
can be extended to infinite-state systems, where k-induction is commonly used.

Acknowledgement. This work is supported by the Austrian Science Fund (FWF)
under the project W1255-N23, the LIT AI Lab funded by the State of Upper Austria,
and Academy of Finland under the project 336092.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. In: LICS, pp. 165–
175. IEEE Computer Society (1988)

2. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: recent develop-
ments. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, pp. 5061–5063. AAAI Press (2017)

3. Biere, A., Brummayer, R.: Consistency checking of all different constraints over
bit-vectors within a SAT solver. In: FMCAD, pp. 1–4. IEEE (2008)

4. Biere, A., Claessen, K.: Hardware model checking competition 2010 (2010). http://
fmv.jku.at/hwmcc10/

http://fmv.jku.at/hwmcc10/
http://fmv.jku.at/hwmcc10/


384 E. Yu et al.

5. Biere, A., van Dijk, T., Heljanko, K.: Hardware model checking competition 2017.
In: Stewart, D., Weissenbacher, G. (eds.) Formal Methods in Computer-Aided
Design, FMCAD, p. 9. IEEE (2017)

6. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT competition 2020. In: Balyo, T., Frol-
eyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competi-
tion 2020 - Solver and Benchmark Descriptions. Department of Computer Science
Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

7. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. rep.
11/2, Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria (2011)

8. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

9. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 5

10. Cabodi, G., Nocco, S., Quer, S.: Thread-based multi-engine model checking for
multicore platforms. ACM Trans. Des. Autom. Electr. Syst. 18(3), 36:1–36:28
(2013)

11. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification by
temporal decomposition. In: FMCAD, pp. 17–24. IEEE (2009)

12. Certifaiger: Certifaiger (2021). http://fmv.jku.at/certifaiger
13. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.

In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29
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