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Preface

This binderincludesthe preliminary proceeding®f the first internationalworkshopon Bounded
Model Checking(BMC’03) that was held on July 13th, 2003 in Boulder Colorado.The final
proceedingsvill be publishedn issue4, Volume89 of ElectronicNotesin TheoreticalComputer
Sciencd ENTCS),togethewith otherCAV’03 affiliated workshops.

Sinceits introductionin 1999, BoundedModel Checkinghasbeenadoptedby mostrelevant
companiegsacomplementaryechniqueo themoretraditionalBDD-basedunboundedymbolic
modelchecking.Largely dueto the advancesn SAT technologyin the lastfew years,it became
aleadingtool in detectionof relatively shallav logical errors,outperformingBDD basedoolsin
mostof thesecasesThelargeinterestn thistechnologyhascreateda constanstreanof new ideas
andimprovementghatmake this techniguemoreandmoreuseful.lt alsoledto aneffort, reported
in theinvited talk of thisworkshop to usethe power of SAT solversfor standardi.e.,unbounded,
modelchecking.

The aim of the workshopwasto provide a forum for presentinghew results,both theoretical
andexperimental in BoundedModel Checking.This is the first workshopto concentraten this
topic, andwe hopethatit will befollowedby similar meetingsannually

Eachof the papersselectedo this workshophasbeenreviewed andrecommendety at least
three(typically four) programcommitteemembersWe thank the programcommitteemembers
for their effort in evaluatingthe articles.We alsothankthe organizersof the hostingconference
(CAV’03), W. HuntandF. Somenzi.
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Temporal Induction by Incremental SAT
Solving

Niklas Eén, Niklas Sorensson

Chalmers University of Technology, Sweden
{een,nik}@cs.chalmers.se

Abstract

We show how a very modest modification to a typical modern SAT-solver enables it
to solve a series of related SAT-instances efficiently. We apply this idea to checking
safety properties by means of temporal induction, a technique strongly related to
bounded model checking. We further give a more efficient way of constraining the
extended induction hypothesis to so called loop-free paths. We have also performed
the first comprehensive experimental evaluation of induction methods for safety-
checking.

1 Introduction

In recent years, SAT-based methods for hardware verification have become
an important complement to traditional BDD-based model checking. Several
methods have proven their usefulness on a number of industrial applications,
in particular bounded model checking (BMC) [Fi i . In
this paper we will focus our attention on how SAT-based verification proce-
dures can be implemented more efficiently by a tighter integration with the
underlying SAT-solver.

There are three main contributions of the paper. Firstly, we show how a
number of similar SAT-instances can be solved incrementally by a very modest
modification of a modern Chaff-like SAT-solver [ . The technique we
propose is simpler than previous attempts [, while still obtaining a
performance increase of the same magnitude. Secondly, we demonstrate the
incremental technique on temporal induction ], a method of checking
safety properties on finite state machines (FSM). We show the impact of the
incremental approach experimentally, both for proving correctness and for
finding counter-examples.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs



EEN AND SORENSSON

Thirdly, we refine the method of ensuring completeness for temporal in-
duction. The standard method works by requiring all states in the induc-
tion hypothesis to be unique. By a simple analysis of the FSM, we are able
to exclude some state-variables from the uniqueness constraints, resulting in
stronger requirements. This may exponentially reduce the induction depth
needed. We prove that this strengthening is sound. Additionally, we demon-
strate a speed-up by adding the unique states requirement dynamically for
only those pairs of states where it is needed.

The experiments we have performed with our prototype tool TIP show that

many properties can be proven at speeds comparable to mature BDD-based
tools such as CADENCE SMV and CMU SMV.

2 Preliminaries

In this paper, we consider safety properties on finite state machines (FSM).
The states of the FSM are vectors of booleans, defining the values of the
state variables. We assume the FSM to have a set of legal initial states, and
the safety property to be specified as a propositional formula over the state
variables. By reachable state space we mean all states of the FSM reachable
from the initial states. Our task is to prove that the property holds for each
state in the reachable state space.

In a standard manner, we will assume the transitions of the FSM to be
represented by a propositional formula T(s, s’), the set of initial states by a
formula I(s), and further denote the safety property by P(s). We will use
s, to denote the state variables of time step n and introduce the shorthand
notation I, P,,, and T, for I(s,), P(s,), and T (s, Spt1)-

2.1 The SAT problem

Let Bool denote the boolean domain {0, 1}, and Vars := {zy, z;,2s,...} be a
finite set of boolean variables. A literal is a boolean variable x; or a negated
boolean variable ;. A clause is a set of literals, implicitly disjoined. A SAT
instance is a set of clauses, implicitly conjoined. A waluation is a function
Vars — Bool. A literal x; is said to be satisfied by a valuation if its variable
is mapped to 1; a literal 7; if its variable is mapped to 0. A clause is said
to be satisfied if at least one of its literals is satisfied. A model (satisfying
assignment) for a SAT instance is a valuation where all clauses are satisfied.
The SAT problem is to find a model for a given set of clauses.

2.2 Converting formulas to SAT

There are several ways of translating a propositional formula into clauses,
in such a way that satisfiability is preserved. This is typically done by in-
troducing auxiliary variables giving names to some or all subformulas, then
generating clauses that establish a definitional relation between the introduced
variables and the truth-values of their respective subformulas. Any model for
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the translated problem (which contains more variables) has the property that
its restriction to the original set of variables yields a model for the original for-
mula. We assume the existence of such a translation technique and introduce
the following notation:

Definition. By [¢]P? we denote a set of clauses defining ¢ such that p
is the literal representing the truth-value of the whole formula. We call
p the definition literal of ¢. Further, we write [¢] as a short hand for

[p]P U {p}.

For example [zAy]P may be translated into the clauses { {p, =}, {p, v}, {p. 7, 7} }.

2.8  Temporal Induction

This section briefly summarizes the verification technique temporal induc-
tion presented in | J. The word “temporal” suggests that the induc-
tion is carried out over the time steps of the FSM. Like a standard induction
proof, a temporal induction proof consists of two parts: the base-case and the
induction-step. In its simplest form, the base-case states that the property
should hold in the initial states; and the induction-step states that the prop-
erty should be preserved by the transitions of the FSM. Expressing the two
parts of the induction proof as SAT-problems is straight-forward—still, the
resulting method is already an interesting complement to BDD-based verifi-
cation methods, especially for systems where the transition relation has no
succinct BDD-representation. However, the method is not complete, since the
induction-step might not be provable even though the property is true.

To make the method complete, the induction-step is strengthened in two
ways. Firstly, the property is assumed to hold for a path of n successive
states, rather than just one. This means that a longer base-case must be
proven. Secondly, the states of the path are assumed to be unique. It follows
immediately from finiteness that the second strengthening makes the method
complete in the sense that there is always a length for which the induction-
step is provable. Soundness is treated in detail in section ll Let us formalize
the strengthened induction by defining the following formulas:

Base, = Iy A ((PO/\TO) A A (Pn_l/\Tn_l)> A P,
Step,, = ((PO/\TO) AW (Pn/\Tn)> AN
Unique, := /\ (8i # 8j41) = /\ \/ﬁ(si,k “ Sik)

i<j<n i<j<n k

An interpretation of these formulas is depicted in Fig. Bl Note that when
proving correctness we show that the formulas are unsatisfiable. In the base-
case we assume that all shorter base-cases have been proved already, and add

! The authors use only the word “induction” in this presentation, but have later adopted
the term “temporal induction” and used it in other contexts.
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Base—case
T
I,P P P P 4P

Induction—step
T T T T T T

Y Y

P P P P P -P

Fig. 1. If the n-th base-case is unsatisfiable, it should be read as “There exists no n-step
path to a state violating the property, assuming the property holds the first n — 1 steps.”
If the n-th induction-step is unsatisfiable, it should be read as “Following an n-step trace
where the property holds, there exists no next state where it fails”.

the property to each state as this tends to make the resulting SAT-problem
easier. With these definitions, we can now state an algorithm that intertwines
looking for bugs of longer and longer lengths, and trying to prove the property
by deeper and deeper induction-steps:

Algorithm 1. “Temporal Induction”.

for n € 0..0o do
if (satisfiable([Basey)))
return PROPERTY FAILS
if (—satisfiable([Step,,] U [Unique,,]))
return PROPERTY HOLDS

Variations of this algorithm are also meaningful. For instance, checking only
the base-case gives a pure bug-hunting algorithm, which delivers counter-
examples more quickly. By altering the formula of the base-case slightly,
it is possible to start at a higher n and taking bigger leaps than 1. Checking
every size of n may be unnecessarily costly. If the bug or proof is deep, taking
bigger leaps means solving fewer SAT-problems. However, if there is a bug,
Algorithm 1 (as stated) will always find a shortest counter-example. This may
be important. In the remainder of the article, we will show how the cost of
incrementing n by only 1 can be greatly reduced by solving the SAT-problems
incrementally.

3 Incremental SAT

A typical stand-alone SAT-solver accepts a problem instance as input, solves
it, and outputs a model or an “Unsatisfiable” statement as result. This can
be inadequate if you wish to solve many similar SAT-instances. The most ob-
vious overhead is re-parsing the (almost) same clause set over and over again.
But more importantly, the same, often expensive, inferences may be carried
out over and over again. Equipping the SAT-solver with an interface that
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allows the next SAT-instance to be specified incrementally from the current
(solved) instance will certainly remove the parsing problem, but may reduce
the number of inferences too.

We focus on the type of solver introduced by [, based on conflict
analysis and clause recordmg.. Such a solver implements a DPLL-style back-
tracking search procedure [ ]. The idea behind augmenting the basic
procedure with conflict analysis is that for every conflict detected during the
search, some effort is spent on finding a reason for the conflict that can be
encoded as a clause and added to the clause set. The recorded clauses will
serve as a cache for the same type of conflicts in later parts of the search-space.
For example, if assuming = and y to be true led to a conflict, the clause {Z, 7}
may be recorded. Assuming either x or y to be true in some later part of
the search-tree, will immediately give the implied value to the other variable,
avoiding repetition of the possibly lengthy derivation. The effectiveness of
this idea has been empirically established by many authors. A motivation for
incremental SAT is that the recorded clauses may not only be useful in later
parts of the search-tree of the same SAT-instance, but also in a later similar
SAT-instance.

To describe the different design issues encountered when implementing an
incremental SAT-system, we adopt an object-oriented view, using a solver ob-
ject which stores the problem clauses (the current SAT-instance) as well as
the learnt clauses (the recorded clauses). The solver has methods for modify-
ing and solving the current SAT-instance. The simplest imaginable interface
would contain the following methods:

addClause (Clause c) — will add a clause to the clause database.
solve — will solve the current instance.

Using this interface, the user is allowed to add clauses until he has specified the
first SAT-problem. He can then use solve to check if the problem is satisfiable
or not. If it is, he may add more clauses to constrain the problem further
and re-run solve. This procedure can be repeated until all SAT instances of
interest have been solved. Typically the last instance is unsatisfiable, from
which point no extension can be satisfiable.

This approach to incremental SAT, introduced in [, is limited as the
user can never remove anything added. Many interesting incremental SAT-
problems requires some form of clause removal. Therefore I suggested
the following interface to the solver:

addClause (Clause ¢)
removeClause (Clause c) — will remove an existing clause from the
solve clause database.

2 This includes SAT-solvers such as: GRASP, SATO, ZCHAFF, LIMMAT, BERKMIN, and the
authors’ own solvers SATNIK and SATZOO.
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By this interface, any set of related problems can be solved incrementally.
However, the ability to remove clauses clashes with conflict clause recording.
The conflict analysis is guaranteed to produce clauses that are implied by the
problem clause set; thus adding these clauses can never cause unsoundness.
But removing problem clauses may suddenly render recorded clauses invalid.
A detailed dependency analysis must therefore be carried out to remove the
invalid clauses, which in turn may require extra book-keeping during the actual
solving process. For a longer treatment of this approach see [FEH].

In contrast, we propose the following interface which only enables the
removal of unit clauses. The motivation is that it is very simple to implement
(5 lines of code in our solver), while being expressive enough to encompass
several interesting incremental SAT-problems not expressible by the original
interface:

addClause (Clause c)
solve (list(Literal) assumptions)

The extra list of literals passed to solve should be viewed as unit clauses to
be added during this particular solving, then removed upon return from the
solver. The reason that this approach is simpler is that all learned clauses are
safe to keep, and thus no extra book-keeping is needed. To see why it is safe,
note that the extra unit clauses can be seen (and implemented) as internal
assumptions by the search procedure, and that it is an inherent property of
conflict clauses that they are independent of the assumptions under which
they occur

4 Incremental Induction

In section M we saw a straight-forward algorithm for proving or disproving
safety properties by induction. We break this algorithm into two parts, the
base-case (“bug-finder”) and the induction-step (“upper-bound prover”), and
show how they can be implemented incrementally using the SAT-interface of
section l

3 In fact, the more general interface can be simulated to a large extent. By inserting

the clause {z} U C, and passing T as an assumption literal, we achieve the same effect as
inserting C'. Asserting x to be true afterwards will make the clause true forever, and it will
be removed from the clause database by the top-level simplification procedure of the solver.
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Algorithm 2 “Extending base”. Algorithm 3 “Extending step”.

addClauses([Io]) addClauses([Pq))

for n € 0..00 do for n € -1..—oo do
addClauses([P,,]P") solve({})
solve({pn}) if (UNSATISFIABLE)
if (SATISFIABLE) return IND. STEP HOLDS

return PROPERTY FAILS addClauses([Ty])

addClause({pn}) addClauses([P,])
addClauses([Ty]) for i € 0..n+1 do

addClauses([s; # Sn))

A first observation on these algorithms is that they build the trace of states
related by the transition relation in different directions (n is decremented in the
step). Growing the trace forwards in the base-case allows us to keep the often
strong formula I fixed in the SAT-solver. Building the trace in the opposite
direction would force us to put the initial state constraints as an assumption
literal to “solve”, which will have the undesirable effect of making any recorded
conflict clause depending on the initial state ineffective in successive iterations.
Similarly in the step, growing the trace backwards makes it unnecessary to use
any assumption literal at all, which again promotes reuse of recorded clauses
between iterations.

Different top-level strategies for how to combine the two algorithms to a
safety-checking procedure are possible. To emulate Algorithm 1 of section Il
the algorithms could be run in parallel, each with its own solver instance. As
soon as the induction-step succeeds for a particular length, an unsatisfiable
base-case of that length will constitute a proof of the safety property. However,
it is also possible to mix the two algorithms into one. We will then have to
break the natural direction of building the trace for either the base-case or
the induction-step. We arbitrarily chose to sacrifice the induction-step.

Algorithm 4 “Zig-zag”.

addClauses([Ip]?) - z is the definition literal for I
for n € 0..0o do
addClauses([Pyp]P") — pn, 18 the definition literal for P,
solve({Pn}) — step: do not include I
if (UNSATISFIABLE) - P, must hold!
return PROPERTY HOLDS
solve({z,Pn}) — base-case: include I
if (SATISFIABLE) — counter-example found!
return PROPERTY FAILS
addClause({pn}) — assert Py, from now on

addClauses([Ty,))
fori € 0..n-1 do
addClauses([s; # Sn))

assert transition from Spto Sp41
add uniqueness constraints

The reason for stating this algorithm is partly to show that there is many
possible ways of encoding the safety-checking procedure incrementally. With
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this algorithm, the SAT-solver is allowed to share conflict clauses between the
base-case and the induction-step, which may be beneficial. We include the
algorithm in our benchmark section.

4.1 Discussion

We will now try to draw a map over possible induction based safety-checking
algorithms. Let us use the term bad state for a state were the safety property
does not hold. It is generally observed that checking safety properties is
symmetric with respect to the initial states and the bad states. Everything
presented up to this point could have been carried out backwards, with the
roles of initial states and bad states exchanged, and the transition relation
inverted. We are going to adopt this symmetrical view from now on.

In this view, we regard the induction-step as a method of finding an upper
bound on the length of a shortest counter-example, and the base-case as a
way of producing the counter-example. Now, what must a shortest counter-
example look like? It has to start in an initial state, it has to end up in a bad
state, and the states in between must not be either initial or bad (otherwise it
could not be a shortest counter-example). Using B (bad) for P we can view
the set of possible shortest counter-examples pictorially:

length 0: 1B

length 1: IB X 1B

length 2: IB X~ IB £~ IB

length 3: IB ~IB A IB X IB

length n: 1B 2iB A 1B A X iB X 1B

Each line depicting a (shortest) counter-example corresponds to a conjunction
of constraints (I A To AB; AT AT A...). There is a lot of sharing between
the counter-examples of different lengths, and indeed if we remove either the
initial I or the final B from the n-th counter example, i.e.:

1) BAIBA. LiBLiB
or (2 TMWAEAIBAE .. LIBAT

then any counter-example of length n or longer will include all the constraints
of (1) and (2). This means that if either the constraints of (1) or (2), or
any subset of these, yields an unsatisfiable problem, then so will all possible
shortest counter-examples of longer lengths. Thus we have found an upper
bound on the shortest counter-example.

The picture above does not contain all constraints derivable from the fact
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that we are considering a shortest counter-example. We can further conclude:

1. Between no two states is there a shorter path.

or weaker 2. Between no two non-neighbors is there a transition
(and the last state is unique).

or weaker 3. No two states are the same.

Any of these facts can be used when proving an upper bound. As long as we
keep adding constraints that must be fulfilled by shortest counter-examples,
any contradiction reached means we have established an upper bound. The
reason for stating weaker versions of the shortest-path requirement is that
these versions can be implemented more efficiently. Furthermore, we have
already noted that the third condition is enough to make the procedure com-
plete. In the next section we describe how the implementation of this condition
can be improved.

Taking this subset-of-counter-example view, the induction-step we have
used in our algorithms can now be viewed as selecting the subset of (1) not
containing any I:s but including the uniqueness constraints dictated by con-
dition 388 Through experiments we found that this choice worked well in
practice.

4.2 Finding a counter-example

If the user knows or has reason to believe that the property is false, he may
want to run just the base-case to quickly produce a counter-example. In this
case, it is less clear if any extra constraints should be added to the trace. In
Algorithm 1 and 2 we chose to add P. More constraints mean more clauses in
the solver, which leads to slower propagation, but also to a smaller search-tree.
Which of the two effects is predominant in a particular case is hard to judge.
In general, adding weak constraints is seldom a good idea.

Present BMC tools can optionally produce a SAT-problem stating that
the property fails among the first n steps rather than after exactly n steps.
Care must be taken before adding extra constraints to such formulations. For
instance, one can no longer require the states to be unique. One must also
assume (or modify) the transition relation to always have a next state; or
risk getting an unsatisfiable problem due to deadlock, even in the presence of
a bug. A comparison between this “one-shot” method and the incremental
base-case is included in our experiments.

4.8  Improving the Unique States Requirement

The uniqueness constraints described in section [l and used in Algorithm 1,
3 and 4 require each pair of states to be different. These requirements are

4 The recurrence diameter introduced in | | can similarly be viewed as the subset

containing only the T:s together with uniqueness constraints.
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statically added, and their number will grow quadratically in the length of the
induction-step. For problems requiring high induction length, there is a risk of
adding numerous possibly superfluous constraints that will tax the SAT-solver
heavily. We propose a dynamic approach where the models returned by the
solver in the induction-step are examined, and only if two states are actually
equal, a constraint stating that they should be different is added. The solver
must then be run again, which may possibly cost more than adding superfluous
constraints, but hopefully the incrementality of the approach means that any
re-run is very quick. We verified experimentally that the method indeed seems
to perform better in general.

A question that has not been treated sufficiently in earlier presentations on
induction is what variables should be included in the uniqueness constraints.
It is not unusual to describe the FSM in the form of a sequential circuit. The
standard interpretation of a circuit is to consider both the latches (the state
holding elements) and the inputs as state variables of the FSM. However, it is
fairly clear that there is no need to include inputs in the uniqueness constraints.
If two states are equal except for the inputs, whatever value the inputs assume
in the second state, they could have assumed in the first. It is therefore safe to
require only the latch-variables do be different—a much stronger condition. In
fact, this is often what is implemented | ]. Note that failing to remove the
superfluous state variables from the uniqueness constraints gives an ineffective
induction algorithm, as each extra state variable has the potential of doubling
the depth needed to prove the step.

If on the other hand the FSM is given as two propositional formulas I and
T it is less clear what variables can be excluded B We propose the following
solution:

1. Include only variables occurring both in the current and the next state
of the transition relation.

2. Do not add uniqueness constraints including the first or the last state
of the trace.

We refer to uniqueness constraints over this reduced set of state variables as
strong uniqueness.

4.4 Correctness

We will now prove that temporal induction with strong uniqueness is sound.
Recall that the induction-step can be strengthened by anything that holds for
a shortest counter-example. It then suffices to show that a counter-example
that is not strongly unique cannot be shortest. Let us introduce the following
notation:

5 The result of parsing an SMV file often leaves you with just this.

10
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sh §" §5 8"
M: ... reg Sfeg . qreg qreg o M Sreg Sreg qreg

-1 +1 +1

T s 17 |S% S Sl g

i-1 j i-1 i

Fig. 2. The picture shows the contraction of the counter-example M to M'. The state
variables constrained by the transition relations at the point of “gluing” are printed in the

7

boxes; the remaining trace is represented by the “

st = wars(T;) N s; 8" = gl Tkt
Siright = vars(T,-_l) N s; Siout = Siright \ Sileﬂ
R l ight

s;™ = s eft N s;"

Let M be the model of a formula encoding a counter-example of depth n:
M E Ig AN Tog ATy AooAN T, 1 A By

We now show by construction that if M = (s8;"% = s;™) for some 0 < i <
Jj < n (M is not strongly unique) then there is a shorter counter-example.

Define M' over {sq, ..., 8n_(j—i)} as follows:
M'(sg) = M(sg) k<
M'(sk) = M(sk+ig-i) k>
M'(s;™) = M(s;™)
M (8;°") M(s;°")
Mi(si) = Msi)

M’ now constitutes a counter-example of depth n—(j—1¢). We have contracted
the counter-example by simply removing all states between i and j (depicted in
Fig. ). The only potential problem lies in the “gluing” of the head and the tail
at state <. However, the only constraints containing s; are T; ; and T;. But
T, 1 does not contain any variables from s;™, so letting M (s;™) # M'(s;™)
cannot make T; ; false in M'. Similarly for T; which does not contain any
variables from s;°*. Finally M(s;"¥) = M(s;"¥), so indeed M’ must be a
model for the constraints T;_; and T;. O

The proof can easily be extended to establish that the exclusion of the first
and the last state is superfluous if all variables of I occur in the next state of
T and all variables of B occur in the current state of T.

11
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5 Experimental Results

The ideas presented in this paper were implemented in the prototype tool
Tiell which was integrated with the SAT-solver SATZOO. All benchmarks
were performed on a 2 GHz Pentium 4 with 512 MB of memory running
Linux. We set the time-out for all launches to 10 minutes, and the memory
limit to 400 MB. The benchmarks were collected from several sources. In the
tables, each benchmark name is tagged with the source of the problem:

cadence — Example files from the CADENCE SMYV distribution.
cmu — Example files from the CMU SMV distribution.

ken — SMV case studies from Ken McMillan’s web-page.
nusmv  — Example files from the NUSMYV distribution.

VS — Example files from the VIS distribution.

texas — The Texas 97 benchmarks from Berkeley University.
eijk — ISCAS’89 sequential equivalence checking from | .
irst —  Problems from the Model Checking Group at IRST.

All problems were converted to flat SMV-format with only boolean variables
and no sub-modules. For each problem, the safety properties were extracted.
In this process, CTL formulas “EF” were changed into “AG—" and all fair-
ness constraints were removed. Different properties for the same system are
indicated by a subscript after the system name.

Counting each property as a separate instance, a total of 185 problem in-
stances were collected. As our first experiment, we ran TiP, CADENCE SMV,
CMU SMV, and NUSMYV on each of these instances. All tools were run with
a default set of options, providing no problem specific variable ordering;:

Tip filename

CadSMV filename

CmuSMV -reorder filename

NuSMV  -AG -dynamic -coi filename

Instances solved in less than 1 second by all tools were considered trivial and
removed, leaving 158 instances.

5.1  Comparison with BDD-tools

The result of the comparative experiment is presented in Table 1. The de-
fault strategy of TIP runs the base-case and the induction-step presented in
Algorithm 2 and 8 in parallel, each with its own solver instance. The two
algorithms are given equal amount of CPU time, until the point where either
the base-case fails, and a counter-example is found, or the induction-step is

6 The tool TiP, the SAT-solver SATZOO and all benchmarks used in this article can be
downloaded from http://www.cs.chalmers.se/~een/

12
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proven, and the remaining base-cases (if any) are proved with 100% CPU.

The purpose of the experiment was to relate the performance of induction
to industrially applied methods, and to show the (lack of) correlation between
hardness for BDD-based methods and hardness for induction-based methods.
TIP was able to solve 6 instances where BDD-based verification failed, showing
that induction may be a valuable complementary method ll

5.2 Effect of incrementality

The second experiment we performed was a comparison of Algorithm 2 and 3
using the incremental interface of SATZOO and using SATZOO as an external
solver. In this experiment, we used only problem instances where the property
held. The result is presented in Table 2.

The experiment establishes a substantial speed-up by the incremental
approach. Unsurprisingly, the gain was larger for instances where a long
induction-step was needed to prove the property.

From the table we can also see that the induction-step usually takes longer
to prove than the base-case. We observed the same behavior for instances
where the property failed (although not presented here). This is the reason
the default strategy of TIP does not increase the lengths of the step and base
evenly, but instead devotes the same amount of CPU to each. Otherwise, bugs
may not be found due to hard (and futile) induction-steps.

5.3  One solver instance or two

The third experiment compared Algorithm 4 (“Zig-Zag’) using one solver
instance to running the induction-step and the base-case in separate solver
instances. (“Dual”). In this experiment, the step and the base were incre-
mented evenly so that both methods would solve only the minimal number of
SAT-instances. We also include the standard implementation of (complete)
induction as presented in | |. The results are also in Table 2.

The experiment suggests that separate solver instances for the base and
the step is favorable. From the table we can also see that the incremental im-
plementation of induction clearly outperforms the standard implementation.

5.4 BMC Comparison

In the fourth experiment, we compared incremental search for counter-example
to the “one-shot” approach described in section [l The result is presented
in Table 3. The experiment shows that often you must know the exact length
of a shortest counter-example for the one-shot method to be advantageous.

" These problems were all “TCAS II” problems from the NUSMYV distribution, originally
used in “Model Checking Large Software Specifications” | .
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Tool Solved Alone in
(of 158)  solving

CADENCE SMV 131 5
Tip 92 6
CMU-SMV 90 0
NuSMV 73 0

Table 1. Tool comparison. The left column shows the total number of solved
instances within 10 minutes. The right column show how many of these instances
no other tool could solve. CADENCE SMV excelled by proving 22 instances that
neither of the two other SMVs could prove, and 39 more instances than Tip. Still
only 5 instances were unique, as TIP solved many of the problems where NUSMV
and CMU-SMYV failed, plus 6 that CADENCE SMV did not solve.

Name Len | Step™¢ Step®®® | Base™¢ Base“! | Dual ZigZag StdInd
cmu:periodic 97 70.7  [>600] 10.7 1418 80.9 [>600] [>600]
eigk:S208¢ 259 448.0 [>600] [>600] [>600] | [>600] [>600] [>600]
eigk:52080 258 483.2  [>600] [>600] [>600] | [>600] 964.2 [>600]
eijk:S208 259 436.7  [>600] [>600] [>600] | [>600] 503.7 [>600]
eijk:5298 59 27.7  [>600] 34.9 96.2 62.9 316.1 [>600]
eijk:S510 11 5.2 8.0 0.5 0.9 5.9 74 10.1
eijk:S820 12 6.1 22.9 6.4 12.5 12.6 20.2 30.1
eijk:S832 12 7.6 28.2 5.8 12.9 13.4 25.1 35.2
eijk:S953 8 1.7 4.2 0.1 0.2 1.9 4.2 4.4
ken:oop; 30 394 [>600] 0.3 7.4 399 492.0 254.0
nusmv:guidance; 11 2.8 10.2 0.8 3.4 3.5 3.9 11.1
nusmu:guidancery 28 120.3  [>600] 315.0 [>600] | 438.9 [>600] [>600]
nusmuv:tcass 7 1.3 3.1 0.2 0.3 1.5 1.9 4.3
nusmu:tcass 6 1.3 3.3 0.0 0.1 1.3 1.8 3.2
tezas:parsesyss 4 12.2 13.5 0.2 0.2 14.7 12.5 7.8
vis:prodcell; 5 30 256.6 [>600] 112.8 4455 | 367.3 [>600] [>600]
vis:prodcell; s 9 4.6 124 0.1 0.6 4.8 3.7 14.7
vis:prodcell; 4 17 31.3 185.1 7.3 14.2 38.7 52.3 2199
vis:prodcell; 5 24 109.3 [>600] 23.0 80.1 | 1324 216.7 [>600]
vis:prodcell;g 6 2.1 4.1 0.0 0.1 2.1 1.2 4.7
vis:prodcell; 7 28 211.3 [>600] 524 2775 | 265.0 [>600] [>600]
vis:prodcell g 14 214 1179 0.4 3.2 21.8 28.6 1289
vis:prodcell;g 23 61.6 457.0 23.4 86.0 8.0 1785 [>600]
vis:prodcellay 38 391.9  [>600] [>600] [>600] | [>600] [>600] [>600]

Table 2. Ezperimental results for the effect of incremental SAT wvs. external SAT.
All times are in seconds. The experiment includes all instances where the property
was proved to hold in in the first experiment. Launches where all methods took
less than 3 seconds have been left out. “Dual” stands for running one iteration
of Alg.2 and Alg.3 interchangeably; “ZigZag” refers to Alg.4; “StdInd” stands for
standard induction with all uniqueness constraints statically added and using an
external SAT-solver.
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Name Length | Incremental Perfect 25%-off

BMC Guess Guess
nusmu:tcasy 11 3.6 3.7 5.0
nusmu:tcasy 15 9.7 9.7 18.2
nusmu:tcass 24 48.7 40.1 125.2
nusmu:tcasg 17 13.6 13.5 38.2
texas:parsesys; 10 9.3 0.8 1.1
texas:parsesyss 9 3.3 0.7 0.9
texas:two-procs 16 4.7 1.0 2.9
texas:two-procy 20 20.9 1.8 9.1
vis:eisenberg 20 20.7 18.1 79.1

Table 3. Ezperimental result for incremental BMC vs. SAT-instances of fixzed length.
All times are in seconds. “Perfect Guess” means the SAT-instance encode “there is
a bug of length < k” where k is the length of the shortest counter-example. “25%-
oft” means k is multiplied by 1.25. Launches where all methods took less than 3
seconds have been left out.

Name Len | Time? Time?® | Ban® Ban® | Clau® Clau® | Conf? Conf®
cmu:periodic 97| 70.7 1204 0 4656 | 455k 908k | 15k 14k
eijk:S208 259| 436.7 [>600]| 258 [>20000] | 186k - 76k -
eijk:5298 59| 27.7 66.6| 114 1653| 69k  296k| 24k 25k
ken:oop; 30| 394 50.4| 113 406| 67k  101k| 32k 30k
nusmv:guidance; 28| 120.3 66.9 0 378 | 151k 276k | 56k 28k
vis:prodcell;o 30| 256.6  252.7 0 406 | 346k 439k | 48k 43k
vis:prodcell;4 17| 31.3 41.7 0 120 189k  217k| 11k 13k
vis:prodcell; 5 24| 109.3 134.3 0 253| 273k 330k| 29k 29k
vis:prodcell;; 28| 211.3  253.6 0 351| 322k  400k| 45k 46k
vis:prodcell; g 14 21.4 25.5 0 78| 153k 171k 10k 10k
vis:prodcell;g 23| 61.6 71.9 0 231| 260k  311k| 18k 18k
vis:prodcellsy 38| 391.9 490.1 0 666 | 440k 588k | 60k 61k

Table 4. Ezperimental results for dynamic vs. static uniqueness constraints in the
induction-step. All times are in seconds. Launches taking less than 10 seconds or
having shorter length than 5 has been left out. A superscript “d” means dynamic
(on demand) adding of uniqueness constraints. A superscript “s” means static
adding of uniqueness counstraints between all pairs of states. “Ban” is the number
of constraints added (banning two states from being equal). “Clau” is the final
number of clauses in the solver. “Conf” is the total number of conflicts in the search-
tree of the solver. Only three problems actually needed uniqueness constraints to
be provable, and in almost all other cases it incurred a cost to add them. For the
three cases where the constraints were necessary, adding them dynamically lead to a
speed-up. Without uniqueness constraints these three problem are not provable by
induction. The dynamic method thus saves the user from guessing for each problem
if uniqueness constraints should be used or not without incurring any extra cost.
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5.5 Uniqueness constraints

In the final experiment, we studied the effect of adding uniqueness constraints
dynamically and statically, including both instances where the constraints
must be added, and instances which are provable without uniqueness con-
straints. The result is presented in Table 4.

The effect of sharpening the constraints by removing variables are not
presented, as it is clearly advantageous. A study of the “eijk” equivalence
checking problems, where 9 out of 13 need uniqueness constraints, showed
that none of these could be solved within the time-bound without using the
sharpening.

6 Related Work

Incremental BMC was independently introduced by Ofer Strichman in [FE]
and Sakallah et. al. in [ ). Our approach differs from previous at-
tempts in that we keep all clauses from previous iterations (including conflict
clauses). Moreover, we complete the method with incremental temporal in-
duction. Strichman’s work further includes several techniques to enhance the
SAT-solving of BMC problems, including internal constraints replication for
copying invariant conflict clauses between the time steps of the trace, and

BMC specific variable decision strategies [

7 Conclusions

Temporal induction has been used before to prove upper bounds for BMC
[, In these efforts, the authors established it too costly to gradually in-
crease the depth of the induction proof using an external SAT-solver. We have
shown that integrating the SAT-solver and the induction procedure overcomes
this cost. Furthermore, we sharpened the unique-states constraints by a syn-
tactic analysis on the transition relation; an improvement that was absolutely
necessary for many of our benchmarks to go through.

By extensive testing we further reinforced the view that induction is an
important complement to BDD-based methods for safety-checking. The com-
bination of techniques presented in this paper results in what the authors
believe to be the first efficient and complete induction based checker produced
by academia. Enabled by the incremental SAT-interface, we explored an on-
line method of adding uniqueness constraints on demand. To a large extent
the method saves the user from deciding manually whether or not to add these
constraints, making temporal induction a more push-button technique.

As a side-effect of implementing temporal induction incrementally, we got
an incremental BMC for safety properties. The efforts on incremental BMC by
[ ] was based on extensive adaptation of the underlaying SAT-
solver. We have shown that results of the same magnitude can be achieved by
a much smaller modification of the solver. A standard way of applying BMC
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is to generate a single SAT-problem encoding the presence of a bug within £
time steps. We have compared this method to iterating up to k incrementally
and found that the incremental approach was faster in most cases, even if k
was specified as close as 25% above the length of a shortest counter-example.

8 Future Work

The single most significant factor for the success of temporal induction is the
induction depth needed. We therefore believe the most important direction
of research is towards methods of automatically strengthening the induction-
step in order to reduce this depth. A successful method achieving this was
presented in | I ]. It works by finding invariant equivalences or impli-
cations between the state variables and internal points. Casting this method
into our incremental system looks very promising. Stronger constraints on
the shape of a shortest counter-example were suggested in | |, but have
not yet been successfully applied. We would like to investigate if a dynamic
approach similar to that we used for uniqueness constraints might be helpful.

Finally, there are many possible ways of tuning the SAT-solver to incre-
mental temporal induction. In particular, we wish to explore native uniqueness
constraints, as well as the methods presented in | I | for specialized
variable orderings and constraint replication.
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1 Introduction

Bounded model checking (BMC) is a verification technique that considers only
executions of bounded length of the chosen formalism [M]. The general model
checking problem for linear temporal logic (LTL) is known to be PSPACE-
complete, but the bounded case is in NP (assuming the used bound to be given
in unary encoding). The very idea is to compile the system under verification,
the property to be verified and a bound k on the length of the execution to a
propositional formula having a model iff the system has an execution of length
k that violates the property. The methodology has been successfully applied
in industrial setting [HH].

The aim of the paper is to develop efficient BMC techniques for systems
modeled as products of labeled transition systems (LTSs) by exploiting the in-
herent concurrency in the systems. The basic idea is to cover more executions
of a system within a given bound in a way that the size of the encoding is not
substantially increased, i.e., it remains linear w.r.t. the bound. The standard
approach to BMC is to use interleaving executions where exactly one action is
occurring at a time. Here the idea is to encode interleaving executions more
compactly by allowing multiple occurrences of actions in different components
of the system simultaneously. This kind of an approach has already been in-
vestigated using 1-safe Petri nets as the system model and employing step and
process executions of Petri nets with encouraging results [

The novelty in this paper is a technique that exploits independence of
actions in the synchronizing product of LTSs so that multiple independent
actions can take place in different component LTSs simultaneously. This
technique is further combined with an on-the-fly determinization construc-
tion where for each component a set of states in which that component can be
is maintained. By using determinization the number of different executions
the product can have is potentially dramatically reduced, and furthermore
invisible transitions do not contribute to the length of an execution. In this
work, the concurrent executions of independent actions combined with on-
the-fly determinization of components are called step executions. Without
compromising reachable states, step executions can be further restricted to
process executions satisfying an extra condition on visible actions taking place
simultaneously.

Based on these ideas a technique for bounded model checking of reachabil-
ity properties of the synchronizing product of L'TSs is developed by devising
a translation scheme from the LTSs to a constrained Boolean circuit [#¥] such
that satisfying valuations of the circuit correspond to step executions of the
product. A minor extension of the mapping handles process executions. In
both cases the size of the encoding is linear w.r.t. the bound. For the encod-
ing, Boolean circuits are employed for clarity and compactness. Such circuits
can be translated to propositional formulae in CNF with a linear blow-up by
introducing additional propositional variables using standard techniques [Il].
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The approach has been applied to a set of examples and the data obtained
justify the following points. Firstly, the bound needed for step and process
executions is in most cases lower than in the traditional interleaving model.
Secondly, the running times using process executions are often smaller than
using steps. Finally, the results compare favorably to the running times of a
state-of-the-art interleaving BMC implementation [H.

The paper is organized as follows. Section lintroduces the formalism used
as the modeling language and Sect. ll Boolean circuits. Section B presents
the encoding schemes for both execution models. Section M gives test results
comparing step and process executions to NuSMV [l and finally Sect. H
concludes.

2 System Modeling Formalism

Concurrent systems specified as labelled transition systems (LTS) are studied
in this paper. Three execution models for the synchronized product of n L'TSs
are introduced. The first is the standard interleaving semantics. Thereafter,
the step and process models allowing independent actions to take place si-
multaneously are defined. The section ends with an analysis on the relation
between the different models.

Definition 2.1 An LTS is a 4-tuple L = (S, I,I', A) where

* S is a non-empty set of states,
e [ C S is a non-empty set of initial states,
* [' is a non-empty set of visible actions, and

A C S x (I'u{r}) xS, is the transition relation, the elements of which are
called transitions of L, where 7 is the invisible action.

Given n LTSs Ly, Lo, ..., Ly, (L] ... ||Ly) is used to denote their synchro-
nized product defined in the standard way, see e.g. [l] where the states of the
product are n-tuples of the states of the components and where a visible action
can occur iff all the components containing that action participate. However,
in this work the interest is in the finite executions of the product. Firstly, the
standard model of interleaving executions are defined.

Definition 2.2 Let L = (Ly||...||L,) be the synchronized product of n LTSs.
A (finite) interleaving execution oy from a state s; to a state sg11) of L is a
sequence

(1) 51 = 8o = S(k+1)

such that each s; = (s),...,s%), s{ € S;, i.e., each Sf is a state of LTS L; and
a; € yU---UTl, U{r}. In addition

e for each LTS Lj,S{ € 1j,
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e for all actions a; and LTS Lj, if a; € I'; then there is a transition

I i & , : J o
(Si,az, S(i—l—l)) S AJ, otherwise, S(i+1) = s, and

« for all actions a;, if a; = 7 then there is an LTS L; such that (s}, 7, S€i+1)) €

L; and for any other LTS L, # j, sl(iﬂ) = sk

Let pr(oy) denote the concatenation of the visible actions in oy in the order
mandated by o7.

A state s’ is said to be reachable iff s’ is one of the initial states I =
I, x ... x I, or there is an execution o from an initial state s to s’. A state s’
is a deadlock state iff it is reachable and there is no transition (s, a, s”) € A.

Definition 2.3 Let L = (S,I,I', A) and S' C S. The 7-closure of S’ is the
set of states S” C S such that s € S” iff s € S’ or there is an execution from
some state in S’ to s containing only 7-transitions.

The following definition presents the step executions of the synchronized
product of n LTSs. The model is such that while operating on possibly non-
deterministic L'TSs it determinizes them on-the-fly. Therefore, in each position
in the execution each component may be in a set of states instead of just one.

Definition 2.4 Let L = (L4|| - - - ||L,) be the synchronized product of n LTSs.
A finite step execution og of L is a sequence

(2) Vi BV, Ve S Vi

such that each V; is an n-tuple (S}, ..., S"), Sij C S;,1<j<mn,lie., each Sf
is a set of states of LTS L; and each ) C A; C Ty U---UT,. In addition the
following conditions hold:

e In Vj every Sf is the 7-closure of I;.

» For each A; and L;, |A; N T'j| < 1, i.e, in each step at most one visible
action is executed from each LT'S.

 For each A;, if a € A;, then for each L; such that a € I'; there is a transition
(sj,a,s5) € Ajsuch that s; € S, Furthermore S, ) is the T-closure of
the set of states reached via all the transitions (s',a,s") € A; such that
s'e S

 For each A; and L, if A;NT; = then S(]z'—i—l) = SZ]

The length of og, denoted by |og| , is k. Let lin(os) denote the set of
all possible linearizations of og, i.e., the set of strings ajas...a; such that
a; € lin(A;), for each i = 1,... k where lin(A;) is the set of strings obtained
by concatenating the elements in A; in any order.

Definition 2.5 Let L = (Lq||---||Lyn), s = (S1,...,8,) and V = (S, ..., S)),
sj € S5, S} € S5, 1 < j < n. Define s C V to mean that each s; € 57,1 <
Jj<n.
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The following theorems characterize how interleaving and step executions
relate to each other. They assume L = (Lq||...||Ly).

Theorem 2.6 Let o1 be an (interleaving) execution M) of L and |o7| = k.
Then there 1s a step execution os

(3) vy, oy Vi)

of L such that ayasy . ..ay = pr(oy), | <k and sg11) & Vig)-

Theorem 2.7 Let os be a step execution of L reaching Vix11y. Then for every
state s C Vigy1) there is an interleaving execution oy of L reaching s such that
pr(or) € lin(os).

Corollary 2.8 A state s of L = (L||...||Ln) is reachable iff there is a step
execution V; A% Vs A# .. A—k} Vik+1) such that s T Vigy1y for some k.

The set of step executions for a system contains in most cases different ele-
ments intuitively corresponding to the same concurrent behavior. The follow-
ing addition to Definition [l limits the size without compromising reachable
states.

Definition 2.9 A process execution of L is a step execution of L fulfilling the
following condition

* Whenever a; € A;,¢ > 1 then there is an LTS L; € L such that a; € I'; and
there is an action a € A;_1 NT;.

A step execution that is not a process execution would be characterized
by the fact that in some global state every LTS participating in an action a
would be in a state where it could take place. It would not, though, be chosen
for immediate execution, but the relevant components would remain in the
same states for some steps and only then execute a.

Theorem 2.10 Let og be step execution of reaching state V. Then there is a
process execution op reaching V' such that |op| < |og|.

Corollary 2.11 A state s of L = (Ly||...||Lyn) is reachable iff there is a

process execution V) iﬁ Vs A# .. A—k} Vik+1) such that s T Vigy1y for some k.

Intuitively the process executions are step executions which are in a certain
canonical normal form. In fact, this canonical normal form corresponds exactly
to the so called Foata normal form [] from the theory of Mazurkiewicz traces,
and also to a partial order semantics for 1-safe Petri nets called processes. For
more on this connection, see [M] and further references there.

Fig. @ gives two LTSs, both having the visible actions I'y = I's = {a, b}.
They will be used as a running example when the elements of the encoding are
presented. The encoding assumes, without loss of generality that each visible
transition is given a unique label. In the figure, that label is given together
with the action associated with the transition.

3
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Fig. 1. Running Example

3 Boolean Circuits

The synchronized products of LTSs are translated to Boolean circuits. This
section, based on the presentation of W], introduces the concept and the
associated terminology. A Boolean circuit is a directed acyclic graph where
the nodes are called gates. The gates can be divided to three categories:

* 1nput gates that have no incoming edges nor an associated Boolean function,

* intermediate gates that have both incoming and outgoing edges and an
associated Boolean function and

* output gates with incoming edges and an associated Boolean function but
no outgoing edges.

A truth valuation for a circuit with gates V is a function 7 : V — {true,
false}. A valuation is consistent with the circuit if 7(v) = f(7(vy),...,7(vg))
for each non-input gate v where f is the Boolean function associated to v and
vy, ..., v, are the gates with edges to v. The constrained satisfiability problem
for Boolean circuits is formulated as follows: given that gates ¢ C V must be
true and ¢~ C V must be false, is there a consistent valuation that respects
these constraints, i.e., is there a satisfying valuation? The constrained Boolean
circuit satisfiability problem is obviously NP-complete under the plausible
assumption that each Boolean function in the system can be evaluated in
polynomial time.

The encoding in the present work applies Boolean circuits where the fol-
lowing standard Boolean functions appear as gates: — (negation), V (disjunc-
tion), A (conjunction), and — (implication). In addition we use a function
cr¥ (vy, - .., vg) which is true in a valuation 7 iff for the cardinality ¢ of the set
{r(v) = true | v € {vy,...,v,}} holds that L < ¢ < U where L and U are
fixed constants 0 < L < U. The function cr¥ represents actually a family of
functions of which the following two forms are used in the paper: cr} (at most
one true) and cr} (exactly one true).

4 Encoding

This section presents the structure of the Boolean circuits encoding the step
and process executions of the synchronized product of n LTSs. For represen-
tational purposes the gates that appear are given certain illustrative names

6
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briefly explained in Table ll An in-depth description of them follows in sub-
sequent sections with references to figures of gates drawn from the running
example.

Table 1
Translation Predicates
Gate Description
ex(a,t) Action a is executed at time ¢, input gate.

in(s,t) Execution is in state s at time ¢.

sc(L,t) Component L scheduled at time ¢.
ex(l,t) Transition ! is executed at time t.

uv(L,t) Unique visible transition from L at time ¢.
ni(t) Disable idling at time t¢.

enok(a,t) | Execution of action a implies that it is enabled at time ¢.

en(a,t) Action a is enabled at time ¢.

The encoding assumes that the LTSs do not have loops containing only
T-transitions involving more than one state. If that is the case, the corre-
sponding component can be preprocessed so that the resulting LTS simulates
all the executions of the original. The preprocessing step computes the maxi-
mal strongly connected components C; of the LTS restricted to 7-transitions
and replaces each C; with a single state having as incoming and outgoing
transitions the union of those in the set of states in Cj.

The representation follows certain conventions. The variable £ is used to
denote the length of the execution and the variables s, ¢, a and [ are used
to describe arbitrary states, positions in the execution, actions and transition
labels, respectively. Based on the division of gates given in Sect. ll the circuit
is composed as follows. Firstly, some gates, namely those labelled with ex(a, t)
act as inputs. This special role is marked with two concentric circles. Secondly,
the labels ex(tr,t) and sc(L,t) are attached to intermediate gates. Thirdly,
the gates uv(L,t) and ni(t) are outputs constrained to true. This is reflected
in the figures in which they appear by the symbol T appearing on the right
side of the gate.

The gates labelled in(s,t) can appear in different roles based on the value
of t. Gates describing the initial states, i.e. in(s,1) are inputs constrained
to true and false depending on whether a state s is an initial state or not.
For positions 1 < ¢t < k the gates are intermediate and for the final position,
i.e., in(s, k + 1) they are output gates. When the translation scheme is
augmented with a circuit detecting reachability properties, these gates are its
inputs. The following subsections present the reasoning for all the gates and
the section is concluded by a complete translation algorithm.

7
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4.1 Control Flow

For encoding the control flow of the LTSs the idea is that the in(s,t) gates
serve to provide information regarding the progress of execution. For any
initial state s of an LTS in(s,1) is an input gate and is asserted true. This is
in accordance with the fact that in the outset the execution in each component
is in the initial states. In general, the execution may be in some state at time
t + 1 iff one of the following cases is true.

* The state was reached already at ¢t and not left in step ¢.

* The state is reached due to it belonging to the 7-closure of some state
reached via actions in step f.

* The state is reached by taking some of its incoming visible transitions in
step t.

This provides the basis for the definition of the gate in(s,¢+1) an instance
of which is needed for all the local states for all values 1 < ¢ < k. The structure
of the gate is given in Fig. M for the state s3 of the running example. It should
be noted that 7-transitions from a state to itself can (and should) be ignored
in the definition.

in(sy,t+1)in(sa,t +1) ex(lz,t) ex(ly,t)

in(sz,t) sc(Li,t)

Fig. 2. Progress of Control Flow

The definition makes use of the sc(L,t) and ex(l,t) gates. The former
captures the fact that a component L is scheduled iff a visible action in its
alphabet is executed.

The reasoning behind the latter, the ex(l, t) gate, is as follows. A transition
is traversed in position ¢ iff the action it is labeled with is executed in position ¢
and the control flow is in its source state. It should be noted that the definition
is not circular, but the control flow in position ¢ together with the executed
transitions define the control flow in position ¢ 4+ 1. The picture on the right

@) © © ©
e:r (a,t ex(b,t) ezbt 1' ex(a,t) b, t ex(a,

Fig. 3. Elements Illustrating Encoding from Running Example
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in Fig. Willustrates the gate for the transition /g in the running example.

So far, the subcircuits presented have been definitions of the elements used
in the encoding. To achieve correspondence with step and later process exe-
cutions additional constraints need to be imposed. A step (process) execution
has the property that only a single visible action is allowed to take place in a
single component in each step. The arrangement to handle this is by using a
cardinality constraint asserted true. An instance is given in Fig. ll (the second
one from the right).

The encoding may be further enhanced with a gate that disables idling.
If such a gate is not added, the resulting circuit encodes step executions up
to k£ whereas with it the executions are of precisely length k. Thus the gate
limits the search space. As a downside short deadlocks may be missed if
the verification process is started with too large a bound. Idling is disabled
iff some visible action is executed, for the running example the gate is the
rightmost in Fig.

4.2 Synchronization

The synchronization of LTSs mandates that a visible action may be executed
iff every LTS whose alphabet contains the action participates. So far, this has
not been reflected in the subcircuits containing the input gates ex(a,t). The
condition is implemented by demanding that the executed action is enabled
in each component having that label in its alphabet. An action a is enabled
in a component iff it is in some state with an outgoing transition labelled a.
The situation for the running example is illustrated in Fig. i

in(so,t)

en(a,L1,t) en(a,L2,t) se(Lo,t — 1) se(Ly,t—1)

Fig. 4. Constraining the Input Gates (left, middle) and Enforcing Scheduling (right)

4.8 Translation Algorithm for Step Erecutions

Assume L = (Ly||---||L,) and a given bound k. Then the algorithm con-
structing a Boolean circuit encoding step executions of L of length k is as
follows:

(i) To capture the requirement that each L; is in the 7-closure of its initial
states in V) add the gate in(s,1) for all states s and constrain them to
true if the above condition holds and false otherwise.

9
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T? di(k+1)
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Fig. 5. Schematic Diagram of the Circuit

EX(a,k) 68+C

(ii) For all positions 1 < ¢ < k, add the following subcircuits:

(a) For all states s € S;U...US,, include the subcircuit for in(s,t+ 1).

(b) For all the components L;, add the subcircuit for sc(L;, ).

(¢) For all transitions with visible actions | € A; U ... U A, add the
subcircuit for ex(l,1).

(d) For each LTS L;, add the subcircuit for uv(L;,t) and constrain it to
true.

(e) Add the circuit for ni(¢) and constrain it to true.

(f) For all visible actions a, add the subcircuit for enok(a,t) and con-
strain it to true.

(g) For all components L;, add the subcircuit for en(a, L;,t) for all its
visible actions.

The structure of the circuit is schematically given in Fig. ll In the bottom
is the initial state V(1) and on the top the last state V(k + 1) and a circuit
for deadlock detection (introduced in Sect. lll). The unconstrained input
gates appear on the left and the constrained outputs on the right, the labels
capitalized to indicate that they denote several actual gates.

Let SC(L,k) be the (step) circuit obtained by the translation algorithm.
Given a satisfying truth valuation o for SC(L,k) call an a-execution the

execution V; A ﬂ”} Vik+1) where the elements in each V; are the states s with
a(in(s,i)) = true and the elements in A; the actions a having a(ez(a,i)) =
true.

Theorem 4.1 If the Boolean circuit SC(L, k) has a satisfying truth valuation

, . A A L .
a, then there is an a-execution Vi = ... =5 Vi1 which is a step execution.

Theorem 4.2 If V; Ak Viy1 @s a step execution of L, it is an «-
execution for some satisfying valuation o of SC(L, k).

10
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4.4 Process Executions

As can be seen from Definitions Il and ll the difference between step and
process executions is rather simple. Indeed, the resulting circuit needs only
one additional element. Namely, if an action is executed at ¢ + 1, then some
participating component had to be scheduled in step ¢. On the right in Fig. ll
is an instance from the running example (executing action b in step 2).

The encoding algorithm needs the following addition for all 1 <t < k.

(h) For all the visible actions a € ¥ U... UY,, add the subcircuit pr(a, t)
and constrain it to true.

Figure M illustrates the circuit for step executions. Process executions
would be modeled by adding the PR(t) vector to the right hand side of the
figure. Let PR(L,k) be the (process) circuit obtained with the augmented
algorithm.

Theorem 4.3 If the Boolean circuit PR(L, k) has a satisfying truth valuation

. . A A S .
«, then there is an a-execution Vi = ... =% Vi1 which is a process execution.

Theorem 4.4 If V) Ak Vi1 18 a process execution of L, it is an «-
execution for some satisfying valuation o of PR(L, k).

4.5 Reachability Properties

In Corollaries Il and [l it is stated that both step and process executions
preserve the final states of the executions. Therefore, any state predicate con-
cerning such a state can be studied with the presented approach. A dead-
lock, i.e., a state with no outgoing transitions, is a particularly interesting case
among such properties.

The synchronized product of LTSs can deadlock as a combination of two
conditions. Firstly, components may end up in states with no outgoing tran-
sitions. Secondly, single components may indeed be able to proceed, but their
synchronizing counterparts are in states where synchronization is not possible.

Thus a deadlock could be detected with circuits encoding such demands
only based on the in(s, k+ 1) gates. The former condition is simple, it can be
detected by static analysis. The latter is more difficult to encode compactly.
Therefore, deadlock detection is implemented by introducing a new input gate,
fs(s, L), for each component L and each state s with only visible outgoing
actions.

The encoding is based on the reasoning that if there is a deadlocking
interleaving execution, then the set of states reached in the associated step or

4 There is a subtle issue which should be noted. The presented translation method assumes
the following: if in a state s the state predicate to be studied holds then in all states reachable
from s by using only 7-moves the predicate also holds, i.e. you cannot get out of a “bad”
state by using only 7-moves. If some 7-moves do not respect this property, they must be
converted to visible actions before the verification is started.

11



JUSSILA ET AL.

process execution reaches a state V{;41) such that the deadlocking state s is
be in Vix41). The new input gate captures a single representative s’ from each
component L so that if the gate fs(s’, L) evaluates to true the state s’ is the
representative from the component L in Vi 1.

The gate has to be constrained in the following way. Firstly, an obvious
soundness criterion is that a state has to be in V{;11) for it to be a candi-
date. Secondly, to mandate the collection of final states to be a state of the
interleaving executions, they have to be constrained to precisely one in each
component. Instances from the component L; of the running example are
given in Fig. Il

€

fs 50,L1 in (s0,k+1) fs 50,L1 fs( 53,L1 fen(a, L1) fen(a,L2) fen(a) fen(b)

Fig. 6. State Predicate (Deadlock) Analysis

Having defined the fs gates a deadlock can be detected by the analysis of
enabled actions in the final state. This is done by defining a fen(a, L) gate for
all the visible actions a and components L having the fs(s, L) gates for state
s in L with outgoing transitions labeled a as inputs. An action a is globally
enabled in the final state iff it is enabled in all participating component iff the
gate fen(a) evaluates to true. Finally, a deadlock is a state where no action is
globally enabled. The case for action @ in the running example is illustrated
on the right in Fig. ltogether with the deadlock detection gate for the entire
example.

It should be noted that compared to the interleaving model, step and pro-
cess executions may lose some of the intermediate states. However, it is not
impossible to reason about them, provided that all state changes of interest to
us can be observed through the occurrences of visible actions. The exact de-
tails of the following construction are left for further work, here just the main
ideas are sketched. An additional component, called an observer automaton,
can be added to the system. It observes the visible actions taking place by
having all of them in its alphabet. Now any stuttering invariant safety prop-
erty (which can be expressed as a regular language) can be reduced into the
question of whether the observation automaton can reach a particular state.
For the safety subset of LTL x, the linear temporal logic LTL without the
next-time operator X, a finite automaton construction tool is available [Il].

5 This idea of guessing a final state combination can be used to compactly encode arbitrary
state predicates.
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5 Test Results

A set of test cases has been adopted from [M] taking those cases known to
deadlock. The test cases are provided as LTS (fsa), Promela and SMV speci-
fications thus rendering the comparison task feasible. The results of the tests
are given in Table Ml with the following columns:

e Problem instance,

* St. k, bound for step executions, i.e., the smallest number of steps such
that a deadlock is reached,

* St. s, running time for step executions as measured by /usr/bin/time,
e Pr. k and Pr. s, similarly for process executions,

* SMV k and SMV s, bound and time for NuSMV BMC [M],

* SMV bdd, running time for NuSMV BDD [H].

The tests were carried out with an AMD Athlon machine with a 1400
MHz CPU and 1 Gigabyte of memory running the Linux operating system.
With the problem Dartes, no results could be obtained within a reasonable
time limit (1 hour) using either NuSMV BMC or NuSMV BDD, therefore the
entries are of the form N/A.

The results for the Boolean circuits were obtained by using a tool [l to
translate LTSs to Boolean circuits and then using the BCZCHAFF system [Il]
which first translates a circuit to CNF DIMACS form B and then solves it
with zChaff version 2001.2.17 [B]. The fact that both the presented method
and NuSMV BMC use zChaff as the back end adds credibility to their com-
parison. The running time for the step and process executions is the sum of
generating the Boolean circuit from the specifications and solving it for the
given bound. The running time for NuSMV BMC is composed of generating
the CNF instance and solving if for exactly the given bound.

Even though the test cases do not have a lot of non-determinism it can be
seen that the non-standard execution models compare favorably in terms of
the bound and running time to those of NuSMV BMC. Compared to BDD-
based model checking the results reiterate the fact that BMC is at its best in
finding short deadlocks.

Experiments indicate that with these examples it sometimes takes zChaff
far longer to prove a formula unsatisfiable than find a satisfying truth assign-
ment with instances of comparable sizes. The phenomenon is most apparent
in the example Key(4) where the time limit of one hour is exceeded with an
unsatisfiable instance modeling process executions of length 29. The test cases
and the tool translating LTSs to Boolean circuits are available for download
at ).
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Table 2
Test Results (BCZCHAFF)

Problem | St.k | St.s | Pr. k | Pr.s | SMVk | SMV s | SMV BDD s
Dartes 31 | 20 | 31 | 053 | N/A | N/A N/A
DP(12) 1 |0028| 1 |0028]| >8 830 0.12
Elev(1) 3 0056 | 3 |0.034 8 3.0 0.05
Elev(2) 5 | 0.16 5 0.11 11 3.1 0.17
Elev(3) 7 | 042 7 | 027 14 410 0.64
Elev(4) 9 1.6 9 0.74 17 120 2.7
Key(2) 35 | 510 | 35 | 200 | >30 | 2100 0.10
Key(3) 36 | 200 | 36 | 780 | >21 | 2700 0.27
Key(4) 37 10 37 11 >19 | 3200 0.73
Key(5) 38 15 38 | 140 | >18 | 1900 3.2
Mmgt(3) 7| 0.32 7 | 029 10 14 0.13
Mmgt(4) 8 | 077 | 8 0.35 12 73 0.25
Q(1) 9 | 025 9 025 | >11 | 1500 2.0
Hart(25) 50 12 | 50 | 071 51 7.0 0.12
Hart(50) 100 | 51 | 100 | 3.1 101 130 0.54
Hart(75) 150 | 12 | 150 | 7.6 151 990 1.9
Hart(100) | 200 | 22 | 200 | 15 201 4800 5.5
Sentest(25) | 33 | 0.63 | 33 0.7 38 42 0.12
Sentest(50) | 58 | 2.1 58 2.3 63 40 0.45
Sentest(75) | 83 | 45 | 83 5.1 88 220 1.5
Sentest(100) | 108 | 80 | 108 | 8.3 113 980 4.6
Dac(15) 2 |0014| 2 |o0.014 3 0.27 0.11
Speed(1) 4 10038 | 4 |0030 7 0.13 0.07

6 Conclusions and Related Work

The paper studies bounded model checking of reachability properties of a
system represented as a product of L'TSs. Two nonstandard execution mod-
els, step and process executions, are proposed to capture sets of interleaving
executions in a compact form.

The paper presents two translation schemes from an LTSs to Boolean cir-
cuits. In the first case, the resulting circuit encodes precisely the step ex-
ecutions of the product of LTSs under consideration and in the second the
process executions. The encoding is compact leading to a circuit linear in the
size of the bound k, more precisely O((3_;(|S;|+[A;|+[T])) - k) where S;, A;
and I'; are the state space, transition relation and visible actions of LTS Lj,
respectively. The encoding uses Boolean functions outside traditional propo-
sitional logic, namely cardinality constraints of the form cr} and cr{, but the
bound holds were the use of them disallowed. Such a function with indegree
i can namely be simulated using O(i) new V, A and — gates. The approach is
backed by a set of test cases showing that the run times compare favorably to
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a state-of-the-art interleaving BMC implementation in the NuSMV system.

The presented approach is considered only for models where the LTSs are
presented explicitly. Translations from symbolical representations, like SMV
models, is an interesting research problem for future work.

The idea for the paper arose as a comparison to the work done in []. The
paper presents a BMC procedure to reachability check 1-safe Petri nets with
step and process semantics. In addition to the different modeling formalism
the approach is deterministic and does not exploit the inherent concurrency
as effectively. The paper considers some of the same examples presented here.
However, a direct comparison was omitted due to some inconsistencies in the
state spaces of the fsa and 1-safe Petri net models. The differences could be
traced to the fsa to 1-safe Petri net conversion performed in [#8].

So far, only the verification of reachability properties has been considered,
whereas LTL_x model checking is left for future work. In [l a translation
of LTL_x for step semantics is given using a logic programming approach.
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Abstract

Games are useful in modular specification and analysis of systems where the dis-
tinction among the choices controlled by different components (for instance, the
system and its environment) is made explicit. In this paper, we formulate and com-
pare various symbolic computational techniques for deciding existence of winning
strategies. The game structure is given implicitly, and the winning condition is of
the form “p until q” for state predicates p and ¢. The first technique employs sym-
bolic fixpoint computation using ordered binary decision diagrams [8]. The second
technique checks for the existence of strategies that ensure winning within k steps,
for a user specified bound k, by reduction to the satisfiability of quantified boolean
formulas. Finally, the bounded case can also be solved by reduction to satisfiability
of ordinary boolean formulas, and we discuss two techniques, one based on encoding
the strategy tree, and one based on encoding a witness subgraph, for reduction to
Sat. We compare the various approaches on two examples using existing tools such
as MUCKE [7], MocHA [3], SEMPROP [16], QUBE [13], BERKMIN [12].

1 Introduction

The motivation for solving games in formal analysis originated with Church’s
synthesis problem in the context of automatically synthesizing circuits from
specifications [Ml]. Games have since then become popular in formal meth-
ods with various applications including control of discrete event systems [Bl],
realizability and synthesis, and model-checking p-calculus formulae [Bl]. In
formal verification, they have several applications in verifying reactive systems
where the agents comprising the system are viewed as players of a game: in
modular verification [B], in synthesis of formal interfaces to modules [ and
in approaches to compositional verification [EH].
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Research and related applications have led to variety of game formulations
such as infinite games on finite graphs, concurrent multi-player games and
games on pushdown systems [Ml]. However, the simplest game that most
solutions computationally rely on is the two-player reachability game on a
finite graph. Such a game is played between two players, the system and the
environment, and the game problem is to check whether the system has a
winning strategy that will force the game from the initial position to some
goal position, no matter how the environment plays.

Though the theoretical complexity of solving various games in the litera-
ture is well understood, there has been relatively less effort spent in identifying
how the powerful symbolic techniques used in model-checking fare in solving
games with large state-spaces. In this paper, we initiate such an effort by a
comparative and experimental study of solving simple reachability games (aug-
mented with a safety condition) using techniques that use Bpps, Sar-solvers
and Qpr-solvers. We model games symbolically using boolean variables and
succinct boolean expressions describing the transitions — the explicit game
this defines would be typically exponential in the size of the definition.

The standard attractor-set approach to solve reachability games is a simple
fix-point algorithm that can easily be implemented using Bops. There are two
kinds of Bop-based solvers we use: Mocna which is a model-checker that can
directly handle specifications in a game logic called alternating temporal logic
(Arp) and Mucke which is a p-calculus model checker especially tuned and
extended to handle p-calculus formulas.

For propositional solvers, we consider bounded reachability games. We
first consider games where we ask whether the system has a strategy that will
ensure the game reaches the goal within k steps, where k is a user-specified
parameter. The natural way to encode this as a propositional satisfiability
problem is using a quantified boolean formula, where there is a prefix of alter-
nating quantifiers of length 2k that capture a strategy for the system followed
by a boolean formula that checks whether the strategy is indeed winning for
the system. We then use QBr solvers Semprop [Ml], QuarrLe [Bl] and Quse [Il]
to solve these formulas.

In recent years, there has been a significant interest in engineering Sar-
solvers that has resulted in very efficient solvers, while the effort in speeding
up QBF solvers has been relatively less. We hence also consider encodings of
games into SAT problems, in two different ways. In the first approach, we use
SAT to guess a winning strategy tree of depth k (the tree is exponential in k).
This can be seen essentially as “unwinding” the alternating quantification in
the QBr formula above into a tree of existential quantifications, by converting
each universal choice to all possible choices. We hence get an exponential-sized
Sat formula which is satisfiable if and only if there is a strategy that wins in
k steps, and we use the Sar-solvers zCuarr [Ml] and Berxkmin [H].

In the strategy tree guessed above, several nodes of the tree could represent
the same position in the game and the tree encodes the strategies from these
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nodes separately. Since reachability games have zero-memory strategies, we
need not guess separate strategies from these nodes. In the second reduction
to Sar, we consider a variation where we essentially guess a directed acyclic
graph of positions of the game which encode a strategy for the system and
which witnesses the fact that the system wins the game. Given a parameter n
on the size of such a witness set, our reduction checks whether the system has
a strategy such that there is a set of positions bounded by n within which the
system can force the game to be within and reach the goal. This is perhaps
the more natural generalization of bounded model-checking to games.

We compare all the above methods and the different encodings described
above using two examples that can be scaled. The first example is a pursuer-
evader game where the objective is to guide a robot from one end of a grid
to another while evading another slower robot that moves arbitrarily in the
grid. Since our results show that Bpp methods outperform both Sar and Qsr
methods by a large margin for this example, we consider in the second example
a game which is known to be hard for Bops (using the swap example from [Il]).
However, it turns out that Bops still outperform the Sat and QBr methods. We
postpone a more detailed discussion of the results to the concluding section.

Our aim in this paper is to have a common platform to specity symbolic
games so as to compare various symbolic techniques and evaluate them. The
games we consider involve continuous interaction between the two players, as
is common in most games studied in formal methods. The use of symbolic
methods to solve problems related to games is not new. Symbolic methods
have been proposed and studied in the area of planning in Al, for example, in
conditional planning using Qsr methods [ and for universal planning using
Bops [ (see also [M]). However, we do not know of any comparative study
of solving games using different symbolic approaches.

The paper is organized as follows. Section 2 lays out the precise definition
of symbolic two-player reachability games. In Section 3 we outline two ap-
proaches using Bpps to solve games, one using ATL specifications in Mocua and
the other using p-calculus specifications in Mucke. Section 4 deals with solv-
ing bounded versions of the game problem, using reductions to satisfiability of
Qsr and Sar formulas. For the Sar reduction we outline both the strategy-tree
approach as well as the witness-graph approach. We present our experimental
results for two game examples in Section 5 and conclude in Section 6.

2 Games

In this section, we define the required terminology. Let X be a finite set of
variables. We write X’ = {2/| x € X} for the set of primed variables of X.
We denote by Val(X) the set of all total functions that map every variable
in X to a value in its domain. The set of all predicates over X is denoted by
P(X). Given p € Val(X) and a predicate ¢ over X = {xy,--,z,}, we write
elpl = elr1/p(xy), -+, xzn/p(2y,)] for the truth value obtained by replacing

3
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each variable z; € X in ¢ with the value p(x;).

We model a game [l between a system and its environment using a game
structure S = (Xg, Xg, Ms, Mg, Ts, Tg) with the following components:

* Xy is a finite set of wvariables the system controls, and Xg is a finite set
of variables the environment controls with X¢ N X = 0. We write X =
XsUXp for the set of system and environment variables, and @ = Val(X)
for the set of states of S.

e My is a finite set of move Variablesl which determine the next mowve of the
system and My is a finite set of move variables which determine the next
move of the environment. We assume Mg N Mg = 0, MsN X = () and

« Ty € P(X, Mg, X)) is a transition predicate for the system variables. For
each ¢ € Val(X), mg € Val(Mg) and ¢5 € Val(X{), if Ts[q, ms, qs] = true
then ¢y is the next valuation of variables in Xg when the system picks the
move mg at the state ¢. Similarly, Tr € P(X, Mg, X}) is a transition pred-
icate for the environment variables. For each ¢ € Val(X), mg € Val(Mg)
and ¢y, € Val(X},), if Tglq, mg, q);] = true then ¢}, is the next valuation of
variables in Xz when the environment picks the move my at the state ¢.

Now, we define a game G = (S, 1, G, 8) with a game structure .S, an initial
statdM I € Val(X), a goal predicate § € P(X) and a safe predicate § € P(X)
where for each ¢ € Val(X), if §[q] = true then the state ¢ is in the goal region,
and if 8[g] = true then the state ¢ is in the safe region. The game starts in
the initial state and in every step, the system and the environment pick a
move simultaneously and the state evolves according to this choice. If the
goal region is reached then the system wins. If the current state is not in the
safe region, the environment wins. Otherwise, the game continues forever.

For two states p and ¢, we say that ¢ is the successor of p if there are mg €
Val(Ms) and mg € Val(Mg) such that Ts[p, ms, q5| = true, Tg[p, mg, ¢ =
true and ¢ = qg U qg. We assume that there exists at least one successor at
every state. A path of S is a finite or infinite sequence A = qq, ¢1, - - - of states
such that for all positions ¢ > 0, g;+1 is a successor of ¢;. For a path A and a
position i > 0, we use A[i] and A[0, 7] to denote the i-th state of A and the finite
prefix qo, q1,- - -, ¢q; of A\, respectively. A strategy for the system is a function
f: Q" — Val(Ms) which maps every nonempty finite state sequence A € Q7
to a move f(\) € Val(Mg). Given a strategy f, we define the plays of f to
be the set plays(f) of paths which are possible when the system follows the
strategy f; that is, a path A = qo, ¢1, - - - is in plays(f) if for all positions i > 0,
there are mg € Val(Mg) and mg € Val(Mg) such that mg = f(A[0,4]) and
Qi+1 is the (mg, mg) successor of ¢;. Given a game G = (S, 1, G, 8), a strategy

2 In many examples, Mg and Mg will contain a single variable but in general, if a system
has multiple components then there can be a move variable for each component.

3 We can handle multiple start states by introducing a new state as an initial state with
moves to all the start states.
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f is a winning strategy in the game G if for all A = qq, q1,- - - € plays(f) such
that gy = I, there exists a position i > 0 such that G[g;] = true and for all
positions 0 < j < 7, §[g;| = true. Finally, given a game G = (5,1, 5, §), the
game problem is to check whether the system has a winning strategy in the
game G.

Ezample 1.

Consider the game between an evader F and a pursuer P on an n X n grid
as shown in Figure ll The evader tries to reach the predefined goal position
G without being caught by the pursuer. The evader chooses one amongst five
moves: up, down, left, rght and stay in every step. The pursuer, however,
chooses one such move only in every odd step and it must stay stationary in
every even step. Considering the evader as the system player and the pursuer
as the environment player, we can define the game G = (S, 1, G, 8) as follows.

First, we model the game structure by S = (Xg, Xp, Mg, Mg, Ts, Tk).

* Xg = {x¢,ye} where z, and y, ranging over {0,---,n — 1} are the z-y
coordinates of the evader, and Xx = {z,, y,, clock} where x, and y, ranging
over {0, -+, n—1} are -y coordinates of the pursuer and clock ranging over
{0,1} is a tog gle specifying when the pursuer can change its position.

« Mg = {m.} and Mgy = {m,} where m, and m, range over
{up, down, left, right, stay}.

((ze > 0) A (me = left) A (ze = ze — 1) A (Ye = Ye))

(e <n—1) A(me = right) A (ze = ze + 1) A (ye = Ye))
((ye < =1) A(me = up) A (we = e) A (ye = ye + 1))
V((ge > 0) A (me = down) A (ze = ze) A (Ye = ye — 1))

((

\

\

o
I
<

me = stay) N (zg = ze) A (Ye = Ye))

- ((clock = 1) A (> 0) A (my = Iefe) A (2 = 1, 1) A (5 = 3y)
V((@p <1 — 1) A (1 = right) A () = 2 + 1) A (5, = 1))
Is = V((yp <n—1) A(mp = up) A (), = xp) A (Y = yp + 1))
V(o > 0) A rmy = down) A (5 = 2) A (= 1o~ 1) )

| V((my = stay) A (x5, = 2p) A (Y, = p))

A(clock” # clock).

I ={z. =0,y = 0,2, = 1,y, = 3} if the initial position of the evader
is (x = 0,y = 0) and the initial position of the pursuer is (z = 1,y = 3). §
is true if the z-y coordinates of the evader are same with the predefined goal
position. 8 is true if the z-y coordinates of the evader are different from the

pursuer’s: 8 = (e # ) V (Ye # Yp)-
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Fig. 1. Pursuit-evasion Game
Algorithm [Symbolic model checking for game problems]

Input: a game G = (S,1,G,8).
Output: the answer to the model checking problem for the game.

p = False;
7:=G;
while 7 # p do
p=pVT;
7= Pre%(p) A §;
od;
if p(I) then return true;
else return false;

Fig. 2. Symbolic model checking algorithm for game problems

3 Solving games using BDDs

In this section, we solve games using binary decision diagrams (Bops). The
standard attractor-set method to solve games is a fix-point algorithms that
can be implemented using Bops. Figure ll shows a symbolic model checking
algorithm for our game problem, which manipulates state sets of S. Given
a goal region and a safe region, we compute all states from which there is
a winning strategy for the system. Note that the function Pre® is different
from the pre-image function of CtL model checkers. The function Pre, when
given a predicate p(Xg, Xg), returns a predicate Pre“(p) € P(X) for the set
of states p such that from p, the system enforces the next state to satisty p no
matter how the environment behaves. Formally,

PreC(p) = 3Mg, XYMy, X}, To(X, Mg, XN Tp(X, Mg, X)) — p(X%, X})).
In the algorithm, sets of states and the transition relation are represented by

Bops [l]. Both the AtL model checker and p-calculus model checker use this
algorithm.
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ATL Model Checking
Mocua[M] is a verification environment for modular verification for alternating-
time temporal logic, which is a game logic extension of CrL.

Given a game G = (S,1,G,8), we specify a game structure S as reactive
modules [M] where the system and its environment are described in separate
modules, and specify G and 8 as an ArL formula using the until operator U.
The logic At admits a formula ((A))¢ U, where ¢ and v are state predicates
and A is a subset of players. The formula ((A))¢ Ut asserts that the players
in A can cooperate to keep satisfying ¢ until satisfying ¢ no matter how
the remaining players behave. Considering A as the system, the semantics of
{(A) ¢ Ut is exactly same as the game problem. For Example 1, we specify the
evader and the pursuer as separate modules, and specify the game property
as the Arw specification, ((Evader))(safe W goal). Then, we use symbolic Arr
model checking of Mocua, which implements the algorithm shown in Figure il

p-calculus Model Checking

The p-calculus W] is propositional modal logic extended with the least fixpoint
operator and is interpreted over Kripke structures. While p-caculus model-
checking can be seen to be equivalent to evaluating infinite parity games on
finite graphs, the p-calculus also trivially encodes solutions to reachability
games. In our context, the p-calculus formula:

uX.(goal V (safe A \/ /\ (ms,me) X))

ms€ Val(Mg) me€ Val(MEg)

computes the winning area for player S, as it stands for the least set X con-
taining the goal configurations as well as those configurations from which the
system can force a move into X.

Since least fixpoint computations can be performed symbolically, we can
use symbolic p-calculus model checkers to solve games using Bops. The model-
checker we consider is Biere’s model checker Mucke (ucke) [M], which is de-
veloped with an aim to be a p-calculus model checker that performs as well
as symbolic model-checkers like Smv on the CtL fragment. Mucke is a Bpp-
model checker optimized for the p-calculus using techniques similar to those
employed in model-checkers for Crtr (like allocating fixed variable orderings
for variables computing fixpoints, frontier set simplification, etc.).

When coding games into p-calculus, we can also implement early termi-
nation, i.e. terminating the above fix-point computation when we reach an
initial state. This can be encoded as:

pX.(goal V (32 € X : IZ)V (safe A \/ N (me,me) X))

ms€ Val(Mg) me€ Val(Mg)

In the above, if an initial state is reached, the set X immediately gets set
to the entire set of states and the fixpoint terminates.

7
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4 Solving Bounded Games

Symbolic model checking [M] has been acknowledged as an efficient verification
technique. Many symbolic model checkers use Bops [M] as representations for
sets of states and transition relation. However, the size of Bpps may increase
exponentially as the number of variables.

Recently, a new type of model checking technique, bounded model checking
with satisfiability solving [BEM], has led to promising results. In bounded
model checking, given a transition system .S, a temporal logic formula f and
a user-supplied bound k € N, we construct a propositional formula [S, f]
which is satisfiable if and only if the formula f is valid along some path of
length k. Then, we solve the formula [S, f]x using a Sar solver.

4.1 @QBF Methods

For solving bounded games, we need more definitions. Given a game G =
(S,1,G,8), a strategy f and a bound k, plays,(f) is the set of plays of length
k which are possible when the system follows the strategy f. A strategy f
is a k-winning strategy in a game G if for all X = qo, -+, qr € plays,(f) are
winning, i.e., there exists a position 0 < ¢ < k such that §[g;] = true and for
all positions 0 < j < i, §[g;] = true. The bounded game problem is, given a
game GG and a bound k, to check whether the system has a k-winning strategy
in the game G. Consequently, we want to construct a boolean formula g, ,
which is satisfiable if and only if the system has a k-winning strategy in the
game G.

Given a game G = (S,1,9,8) with S = (X, Xg, Ms, Mg, Ts,Tg)
and a bound k, we denote, for every 0 < ¢ < k, the i-th copy of
X, Xg, Xp by X' Xi, X}, respectively. we divide I into Ig and I which
are the initial values for Xg and Xpg, respectively. However, unlike bounded
model checking, we need alternations of existential quantification and uni-
versal quantification in order to solve a bounded game problem. Therefore,
the formula CI%},C is a quantified boolean formula beginning with a prefix
X, MIVXY, M. -+ 3XE, METT VXL M AXEVXE. @Y, describes
that there exists a series of system’s moves to guarantee that for all series
of environment’s moves, the goal region is reached through the safe region as
long as the environment proceeds according to the transition relation. ®¢  is
as follows.

oL, = XY, MOYXY, MY, ... 3xE ME yXET ME 3XEvXE.
Is(X2) A ér A ((JE(Xg) Agn) — p)
where,
o« 1= NS Ts(Xy, ME, X5,
o 1= Ay Te(Xs, My, X and
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* 0= Vis (SX) AN, 8(X)),

In the above formula @G’k, the subformulas, ¢; and 1, force that the next
states along the path should obey the transition relation and p encodes reach-
ability to the goal region through the safe region within £ steps.

The total number of variables in ®¢,  is O(k-N) where N = |[XUMgUMjp|,
and the length of ¢, ;. (after some snnphﬁcatlon) is O(k-(|Ts|+|Te|+|G|+|8])+
|Is| + |Ig|) where |9| 18, |Ts|, | Tkl |Is| and |Ig| are the lengths of formulas.
In this expression, k - (|Ts| + |Tg|) is the dominant factor because |Ts| and
|Tg| are quadratic in N, but |G| and |§| and is linear in N.

We define a new formula ®7, , which has three extra copies of the variables
X U Mg U Mg, but which is shorter than the previous formula ®¢, , since it
has only one occurrence of Ts and 1. The trick is to have an additional
universal quantification after the k alternating quantifiers and to treat these
as temporary variables and check that if they match the i* and (i + 1)th
copy of the original variables, then they satisty the predicates Ts and Tg.
Subsequently, the total number of variables in ®7, , is O(k- N) and the length
of ®F, , (after some simplification) is O (k (|9|—|—|8|) |Ts| +|Te|+|Is| +|1g]).
@%’k is given by:

F = IXE, MINXY, MY, - AXEVXENY Yo, Y Z, Zny, 2.

I5(X8) Ao A ((Lu(XB) A ) = p)

¢ = VI (X = V) A (M = Vi) A (X5 = V) = T(Y, Y, V),
Vieg (XP=Z)AN(ME=Zy) N Xt =2")) = Tp(Z, Zy, Z') and
= VAL (5(X7) A A, S(X)).

We denote by M1 the method which uses the first formula ®g, ;. to solve
the game, and by M2 the method which uses ®7, ,. We use QBr solvers such as

Semprop [, QuarrLe [M] and Quse [M] in order to solve the above quantified
boolean formulas.

4.2 SAT Method using Strategy Tree

The bounded game problem is naturally translated to a QBr solving problem
as we saw in Section 4.1 and we must use QBrF solvers. However, several SAT
solvers have recently shown promising results. In the next two subsections,
we show how to translate the game problem to a boolean formula only with
existential quantification in order to use SaT solvers.

For translating the quantified formula for ®; 4 in the previous section into a
boolean formula, we need to eliminate universal quantification by introducing
extra copies of variables in order to specify explicitly all cases without universal
quantification; for example, Va.3y.(x A y) = Jyr, yo.((true A y1)) A (false A
y2)). Figure Mshows relations between successors and predecessors in Qsr and

9
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QBF Methods Tree—based SAT Method

. X0 —
- X (0)
Xl
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Fig. 3. Tree-based SAaT Method

Sat methods. In tree-based Sar method, we introduce explicitly one copy of
variables for every node in the tree. Thus, the number of copies is exponential
in the bound k.

Every path of the tree-based Sat method corresponds to a play of length
k and we just need to write a formula to check that the paths stay in the safe
region until they reach the goal region, which we write as the formula @%’k.

The number of variables in ®f, , is O(N - m*~") where m is the maximum
number of environment’s moves and the length of <I)3G’k is O(mF=1 - (|Ts| +
|Tg|+k-|8|+k-|S|)+ |Is| +|Ig|). We then use Berkmin [Bl] and zCuarr [IH]
in order to solve the boolean formula ®, .

4.8 SAT Method using Witness Set

In the strategy-tree based Sat method, we constructed a tree which is a
witness for a bounded game problem with a bound k. The tree, however,
could have many identical states and we check the strategy from the iden-
tical states many times. In this section, we introduce a method that can
generate a witness set with less copies of variables. The main idea is to
construct a set that witnesses the fact that the system wins. Thus, given
a game G = (S,1,G,8) and a user supplied n € N, we generate a boolean
formula @, which is satisfiable if and only if we can generate a witness
set with n states. First, we define T;(X, Mg, X') as a predicate for the next
state when the environment’s move is fixed. For each element m; of the set
{mq,ma, -+, Mupme} of the environment’s moves, T;(X, Mg, X') is the predi-
cate obtained from Ts(X, Mg, Xg) A Tg(X, Mg, Xj) (where X' = XU Xj)
by replacing each of the variables v € Mg with the value m;(v). Now, we
define a witness set for a bounded game problem as follows. Given a game
G=(S,1,9,8) with S = (Xs, X, Mg, My, Ts,Tx) and user supplied number
n, W={q,q, -, qn} is a witness set for the game G if and only if

o for the initial predicate I of G, I[¢:] = true, and
10
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o for each ¢; € W, §Glg;] = true, or, 8[g;] = true and there exists a system
move m'y such that for each valid element m; in the set {my, ma, -+, Mz }
of environment moves at ¢;, there exists ¢ < { < n such that Tj[g;, mk, ¢] =
true.

The formula ®¢, , for witness-based Sar method is as follows.

3

ax

0= 1009 A A (S04 (850 A A\ (1500 = /T 2t X))

<.
Il
—

where V; € P(X), for every 1 < j < max, is a validity predicate for the
environment: Vj[g] = true if and only if m; is valid environment’s move at
the state ¢q. The definition of a witness set forces that every copy ¢; which
is not a goal, must have a transition to some ¢ where [ is strictly larger
than 7. Note that g, must hence be a goal position and in fact the definition
forces all plays encoded in the witness set to end in the goal. In the formula
®¢; ., the total mumber of variables is O(n - N) and the length of the formula
is O(mn? - |T;| + n - (|| + |8|) + |1|) where m is the maximum number of
environment’s moves. We again use BERKMIN and zCHAFF in order to solve the
boolean formula @, .

5 Experimental Results

We also consider a second example, which is known to be hard for Bops [ll].

Example 2.

The second example is swap introduced in [Bl]. We change the example into
a game problem. There is an array A[ | with n elements which are m-bit
binary numbers. We assume that n < 2™ so that all elements in the array
can be distinct. Initially we have, for all 0 < i < n, A[i] := i. At each step,
the system chooses a direction between left and right and the environment
chooses an index 4, in the range 0, - - -, n — 1; then the value of Ai] is swapped
with that of A[(i — 1) mod n| or A[(¢ + 1) mod n], according to the direction
the system picked. The property we want to check is whether the system can
eventually make A[0] and A[l] same no matter what the environment does
(the system clearly loses).

We compare the methods we addressed using the Examples 1 and 2. For
Qsr methods, our program first generates a Boolean circuit [l file, which
is a more succinct format than Cnr. Then we use Bc2one [B] to translate
the Boolean circuit into Cnr. In the process, many intermediate variables are
introduced. Finally, our program attaches quantification to the Cnr file auto-
matically and we use QBr solvers such as SEmpror, QUAFFLE and QUBE to solve
the Cnr formula with quantification.

11
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Also, for Sar methods we generate a Boolean circuit file and translate it
to CnF using Bc2enF. We use the Sat solvers BErkMIN and zCHAFF on the CNF
formula. All experiments were performed on a PC using a 1GHz Pentium III
processor, 1.5GB memory and the Linux operating system.

The results for Example 1 are shown in Table ll where the time shown is
the execution time in seconds, ‘—’ means that it did not complete in 10 hours,
and * means the size of the input file was too large to execute (over 1GB). In
Bop methods, the number in parenthesis is the number of iterations taken to
reach the fix-point while in the witness method, the number in parenthesis is
the size of the witness set. For early termination results, the goal position was
chosen as (n/3,3n/4) for the n x n grids. In this example, Mucke performed
better than Mocua. For Qsr method M1, Quse (Ver. BJ1.0) worked best and
for QBr method M2, Sempror (Ver. 240202) showed the best result. For Sar
methods, Berkmin worked best. The results in the table are the results for the
tools that performed best. For this example, Bop-based methods seem better
than QBr, and Sar-based methods seem better than Qsr-methods.

Table M shows the results for Example 2 where the Bop method outper-
formed QBr and Sar methods. Unlike Example 1, the QBr method was better
than the tree-based Sat method. This is perhaps because, in Example 2, the
environment has n moves at every stage, which makes the strategy tree very
large, while in Example 1, it has at most five moves at any stage.

6 Conclusions

We have presented various symbolic methods using Bops, Sat-solvers and QBr-
solvers to solve symbolically presented succinct games and evaluated them
on two examples. This research is preliminary and one cannot draw hard
conclusions yet. From the current results, however, it does seem that Bpps
(especially Mucke) outperform methods that use propositional solvers. The
main problem with reduction to Sat seems to be the exponential blow-up in
the reduction to game witnesses. Also, just reducing the size of the formula by
making it more complex, seems to make Sar and QBF solvers perform worse
than with a simple but larger encoding. If one could come up with a very
small notion of a witness set for winning games, the propositional solvers may
turn out to be more powerful.

There are several issues that are interesting for future study. First, most
applications require to solve partial information games and it is not clear how
to extend the methods to handle this. Also, once we know that the system
indeed wins the game, we do not know how hard it is to extract a winning
strategy of reasonable size from the above procedures.

Games have been recently used in the extraction of formal interfaces to
software modules, in order to check consistency between software components
M. It would be interesting to try out the above symbolic game solving tech-
niques in such a domain.

12
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BbpD methods Bounded methods
Grid size MUCKE QBF methods SAT methods
Mocua ' mal | Barty | S PE) |0 | ar2 | Tree | Witness
4 1 550 0
6 193 - 0
4x4 0 3 3 7 2354 - 0 818
(13) (7) (3) 15 - - 17 (25)
16 - - *
4 125 - 0
8x8 6 3 3 5 34783 - 0 -
(21) (16) (16) 15 - - | 117
16 - - *
12 — — 29 —
16x16 190 3 3 15 - - 135
(36) (32) (32) 16 - - *
12 - - 58 -
32x32 6493 5 5 15 - - | 531
(68) (64) (64) 16 - - *
256 % 256 - 373 100 8 - - - -
(512) | (263) | 12 - - -
512x512 - - | 4024 8 - - - -
(517) 12 - - -
Table 1

The results for Example 1.

Finally, McMillan has a technique to do unbounded model checking using
Sat solvers, where Sar-solvers are exploited to manipulate sets of states stored
as boolean formulas [B]. We plan to explore whether games can also be solved
using a similar approach.
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Abstract

The BDD- and SAT-basedmodel checkingand verificationmethodsnormally requirean
initial state.Herewe areconcernedvith sequentiahardwareverification,whereaninitial
statemustbe one of the resetstates.In practice,a resetstateis not always given by the
designerandcomputingaresetstateof acircuitis ahardproblem.In this papemwe propose
amethodallowing usageof SAT-basedrerificationmethodswithoutaneedfor ausergiven
or acomputednitial state.Theideais to emplgy a binary encodingof 3-valuedmodeling
of circuits,andusetheundefinedstate X asaresetstate.

1 Intr oduction

In thetheoryof Finite StateMachinegFSM) | ], oneassumeaninitial state
(or asetof initial states)from whichthemachinestartsoperating.Herewe will be
concernedvith sequentialerificationof synchronizedhardware (circuit) models.
In the practiceof hardware verification,aninitial states; of a circuit C' is a state
whereall stateelementglatchesandflip-flops) have a binaryvalue (T or F), and
thereis aninitializing sequencer; thatbringsC from the X stateto that binary
states; | ]. A resetor asyndironizationsequencéor C, ontheotherhand,is
asequence, thatbringsC from ary binary stateto auniquestates,, calledareset
or asyndironizationstate(r, ands, areindependentrom the statefrom which C'
startsoperating) ]. Any initializing sequenceés clearlyaresetsequenceyut
thecornversedoesnothold | .
ClassicBDD-basednodelcheckingandverificationalgorithmsrequireareset
state[ | ) ) i ]. Thesameis truefor well
known SAT- basedmodel checkingalgorithmssuchas BoundedModel Chedking
[ ) ] or theinductionmethod] D). Computationof resetse-
guencess a hardproblem] { ! ] \ \ I ].

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs
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Thereforen this work we arelooking for verificationmethodshatcanwork with-
outaresetstate.

Unlike SAT andBDD-basednethodsthe ATPGmethodslo notrequireareset
state. There,one assumeshe outputsto differ, andlooks for a justifying assign-
ment Thecircuit modelingis ternary— besideghetwo binaryvaluesi’ and £, one
considersan unknownvalue, X (elsevherealsodenotedby L or u). A justified
assignmengivesan input vector sequencehat, if appliedto the circuits starting
atthe unknown stateX (or at anybinary state),bringsthemto a statewheretheir
outputsdiffer.

In orderto take advantageof the rapidly developing SAT-basedverification
technology herewe proposea SAT-basedmethodfor verifying 3-valuedequiva-
lenceof sequentiatircuitswithoutinitialization. Our methodis basedn thedual-
rail modelingof circuits,whereeveryternaryvalueis representeaith a pair of bi-
naryvalues(see] | ! ) ]). Via dual-railencodingwe canarrive
to ordinary(2-valued)propositionalogic formulationof the verificationproblem.

The novelty of our approachs to shov thatthe dual-rail X statecanbe used
asa resetstatein the (forward aswell asbackward) SAT-basedalgorithmsmen-
tionedabove (the BMC andinductionalgorithms). We first presentan algorithm
for checking3-valuedequialencenvhichuseghe X stateasaresetstate andprove
its correctnesandcompletenessWe thendiscusghe applicability of our method
to verification with respectto other conceptsof sequentialequivalence,suchas
alignability or post-synhronizationequialence] ], andsteady-statequva-
lence] ].

The paperis structuredasfollows. In the next section,we quickly recallsome
basicdefinitionsusedin thiswork. In Sectiorll, we recallabackward ATPGbased
algorithmfor verifying 3-valuedequialenceand explain its dravbacks. In Sec-
tionl, we give alight introductionto abinaryencoding calleddual-rail encoding,
of 3-valuedlogic into Booleanlogic, originally developedfor the purposeof ef-
ficient symbolicsimulationandmoredirect modelingof circuit operation[ l.
We alsoreferto morerecentresultsonusageof thedual-railencodingn SAT-based
sequentialerification[ ]. In sectiorill, we proposea SAT-basedmethodfor
3-valuedequwvalenceverification, and discusshow it relatesto the ATPG algo-
rithm mentionedabove. In Sectiorll we discusshow our methodcanbe extended
to steady-statend alignability sequentiakquivalenceverification. Experimental
resultsarediscussedn Sectiorll. Conclusionsappeaiin Sectiorll

2 Preliminaries

Without restrictinggenerality we will assumehatary circuit C' hasexactly one
output,o. We denoteby C; andCs our specificatiorandimplementatiorcircuits
(with outputso;, ando,, respectiely), andassumehatthey have the samesetof
inputs(dummyinputscanbeaddedjf necessary)We denoteby C,,,, thecombined
circuit with sharednputsand XORedoutputo = 0, XOR 0,. And we denoteby
Cnor the combinedcircuit (the productmadine | 1) with sharednputsand
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XNORedoutputo = 0, XNOR o-.

We considerternary modelingof circuit nodevalues.The valuescouldbeone
of the binary values— 1" or F', or anundefinedvalue— L (elsevherealsodenoted
by X orw). Givenaternary(or binary)inputvectorsequence, n(s, =) will denote
thevalueof noden of acircuit C after3-valuedsimulationof C' with 7, startingat
states. Similarly, C'(s, 7) denoteghe (ternary)stateinto which 7 bringsC, from
states.

A circuit C' is specifiedas a collection of next-statefunctions(NSFs)of the
latchesaswell as of the output. An NSF is a function of currentand next-state
valuesof inputsandlatched This collectionof NSFsdefinesasequentiainstance
correspondingo C, denotedinst(C'). We denoteby Pins(C) the setof inputs,
latches,andthe outputof C. Every pin variablep canbe viewed asa sequence
(p[m])m>o of Booleanvariables gachp[m/| representingalueof pin p at phasen
(thusthe next stateof p[m] is p[m + 1]).

Assumptionsind proof obligationscanbe addedto aninstance.Assumptions
areassumedo betruein all (relevant)time phasesandproofobligationsrepresent
propertieswhosevalidity in all (relevant) phaseswve intendto check. The proof
obligationswe will be interestedn are safetypropertiesrelatedto the validity of
Oznor < T.

Unrolling to depthk of the instancelnst(C') yields a combinationalinstance
denotedC'[0, k|, consistingof variables{p[i]|0 < i < k,p € Pins(C)}, and
the relationson themare inducedby the NSFs. The function of the outputo in
C10, k] attime phasekt will bedenotedy o[0, k]. We assumét is a partialfunction
on all Booleanvariablesin theinstancejpartialbecausesomevaluecombinations
areillegal asthey contradictthe NSF relationsimposedon the instance.Alterna-
tively, 0[0, k] canbe seenasthe conjunctionof all NSF relationsandassumptions
in C10, k].

Intuitively, falsificationof aproofobligationexpressing; [k] < oq]k] in C[0, k]
correspondgo k iterationsof an ATPG procedureof finding a counterexample
(CEX) to the proof obligationo, < 0,. We will seein the later sectionghatthis
correspondencis not astight asit may seemfrom thefirst sight.

Thefollowing exampleclarifiesthe above definitions.

Example 2.1 Considemcircuit C thatconsistf anegatedatch/, with datad and
clock which is alwaysfalse:c = F' (seeFigurel). Let o = —[ denotethe output.
ThenInst(C) consistof two NSFs:!' = d&d'+—d &l = [ ando’ = —I', wherez'

denotemext statevalueof x. Unrolling Inst(C') to depthl yields combinational
instanceC[0, 1] consistingof variableso[0], o[1], [[0], /[1], d[0], d[1] and relations
oli] = —l[7] fori = 0,1, andl[1] = [[0].

I Thus,thecircuitsthatwe considerareMealy machines.
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Fig. 1. NegatedLatch

3 A backward ATPG basedmethodfor verification without ini-
tialization

Huangetal [ ] developedan ATPGbasedmethodfor verifying 3-valuedsafe
replacemenaswell as3-valuedequivalencdor sequentiatircuitswith or without
aninitial state.To define3-valuedequialencethey introduceda coveringrelation
on signalswith ternaryvalues:signalwv, coverssignalwv, iff whenererv, = 1" or
v, = F, thenv, = v,.

Definition 3.1 « Circuit C, with outputo, is called3-valuedsafereplacemenof
circuit C; with outputo, iff for ary inputsequencer, o;(_L, 7) covers oo(L, ).
(Thatis, wheno; hasabinaryvalue,theno, musthave the samebinaryvalue.)

 Circuits ', andC, are 3-valuedequivalent written C,223C,, iff for arny input
sequencer, o, (L, m) = oy(L, 7).

The values{(7,T), (F, F), (L, L)} for the outputpair (o, 0,) are called 3-
valuedequal-pais of C; and C,; in this case,C,,.,, is in 3-valuedequal-state
Theremainingpairs{ (7, F), (F,T),(L,T),(L, F)}, (T, 1), (F, L)} arecalled3-
valueddiffer-pairs, andC,,,, is in 3-valueddiffer-statein this case.

An input vectorsequencer suchthat (o, (L, 7),0:(s2, 7)) € {(T, F),(F,T)}
is calleda partial testfor C; andCs in | ] (this definitionis notsymmetric).
Note that sucha « bringsC,,,,, from state_L into a 3-valueddiffer-state. When
sy = L, wis alsocalledatestsequencéfor stack-at-alsefor o, ).

To checkfor 3-valuedsafereplacementthe authorsproposeto usean ATPG
solverin thefollowing way:

The backward justificationfor the o,,, = 1" (on C,,,) stopswhene&er one of
thefollowing two conditionsis satisfied:

« (Unjustifiablecondition) All staterequirementgeneratediuringthe searchof
apartialtestsequencareprovenunjustifiable.ThenC, is 3-valuedsafereplace-
mentof C}.

« (Justifiedcondition} A staterequirementhatdoesnot have requirement®n C;
is reachedThena partialtestsequencéasbeenfound,andC, is nota3-valued
safereplacemenof C,.

Similarly, 3-valuedequivalencecanbe disprosedby generatinga staterequire-
menthasnorequirement®nC, oronC,. And 3-valuedequivalencecanbeproved
by shawving thatall thosestaterequirementshataregeneratedvhile searchingor
apartialtestfor C; andC, andfor a partialtestfor C; andC, areunjustifiable.

The above algorithmneedsa terminationcriterion, basedon somesort of ‘di-
ameter’or afix-point, to be complete.For example,let bothC; andC, benegated
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latches/; andl,, with control ' (likethecircuit C' in Exampldil). ThenC,,, [0, k]
will dependon variables/; [0] and(,[0] for ary k, andneitherof the two stopping
conditionswill ever be satisfied. Thusthe algorithmwill report’INDETERMI-
NATE’ whenatime limit will bereached.

Thereis alsoanotherreasonwhy the above algorithmis not complete: If an
inputvectorsequencéhatcanbring C,,,. from X stateto adiffer state(with output
T) exists, a partialtestfor C,,, thatthe backward justificationalgorithmabove is
looking for may not exist:

Example 3.2 Considertwo circuits C; andC, (seeFigurell), eachconsistingof
a singlelatch with clock signale¢, with patternsayc = 1, F, T, F,. ... Theinput
of the first latch is constantF', while the input of the otherlatch is 0, XOR 0.
Startingfrom the X state,0, behaesaso, = X, F, F, ..., ando2 behaesaso, =
X, X, X, .... Thusthesecircuitsarenot3-valuedequialent(andC) is not3-valued
safereplacemenof C,). However, o, cannever becomél’ if it startsoperation
from anon-I state(theonly two concretization®f thesequence, = X, X, X, ...
areo, = F,F,F,...ando, = 1T, F, F,...), thusa partial testdoesnt exist for C;
andCs.

Remark 3.3 Theaboveexamplewaspointedoutto usasa counterexampleto (the
suficiencypart of) Lemma2 of | ], which statesthat C, is a 3-valuedsafe
replacemenof C; iff there is no partial testfor C; and C,. While we believe the
aboveexampleis nota counterexampleto Lemma2 of | ] B, thecorrectness
of the lemmadoesnot affectthe correctnesof the above algorithmor our results
below andwe will not elaborate on this issuefurther (it goesbeyondthe scopeof
this paper).

Notethat,intuitively, work with X valuesin acircuit corresponds$o work with
QBFs (QuantifiedBooleanFormulas): latch valuesare universally quantifiedin
a predicateexpressinga stop conditionin the ATPG procedureabove. Abdulla
etal | ] investigatedwvaysto simplify QBF translationinto quantifierfree

2 The authorsstatethat they usean enhanced-valuedlogic simulationin Lemmaz2; suchsim-
ulationis basedon approximating3-valuedsimulationby 2-valuedsimulation,thusassume®nly
binaryvalueson inputsaswell asinitial valuesof latches(seealsoExamplciil). In thealgorithm
however they usethe usual3-valuedsimulation.
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propositionalformulaeto facilitate SAT solverson QBF, for the purposeof SAT-

basedmodelchecking.Herewe pursuea differentpath: To develop a SAT-based
verificationalgorithmfor 3-valuedequivalencechecking,we considera dual-rail

encodingof the ternaryvalues.In the next section,we give a brief introductionto

thesubject.Wewill laterexplainwhy thisapproacttanwork well with certainSAT

solvers,and how it can be extendedto verifying sequentialequivalencewithout
initialization with respecto otherusefulconceptf sequentiakquivalence.

4 Verification using dual-rail modeling of circuits

Dual-rail modeling of circuits was introducedby Bryant [ ]. It wasused
in [ ] to enablea more precisemodelingof circuit operation,andto enable
representatioof all ternaryvalueswith BDDsvia abinaryencoding.lt resultedn
amoreefficient symbolicsimulator asmorecomplex behaiors couldbe modeled
with a singlesimulationrun. We referto | ) ] for moreinformation.

Eachternaryvaluev is encodedasa pair of binary values(vy,, v;), calledthe
high andthelow values.The undefinedvalue L is encodedasapair L = (7, 7).
The truth constantareencodecby 7' = (T, F) andF = (F,T). Thepair T =
(F, F') encodesicontaminatear over-specifiedvalue.To avoid arny confusionwe
useF, T and L to denotethedual-railencodingof 7', F' and_L, respectiely.
And v = (vy, v;) will denotethe dual-railencodingof aternaryvariablev.

Sequentialogic canbe expressedy usingBooleanlogic connectvessuchas
&, +, and—, anda phase-delayr next stateoperation,. Thusin orderto model
sequentialogic in dual-rail, it is enoughto have dual-rail rulesfor theseopera-
tions. We overloadtheselogic connectvesto denotethe correspondinglual-rail
counterpartaswell. Thesedual-railrulesareasfollows: Let 2% = (x;,z;) and
vy = (yn, y,) bedual-railencodingof ternaryvariablesr andy. Then

(@h, 20)&(Yns yi) = (@ndeyn, ity)
(@h, 20)+(Yns Y1) = (@ntyn, videyr)
(2n, 1) = (2, 21)
(@n, 21)" = (2}, 27).
Thusa dual-railNSFis a pair of NSFsof the high andlow values.We denote

by C4[0, k] the unrolled, to depthk, dual-rail sequentiainstance and denoteby
0% [0, k] thevalueof o in thatinstance(cf. definitionof 0[0, k] in C[0, k].

Example 4.1 Let uscomputer™ XOR z% for 2% = 19, asin Examplcilk
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17 XORL¥" = ((T,T)&~(T,T))+(~(T, T)&(T, T))
(T,

(
(T, T)&(T, T))+((T, T)&(T, T))
= (T&T, T&T)+(T&T, T&T)
(I, T)+(1.7)
(T+T,T+T)
— J_d?"_
We canseethatdual-railcomputatiorcorrespond$o usual3-valuedlogic. |

To ensurethatin a sequentialnstancethe inputsarealwaysbinary, oneneeds
to add, for ary input variablei, an assumption;, = —¢,. Thisin particularwill
guarante¢hatwe do notintroduce(F, F') valuesin theinstance Further if (F, F')
valuesare not introducedin assumption®r in proof obligations,the NSFscan-
not introducethem either (becausehe above four operationscannotresultin an
(F, F) valueif the agumentsarenot over-constrained).Thus,for example,over-
constrainedraluesshouldnot appearin a satisfyingassignmenfound by a SAT-
solver. An appearancef (F, F') in a satisfyingassignmenindicatesa bug (in the
designor in thetool), thatis why we don’t addto the instancean assumptiorfor-
biddingover-constrainedralueson all variables.

We demonstratelual-railcomputatioron anotherexample:

Example 4.2 Let C beacircuit asin Examplclll ThenInst(C') consistof four
NSFs: [}, = (¢,&d},)+(q&ly) = 1y, I = (¢j+d)&(¢,+) = 1, o), = 1}, and

= [;,. Besides,we assumethat d, asan input, is always binary, by adding
dy, = —d, asanassumptiorio Inst(C).

Dual-rail modelingis currentlyusedin an alignability verificationengine,In-
sight,in the formal verificationgroupat Intel. Despitethe doublenumberof vari-
ables,experimentalresultsshowv that the dual-rail implementationis 1.5z faster
thanasingle-railimplementatiorbasedntheinitializationflow reportedn | ].
Among other factors,this is dueto the fact that the dual variables'behase sim-
ilarly’, andour SAT solver canexploit this similarity without a significantover
head] ]. For example,SAT solversbasedon the saturation method] )
areknown to performwell whentherearemary equialent(up to negation)vari-
ablesin theinstance.

5 A SAT-basedmethodfor checking3-valued equivalence

In this section,we shov how the BMC algorithm[ ) ] andthein-
ductionmethod] ] canbeadaptedo enableverificationwithoutaresetstate,
by usingthe dual-rail state | asaninitial state. Unlike the original ATPG based

3 With enhance@-valuedsimulationasin the proofof Lemma2 of ], wegetL XOR L =
F,sincel XORT = FXORF =F.
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algorithmof Huanget al | ], our algorithmis (soundand) complete We
will alsoseethata moredirect encodingof the ATPG algorithminto SAT based
dual-railformalismresultsin anincompletealgorithm.

Algorithm [l describeour 3-valuedequivalenceverificationproceduravithout
aresetstate.

Algorithm 1 SAT-basedalgorithmfor 3-valuedequialenceverificationw/o reset
state
1: Check3-valuedequivalenceof o, ando, {

Createa dual-railsequentiainstancecorrespondingo C.,.; ;
Bind to 7" high andlow latchvaluesin phase) ;
Add proof obligationexpressing,,,,, " < 1T ;
Apply acompleteSAT-basedmethodto theinstance
if acounterexampleis generatedhen

ReportDIFFER’ andEXIT ;
endif
if theproof obligationis provedthen

ReportEQUAL’ andEXIT ;
- endif
. elsereport' INDETERMINATE’ andEXIT ;
L}

N ol =
W NP O

Theorem 5.1 Algorithm [l is a soundand completeprocedue for chedking 3-
valuedequivalence

Proof. The situationswhenthe proof obligation can be falsified are exactly the
situationswhetle the pair (o, 0,) is a 3-valueddiffer-pair:

(Oldr702dr) c {(frair7 Fdr)7 (derjfrair)7 (J_drodr)J (J_drj},‘wir)7 (Tldr7 J_dr)7 (}71d7"7 J_dr)}'

Thusthe algorithm returns’DIFFER’ exactly whenC; #;C,, and the counter
examplebringsC,,,., fromstatel to a 3-valueddiffer state Bythesameargument,
the algorithm returns’EQUAL’ iff C;=3C,. (Only) in casethe run terminates
withoutresolvingtheinstance the algorithmreturns INDETERMINATE'. O

In Algorithm ll, we mainly useinductionbasedalgorithms]| D, sincethey
perform betterwhena full proofis sought. (We usethe BMC basedmethodsin
algorithmsthat requireinitialization — the counterexamplesbecome(part of) the
initializing or synchronizingsequencef I ].) We recall briefly thatin
theinductionmethod unrolling with increasingdepthss performedytill acounter
example(to the proof-obligation)is found, or induction stepcan be proved (see
also] ] for a nice descriptionon why a simpleinduction,with depthl, is not
enough). In | D, terminationconditionsfor inductionsteparepresentedhat
reflectbothforwardandbackwardstatespacdraversalmethodsthusouralgorithm
alsocanbe madeforwardor backward (or combined)dependingpn which kind of
inductionis used.
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A directencodingof the ATPG algorithmof | ] into SAT-basedmodel
checkingproblemwould correspondo

« Consideringhesetof (combined)statesvhereall latchesof C; or all latchesof
C, arein state L %" asthesetof initial states;

« Consideringhestatesvhereo,,, ¥ = T% asthebadstates;
« And applyingthe backwardinductionschemeof [ D

Counterexampledoundby suchanalgorithmwould bethecorrectones buttheal-
gorithmwould misscounterexamplesin situationdik e in Examplclll. \We there-
fore abandorthis algorithmin favor of Algorithmlabove.

6 Verification with respectto other conceptsof equivalence

In this section,we commenton the applicability of our methodsfor equivalence
checkingwith respecto someotherconceptof equivalence hamelysteady-state
equialenceandalignability equivalence.

6.1 \erifying steady-statequivalence

We recall definition of steady-statequialencefrom [ ]. In steady-state
equialence we comparethe outputsonly in time phasesvhereboth outputshave
binary values. Valuesin othertime phasesaredon’t cares. Thuscircuits thatare
3-valuedequivalentarealsosteady-statequivalent,but notvice versa.

Definition 6.1 ([ 1)

« An input vectorsequencer is calleda steady-statessequencdor a circuit C' if
o(L, ) is binary.

« Circuits C; and C, with outputso, ando, are called steady-stateequivalent
written C122,,C,, iff for ary input sequence thatis a steady-statsequencéor
bothC’l andCQ, Ol(J_, 71') = OQ(J_, 7T).

In orderto develop a verification procedurefor verifying steady-statequva-
lencewithout a resetstate,we can simply changethe proof obligationin Algo-
rithm [l to the following one: (binary(o1) & binary(os)) = (01 < 09), Where
binary(o;) denotesthe propertythato; hasa binary value (thatis, o;, = —o0;),
i=1,2.

6.2 \erifyingalignability equivalence

Werecalldefinitionof alignability or post-synhronizationequivalencerom | ].

Definition 6.2 « State(s,, so) of thecombinedcircuit C,,,,, is anequivalentstate
if for ary inputsequencer, o;(s1, ) = 0a(s2, 7r).

4 The conceptsof equal-and differ-statesshouldnot be mixed with equivalentandinequivalent
statesln this definition,all statesarebinary:.
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« A binaryinputsequencer is analigning sequencdor a combinedstate(s;, s2)
of Cypor i it DringsC,,,., from state(sy, s») into anequialentstate.

 Circuits C; andC, arealignable written C,~,,,C5, if every stateof C,,,,, has
an aligning sequencgor equialently, thereis a sequencecalled a universal
aligning sequencghatalignsary stateof C,,,.).

Lemma6.3 (i) If circuits C; and C, are syndironizableand C;=,,C5, then
ClgalnCQ-
(i) If C1=u,Cs, thenC=,,C,.

Proof.

() LetC, and(C;, besteady-statequivalent.Considersequence that syndiro-
nizesboth C; and Cs,, sayinto a statepair (s, s9). Thenfor any sequence
7', the concatenatiorof 7 and ' is a steady-statsequencethus«’ endsin
a state(s], s,) whee o; and o, haveequalbinary values.Thus(si, s;) is an
equivalentstatepair, implyingthat C,=,,,C’.

(i) Nowlet ¢, and C, be alignable Supposeon the contrary that C; and C,
are not steady-statequivalent. Thenthere is a steady-statsequencer that
bringsany stateinto a differ state(with outputsdifferentbinary values).Sut
a sequenceandistinguishany pair of statesthusC; andC;, do nothavean
equivalentstatepair, andthey cannotbe alignable— a contradiction.

O

Alignability equivalenceis a widely usedconceptof equivalence. Therefore,
to shawv the importanceof our methodsit is importantto clarify the relevanceof
ourmethoddor alignability equivalenceverification.Indeed therearea numberof
waysallowing to infer alignability or non-alignabilityof circuitsby usingthemeth-
odsof checkingsteady-stater 3-valuedequivalencepresentedh theearlysections.
We mentiona few of them,basedon the abose lemmaandaresultin | ].

« If our steady-stateerificationalgorithmprovescircuitsC; andC, inequialent,
thenit returnsa counterexampler, that brings C,,,.,. from state_L to binary
differ-state.Sucha sequence, is actuallya universalcounterexampledemon-
stratingthatC; #.,,C, (asit candistinguishary pair of statesof C; andC,).

« If on the otherhandC,%,,C,, thenfrom the SAT procedureproving this, it
is possibleto extractinformationwhetherthe part binary(o;,)&binary(os) be-
comestrue in somephase.Sucha proceduredependsn the particularstratey
usedto resole the sequentiainstanceandgoesbeyondthe scopeof this paper
(Of courseinitializability of C; andC, canbe checled separately If yes,we
have actually proven C,=,,,,C, aswell. If not, we cannotclaim C; £,;,Cs,
assynchronizingbut not initializing sequencenay exist thatbringsC,,,,, into
anequialentstate.For suchnot 3-valuedinitializable circuits ] weuse
a formal initialization method,briefly discussedn [ ], to find analigning
sequenceavhenit exists.

e It is showvnin [ ] thatif both C; andC;, areinitializable, then C,=;C,
implies C1%,,,Cy. Actually, it is enoughto shov that one of the circuits is

10
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Steady-statequialence| Alignability equivalence
Ckt #L #G Pass| Probl. | Time(sec.)|| Pass| Probl. | Time(sec.)
Ch 712 | 7838 9 0 1067 9 0 1106
Cy | 1208 38259 O 1 1331 0 1 1728
Cs 100 | 1202 || 28 0 1128 28 0 2701
Cy 826 | 6260 7 1 2697 6 2 3921
Cs 154 | 1730 || 35 0 2008 35 0 3251
Total 79 2 12707 78 3 8231
Tablel
Comparisorof performancd#L latches#G gates).
initializable andthe otheroneis its 3-valuedsafereplacemenf ].

« Since3-valuedequialencerequireso, ando, to matchin all time phasesthe
above sufficientconditionmaynotbepracticalto infer alignability from 3-valued
equivalence.Insteada (k—) delayed3-valuedequivalencecanbe used,which
requireso; ando, to matchfrom phasek onward. Still, usageof delayed3-
valuedequialencein proving alignability is limited.

7 Experimental results

We have implementedAlgorithm ll andits modifiedversionfor checking3-valued
and steady-statequialences.Most of our circuits areresetablethusin practice
this algorithmsperformsalignability checkaswell.

Experimentgeportedoelon wereperformedon 550MHzdual CPULinux ma-
chinewith 2GB memory A timeoutof 300 secondsvasusedin the SAT solver.
Experimentakesultsshov that saythe steady-statequialencealgorithmis 1.5z
fasterthan a dual-rail alignability equivalencealgorithmthat first performssyn-
chronizationof the specificationandimplementatiorcircuits (seeTablelk there,
numbersof latchesand gatesrepresentan averageper output). And as already
mentionedthe latterin turnis 1.5z fasterthana correspondingingle-railimple-
mentationof alignability checkingengine(despitethe fact that dual-rail model-
ing requirestwice as much NSFs)]| ]. Furthermorethe counterexamples
returnedby the steady-statenginearein average2x shorterthanthosefound by
the alignability engine,which is much more important(for delugging) thanthe
above reportedspeed-uffseeTablell, wherecircuits C, — C; containloops,while
circuitsCy — C4 areloop-free;all datais givenpersingleoutputs).

11
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Steady-statequialence Alignability equivalence
Ckt #L | #G |len| Ckt | #L | #G | len || Ckt | len || Ckt len
Cy 5262509 9 || Cs | 151|1747| 4 || Cy | 21 || Cy 8
Cy 18 | 160 | 6 || Cy | 173]2037| 6 || Cy 8 || Cy 8
Cs 18 92 6 || Cio | 107 | 1263| 6 || C35 | 11 || Cyg 12
Cy 18 | 415 | 4 || Cp | 112 1317| 6 || Cy 5 || Cin 9
Cs 24 | 207 | 4 || Cyo | 67 | 744 | 4 || Cs 6 || Cia 9
Cs 25 (1121 8 || Cy3 | 57 | 619 | 4 || Cs | 10 || Cy3 10
Cy 704 | 7660 | 11 | Ciy | 98 | 726 | 3 || C7 | 65 || C4 6
Total 81 188

Table2
Comparisorof counterexamplelength(#L latches#G gatesjen= CEX length).

8 Conclusions

Thusfar, SAT-basedverificationmethodshave beenmainly concentrate@n prop-
ertychecking andfor thegoodreasonit is well understoodhatcircuit equivalence
verification can be performedby the model-checkingof propertiesthat express
equialenceof thecircuit outputs.Indeed,in thiswork, we have demonstratetiow
SAT-basedmethods(suchasthe BMC or the induction method)can be usedfor
proving sequentiabquivalencein accordanceavith a numberof importantsequen-
tial equivalenceconcepts.

In particular we have developedSAT-basedverificationmethodsfor verifica-
tion of sequentiatircuitswith respecto 3-valued steady-statand(partly) alignabil-
ity equivalence.Thenovelty of our approachs thatit doesnotrequirearesetstate.
Instead,we canusethe undefinedstateas a resetstate,after encodingthe latter
into a binary representationUnlike the ATPG-basednethodof [ ], from
which our approachemeged, our algorithmsfor checking3-valuedand steady-
stateequialenceare complete.We hopethat our work shedsfurther light on the
relationshipbetweerthe ATPG-andSAT-basedsequentialerification.

An advantageof our approachis that the verification procedurebecomegel-
atively simple conceptually thusit is easyto implementand maintainit. Our
methodcompliment®arliermethodgor which synchronizations anessentiapart
of verification,asour algorithmsoutperform(in a numberof dimensionssimilar
algorithmsthat needto computeresetstates. Clearly, this doesnot decreasehe
importanceof initialization basedmethodsIn particulay synchronizatioomethods
wheninitializing sequencedo not exist areindispensable.

Actually, becauseof the importanceof shortcounterexamplesfor delugging
at early stagesf design,steady-stateerificationis enteringa default flow in our

12
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verificationmethodologywhichwaspreviously basedninitialization. We remark
alsothattheability to find counterexamplesquickly is importantin theframewnork
of modelabstractiorrefinement(seee.g.[ ]). There,becauseneworks
with prunedmodels,thereis a higher probability of (false)negatives,till a right
pruningis found. And synchronizatiortanbe checledon correctlyprunedmodels
only, whenthe prunedmodelsaresteady-statequialent.

Despitetherapiddevelopmentndsucces®f SAT-basednodelchecking there
is still along way to go. As an example,we mentionthat, on loop-freecircuits,
SAT-basedequivalencemethodgbothwith or without initialization) performvery
poorly comparedo themethoddevelopedin [ ] for loop-freecircuits. Both
steady-stateand alignability checkstime out after thousandof secondn tests
thatcanbeverifiedin lessthana minutewith the methodin | ]. SAT-based
modelcheckingwill profit from the developmenibf alternatve waysof translating
model-checkingrroblemsinto SAT problems.

Acknowledgments We thankR. Fraer A. JasD. Kaiss,J. MoondanosA. Rosen-
mannand G. Wolfovitz for carefulreading,and Shi-Yu Huangfor clarifying the
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Abstract

We presentinabstractiomefinementlgorithmfor modelcheckingof safetypropertieghat
reliesexclusively on a SAT solver for checkingthe abstractmodel, testingabstracicoun-
terexampleson the concretemodel,andrefinementModel checkingof the abstractionss

basedon boundedmodelcheckingextendedwith checksfor the existenceof simplepaths
thathelpin decidingpassingoroperties All minimume-lengthspuriouscountergamplesare
eliminatedin onerefinemenstepby a proceduraghatcombinegheanalysisof the conflict

dependenggraphproducedby the SAT solverwhile looking for concretecountergamples
with aneffective abstractiorminimizationprocedure.

1 Intr oduction

Model checking] ) is analgorithmic approacho the verificationof proper
tiesof reactve systemsywhich hasbeensuccestilly appliedto bothhardwareand
software. Sincemodelcheckingentailsthe exploration of a potentially very large
statespace the alleviation of the so-calledstateexplosion problemhasbeenthe
objectof muchresearch.On the one hand,techniqueshave beendevelopedthat
allow modelswith hundredsf statevariablesto be analyzedlirectly. Ontheother
hand,abstractiorhasbeenusedto allow themodelcheclerto drav conclusionon
theoriginal, concretemodelby examininga simpler abstracbne.

For systemswith mary statevariablesandmary transitians, the symbolc ap-
proachhasprovedcrucial. In symbolicmodelchecking setsof statesandtransition
aredescribedy theircharacteristiéunctions. Variousformsof representatiohave
beenusedfor thesefunctions,the mostpopularbeingBinary DecisionDiagrams
(BDDs) [ ], andConjunctive NormalForm (CNF).
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ClassicalBDD-basedmodel checking] ] is basedon the computatbn
of fixpoints. For instance,the reachablestatesof a model are computedas the
leastfixpoint of the function \Z . I v Succ(Z), which addsthe successorsf the
statesn Z to theinitial states Both the setof statesandthe successr relationare
storedasBDDs. Thefixpoint computatiorcornvergesin a numberof iterationsthat
equalsthe maximumdistanceof areachablestatefrom theinitial states.Checking
for convergenceis madeeasyby the strongcanonicity of BDDs (identical sets
sharethe samerepresentation BDD-basedmodelcheckingcanthereforeprove
propertesalmostaseasilyasit candisprove them.

BoundedModel Checking(BMC) | ], on the otherhand, formulates
thereachabilitytestasa seriesof satisfiability (SAT) checksfor pathsof bounded
length. (To seeif a pathof lengthk to a setof statesexists, the transitionrelation
Is unrolledk times.) For finite systemghe procesanusteventuallyterminate:the
lengthof the shortespathbetweerntwo statescannotexceedthe numberof states.
Hencejf nopathis foundwith lengthupto thenumberof statesthetargetstatesare
known to be unreachableThis obsenation,however, doesnot helpfor thekind of
modelsthatoneencountersn practice.Thediameterof the stategraphwould give
amuchbetterboundon &, but, unfortunately it is hardto compug | ]. For
thisreasonBMC hascometo beregardedasan excellentdelugging (asopposed
to verification) technique.Thatis, classicaBMC is particularly adeptat finding
countergampkes,but ill-suited to prove theirabsence.

The ability demonstragd by BMC to dealwith modelsbeyond the reachof
BDD-basedmethodshassparledinterestin the useof CNF and SAT for proof as
well asrefutation. Two mainapproachesave beenpursued:The replacemenof
BDDswith CNFformulaein thefixpoint computatio [ , l 1,
andthe developmentof moreeffective terminatian criteriafor BMC.

The opportunty of replacingBDDs with CNF formulae canbe arguedon the
groundsthatcanonicityof representatiomakesBDDs somevhatinflexible. Hence,
somefunctiors thatadmitcompactrepresentationsn CNF have exceedinglylarge
BDDs. However, the inflexibility agumentcan also be usedagainst CNF, and
memoizaton techniqguesare moreeffective for BDDs. In fact,to date,CNF-based
fixpoint computaton hasnot demonstratea consistentidvantageover the classi-
cal BDD-basedone. Onemay arguethatthe mainreasorfor the succes®f BMC
in finding countergampkslies in its avoidanceof the needlessomputationand
storageof reachablestateghatarenotontheerrortrace.

Several proposaldhave beenmadeto improve BMC's ability to prove the non-
existenceof a path. It is straightfoward to checkfor inductive invariants,sinceit
only entailscheckingfor the existenceof a transitionfrom a statethatsatisfieghe
invariantto onethat doesnot. An extensionof the inductive approachhasbeen
presentedn [ D, in whichterminatbn occursassoonasthelengthof the path
reacheghe length of the longestsimple path from aninitial state,or to a target
state.A recentpaper] ] proposeshe analysisof the unsatisfiabldormulae
to allow termirationwhenthereverse sequentiadepthof the modelis reached.

Early termination in BMC requiresadditionalchecksbeyond the onefor the
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Fig. 2. Abstractionof the modelof Fig.ll

existenceof pathsof certainlengths. Thesecheckstranslateinto more clausesn
the CNF formulae whosesatisfiability hasto be established For the approachof
[ D thenumberof extra clausess quadratidn thelengthof the path.As are-
sult, it is notsurprisingthatfinding countergampless slower thanwith pureBMC.
Theextracost,however, appearso beworth paying,sinceit increasesubstantially
thefraction of passingpropertesthatcanbe decided.Unfortunately thereremain
instancedor whichtheadditional terminationtestsaretoo expensve. Consideithe
modelillustratedin Fig.l It has2n + 2 statespneof whichis initial (A). Then/2
statesD,, s, ..., D, arethe (unreachablejarget states.The longestsimple path
from theinitial statehaslengthn + 1, while thelongestsimplepathto atargetstate
thatdoesnotvisit ary othertargetstatehaslengthn /2; thereversesequentiatiepth
of themodelis alson /2. Hence themethodof | I ] will haveto con-
siderpathsof lengthn /2 beforethey candeclarethe tamget statesunreachableBy
contrasttheforward sequentiatiepthis 2.

Fig. M shavs an abstractionof the model of Fig.ll StatesA, B;, C, and D;
areabstractedy «, [|2i/n, 7, @andd s/, respectiely. The tamget stateremains
unreachablén this model,andthe forward sequentiatlepthis still 2; however, the
longestsimplepathandthe sequentiatieptharereduced.Thoughin generalthere
is noguarante¢hatabstractiorwill shortenor evennotlengtherthelongestsimple
pathsortheshortespathsthisexampleillustrateshow abstractioomayhelpBMC,
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especiallyfor passingpropertes.

AbstractionandBMC have beencombinedn morethanonerecentwork, espe-
cially in the context of abstractiorrefinement.In abstractiorrefinement ],
onestartswith a coarseabstractiorof the given, concretemodelandkeepsrefin-
ing it until the propertyis decided. For universalpropertieslik e the reachability
propertesthatarethe focusof this paper this often meanghatthe abstracimod-

els simulatethe concreteone | ], and that either the propertyis shavn to
hold on an abstractmodel, or a countergampleis foundin the concreteone. In
[ ‘ ) ] BMC is usedto checkwhethercountera-

amplesfound in the abstractmodelscanbe conceetized thatis, whethera coun-
terexamplecanbe foundin the concretemodelthatis mappedby the abstraction
onto the abstractcounterg@ample. The first three of thesemethodsalso analyze
the failed concretizationtestto guide the refinement. Therefore,they represent
instancesof counter@ampk-guidedabstractionrefinement. On the other hand,
[ | analyzeghe abstracimodelto decidehow to refineit. Yetanotherap-
proachis theoneof [ ], in whichthe abstracimodelis derivedfrom afailing
BMC run ontheconcretemodel. This reversalof the customaryorderis attractve
for thosefrequentcasesn which pathsof moderatdengthcanbe easilychecled
ontheconcretemodel.

Onecommontrait of theapproachet abstractiorrefinemenimentioredsofar
istheapplicationof aBDD-basednodelcheclerto theabstractmodels andof SAT
solversto the concreteones. By contrastthe objectie of this paperis to explore
what canbe achiezed with a SAT solver asthe only decisionprocedurdn the ab-
stractiorrefinemenframenork. Therationalefor combiningBDDsandSAT is that
eachis well-suitedto the taskassignedo it: The SAT solwer is goodat checking
the existenceof a pathof agivenlengthin alarge model,whereagshe BDD-based
modelchecleris betterat proving the absencef certainpaths,regardlessof their
lengths,in a modelof moderatesize. This obsenationis certainlywell motivated
when one regardsthe modelsfor which abstractiorrefinementresultshave been
reportedin theliterature;their sizesrarely exceedl,000binary statevariables.As
the modelsgrow larger, however, we expectan approachpurely basedon SAT to
becomemorecompetitve. Therefore pur goalis to eventuallybeingableto switch
betweerBDD-basednodelcheckingandSAT-basdtechniquedor the analysisof
theconcretemodel.In this paperwe reporton asignificantstepin thatdirectionby
presentinganalgorithm for abstractiorrefinementhatis purelybasedon SAT.

Our approachis similar to the onesdiscussedso far in the fact that abstrac-
tionsareobtainedby removing partof the statevariablesof the model;refinement
thenconsistof reinstatingsomeof theremovedvariables.Thealgorithm hasthree
major components:the decisionprocedurefor the abstractmodelis the one of
[ D which hasalreadybeenmentioned.The secondcomponent—tie choice
of therefinement—combieselementof | ] and] ]. Likethefor-
mer, it addresseall theabstractountergamplesatonce;likethelatter, it analyzes
theconflictdependengcgraphof thefailedconcretizatiortestto derive asetof can-
didatestatevariablesfrom which the onesthatwill be addedto the abstracimodel
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are chosen. Finally, the third componenis a heuristicprocedurefor abstraction
minimization. This minimizationis quite importantin our approachpecausdhe
simultaneousliminaton of all spuriouscountergamplesof a certainlengthtends
to generatdarge setsof candidatevariables. Our experimenal evaluationof the
SAT-basedabstractiorrefinementalgorithm comparedt to both BMC (with and
without earlyterminationchecksfor passingoropertiesjandto the bestabstraction
refinementlgorithmavailableto us| ]. Theresultsdiscussedh Sectiorlll,
shaw thatthe new approachthoughnotuniformly superioris morerobustthanthe
others,andis especiallypromisingfor the morechallengingproblems.

2 Preliminaries

LetV = {v,...,v,} beaset.We designatey V' theset{v], ..., v} consisting
of the primedversionof the elementsof V', andby V' the set{v},... v} }. We
defineanopensystemasa4-tuple

(V.W,1,T)

whereV is the setof (current)statevariables,V is the setof combinatonal vari-
ables,/(V) is theinitial statepredicateand?’(V, W, V') is thetransitionrelation.
Thevariablesn V' arethe next statevariables All setsarefinite, andall variables
rangeover finite domains.

We assumehatthetransitionrelationis givenasthecompositiorof elementary

relations.If W = {wy,...,w,,} with m > n, ourassumptiommountgo writing:
TV, WV)= N\ W —w)r N\ TWV). (1)
1<i<n 1<i<m

We considerthe caseof a sequentiatircuit, in which thevariablesin W areasso-
ciatedwith the primaryinputsandthe outputsof the combinaional logic gatesof
thecircuit; thevariablesn V' areassociateavith thememoryelementsEachZ; is
calleda gaterelationbecauset usuallydescribeghe behaior of alogic gate. For
instancejf w; is the outputvariableof a two-input AND gatewith inputsw; and
v, thenT; = w; < (w; Avg). If, ontheotherhand,w; is aprimaity inputto thecir-
cuit, then”; = 1. Eachtermof theform v, < w; equates next statevariableto a
combinatonalvariable.(The outputof the gatefeedingthei-th memoryelement.)

In a sequentiatircuit, a statevariablev; is saidto bein the direct supportof
variablev; (w;) if thememoryelementassociatedo v; is connectedo thememory
element(logic gate)associatedo v; (w;) by a paththat goesthrough logic gates
only. Variablewv; is in the coneof influence(COI) of v; (w;) if thereis a path (of
ary kind) connecting; to v; (w;).

An opensystem() definesa labeledtransitionstructurein the usualway, with
stateg)q, correspondindo thevaluationsof thevariablesn V', andtransitionlabels
correspondig to the valuationsof the variablesin . Corversely a setof states
S C Qq correspondso apredicateS (V) or S(V'). PredicateS(V') (S(V')) isthe
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characteristidunction of S expressedn termsof the current(next) statevariables.
Stateq € Qq is aninitial stateif it satisfies/ (V). StatesetS C Qg is readable
from stateset S’ in k£ stepsif thereis a pathof length % in the labeledtransition
structuredefinedby () thatconnectsomestatein S’ to somestatein .S; equivalently
if

SWVOA N TV WLV ASVE) 2)

1<i<k

is satisfiable.Stateset S is reachabldrom S’ if thereexistsk € N suchthat S is
reachablen k stepsfrom S’. A statesetis reachabldin & steps)if it is reachable
(in £ steps)from /. Whenno confusionariseswe shallidentify a stateq € Qq
with the set{q}. A finite (infinite) sequenc®f statesp € Qf, (¢ Qg) is afinite
(infinite) run of 2 if thefirst stateis initial, andevery otherstateis reachabldrom
its predecessan onestep. The setof all possiblerunsof (2 is the languageof (2,
denotedoy L(£2).

A lineartime safetyproperty P of () is a subsetof )¢ suchthatary infinite
sequencever g notin P hasafinite prefixthatcannotbeextendedo asequence
in P ]. Opensystem() satisfiessafetyproperty P if L(€2) C P. Checking
the satistction of an w-regular safety propery P by an opensystem() can be
reducedto the reachabilityproblemby composing(2 with an automaton4y that
acceptgheinextensibk prefixesof thesequencesotin . Thepropertyis satisfied
by the opensystemif no stateof the composition{2 || .4, that projectson an
acceptingstateof A is reachableln the sequelwe restrictourselesto w-regular
safetypropertiesandassumehatthe given opensystemalreadyincorporateshe
propery automaton.This assumptiorallows usto identify the propertywith a set
of (acceptingstatesof the systemwhich we alsodenoteby P. Hence property P
is satisfiedby ) if thereis no k € N suchthat

IVOAN N\ TV WLV APV (3)

1<i<k

is satisfiable.An invariantis a safetypropertythat statesthat a certainpredicate
holdsof all reachablestatesof 2. In this caseP is the setof stateghatsatisfythat
predicate.

Thesearchor a k suchthat (ll) is satisfiablecanobviously be restrictecto the
range{0, ..., |Qq| — 1}. Hence,in theory the processs guaranteedo terminate.
In practice,the numberof stateds too large to be of any practicaluse,andtighter
upperboundsfor £ are sought. In modelcheckingapproacheshat are basedon
fixpoint compuations| , , ) ], the maximumyvalue
of £ is provided by the numberof iterationsneededo reachcornvergence.On the
otherhand for algorithnsthatdirectly checkthesatisfiabilityof (ll), thediameteof
thegraph] ] or boundsobtainedfrom the structureof the hardwaremodel
have beenpropcsed] ]. Herewe summarizea methodproposedn [ D
thatis of particularinterestto us.

A simplepathis onethat visits a stateat mostonce. If somestatein —P is
reachabletheremustexist a simplepathfrom aninitial stateto it thatdoesnot go

6
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throuch ary otherstatesin / or =P. Hence,if no simple pathof lengthk exists
suchthatits first stateis initial andno otherstateis initial, or suchthatits final state
Isin =P andno otherstateis in =P, then,thereis no pathof lengthgreaterthanor
equalto £ connectinga statein I to a statein —P. If in addition,thereis no path
of lengthlessthank connectingl to —P, then() = P. Two setsof statesS’ andS
areconnectedy a simplepathof lengthk in € if

(9, 8) =S VOA N\ TV WL VIASVEIA N\ ] #4) (9)

1<i<k 0<j<i<k 1<Ii<n

is satisfiable. Checkingthe two conditions above thenamountsto checkingthat
eitherof thefollowing formulaeis unsatisfiable.

Se(LQ) A\ ~I(V) (5)
0<i<k
@ ~PY A\ POV 6)
0<i<k

Notethatthe predicatecorrespondingo thesetq is true.

Abstractinterpretaton | ] providesa very flexible framework for the de-
scriptionof abstractionln this paperhowever, we considetthefollowing restricted
definition. Opensystem) = (V. W, I, T') is anabstractionof €2 if
- VeV,

« W C W suchthatv; € v impliesw; € W,

« I(V)=3(V\V).I(V),
« T(V,W, V) =3(V\V).3W\W).3(V\ V). T(V,W,V").
(Note that w; is the combinatioml variableassociatedo v;.) Property]3 is the
abstractiorof property P with respecto Q if P(V) =3(V \ V). P(V). If Pisan
w-regularsetand(? satisfieqor models)P, then(2 satisfiesP. Thatis,

Q=P—QP. 7)

This preseration resultis the basisfor the following abstractiorrefinementap-
proachto the verificationof 7. One startswith a coarseabstraction(2, of the
concete opensystem() and checkswhetherQ), = F,. If thatis the case,then
Q) = P; otherwisethereexistsaleastt’ € N suchthat

IVOAN N\ TVLWL V) APV 8)

1<i<k’
is satisfiable. The satisfyingassignmentso () are the shortest-lendt abstact

counteexamples(ACEs). If 2, & B oneor more ACEsare checled for con-
cretization Thatis, onecheckswhether(ll) hassolutionshatagreewith the ACE(s)

7
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beingchecled. Becausef theadditionalconstraintgprovidedby the ACEs,acon-
cretizationtestis oftenlessexpensve thatthe satisfiabilitycheckof (). However,
its failure only indicatesthat the abstracterror tracesare spurious. Therefore,if
the concretizationtestfails, one choosesa refinedabstraction(2, andrepeatshe
processuntil oneof thesecasesccurs.

(i) Q = P, for somei, in which case) |= P is inferred.
(i) Theconcretizatiortestpassedor somei, in which caseit is concludedthat

() £ P andthesatisfyingassignmentoundis returnedascountergampleto
P.

(i) Therefinemene/entuallyproduceﬁi = . In thisfinal case the satisfiabil-
ity checkof (ll) answerghe modelcheckingquestionconclusvely. Thisis an
undesirableutcomebecausehe purposeof abstractions defeated.

Whentherefinemenﬁm of fli is choserwith thehelpof theinformationprovided
by the failed concretizationtest, one talks of counter@ample-guded abstraction
refinement.

The coneof influence(directsupport)of a propertyis the unionof the conesof
influence(directsupports)f all the variablesmentionedn the property Cone-of-
influencereductionrefersto the abstractiorin which V is the COI of the property
It is commony appliedbeforeary modelcheckingis attemptedbecausé satisfies

Q=P—QlEP. 9)

3 Algorithm

Our algorithm is shawvn in Fig.lL Initially, an abstractmodel{} is computedby
collectingonly the statevariables(calledlatcheshenceforth)n the direct support
of the property P. The algorithm then progressiely increased. from its initial
value O until eithera counter@ampleof length L is foundin the concretesystem
Q, or it is concludedthat no countergamge existsin the currentabstractmodel.
If at somepoint, the abstractmodelbecomeghe concretemodel,the endg@ameis
executedasdescribedn Lines14-19.

Lines 3—-13 verify the abstractmodels. First, (l) and () are checled to see
whetherthe simplepathconditionsaremet. If eitheroneis unsatisfiablethe prop-
erty holds,andthe algorithm termirates.Otherwise the algorithmcheckswhether
thereis acounter@ampleof length L in theabstractmodel,by checking@) on(; if
thereis nolength<. abstractountergample,thereis no counter&ampleof length
upto L in theconcretemodeleither (Thisis becausevery abstracimodelsimu-
latesthe concretemodel;hencejf thereis arealcountergamge of length L’ < L
in the concretemodel,theremustbe a correspondig abstractcountergample of
length L” < L'. Sincethe countergamge lengthis increasedn incrementsof
one, we would have found this counter@ampke before.) Sincethereis no coun-
terexampleof lengthup to L (in eitherthe abstracimodelor the concretemodel),
L isincreasedy one.Ontheotherhand,if thereis anabstractounter@aamplkesof

8
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booleanPURESAT (2, P) {

1 L=0;

2 Q0= CREATEINITIALABSTRACTION(S2,P);

3 while (Q # Q) {

4 if (= CHECKSlMPLEPATH(ﬁ,P,L))

5 return TRUE;

6 if (Ex1STCEX(Q,P,L)) {

7 if (Ex1sTCEX(S2,P,L))

8 return FALSE;

9 refinement= GETREFINEMENTFROM CA(Q,Q,P,L);
10 () = ADDREFINEMENTTOABSMODEL(Q, refinement);
11 }

12 L=L+1,

13 }

14 while (CHECK SIMPLEPATH(2,P,L)){
15 if (EX1STCEX(S2,P,L))

16 return FALSE;
17 L=L+1,

18 }

19 return TRUE;

}

Fig. 3. ThePureSA algorithm

SetGETREFINEMENTFROMCA (2, Q,P,L) {
nsVarSet= GETNEXTSTATEVARSFROMCDG(2,P,L);
sufficient=10 ;
while (sufficientdoesnotkill all length-Z. countergamples
A ns\arSetis notempty){
someNs¥rs= PICKVARSTHRESHOLD(ns\arSetthreshold);
sufficient = sufficient U someNs¥rs
ns\VarSet= nsVarSet\ someNs¥rs
}
RCArray= COMPUTERELATIVECORRELATIONA RRAY(suiﬁcientQ,ﬁ);
return REFINEM ENTM|N|M|ZAT|ON(§,RCArray);

Fig. 4. Therefinemenglgorithm

length L, (M) is checledontheconcretamodelto seeif ary concretecountergam-
ple of thesamdengthexists. If it doesthepropertyfails; otherwisetherefinement
step(Lines9-10)is executed.

__ Thegoalof therefinemeniprocedures to find a minimal setof latchesnotin
2 which, afterbeingaddedto the abstracimodel,cankill all the countergamples

9
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of thelength L. Ourrefinementlgorithmis basecon computingandanalyzingthe

unsatisfiabé core | \ ] associateavith theproofthatthereis noconcrete
countergampk of length L; hencejt is similarto theconflictanalysismethodpro-
posedn | ]. However, ourapproachdifferssignificantlyfrom | I

in thefollowing aspects:

(i)

(ii)

(iii)

The authorsof | ] first identify a single spuriousabstractcountere-
ample(by usingBDD-basedmodelchecking) togethemwith its failureindex.
(I.e.,thetime stepfrom which the ACE is no longerconcretizablen the con-
cretemodel.)A conflictdependenggraphis built from theunsatisfiable8MC
obtainedby constraininghe concretemodelwith the singlespuriousACE up
to the failure index time step. The refinementsetis thencomputedoy ana-
lyzing the conflict dependeng graph. In our algorithm, however, we do not
usea singleabstracicountergamge to constrainthe BMC instance(andwe
do not computethe failure index). Rather an unconstrainedMC instance
(ontheconcretemodel,for pathlengthupto L) is usedfor the concretization
test; sucha BMC instancecoversall the possiblelength. spuriousabstract
countergampkes.

In | ], theinvisible latches(thosenot currentlyin Q) areaddedto the
refinementetif their correspondingditerals at the failureindex time stepap-
pearin the conflictdependengcgraph.In ouralgorithm all theliterals (which
correspondo eitherlatchesor internallogic gatesat differenttime steps)ap-
pearingin the unsatisfiablecore are recordedin the SAT solver. However,
only thoseinvisible latchesvhosenext-statevariableliterals (i.e., theliterals
correspondingo theinput variableof a latch at a differenttime step)appear
in the unsatisfiablecoreareaddedto the refinementet. This refinementet,
whenaddedo (2, is sufficientto kill all length-L spuriousabstractounterea-
amples. Our algorithmfor picking refinementvariablesis shovn in Fig.ll
The original “sufficient set” (i.e., ns\arSetin the pseudocode)may or may
notbeminimal; hencerefinemenminimizationis usedo getrid of theredun-
dantlatchesin the refinementsetbeforethe functionreturns.In somecases,
thenumberof redundantnvisible latchesn ns\VarSetmaybetoo large, caus-
ing REFINEMENTMINIMIZATION to spendtoo muchtime. The while loop,
togethemwith athresholdjs usedto heuristicaly geta smaller‘sufficient set”
for therefinemenminimization: Eachtime, only acertainnumberof invisible
latchesarepickedfrom ns\VarSet,afterwhich (ll) is checledto seeif they are
alreadysufficient.

Ourrefinemenminimizationalgorithmis alsosomevhatdifferentfrom

Both methodsemove redundantatchesgreedily Eachlatchin turnis tenta-
tively removed. If () remainsunsatisfiablethe remaininglatchesare still

sufiicient, andthe droppediatchis indeedredundantptherwise thatlatchis
restoredto the refinementset. In our method,the orderin which invisible
latchesare remaoved in the minimization procedures basedon the relative
correlationof eachcandidatdatchto the currentabstracimodel. Therelative
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correlationof aninvisible latch equalsthe ratio of the numberof gatesin the
COl of this latchwhich arealreadyin the abstracimodeldivided by thetotal
numberof gatesin the COI of this latch. Intuitively, the larger the relatve
correlationof alatch,thelargereffectit will have whenaddedo or subtracted
from the currentabstracmodel. Theinvisible latchesof the currentsufiicient
setaresortedby FunctionCoOMPUTERELATIVECORRELATIONARRAY: The
onewith thesmallerrelative correlationis considereaf lessimportanceand
thuswill be testedfor deletionearlier In this way, we canconcentrateon
theimporntantinvisible latchesandat the sametime keepthe refinedabstract
modelsmall.

Our approachis alsorelatedto the one of [ ]. Both approachegheck
all counter@amplkes of a certainlenghtat onceby a model checkingrun on the
concretemodel. Themaindifferencesare:

(i) We useSAT, insteadof a BDD-basedmodelchecler, for the abstracimodel.
This will give our methodan adwantagein proofs that require an abstract
modelof sizecomparabldo thatof the concreteone.

(i) Our abstractiorgrows at eachrefinementandwe userefinementminimiza-
tion to controlits size,whereaghe abstractiorof | ] is computedrom
scratcheachtime. Refinementminimization requiresrepeatedBMC runs;
thesehowever, arerunsontheabstractmodel.In the experimentsreporedin
Sectiorll, refinemenminimizationwasnever the bottleneck andit couldbe
further spedup by usinganincrementalSAT solver.

4 Experimental Results

To evaluatethetechniqueof Sectiorll, we comparedour algorithms: animplemen-
tationof theBMC [ ] algorithm BMC extendedwith thecheckdor simple
pathg] D (referredto asSSS),our PURESAT algorithm, andthe GRAB algo-
rithm of | ], which usesboth BDDs and SAT. All the four algorithms are
implementedn VIS-2.0] 2], andChaf | | wasuseasthe back-
end SAT solver. The experimentswererun underLinux onanlIBM IntelliStation
with a1.7 GHz Intel Pentium4 CPUand2 GB of RAM.

The comparisorwas conductedon 26 models,either from industry or from
VIS verificationbenchmarkg 2] exceptfor Isp. This modelwascreated
to illustrate the help BMC could getfrom abstraction.A simplified versionof it
appearsn Fig.l Sincein theconcretemodel,thelongestsimplepathis long, SSS
failedto complete gventhoughPURESAT finishedwithin onesecond.

Theresultsareshavn in Tablell Thefirst columnis thenameof themodel,the
secondcolumnindicateswhethereachpropertypasse®r fails; if a propertyfails,
the numberin this columnis the lengthof the counterg@ample. The third column
givesthe numberof latchesin the coneof influenceof the propery. The fourth
columnlists thetime of BMC. A time in parenthesess the time elapsedvhenthe
procesganout of memory In our experiments,the time limit wassetto 8 hours.
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ExperimentaresuIts.BoIdfacL?:fsledto highlightbestCPUtimes
model pass/ | latches| BMC SSS PureSA Grab
cexlength| in COI | time time | time | finalsz. | time | final sz.
Isp-pl pass 12 >8h >8h 1 3 1 3
D12-p1 16 48 5 25 37 23 14 23
D23-p1 5 85 1 1 3 25 20 21
D2-p1 14 94 6 25 20 48 180 48
D14-p1 14 96 65 83 1460 80 >8h (75)
D1-p1 9 101 1 5 11 20 9 21
D1-p2 13 101 2 12 26 23 51 23
D1-p3 15 101 3 18 32 23 56 25
112-p1 370 119 >8h >8h >8h (12) 2503 16
B-pl pass 124 >8h >8h | 2074 18 173 18
B-p2 17 124 150 675 247 7 93 7
B-p3 pass 124 | >8h >8h | >8h | (42) | 223 | 43
B-p4 pass 124 >8h | (23708)| >8h (43) 393 42
D22-p1 10 140 2 10 17 132 720 132
D24-p1 9 147 7 10 2 4 1 4
D24-p2 pass 147 >8h 16 6 8 3 8
D24-p3 pass 147 >8h 1 4 6 20 8
D24-p4 pass 147 >8h 1 4 6 43 8
D24-p5 pass 147 >8h 1 4 8 3 5
MO-p1 pass 221 | >8h | (2537) | 2156| 13 136 | 16
D5-p1 31 319 58 592 155 13 31 18
D18-p1 23 506 96 795 4359 | 160 >8h (99)
D16-p1 8 531 10 29 31 14 92 14
D20-p1 14 562 26 101 6228 | 232 >8h (69)
rcu-pl pass 2453 >8h (3115) | 136 11 195 10
IU-p2 pass 4493 | (11331)| >8h | 1756 14 >8h (6)
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Thefifth columnis thetime of SSSthesixthcolumnshovsthetimefor PURESAT;

the seventhcolumnis thenumberof latchesn thefinal abstracmodel. If thetime
Is greaterthan8 hours,thenumberin parentheses the next columnis thenumber
of latchesin the abstracimodelwhentime ran out. The next two columnsarethe
datafor GRAB. All CPUtimesarein secondexceptwhennoted.

Thealgorithm labeledBMC cancheckinductive invariants.However, no such
propertes areincludedin our setof experiments.Fromthetablewe canseethat,
in generalfor passingpropertiesPURESAT is betterthanbothBMC andSSS For
failing propertieswith a few exceptions,BMC is best,while PURESAT is better
than GRAB. For the largestmodel, like 1U, whoseCOI contains4493 latches,
PURESAT is the only onebeingableto verify the propery. Interestindy, GRAB
andPURESAT fail to finish similar numbersf experimentg4 for GRAB and3 for
PURESAT). However, the two setsof failuresaredisjoint. Thisis anencouraging
signfor thedevelopmenbf ahybrid algorithm thatmay switchbetweerBDDs and
SAT for theanalysisof theabstracimodels.

ThoughPURESAT appeardo bereasonablyobust,thereareonly threecases
in Tablelin which it manageso befastest.Thisis in partdueto the factthatthe
implementations still preliminaxy.

5 Conclusions

We have presentedn abstractiorrefinementalgorithm for modelcheckingsafety
propertes that usesa SAT solver assoledecisionprocedure.We have compared
this algorithmto both BMC andto an abstractiorrefinementalgorithmthat uses
both BDDs and CNF SAT. The new algorithmis competitve and was the only
oneto completethe largesttestcase.Our implementatia is still preliminary. We
planto investicatethe useof anincrementalSAT solver like SATIRE [ ]in
the abstractiomrminimization phase which is currently the mosttime consuming
partof the algorithm. We arealsointerestedn the extensionof the techniquef
[ | to the SAT ervironment This is not anentirely trivial task,sincethey
arebasedntheknowledgeof the setsof statesat variousdistanceslongthepaths
connectingnitial statego errorstates.

By its very nature,the PURESAT algorithmsuffers, albeitin attenuatedorm,
from the sameproblemsthat afflict the basicprocedureusedin analyzingthe ab-
stractmodels. Improvementdlik e thoseproposedn [ ] may boostPURE-
SAT’s performance. More generally the integrationwith a BDD-basedapproach
to the analysisof the abstractmodel shouldleadto a more robust and powerful
approacthto abstractiorrefinement.
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Abstract

This paper describes a novel application for SAT-based Bounded Model Checking
(BMC) within hardware scheduling problems.

First of all, it introduces a new model for control-dependent systems. In this
model, alternative executions (producing “tree-like” scheduling traces) are managed
as concurrent systems, where alternative behaviors are followed in parallel. This
enables standard BMC techniques, producing solutions made up of single paths
connecting initial and terminal states.

Secondly, it discusses the main problem arising from the above choice, i.e., re-
writing resource bounds, so that they take into account the artificial concurrencies
introduced for controlled behaviors.

Thirdly, we exploit SAT-based Bounded Model Checking as a verification tech-
nique mostly oriented to bug hunting and counter-example extraction. In order to
consider resource constraints, the solutions of modifying the SAT solver or adding
extra clauses are both taken into consideration.

Preliminary experimental results, comparing our SAT based approach to state-
of-the art BDD-based techniques are eventually presented.

1 Introduction

Synthesis of efficient and high performance control units and data paths from
high-level behavioral specifications has long been considered a very promising
technique for tackling the ever growing complexity of digital design. At the
same time, it is a very elusive goal, because after more than twenty years
of intensive research, and even the appearance on the market of some indus-
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trial CAD tools, high-level synthesis is still far from being widely used as its
predecessors, register-transfer level and logic synthesis.

Within this framework, BDD-based manipulations have recently attained
interesting results, as an alternative to ILP and heuristic techniques. In this
approach a non-deterministic finite automata describes design alternatives
for highly-constrained control-dominated models. After that, the automata’s
state space is symbolically visited, adopting model checking’s state-of-the-art
techniques. These techniques are mix of forward and backward traversals,
aimed at finding a scheduling solution as a trace connecting initial and termi-
nal states.

In the simplest case of systems without control choices (if-then-else con-
struct), a schedule is a path, and symbolic scheduling works just like invariant
checking with counter-example extraction. However, control-dependent be-
havior produces scheduling instances as DAGs (or trees), where fork and join
nodes are introduced to represent scheduling choices, depending on values
of control operands. This has required a specific backward traversal proce-
dure (called validation in [W]), which, albeit not far from standard BDD-based
traversals, is not directly mapped to standard Model Checking (e.g., CTL)
procedures.

In this work we propose to change the original automaton model introduced
in [MEEEN for control-dependent systems, so that standard model checking
procedures are supported. More specifically we transform alternative sub-
traces to concurrent behaviors which are followed in parallel. In this way the
resulting scheduling is always a path (instead of a DAG) connecting initial
and final states. As a byproduct, we can exploit SAT-based Bounded Model
Checking. Indeed, as the designer’s aim is to find a schedule, not to prove
its absence, we believe BMC can work at its best, as a verification technique
mostly oriented to bug hunting and counter-example extraction, rather than
proof of correctness. Nevertheless, in order to enable this method, we also
must re-write the resource bounds, so that they take into account the artificial
concurrencies introduced for controlled behaviors.

As a final remark, notice that many High Level Synthesis tools use Con-
trol Data Flow Graphs (CDFGs) as their internal model and do not model
well constraints coming from input /output operations with the external world
(e.g., synchronization, min/max rate, jitter, etc.) and often mostly data de-
pendencies are handled, while control is either ignored or handled by complete
case splitting.. Although we use CDFGs as the input specification for our
tool, we adopt the model introduced by [M], which is at the same time formal
(based on concurrent automata), efficient (it is possible to use symbolic repre-
sentation techniques with enhancements derived from concurrent specification
models), control-oriented (condition evaluation and speculative execution are

1 Approaches that specifically address control-intensive CDFGs (such as [M) have been
introduced only recently.
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specific features of [W]), and flexible (I/O constraints can be represented by
restrictions on the automata state space). As [l we represent implicitly the
full solution space by means of the state space of a product of automata.

2 Background

We assume the reader is familiar with BDDs, SAT and Bounded Model Check-
ing. As a consequence we briefly review only the basic concepts within our
application framework.

2.1 High-Level Synthesis Methodologies

Historically two basic approaches have been used for scheduling: Heuristics
algorithms and Integer Linear Programming. On the one hand, priority-based
heuristic methods (e.g., [M]) can accommodate a variety of data-dominated
and control-dominated behaviors, quickly finding good solutions for large
problems. On the other hand, they may fail to find an optimal solution in
tightly constrained problems, where early pruning decisions may exclude can-
didates eventually leading to superior solutions. Integer Linear Programming
methods (e.g., [M]) can solve scheduling exactly. However, the ILP complex-
ity significantly increases by considering control constraints (if-then-else and
loops), and thus may lead to unacceptable execution times. Moreover, they
consider only one solution at a time, and hence are not particularly suitable
for interactive synthesis.

2.2 Symbolic Scheduling

More recently [N symbolic methods have been proved effective in finding
exact solutions in highly constrained problem formulations.

In [, the authors propose a symbolic formulation that allows speculative
operation execution and exact resource-constrained scheduling. In B, the
authors improved the previous method by proposing a new efficient encoding
to reduce execution time. This encoding only indicates “whether or not” and
not “when” an operation has been scheduled. Finally, [M handles loops in
Data Flow Graphs (DFGs).

Their scheduling technique (as well as ours) assumes an input in the form of
a CDFG. A CDFG is a directed acyclic graph describing both data-flow and
control dependencies between the operations. Operation nodes are atomic
actions potentially requiring the use of hardware resources for one or more
clock cycles. Directed arcs establish a link between each operation and the
predecessors that produce data required by it. A source and a sink are added
before every operation without predecessors and after every operation without
successors. Conditional behavior is specified by means of fork and join nodes,
and directed arcs also establish a link between the operation evaluating the
condition and the related fork/join pair. Operations that are neither connected
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by a directed path, nor mutually exclusive due to a preceding fork node, are
concurrenti.

Example 2.1 Figure Mshows an example of CDFG. In particular Figure [l(a)
shows the pseudo-code for a conditional statement and Figure l(b) the corre-
sponding CDFG.

Control Dependency X CDFG source
Fork

' / Data Dependenc
if (x>0)
y=x+1 op3
else
y=x-1
(a)
CDFG sink
y
(b)

Fig. 1. An example of CDFG.

2.3 Scheduling Automata

A scheduling problem, originally described as a CDFG, can be translated into
an automaton, defined by the four-tuple (V, TR, S;, Sy), where V is the finite,
non-empty set of states, TR : V' — V' is the transition relation, and .S; and
Sy are respectively the sets of initial and final states.

The generic i-th operation in the CDFG (excluding fork and join opera-
tions) is modeled by a two-state automaton. Its transition relation is encoded
with exactly two Boolean variables (p; for the present state and n; for the next
state), with the following meaning:

* p; = 0,n; = 0: operation ¢ has not been scheduled previously and will not
be scheduled in the next cycle.

* p; = 0,n; = 1. operation ¢ has not been scheduled previously and will be
scheduled in the next cycle.

* p; = 1,n; = 0: operation ¢ has been scheduled previously but the result
will no longer be available in the next cycle; this is forbidden in [M], as well
as in our solution, in order to reduce the amount of equivalent schedules
generated.

e p; = 1,n; = 1: operation i has been scheduled previously and the result
remains available.

The complete scheduling is the Cartesian product of the above automata re-
stricted by several constraints, each one representing a particular allowed be-

2 The same model, if the sink is connected back to the source, can also be viewed as a safe
Petri Net. In this paper we use the automata-based notation for consistency with [l
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havior.

TR(p, n) = H(ZTZ + TLZ) : TRdep<p; n) : TRres<pﬂ n)

)

The modeling automaton described by TR encapsulates all legal execution
sequences of a system. Fundamentally, it represents multiple legal execution
sequences via nondeterministic choices, yet a real implementation must make
deterministic choices. If nondeterministic choices are pruned to leave only one
deterministic choice, or if multiple choices are made deterministic by condi-
tions, then a finite state machine controller may be directly synthesized. The
criterion used to eliminate nondeterminism is usually minimum execution la-
tency. Variations of this exist for control-dependent behavior, where some
control cases might be more favored than others.

Let us briefly summarize here dependency and resource constraints, since
they will be used in the sequel:

* TRyep represents data dependencies, i.e., it is illegal to schedule an operation
with a predecessor that has not yet been scheduled:

pin; is illegal for all i — j data dependencies (dd)

TRip(pm) =[] (i +75)
i—jedd
* TR,.s represents resource constraints. Let us have a resource set with b
resources of a given kind (e.g., multipliers) available, and a set p of opera-
tions competing for such a resource set. It is illegal to schedule more than
b concurrent operations from p.

(ini + ... - peng) with {i..k} € pis illegal if |{i..k}| > b

Let Sp(p) be the initial state of the scheduling product automaton, in which
no operation has been scheduled. The set of states reachable at the -th clock
cycle may be computed by a standard iterative image computation:

(1) Si(n) = Img(TR, Si_1) = F[TR(p, n) - Si—1(p)]

Valid schedules are represented by state paths that reach a final set of states
in which terminal operations have been scheduled.

The exploration techniques presented here are directed by a minimum
latency objective. They determine whether, given all constraints imposed and
a target latency [, a valid execution sequence of length < [ exists. With
control-dependent models, some additional validity criteria are imposed, and
speculative execution may allow some operations after a fork and before a join
to be scheduled before the condition evaluation has been scheduled.

Y
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3 Handling control dependence through concurrency

Unlike the simpler case of data flow graphs, a witness schedule for control-
dependent models is not a single path in a path set but rather a set of paths
from start to final states. Such a set of paths is called an ensemble schedule
in [ and must include a path for each distinct control-dependent execution
sequence. For instance, a RISC processor must be able to execute all in-
structions and therefore an ensemble schedule for a RISC processor contains
sequences for every instruction. As a more specific example, consider some
control-dependent behavior that branches into two sets of behaviors depend-
ing on a true/false control resolution. An ensemble schedule for this example
must contain a path from the start state to the final one that represents exe-
cution of true control resolution behavior, and another path that covers false
control resolution behavior.

In BDD-based formulation, this requires the introduction of control guard
variables, representing non-deterministic choices of each controlling operation.
A guard is a binary abstraction of the data value controlling a branching
condition. A “completeness” check (i.e., all guard values have reached the
terminal state) is added to termination conditions.

Furthermore, a validation procedure operates a backward pruning over
the state sets computed by forward BFS. Validation is the most expensive
symbolic operation and the main cause for BDD blow-up. It consists of a
preimage routine with universal quantification of control guards at control
resolution points. This is necessary to enforce causality (identical initial sub-
path) for outgoing paths at fork points.

Apart from complexity issues, branching schedules and the related vali-
dation steps are a major problem for a SAT-based formulation. In order to
avoid them, we interpret choice vertices as concurrent forks, and we transform
alternative branches into concurrent paths.

So we remove fork and join nodes from the CDFG, and we replace them
with unconditioned data dependencies. As a result, a CDFG becomes a DFG,
and SAT can explore simultaneously all conditional branches of the original
CDFG.

Figure M shows the above transformation applied to the example of Fig-
ure [l

Fork and join have been removed, control dependency maintained (as data
dependency) for the operations following the join recombination. Therefore,
in our solution joins work as synchronization points, as no operation following
a join is allowed to be executed if both the branches of the control resolution
have not been completed yet. This means that our model does not allow
control prioritization (as we always have the worst delay), but we have no
loss if the objective is minimizing the worst case execution latency. Moreover,
since we remove the dependency at forks, speculation is still allowed.
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X CDFG source

———— Data Dependenc

if (x>0)
y=x+1
else e op
y=x-1
(a)

Control Dependency

CDFG sink

(b)

Fig. 2. A CDFG after fork/join removal.

4 Concurrent forks and resource constraints

The artificial fork concurrencies we have introduced have no side-effect in
the case of scheduling with unbounded resources. In fact, given any set of
concurrent operations, if a “large enough” set of resources can be allocated,
all operations may always be executed.

The case of bounded resources is less trivial. In this case not all concurrent
executions are “real” concurrencies, since some of them are just artificial. As a
consequence, not all concurrent operations are competing for resources. As a
direct outcome, we need to modify resource constraints, to take into account
that some operations could be allocated to the same resource at the same
execution time.

More specifically, let us work on a CDFG with a set of N operations
Op = {op1, ...,opn }, each one mapped to (i.e., executable by a resource of)
a resource class within the set R = {ry,...,7y}. The generic resource class
r; is characterized by a bound b,,, representing the amount of operation unit
available for that class, whereas n,, is the total number of operations in Op
mapped to the r; resource class. The resource bound problem is obviously
trivial for class r; if n,, < b,,, since there can never be a request of resources
greater than the available ones (as for the case of infinite resources).

A much more challenging problem is the case of resource bounds actually
reducing the amount of possible concurrencies. Let op; and op; be two opera-
tions mapped to the same resource class, scheduled for concurrent execution
(there is a state transition where p;n;p;n; holds). Then, resource allocation
may fall in one of the following three cases:

* Unconditioned concurrency. The two operations do not belong to different
conditional branches in the original CDFG, so their concurrency is a “real”
one, requiring the allocation of two resources.

e Mutual exclusion. The two operations are controlled by mutually exclusive
conditions, i.e., they are on different branches of some fork in the original
CDFG. Their concurrence is artificial, so just one resource is required.

7
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* Speculative execution. Speculation occurs whenever an operation is exe-
cuted before its controlling condition is resolved. If op; and op; are both
executed before their distinguishing condition is known, concurrence is real,
and two resources are required.

In other words, we may have couple of operations for which concurrency
might be unconditioned (first item in the above list), and other ones charac-
terized by conditioned concurrency (second and third item).

4.1 Resource bounds within the SAT solver

Resource bounds can be accounted for directly by a SAT solver. In this solu-
tion the SAT solver has to be properly modified in order to count the allocated
resources while recursively building a scheduling solution. This is a special pur-
pose solution to follow only in the case the generated overhead is negligible.
It basically relies on identifying active operations through variable decisions
and implications, and keeping resource allocation counters. A resource conflict
occurs whenever an allocation counter is greater than the allowed bound.

4.2 Resource bounds as a Boolean constraint

Although the above solution is feasible, we prefer exploring an alternative
one, that is compatible with a generic SAT solver, since no modification to
the SAT algorithm is necessary. We simply follow BDD-based approaches,
by generating a resource constraint for the transition relation (TR;.s), which
filters out invalid sets of concurrent executions.

There are various strategies for building such a constraint as a Boolean
function returning true on allowed sets of operation executions.

4.2.1 Cliques of concurrency graph

A straightforward approach works on the graph of possible concurrencies,
where operations are nodes and edges connect pairwise concurrent operations.
Such a graph can be generated as the transitive closure of a graph where pairs
of operations are concurrent if no data dependency connects them and no
resolved control makes them mutually exclusive. The graph can be viewed
as an upper bound of concurrencies within a schedule. Given the projection
of the concurrency graph to resource class r;, cliques of size larger than the
allowed bound (b,,) are forbidden.

This is an attractive solution, especially for explicit enumeration, but it is
practically limited to small cases, due to its binomial complexity. In particular,
it blows up in problems with high degree of concurrency, such as, for example,
models of pipelined behaviors.
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4.2.2  R-combination filtering function
A more efficient formulation, for the case of unconditioned concurrency, is
proposed in [M] for BDD representation. If we omit considering data depen-
dencies, and we simply work on operations of the same resource class, then
the resource bound constraint is an r-combination expression, selecting com-
binations of up to b,, operations out of n,. We call this filtering function
Rfilter(Op, bound). Its size complexity, when expressed as a BDD instead of a
two level form, is O(n,, - b,,), i.e., number of operations mapped to the class
times the bound for the class. The function is easily translated to CNF format
(with intermediate additional variables), with similar complexity.
Unfortunately, as previously shown, we have conditioned (i.e., artificial)
concurrencies, that complicate our model compared to [M], and make the above
solution exponential in the number of control choices (forks): we should ex-
pand one instance of concurrency graph for each case of resolved/unresolved
control operation.

4.2.3  Hybrid two-level approach
Since none of the two previous approaches alone is able to efficiently solve
our problem, we developed a hybrid technique, which follows the concurrency
graph strategy locally, within control components of the CDFG, and the r-
combination approach on a global perspective.

More in detail, we express the resource constraint function (for a given
resource class ;) as a composition of two sub-functions

TR: (p, n) = Rfilter(Alloc(p, n), b;,)
The outermost function is (a slight modification of) the previously de-

scribed r-combination filter, whereas Alloc is a function that remaps operation
transitions to a set of allocation variables, with the following rules:

* Each uncontrolled operation op; is remapped to an allocation variable a; =
pin;, which evaluates true when the operation is executing.

¢ Controlled subsets of the CDFG (subgraphs included between fork and join
nodes) are globally remapped to a proper set of allocation variables, over
whom the Alloc functions returns a number of ones exactly corresponding
with the amount of resources required. So all artificial concurrencies and/or
speculations are taken into account by this function.

The composition is never computed explicitly, but intermediate allocation
variables are kept and transferred to the CNF formulation of TR,.s, which
allows us to face the main size bottlenecks: (1) The complexity of conditional
concurrency (function Alloc) is kept within small regions of the CDFG. Espe-
cially for the important case of looping and/or pipelined behaviors, modeled
by serial and parallel instances of the same reference CDFG, this makes the
size of Alloc linear in the number of serial/parallel instances. (2) Rfilter, the
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function taking care of the overall problem, has size O(n,., - b,,), i.e., it is lin-
ear in the number of operations, for a given resource bound. As an overall
result, our result constraint function is scalable, and well suited for looping
and pipelined behaviors, which are the most difficult problems in BDD-based
approaches.

4.2.4  Implementation details

Figure [l and M show the pseudo-code of the Alloc and Rfilter functions respec-
tively. For sake of simplicity it is assumed that all operations in the CDFG are
mapped onto the same resource class, for which maxAlloc units are available.

In our implementation, every operation is labeled with two attributes: (1)
the set of all possibly concurrent nodes and (2) a BDD representing the control
case for which the operation is enabled. Actually, in order to cover speculation,
the meaning of such a BDD is that the operation is disabled if the evaluation
of the BDD for the already resolved controls returns 0.

As regards the Alloc function, all possible cliques (over the set of opera-
tions belonging to the received sub-graph) are recursively built by means of
the auxiliary generateCliques function. At each level of recursion, a new node
is added to the previously generated clique, checking for speculative execution.
In fact, the AND between the node’s enable and the clique’s enable returns a
0 result only if the current node and at least one node already belonging to the
clique are in two different control branches. Therefore, the concurrency of the
node w.r.t. the clique is real only if the controlling operations discriminating
the branch are not resolved yet (i.e., the nodes in the new clique are exe-
cuted speculatively). Such controlling operations are therefore added to the
unresolved set. The transition corresponding to the new clique is then stored
as a BDD, and the cliques of bigger sizes are built (the set of possibly con-
current nodes being restricted as the clique has to be completely connected).
Eventually, the last loop in the Alloc function defines the allocation variables:
variable a; takes a value of 1 iff there is a transition in the current sub-graph
involving the usage of at least i resources of the current resource class.

Once all the resource cliques have been generated, the Rfilter function
symbolically builds all valid transitions in terms of the allocation variables.
To do this, it combines the allocation variables coming from the different calls
to the Alloc function to form an expression representing all possible illegal
allocations (i.e., those requiring at least maxAlloc+1 resources). Then the
complementation of such expression, which indeed represents all allocations of
at most maxAlloc resources, is returned (and then directly used as a component

of TR).

4.2.5 A small example

Let us consider again the CDFG shown in Figure Wl and let us assume that
all the operations are mapped on a single ALU. The CDFG is divided by the
algorithm into two sub-graphs: the first is composed by the comparison only,

10
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ALLOC (graph)
for (i « 1 TO maxAlloc + 1)
tList[i| — BDD_ZERO
for (node € graph.nodesSet)
cliqueSet < ()
unresolved «— ()
enable — BDD_ONE
generateCliques(tList, node, cliqueSet, unresolved, enable, node.concur)
for (i <~ 1 TO maxAlloc + 1)
graph.a; < new_var
TR «— BDD_AND(TR, BDD_XNOR(graph.a;, tList[i]))

GENERATECLIQUES (tList, node, cliqueSet, unresolved, enable, concurSet)
it |cliqueSet| > maxAlloc
return
newEnable — BDD_AND_EXIST(enable, node.enable, unresolved)
newUnresolved «+— unresolved
it BDD_IS_ZERO(newEnable)
newUnresolved «— unresolved U conflictingControls(enable, node.enable)
newEnable — BDD_AND(BDD_EXIST (enable, newUnresolved),
BDD_EXIST(node.enable, newUnresolved))
newClique «+ cliqueSet U node
tList[|newClique|] < BDD_OR(tList][|newCliquel],
transition(newClique, newUnresolved))
newConcur < concurSet N node.concur
for (op € newConcur)
generateCliques(tList, op, newClique, newUnresolved, newEnable, newConcur)

Fig. 3. The Alloc function.

RFILTER ()
allocations[0] — BDD_ONE
for (k < 1 TO maxAlloc 4 1)
allocations[k] <+ BDD_ZERO
for (i <~ 1 TO Ngraphs)
newAllocations < allocations
for (j < 1 TO maxAlloc + 1)
for (k < 0 TO maxAlloc + 1)
if 7 4+ k > maxAlloc + 1
break
alloc < BDD_AND(allocations[k], graph;.a;)
newAllocations[j + k] <— BDD_OR(newAllocations[j + k|, alloc)
allocations < newAllocations
return BDD_NOT(allocations[maxAlloc + 1])

Fig. 4. The Rfilter function.

whereas the second includes both the ADD and SUBTRACT operations. Then
the relations defined by the two calls of the Alloc function are respectively:

a§ =pone, a5 =0
11
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and

ai'® = Pana +Psns, a3° = PanaPsnsPc
Indeed the first sub-graph may present only a transition requiring 1 ALU
unit, whereas the second sub-graph might require 2 ALU units, but only in
the case that the ADD and SUBTRACT operations are both executed before
the control resolution has been solved. Eventually, the final constraint built
by the Rfilter function is:

constraint = a$ + af aft® + af®

5 BMC Formulation

Once we have generated the transition relation of the CDFG, as previously
described, we have to produce the verification problem which will give us the
scheduling solution. This is done by unrolling the transition relation a certain
number of times and then trying to prove the mutual reachability between
initial and final states.

The BDD representing the transition relation (in monolithic or conjunctive
form) is stored as a CNF formula as described in [l

The verification strategy usually starts with a path of length equal to 1 and
increases it till the problem is solved or computation resources are exceeded.
For the above reasons the technique works well in falsification and partial
verification, whereas full verification is usually achieved by BMC with longer
and longer bounds.

Our problem is somehow simpler as, with a proper number of registers,
there is always a solution to the scheduling problem. Moreover, our experience
shows that unsatisfiable problems are much harder to solve than satisfiable
instances. To this respect SAT solvers often present an exponential behavior
as Figure Ml shows.

For these reasons the standard previously described technique proved to
be quite inefficient. On the contrary we do have an estimate of the maximum
latency, which is equal to the number of operations in the CDFG. This suggests
a second strategy, namely starting from the highest bound and decreasing it in
order to find the first unsatisfiable instance. The drawback of this method is
that the estimate of the maximum latency can be extremely inaccurate. As a
direct consequence, we propose a solution adopting a binary search. Starting
with an estimate of the optimal latency, we create the corresponding CNF
problem and call the SAT solver giving it a (small) time limit. Accordingly
to the result produced by the solver, the estimate of the latency is corrected,
and a new bound is tried. Notice that if the SAT solver is unable to solve the
CNF problem within the time limit, we consider the instance as unsatisfiable.
In general, this might lead to incorrect (i.e., sub-optimal) results, in the sense
that a satisfiable instance may be considered as unsatisfiable, but the problem
can be solved simply increasing the “unsat” threshold, with an at most linear
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Fig. 5. SAT CPU Time Versus SAT Bound. The data are obtained with a run of
the scheduler on the rotor benchmark with two iterates and a resource availability
corresponding to the first row of table Il

loss in performances.

6 Experimental Results

We show experimental results on well known benchmarks [l]. Table ll shows
the complexity of the benchmark set in terms of number of operations, and
number of conditions checked.

Circuit H # Operations ‘ # Conditions H

rotor 28 3

s2r 48 6

fdct 42 0
Table 1

Circuit Complexity in terms of Number of Operations and Conditions Checked.
The data are referred to the acyclic version of the model, i.e., with just one iterate.

We ran our experiments on a 1700 MHz Pentium IV with 1 GByte of main
memory. For all the experiments we used BerkMin [ll] as SAT engine.

Table Ml summarizes our results. We compare the results obtained with the
strategy presented in this paper with the software presented in [M] and locally
re-run. More in detail, our data are obtained adopting the binary search (as
described in the previous section) with a threshold of two minutes. Notice that
all the satisfiable instances were well recognized by the SAT solver; indeed the
numbers of scheduled cycles represent the true optimal latencies.

The meaning of columns is the following: # lIterates indicates the num-
ber of parallel instances considered (when 1, we refer to the acyclic problem,
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Circuit || # lterates | # Resources | # Cycles BDD [f] SAT — This Paper

# BDD Time # Vars | # Clauses | Time
[nodes] [s] [s]
rotor 1 1T,1C,1A 12 74606 0.7 994 4116 0.3
1 1T,1C,2A 8 74606 0.7 892 4232 0.3
1 1T,1C,2A, 1% 10 84826 0.8 1142 4174 0.4
1 1T,1C,2A,2x% 8 84826 0.7 920 4152 0.3
2 1T,1C,2A,1x% 10 871766 4.6 4749 36047 10.0
2 1T,1C,2A,2x% 9 1447152 6.8 4392 32873 10.8
2 1T,1C,2A,3x% 9 1864128 8.2 4428 33026 8.6
2 1T,1C,3A, 2+ 8 415954 2.7 4299 31503 | 6.7
3 1T,1C,2A,1x% 12 18635148 | 1524.0 9573 72436 | 118.9
3 1T,1C,2A,2x% 12 OVF - 9861 73612 | 308.9
3 1T,1C,2A, 3% 12 OVF - 9957 74008 | 288.3
3 1T,1C,3A,2% 9 OVF - 8229 59803 | 37.6
s2r 1 1T,1C,2A,1x% 10 1006670 5.9 2532 12484 1.8
1 1T,1C,3A,2% 9 532462 4.1 2788 14774 2.2
1 1T,-C,2A,2x% 8 411866 3.0 4749 12832 1.7
2 1T,1C,2A,1x% 13 OVF — 12158 109623 | 328.6
2 1T,1C,3A, 2+ 10 OVF — || 10839 87817 | 66.8
2 1T,-C,2A, 2+ 10 OVF — || 10539 87137 | 62.9
fdct 1 1+,1— 1% 19 306600 1.5 2775 8362 | 133.7
1 14,1—,2x% 13 200312 1.2 2138 6772 1.1
2 14,1—,1x% 32 — OVF 19121 223433 | 522.0
2 1+,1—,2% 26 — OVF 17103 188719 | 454.6
Table 2

Schedule Results. Terminology for columns # Resources: ADD=+, ALU=A,
COMPARATOR=C, SUB=—, MULT=x, LookUpTable=T. MULT is a two-time
steps pipelined multiplier (when not present, multiplications are performed by the
ALU). All other resources are single time step. OVF indicates overflow (in terms
of memory or CPU time). We use a time limit equal to 1 hour and a memory limit

equal to 500 MBytes.

otherwise we are handling a looping behavior); column # Resources indicates
the number and type of resources allowed; # Cycles is the final solution in
term of scheduled cycles. For each experiment we report the data obtained
with W], i.e., the number of BDD nodes and the CPU time required, and with
our method (number of variables and clauses generated for the CNF problem
corresponding to the solution, and the total CPU time).

Overall, we can make the following observations. For acyclic problems, the
times required by the two compared methods are quite similar (with only one
exception, the first experiment for fdct). However, when we move to looping
behaviors, while the method used in [l] becomes unfeasible, our strategy still
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produces the optimal result in a limited amount of time. These experiments
demonstrate that our solution can be very effective.

7 Conclusions and Future Work

We present a new approach for symbolic scheduling based on a new problem
formulation and the use of SAT solvers and BMC verification methodology.
Experimental results on DFGs and CDFGs show that our solution can be
very effective and competitive with symbolic BDD-based techniques.
Future work will include investigation of better strategies for the CNF
problem generation and solution searching.
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