
BMC’04

Second International Workshop

on Bounded Model Checking

Preliminary Proceedings

18. July 2004

Boston, MA, USA

Preface

These are the preliminary proceedings of the second international workshop
on Bounded Model Checking (BMC’04), which is affiliated to the 16th Inter-
national Conference on Computer-Aided Verification (CAV’04) in Boston,
MA, USA. The workshop takes place immediately after the conference on
Sunday, July 18, 2004, and besides the presentations of the papers collected
in this volume also features an invited talk by Bart Selman. Ouf of 9 sub-
missions the program comittee selected 6 papers, which after the workshop
will be published electronically as a special volume of Electronic Notes on
Theoretical Computer Science (ENTCS).

Organizers

Armin Biere Ofer Strichman
ETH Zürich, Switzerland Technion, Israel

Program Comittee

Per Bjesse Alan Hu
Synopsys, USA UBC, Canada

Alessandro Cimatti Sharad Malik
IRST, Italy Princeton, USA

Koen Claessen João Marques Silva
Chalmers, Sweden Lisbon, Portugal

Ranan Fraer Ken McMillan
Intel, Israel Cadence, USA

Danny Geist Fabio Somenzi
IBM Israel Boulder, USA

Yunshan Zhu
Synopsys, USA

Armin Biere, Ofer Strichman Zürich, Haifa, June 2004

Contents

Preface . 3

Contents . 5

R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Piterman, M. Y. Vardi

SAT-based Induction for Temporal Safety Properties 7

G. Audemard, M. Bozzano, A. Cimatti, R. Sebastiani

Verifying Industrial Hybrid Systems with MathSAT 21

G. P. Bischoff, K. S. Brace, G. Cabodi, S. Nocco, S. Quer

Exploiting Target Enlargement and Dynamic Abstraction
within Mixed BDD and SAT Invariant Checking 37

H.-S. Jin, F. Somenzi

An Incremental Algorithm to Check Satisfiability for
Bounded Model Checking 55

A. Groce, D. Kröning

Making the Most of BMC Counterexamples . 71

D. Sheridan
Bounded Model Checking with SNF,
Alternating Automata, and Büchi Automata . 85

Authors . 99

5

6

BMC 2004 Preliminary Version

SAT-based Induction for Temporal Safety
Properties

Roy Armoni a,1 Limor Fix a,1 Ranan Fraer a,1

Scott Huddleston b,1 Nir Piterman a,1 Moshe Y. Vardi c,2,3

a Design Technology – Intel, Haifa, Israel
b Desktop Product Group – Intel, Hilsboro, Oregon

c Dept. of Computer Science, Rice University

Abstract

The work presented in this paper addresses the challenge of fully verifying com-
plex temporal properties on large RTL designs. Windowed induction has been pro-
posed by Sheeran, Singh, and Stalmarck as a technique augmenting Bounded Model
Checking for unbounded verification of safety properties. While induction proved
to be quite effective for combinational properties, the case of temporal properties
was not handled by previously known methods. We introduce explicit induction,
a new induction scheme targeted to temporal properties, and to interactive devel-
opment of inductive proofs. The innovative idea in explicit induction is to make
the induction scheme an explicit part of the specification, where it can be easily
controlled, using a highly expressive language like ForSpec. We show how explicit
induction was implemented with minor modifications in the ForSpec compiler and in
Thunder, a bounded model checker. Finally, we describe how explicit induction was
used for verifying large control circuits with extensive feedback in the PentiumTM4
processor. The circuits verified by explicit induction are orders of magnitude larger
than those verifiable by traditional model checking approaches.

Key words: SAT, induction, windowed induction, safety

1 Introduction

The general aim of formal verification is to provide compelling evidence of
the correctness of a system in the form of a mathematically precise argument

1 Email: firstname.lastname@intel.com
2 Email: vardi@cs.rice.edu
3 Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-
9908435, IIS-9978135, EIA-0086264, and ANI-0216467 by BSF grant 9800096, and by a
grant from the Intel Corporation.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Armoni et al

showing that the system (implementation) satisfies a collection of required
properties (specification). In model checking, we verify the correctness of
finite-state systems with respect to a desired behavior by checking whether
a labeled state-transition graph that models the system satisfies a temporal
logic formula that specifies this behavior [6]. Model-checking has two major
advantages, namely, it is fully automatic, and in the case of failure produces
a counterexample (an erroneous execution of the system).

The introduction of symbolic model checking based on BDDs [4,10] has
increased the capacity of model checking and made it a standard in hardware
industry [1]. BDDs are a canonic representation of Boolean functions and are
used to represent sets of states and transitions of the model. BDD-based model
checkers compute the set of reachable states (or sometimes analyze cycles)
to ensure that there are no disallowed behaviors. In spite of the increased
capacity, it soon became apparent that state explosion is still a problem. A
major breakthrough has been the introduction of bounded model checkers [2].
Bounded model checking is based on the representation of computation paths
falsifying the specification in the form of a Boolean satisfiability problem.
The usage of bounded model checking increased the size of models handled
by model checkers; however, at a price. We no longer get a fully certified
answer to the verification problem but rather assurance that there are no
counterexamples of a given length. This observation makes bounded model
checking especially adequate for bug hunting. Still there is a limit on the
size of bounds handled by bounded model checkers, leaving us with lack of
complete assurance in the correctness of the design under verification.

In practice, most specifications are safety properties. A property is called
safety if we can deduce that it is false by examining a finite computation path.
Combinational properties of the form ALWAYS p, also called invariants, are a
particular case of safety properties that have two distinctive characteristics:

• Every safety property can be reduced to an invariant by a compilation
process described below [8].

• Some invariants can be fully proved with a powerful technique, called in-
duction [13].

Besides being a complete proof technique, induction has a better capacity
than bounded model checking, as it has to unroll the model only to a small
depth. The following paragraph explains how the induction works.

1.1 Induction for Invariants

Traditional mathematical induction can be used to prove that a property P (n)
holds for all nonnegative integers n. An induction proof consists of proving
the following two subgoals:

• Prove that P (0) is true.

• Prove that forall k, P (k) implies P (k + 1).

8

Armoni et al

In formal verification, induction has been used to prove an invariant P in a
transition system by showing that P holds in the initial states of the system
and that P is maintained by the transition relation of the system [9]. In many
cases P is not inductive by itself, and one has to find a strengthening of P
that is inductive.

More formally, let M = (S, S0, T) be a transition system, where S is a set
of states, S0 ⊆ S is a set of initial states and T ⊆ S×S is a transition relation.
For simplicity of presentation, we relate to sets of states as predicates, e.g., by
using the characteristic function of the set. The classical induction methodol-
ogy for proving P is based on manually finding a property Q (the induction
hypothesis) such that Q ⇒ P and proving the following two subgoals:

• The initial states of M satisfy Q: forall states x0, we have S0(x0) ⇒ Q(x0)

• Q is maintained by the transition relation: forall states x0 and x1 we have
Q(x0) ∧ T (x0, x1) ⇒ Q(x1)

This classical method is known to be theoretically sound and complete, where
theoretical completeness is demonstrated by having the property Q describe
the set of reachable states of M . Note that induction hypotheses are typically
much simpler than a full reachable state description. When it succeeds, induc-
tion is able to handle larger models than bounded model checking, since the
induction step has to consider only paths of length 1, whereas bounded model
checking needs to check sufficiently long paths to get a reasonable confidence
[3].

1.2 Windowed Induction

In many cases, constructing an inductive invariant for simple induction is
not feasible. Windowed induction is a modified induction technique, which
can considerably simplify finding inductive invariants for proofs on hardware
models. Mathematically, windowed induction with window size N ≥ 0 consists
of the following two steps:

• Prove that for 0 ≤ k ≤ N , P (k) is true.

• Prove that forall k, (P (k) ∧ . . . ∧ P (k + N)) ⇒ P (k + N + 1).

Windowed induction proofs in a hardware system are realized as follows [13].
To prove that P is an invariant of system M , we do the following:

(i) Manually find a strengthening Q of P for which Q implies P . Typically
we choose Q to be P ∧ 〈something〉.

(ii) Find an N for which the following two proofs are achievable:
(a) Base: Q holds in all paths of length N starting from an initial state:

S0(x0) ∧ T (x0, x1) ∧ . . . T (xN−1, xN) ⇒ Q(x0) ∧Q(x1) ∧ . . . ∧Q(xn)

(b) Step: For an arbitrary path of length N + 1, if Q holds in the first

9

Armoni et al

N + 1 states, then it holds in state N + 2 too

T (x0, x1) ∧ . . . ∧ T (xN , xN+1) ∧Q(x0) ∧ . . . ∧Q(xN) ⇒ Q(xN+1)

This method is also known to be sound and complete. Even without strength-
ening P , if we restrict the induction step only to loopfree paths, completeness
can be proved by choosing N to be the recurrence diameter of the transition
system M , i.e., the maximum length of a loopfree path in M . The advantage
of windowed induction over classical induction is that it provides the user
with two ways of strengthening the induction hypothesis: strengthening the
invariant Q or lengthening the window N . (For simplicity, we do no mention
the loopfreeness condition in the rest of our discussion, but it is implemented
in our tool.)

Windowed induction is used in [13], and is considered more abstractly in
[5]. The formal verification environment in Intel offers this induction scheme
as an automatic mode in the SAT-model checker Thunder. The bound N is
iteratively increased until either the proof succeeds or a given limit is reached.
Windowed induction and standard induction have the same theoretical ca-
pabilities, but windowed induction often permits much simpler induction hy-
potheses. In many cases the size of windows is relatively small. As with simple
induction, we get the best of both worlds: we get a correctness proof and we
get the ability to handle very large models.

Intuitively, pipelines in sequential hardware circuits are why windowed
induction proofs can use simpler induction hypotheses than non-windowed
induction proofs of the same property. When a property P of interest de-
pends on a pipeline of depth d, a windowed induction with window size d can
sometimes prove P inductively without strengthening P . But a comparable
standard induction proof in this case generally has to strengthen P to express
many internal invariants on the pipeline in order for the proof to succeed.

The techniques in [13] have been used successfully at Intel, as they proved
to be quite effective for verifying combinational properties. One benefit of this
approach is that it automates much of the induction mechanism, including
automatically searching for a working induction window size.

1.3 Implicit Induction for temporal properties

When a property P is not combinational, but rather a complex temporal
specification such as a typical formula that is written using the specification
language ForSpec, it may not be obvious how to prove P by induction. As
mentioned, these assertions are often safety properties. The ForSpec compiler
synthesizes P into an automaton AP and an invariant ZP [14,8] such that for
every transition system M :

M |= P iff MP |= ALWAYS ZP

10

Armoni et al

Where MP = M ‖ AP denotes the synchronous composition of M and AP . The
above observation about the behavior of the ForSpec compiler, immediately
suggests that for a safety property P , the classical induction methodology may
be used to prove M |= P by proving that MP |= ALWAYS ZP .

As an example, consider the ForSpec property ALWAYS ¬(f, f), which for-
bids two consecutive occurrences of f , where f is a combinational property.
When compiling its negation, the property EVENTUALLY (f, f), we can get, for
example, the three-state automaton in Figure 1. This automaton can cycle in
its initial state s0 or move nondeterministically to s1 upon receiving the input
f . A second occurrence of f is needed to move from s1 to the accepting state
s2, while an occurrence of ¬f brings us back to s0. The output Z marks the
accepting state of this automaton, such that Z = 0 if and only if the original
property ALWAYS ¬(f, f) fails. If we manage to prove ALWAYS Z by induction,
then we have also a complete proof for ALWAYS ¬(f, f).

Fig. 1. Accepting automaton for EVENTUALLY (f, f) - the negation of ALWAYS ¬(f, f)

This approach is implemented at Intel on top of Thunder, a bounded model
checker [7]. When invoking the induction algorithm, the tool searches for a
large enough window size N for which both requirements (ii-a) and (ii-b) hold.
Completeness guarantees that such an N exist, even without strengthening the
invariant. In practice, the induction succeeds with a reasonably small N for
many combinational invariants. For temporal properties expressed in ForSpec,
however, the tool typically fails to complete the proof. The problem is both
algorithmic and methodological, as we now explain.

On the algorithmic side, the approach suffers from a serious capacity is-
sue. Consider again the property P = ALWAYS ¬(f, f) and the automaton in
Figure 1. Assume that this property can be proven by classical induction, i.e.,
the initial states of M satisfy ¬(f, f) and ¬(f, f) is maintained by the tran-
sition relation. Thus, this property passes with a window N = 1. However,
ALWAYS Z cannot be proven by induction with a small window N . For every
small N , there is a path of length N + 1 failing the induction step (the path
looping N − 1 times in s0 before taking a transition to s1 and then to s2).
Although this path contains loops in the automaton AP alone, it can well be
a loopfree path in the product MP = M ‖ AP . In the worst case, the minimal
window N for which the induction succeeds is the recurrence diameter of the
system M (the minimal length of loopfree paths in M), which usually exceeds
the capacity of the tool. (It might seem that the problem is caused by the
specific automaton used in the example, but this is not the case.)

One way to reduce the window size is to strengthen the invariance ZP

11

Armoni et al

manually. This, however, requires expressing an invariant over the augmented
design MP . While the user can be expected to have an understanding of the
internal details of the system M , the user cannot be expected to have an un-
derstanding of the internal details of the automaton AP , which is the output
of the ForSpec compiler. The user can even less be expected to understand
the interaction of M with AP . Thus, requiring the user to generate invari-
ances of MP is not realistic. This suggests that implicit induction, even with
manual intervention, cannot be effectively used for verifying temporal ForSpec
properties.

1.4 Explicit Induction for Temporal Properties

This limitation is in fact what motivated our work. We want to perform the
inductive reasoning directly on the original temporal formula, rather than on
the results of its compilation. To this end, we encode the induction scheme
explicitly as part of the specification. A failure to prove the induction produces
a meaningful counterexample, which reflects the real reason of the failure and
is not due to compilation artifacts anymore. Understanding the induction
failure is a crucial hint for strengthening the inductive property.

In our opinion, this is the only effective way to allow the manual guidance
of the user in the iterative process of finding the right induction hypotheses.
In this respect, we take the approach of [13] one step further, and to our
knowledge this is the first attempt to perform induction directly on temporal
properties.

To be more precise, consider again a transition system M = (S, S0, T) and
denote by uninit(M) the non-initialized model (S, S, T) in which every state
in S is an initial state.

Consider a ForSpec formula P . We say that P is bounded if there exists
k such that for every path π, the truth value of P on π can be determined
by considering the prefix of π of length k. For example, the truth value
of a ∧ [5] b (that is, a holds now and b holds after 5 time units) can al-
ways be determined by considering a prefix of length 6. Similarly, the truth
value of (a[3], b[2]) TRIGGERS NEXT c (that is, 3 occurrences of a followed by
2 occurrences of b must be followed by an occurrence of c) can be deter-
mined by considering a prefix of length 6. On the other hand, there does
not exist a bound k such that the truth value of the formulas a UNTIL b or
(a[2]b∗c) TRIGGERS NEXT d (that is, 2 occurrences of a followed by some num-
ber of occurrences of b and then a c must be followed by d) can be determined
by considering prefixes of length k. Suppose that P is a bounded ForSpec
specification. Proving ALWAYS P by explicit induction requires the following:

(i) Manually find a strengthening Q of P for which ALWAYS Q implies ALWAYS P .
Again, usually Q is chosen to be P ∧ 〈something〉.

(ii) Find an N for which the following two proofs are achievable:
(a) Base: Prove that M |= ALWAYS[0, N] Q

12

Armoni et al

(b) Step: Prove that uninit(M) |= (ALWAYS[0, N] Q) ⇒ [N + 1] Q

For bounded formulas Q, both (ii-a) and (ii-b) can be proved using bounded
model checking, as we discuss later. For readers not familiar with the ForSpec
language, the formula ALWAYS[0, N] Q means that Q holds in the first N + 1
states of a path. Similarly, [N + 1] Q means that Q holds in the N + 2-nd
state of a path.

Now, one can easily see that the requirements (ii-a) and (ii-b) in explicit
induction are the analogs of their counterparts in windowed induction. As
a consequence the explicit induction is sound and complete too (recall the
loopfreeness default constraint). The major difference between explicit in-
duction and implicit induction is that the induction is no longer an internal
algorithm inside the model checker. Rather, the induction scheme becomes an
integral part of the specification, where it can be easily controlled by the user,
using the expressiveness of the ForSpec specification language. This combines
the qualities of windowed induction with the ability to prove properties that
are more complex than simple invariants.

2 Tool Issues

This section examines the tool support necessary to implement the induction
checks (ii-a) and (ii-b) described in Subsection 1.4. Note first that (ii-a) comes
down to checking the assertion ALWAYS Q until bound N (see discussion below
for the impact of formula depth on the bound). This is a plain bounded model
checking problem.

Similarly (ii-b) can be reduced to performing bounded model checking for
the assertion ALWAYS Q with bound exactly N+1 (again, see discussion below),
with the assumption ALWAYS[0, N] Q, on an uninitialized version of M . This
means that the tool performs bounded model checking at bound exactly N +1
on a model that is formed by composing three smaller models:

• the uninitialized model uninit(M) = (S, S, T), derived from the original
model M = (S, S0, T),

• the initialized automaton of the assertion ALWAYS Q,

• the initialized automaton of the assumption ALWAYS[0, N] Q.

While the model M has to be uninitialized for the induction to be sound, the
two automata compiled by ForSpec have to be initialized as in a regular run.
For instance, the counter used in the [0, N] time window of the assumption
needs to start from 0, otherwise our check does not implement correctly the
inductive step.

To sum up, we have reduced (ii-b) to another instance of bounded model
checking where the property ALWAYS Q is checked exactly at bound N + 1,
and the initial constraints are built selectively only from the two ForSpec
automata, but not from the model M itself, or from other ForSpec properties.

13

Armoni et al

To solve this last issue, we offer to the user a new ForSpec keyword,
INDUCTION HYPOTHESIS, that he can use to mark the assumption ALWAYS[0, N] Q.
This way, one can distinguish between assumptions that strengthen the induc-
tion proof and regular assumptions that specify the interface with neighbor
RTL blocks. Based on the new keyword, the ForSpec compiler marks every
one of the automata it generates as an assertion, assumption, or induction
hypothesis. This information is passed to the model checker that makes sure
to use only the initial constraints from the assertion and the induction hy-
pothesis.

Finally, note that the bounds N and N+1 used in the two checks above are
appropriate for the case where Q is a combinational property. We mentioned
earlier that P (and hence Q) can be a bounded safety property. In this case,
the bounds used depend on the length of the time windows employed in P .
Usually, we end up choosing an offset k, such that the induction base (ii-a) is
checked at bound N + k, while the induction step (ii-b) is checked at bound
N + k + 1.

3 Usage Methodology

In this section we cover our methodology for working with explicit induc-
tion. From a usage point of view, there are three primary differences between
explicit induction and implicit induction:

• The user must write the induction hypothesis explicitly, where the implicit
induction builds it automatically from the assertions.

• The user must supply a window size in the explicit induction, while the
implicit induction searches for a working induction window size by trying
increasingly larger sizes.

• In implicit induction, the invariant is the result of automatic translation
of the property. Hence, the user may find it difficult to strengthen the
invariant (as explained above) and his most probable strategy would be to
increase the window size. In explicit induction, the strengthening can be
achieved by changing both the invariant and the window size.

The ForSpec directives needed to express explicit induction proofs are ASSERT,
ASSUME, and INDUCTION HYPOTHESIS. The keyword ASSUME is used to give
auxiliary assumptions (e.g., assumptions about inputs etc.). The explicit in-
duction technique does not depend on the usage of ForSpec, the ForSpec
constructs described below help expressing and maintaining the induction hy-
potheses.

We exploit the ”block template” construct in ForSpec to generate related
formulas for a given temporal property Q. For instance, we define a block
template mk induction specs(Q,N) that generates for a given property Q,
and a window N the induction hypothesis and the assertion necessary for the
proof:

14

Armoni et al

mk induction specs(Q, N) := {

upto cycle NN := ALWAYS[0, N] Q;

at all times := ALWAYS Q;

}
The explicit induction directives for Q would then look as follows in For-

Spec:

myspec := mk induction specs(Q,N); // instantiate the block

INDUCTION HYPOTHESIS myspec/upto cycle N ;

ASSERT myspec/at all times;

We then check these two directives in a model checking run of N +1 cycles.
Not only does the block template give us a compact notation, it also keeps the
low level formulas denoting assertions and inductive hypotheses synchronized.
They refer to the same property Q and the same bound N , which prevents
false positives.

In some cases it is convenient to use a different window size for different in-
duction hypotheses. This provides useful insight into the pipeline/logic depth
that each property depends on, and also helps select minimal sufficient model
checker bounds to control complexity. It is a strength of this methodology that
it is flexible enough to use either independent or identical induction window
sizes for different specs.

For any property that can be proved inductively, there will be some in-
duction window size for which it and all larger window sizes yield a successful
proof, and all smaller window sizes fail with a counterexample in the formal
model. Initially it is not known what window size is needed, so starting with
larger window sizes can be beneficial. On the other hand, shorter window sizes
find counterexamples more quickly, and shorter counterexamples are easier to
debug.

As a general rule, we estimate an induction window size N that might
work and try to prove the property Q. If we get a failure, we examine the
counterexample. If the counterexample looks like it could be due to out-of-
sync initialized pipelines, the induction window size needs to be increased. If
the counterexample looks like it is caused by some state in the formal model
that should not be reached in the actual circuit, the inductive hypothesis prob-
ably needs strengthening. The strengthened hypothesis typically adds a new
constraint that forbids some problematic state combination that contributes
to the counterexample.

Assertions that depend on simple pipelines demonstrate the advantage of
windowed induction over “depipelining”, i.e., of turning a windowed induction
hypothesis into a larger invariant for simple induction. Where a windowed
induction hypothesis can simply reference values of interest at the ends of

15

Armoni et al

the pipelines, a simple induction invariant must explicitly express a constraint
at every pipeline stage. When the logic driving the assertion to prove is
more complex than simple pipelines, the effort and cost to construct a simple
induction invariant is much higher.

This methodology also allows an intermediate approach between pure sim-
ple induction and long induction windows. For simple pipelines amenable
to depipelining, one can partition the pipeline into two (or more) pieces of
roughly equal length, and express invariants at just the partition points and
end. For very long pipelines this can roughly halve the required induction
window size with only a small depipelining cost in invariant construction. It
is a strength of any windowed induction technique, including ours, that this
trade off is available.

4 Application to the Lock Protocol in the PentiumTM4
Processor

The lock protocol is used in the PentiumTM4 to allow different threads to
execute atomic operations on several shared resources. The lock protocol is
important to verify because it interacts subtly with several other microarchi-
tectural features, making its functional correctness crucial. The lock protocol
interacts with the cache coherence protocol, as well as with several other per-
formance optimizations.

One basic requirement for such a protocol is mutual exclusion: no resource
can be locked by two threads at once. This property is expressed by a ForSpec
formula of the form ALWAYS a TRIGGERS b[k], where a and b are certain signals
of the design and k is an integer. Note that this property is bounded. Using
bounded model checking this property was proved on all traces of up to 50
cycles. Given the importance of this property, it was necessary to get a full
unbounded proof and we used explicit induction for that purpose.

When trying to prove the mutual exclusion property, we quickly get in-
duction failures. The model checker provides a witness trace for which the
inductive step does not hold. Usually this is due to starting in states that are
unreachable in the real model. For instance, the control part of the protocol
is modeled as a finite state machine. Some induction failures are traces that
include concurrent occurrence of certain events that cannot actually happen
together in the real model. Adding a simple induction hypothesis eliminates
such trivial failures.

Developing the inductive proof is therefore an iterative process, where we
keep strengthening the induction hypothesis based on the failures of previous
attempts to establish induction. Overall, we had to add about twenty con-
straints before the hypothesis was sufficiently strong to establish induction.
The window size of the inductive proofs differed from property to property.
Only three properties were provable with a window size of one cycle. All the
other properties were proved with a window size of six to twelve cycles.

16

Armoni et al

The model we verified is quite large, containing about 12,000 state ele-
ments. This is considerably beyond the capacity (a few hundred state ele-
ments) of BDD-based model checkers. The verification effort for the proved
properties described here took three to six person-months. Most induction-
step runs completed within 20 minutes, checking 36 steps, using under 600M
of memory. All induction-step runs completed within 3 hours, checking 48
steps, using under 1G memory.

5 Similar Approaches to Induction

Two potential alternatives invite a comparison with our approach. The most
direct comparison is with the implicit induction based on [13]. This approach,
as currently implemented in Thunder is incapable of inductively proving most
temporal properties written in ForSpec, so no direct comparison is possible.
We explained earlier the reasons for the failure of implicit induction for tem-
poral properties. While the capacity problem cannot be eliminated by us-
ing a different compilation scheme, we believe that it can be alleviated. For
example, were we to compile the properties into deterministic automata, the
counterexample traces for the induction step (ii-b) would be more constrained,
reducing the required window size N . This is a topic of further research. Even
if that technology becomes available, it is possible that for very large models
our approach would still be preferable to implicit induction, because of the
insight into induction window lengths our approach can give on a property by
property basis.

Another comparison with our approach is induction using STE instead
of SAT as the bounded model checker. Induction with STE [12] has been
used successfully at Intel for several years, particularly for datapath logic and
floating-point property proofs. Sajid and Kaviola pioneered the extension of
STE induction to a moderately complex control logic property [11]. Direct
comparisons between the STE and SAT induction approaches are not easy
because of tool differences. Our 12000 state element model, even reduced to
the critical latches, is likely more than twice the size of the 3000 state element
model in [11]. Perhaps the largest distinction between SAT induction and
STE induction is the apparent difficulty or impracticality of doing windowed
induction (vs. simple induction) with STE. Windowed induction using STE is
theoretically possible, but it has problems with rapid variable blowup and/or
antecedent conflicts. The work of [11] includes simple induction for exactly
this reason.

6 Results

The concepts presented here have been implemented in the formal verification
tool suite at Intel. Only minor modifications were required to the ForSpec
compiler and to Thunder, our SAT based model checker. The explicit in-

17

Armoni et al

duction approach has been successfully used in the DPG Formal Verification
Group. In particular, the most impressive application was the full verifica-
tion of the lock protocol described above. The size of the model,12000 state
elements, and the complexity of the protocol speak for themselves. But be-
yond the quantitative data, there is the impact of a new methodology that
can address verification problems that cannot be handled with the existing
technologies.

The use of windowed induction seems to be a critical factor in enabling
successful proofs of these properties. If it was necessary to depipeline our
windowed induction hypotheses into hypotheses sufficient for simple induction,
a reasonable estimate is that spec volume would increase by at least a factor
of 10, effort at least triple, and comprehensibility and maintainability would
be considerably reduced.

7 Summary

The methodology and tool support presented in this paper address the chal-
lenge of fully verifying complex temporal properties on large RTL designs. The
methodology advocated here is interactive development of inductive proofs.
There is much ongoing research for automating induction proofs, but no sat-
isfactory technique has been found, even for combinational properties. We
believe that for proofs of the complexity encountered in our work, user guid-
ance is needed for finding the correct induction invariants.

At the core of our approach is the explicit induction, a new induction
scheme targeted to temporal properties, and to interactive development of in-
ductive proofs. The case of temporal properties was not adequately addressed
by previously known methods. The innovative idea in the explicit induction
is to make the induction scheme an explicit part of the specification, where it
can be easily controlled, using a highly expressive language like ForSpec.

The current experience shows that the explicit induction is capable of
handling verification problems that were previously intractable with all the
existing technologies. To further push this approach, our future work will
focus on automating some of the manual tasks, for instance by having the
tool suggest candidates for induction invariants.

References

[1] Beer, I., S. Ben-David, C. Eisner and A. Landver, RuleBase: An industry-
oriented formal verification tool, in: Proc. 33rd Conference on Design
Automation (1996), pp. 655–660.

[2] Biere, A., A. Cimatti, E. Clarke, M. Fujita and Y. Zhu, Symbolic model checking
using SAT procedures instead of BDDs, in: Proc. 36th Design Automation
Conference (1999), pp. 317–320.

18

Armoni et al

[3] Biere, A., E. Clarke, R. Raimi and Y. Zhu, Verifying safety properties of a
PowerPC[tm] microprocessor using symbolic model checking without BDDs,
in: Computer Aided Verification, Proc. 11th International Conference, Lecture
Notes in Computer Science 1633 (1999), pp. 172–183.

[4] Bryant, R., Graph-based algorithms for boolean-function manipulation, IEEE
Trans. on Computers C-35 (1986).

[5] Claessen, K., Induction and state machines (1999), unpublished.

[6] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.

[7] Copty, F., L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella and
M. Vardi, Benefits of bounded model checking at an industrial setting, in:
Computer Aided Verification, Proc. 13th International Conference, Lecture
Notes in Computer Science 2102 (2001), pp. 436–453.

[8] Kupferman, O. and M. Vardi, Model checking of safety properties, Formal
methods in System Design 19 (2001), pp. 291–314.

[9] Manna, Z. and A. Pnueli, “The Temporal Logic of Reactive and Concurrent
Systems: Safety,” Springer-Verlag, New York, 1995.

[10] McMillan, K., “Symbolic Model Checking,” Kluwer Academic Publishers, 1993.

[11] Sajid, K. and R. Kaviola, Verification of pentiumTM4 BUS recycle logic
using symbolic simulation and induction, in: Intel Design Test and Technology
Conference, 2003.

[12] Seger, C. and R. Bryant, Formal verification by symbolic evaluation of partially-
ordered trajectories, Formal Methods in System Design 6 (1995), pp. 147–189.

[13] Sheeran, M., S. Singh and G. Stalmarck, Check safety properties using induction
and a SAT-solver, in: Proc. 3rd Conference on Formal Methods in Computer-
Aided Design, Lecture Notes in Computer Science 1954 (2000), pp. 108–125.

[14] Vardi, M. and P. Wolper, Reasoning about infinite computations, Information
and Computation 115 (1994), pp. 1–37.

19

20

BMC 2004 Preliminary Version

Verifying Industrial Hybrid Systems
with MathSAT 1

Gilles Audemard a, Marco Bozzano b, Alessandro Cimatti b

and Roberto Sebastiani c,2

a Centre de Recherche en Informatique de Lens
IUT de Lens, Rue de l’université, SP16, F 62307 Lens Cedex

audemard@iut-lens.univ-artois.fr

b ITC-IRST,Via Sommarive 18, 38050 Povo, Trento, Italy
{bozzano,cimatti}@itc.it

c DIT, Università di Trento, Via Sommarive 14, 38050 Povo, Trento, Italy
rseba@dit.unitn.it

Abstract

Industrial systems of practical relevance can be often characterized in terms of dis-
crete control variables and real-valued physical variables, and can therefore be mod-
eled as hybrid automata. Unfortunately, continuity of the physical behaviour over
time, or triangular constraints, must often be assumed, which yield an undecidable
class of hybrid automata.

In this paper, we propose a technique for bounded reachability of linear hybrid
automata, based on the reduction of a bounded reachability problem to a MathSAT

problem, i.e. satisfiability of a boolean combination of propositional variables and
mathematical constraints. The MathSAT solver can be used to check the existence
(or absence) of paths of bounded length.

The approach is very similar in spirit to SAT-based bounded model checking;
furthermore, the ability to reason directly about real variables gives computational
leverage over discretization-based methods. Despite the undecidability of the gen-
eral problem, the proposed method is able to provide valuable information on large
designs of practical relevance.

Key words: Formal Verification, Hybrid Systems, SAT

1 This work has been sponsored by the CALCULEMUS! IHP-RTN EC project, contract
code HPRN-CT-2000-00102, and has thus benefited of the financial contribution of the
Commission through the IHP programme. It has also been partly supported by ESACS,
an European sponsored project, contract no. G4RD-CT-2000-00361, and by a grant from
Intel Corporation.
2 Sponsored by a MIUR COFIN02 project, code 2002097822 003.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Audemard et al.

1 Introduction

Many systems and plants of industrial relevance (e.g., engines, turbines) are
defined in terms of discrete control variables and physical real-valued variables
(e.g., speed, pressure), and can be naturally modeled as hybrid automata: de-
pending on a discrete state (e.g., “nominal”, “increasing”), different equations
describe the behaviour of the physical variable (e.g., speed). Frequently, the
dynamics of physical variables is continuous: i.e., transitions from a discrete
state to another should not necessarily yield a discontinuity in the physical
dimension. For instance, in the transition from “increasing” to “decreasing”,
the velocity should not change its value (but only its derivative). Furthermore,
the evolution can depend on the comparison between the values of physical
variables. Unfortunately, either imposing continuity or allowing for compar-
isons between variables (also known as triangular constraints) result in a class
of hybrid automata where even reachability is undecidable [12]. Yet, it is very
important to be able to develop tools that allow to formally validate such
designs, that often implement critical functionalities (e.g., control systems for
avionics).

In this paper, we address the problem of verifying hybrid automata with
continuous variables and triangular constraints. We propose a formal verifica-
tion method for bounded reachability. The approach is based on the encoding
of a bounded reachability problem into a MathSAT problem, i.e. the problem
of checking the satisfiability of a boolean combination of propositional vari-
ables and mathematical constraints over real variables. The approach is made
practical by the use of the efficient MathSAT solver [1], that extends and inte-
grates state-of-the-art techniques for propositional satisfiability (SAT) with a
set of mathematical reasoners. The approach presented in this paper is largely
similar to bounded model checking [4], and enhances the method presented
in [3], limited to timed systems, to dealing with real variables with arbitrary
linear dynamics.

The proposed technique is clearly incomplete, and currently limited to the
case of linear dynamics. Despite these facts, however, it allows us to represent
and to analyze interesting systems from real-world applications [6,5], providing
useful information, especially oriented to debugging and goal-directed simula-
tion. An experimental analysis shows that our techniques is competitive with
state of the art verification tools such as HyTech, and with methods based on
the discretization of real variables.

Outline of the paper

The rest of the paper is structured as follows. In Section 2 we illustrate
a motivating example for our approach; in Section 3 we give a short and
informal introduction to our model of hybrid systems; in Section 4 we give a
brief overview of SAT-based bounded model checking and we discuss in more
detail our encoding of hybrid systems into MathSAT; in Section 5 we discuss

22

Audemard et al.

VALVE

Computer

Computer

GBX MEPTO

ATSM

UTIL

GBX MEPTO

ATSM

UTIL

GBX: Gearbox
ME: Main Engine
PTO: Power Take Off Shaft
UTIL: Utilities

ATSM: Air Turbine Starter Motor

Fig. 1. SPS schematic view

some experiments, and finally in Section 6 and 7 we discuss related work and
draw some conclusions.

2 A Motivating Example: The Secondary Power Sys-
tem

Throughout the paper, we use a running example to motivate and illustrate the
main concepts we present. Specifically, we discuss the modeling and analysis of
a real-world safety-critical system, namely the Secondary Power System (SPS).
It is an industrial case study which has been and is being investigated within
ESACS (Enhanced Safety Analysis for Complex Systems), a European-Union-
sponsored project in the avionics sector, whose goal is to define a methodology
to improve the safety analysis practice for complex systems development [6,5].

The SPS drives the hydraulic and electrical utilities of an aircraft. It is an
example of safety-critical system with embedded hardware and software com-
ponents. The hardware subsystems comprise (electro)-mechanical components
(e.g., control valves, relays, shafts, gearboxes, freewheels) and electronic trans-
ducers (e.g., speed and pressure sensors), whereas the software component is
given by embedded controllers (SPS computers).

The SPS drives the utilities of both the left and right hand side of the
aircraft. To ensure the basic safety requirement, i.e. no single failures shall
cause the total loss of the SPS utilities, the architecture of the system includes
two basic redundancies: there are two independent and perfectly symmetric
lines, whose purpose is to drive the left and the right hand side utilities,
respectively; for each side, the mechanical drive of the relevant utilities (normal
mode) is redounded by a pneumatic drive (cross-bleed mode) in case of failure
of one of the components in the mechanical line.

Figure 1 shows a simplified schematic view of the SPS. The SPS normal

23

Audemard et al.

'

&

$

%

'

&

$

%

'

&

$

%
'

&

$

%

'

&

$

%

b
b

b
b

b
b

b
b

grippage

flameout

sp me’=

sp me’=

sp me≥ sm1
sp me≤ sm2

sp me-k1(∆t)

sp me-k2(∆t)

sp me≥ sm3
sp me≤ sm2

sp me= sm3

sp me≤ sm2

sp me≥ sm4

sp me= sm4
sp me= sm4

speed sm4

speed sm3

sp me= sm3

no fail

Fig. 2. SPS: main engine automaton (ME)

operation consists in transmitting the mechanical power from the engines to
the relevant hydraulic and electrical generators. Specifically, the mechanical
power of the main engine (ME) is transmitted via the Power Take Off Shaft
(PTO) to a gearbox (GBX) which feeds the utilities. A component may fail
due to abnormal operational conditions or ruptures. As an example, flame-
out and grippage are two possible failure modes of the main engine. To ensure
safety of in-flight operation, in case of an engine failure the SPS computers au-
tomatically initiate a cross-bleed procedure consisting in driving the hydraulic
and electrical generators by means of an air turbine motor (ATSM), using
bled air from a valve (VALVE), which is in turn fed by the mechanical power
coming from the opposite engine. Correct functioning of the cross-bleed pro-
cedure is an example of one safety requirement of the SPS. Some experimental
results about this will be presented in Section 5.

3 Modeling Hybrid Automata

In this section we briefly present and exemplify our model of hybrid systems.
The model is inspired by the linear and rectangular hybrid automata models
presented in [10,11]. Informally, a hybrid system can be seen as the parallel
composition of a collection of hybrid automata, which can communicate ei-
ther by explicit synchronization on some channel, or implicitly by means of
shared variables. Each automaton models both discrete events (e.g., failure of
a component) and continuous activities of analog variables (e.g., time, com-
ponent speed). At any given instant of time, the state of a hybrid automaton
is defined by a control location (discrete state) and the values of all the ana-
log variables (continuous state). The state can change either because of an
instantaneous discrete transition, which changes the control location and may
also affect the values of the analog variables (e.g., re-initialization is possible)
or because of a time elapse (continuous) transition, which changes only the
values of the analog variables according to some specified law. Hybrid systems
can be seen as an extension of the timed systems model of [3], in which the
only analog variables are clocks. In the following, by elementary linear ex-

24

Audemard et al.

'

&

$

%

'

&

$

%
'

&

$

%

'

&

$

%

open?

close?opened closed

stuck open stuck closed

p valve=0

p valve=0

p valve≥ p1
p valve≤ p2

p valve≥ p1

p valve≤ p2

Fig. 3. SPS: valve automaton (VALVE)

pression we mean an equality and/or (non-strict) inequality over linear terms
(i.e., linear combinations of real-valued variables with rational coefficients).

Figure 2 and 3 depict two examples of hybrid automata, modeling the
main engine (ME) and the valve (VALVE) components of the SPS. A hybrid
automaton consists of the following components:

Locations A finite set of locations, encoding the discrete states of the hybrid
automaton. The automaton in Figure 2 has five locations, drawn as circles,
which model the discrete state of the ME of the SPS. Location no fail mod-
els the default behaviour of the engine; locations grippage and flameout
model two different faulty states; locations speed sm4 and speed sm3 model
states in which the speed of the engine has the constant value sm4 and sm3.

Analog Variables A finite vector of real-valued data variables (w1, . . . , wn).
The sp me variable in Figure 2 encodes the speed of the ME. Clock variables
of [3] may be seen as a particular case of real-valued variables. Primed
variables (e.g., sp me′) are used to denote the value of real-valued variables
after execution of a transition.

Initial and Invariant Conditions Every location of a hybrid automaton
may be declared as initial (meaning that it is a legal initial state of the sys-
tem). Every location may be equipped with invariants on the real-valued
variables, expressed by means of a set of elementary linear expressions
{ψ1, ..., ψh} over the variables w1, . . . , wn. Location no fail is the initial
location of the ME automaton (Figure 2), and is equipped with an invari-
ant enforcing the sp me variable to stay between the constant values sm1

and sm2. The invariant in location speed sm3 forces sp me to assume con-
stantly the value sm3.

Channels A finite set of channels is used for discrete communication between
automata. A channel c may be used as an input (notation c?) or an output
(notation c!) channel for synchronizing different automata. For instance,
the pressure valve automaton of Figure 3 uses two different input channels
called open? and close?. The intended semantics is that the pressure valve

25

Audemard et al.

automaton awaits for incoming commands (requesting either opening of
closing of the valve) coming from the relevant SPS computer controller.

Transitions A finite set of discrete transitions encodes the discrete evolu-
tion of the automaton. Each transition (also called switch) has a source
and target location, and may be equipped with a set {γ1, ..., γk} of guards
(pre-conditions) and a set {θ1, ..., θm} of jump conditions (post-conditions)
on the real-valued variables. A guard is an elementary linear expression
over w1, . . . , wn; a jump condition is an elementary linear expression over
w1, . . . , wn, w

′
1, . . . , w

′
n. In Figure 2, the transition from flameout to speed sm3

has a guard sp me = sm3 and no jump condition. By convention, the
absence of jump conditions on a transition forces real-valued variables to
preserve their value (e.g., in the previous example sp me′ = sp me implic-
itly holds). Transitions may be equipped with one or more optional labels
denoting the channels on which the automaton must synchronize. For in-
stance, two transitions in Figure 3 are labeled with the input channels open?
and close?

Variable Dynamics Variable dynamics describe how the real-valued vari-
ables change in presence of a time elapse transition, and are expressed, for
each location, as a set {Ψ1, . . . ,Ψk} of elementary linear expressions over
w1, . . . , wn, w′

1, . . . , w
′
n, As an example, in Figure 2 the sp me variable in lo-

cation grippage varies according to the law sp me′ = sp me−k1(∆t) (where
k1 is a constant), that is, the speed decreases linearly (proportionally to the
time delay) with first derivative equal to k1. The expression ∆t, encoding
the time delay, will be explained in Section 4.2.

The hybrid automata presented here do not fall into the rectangular automata
class described in [10], since re-initialization of variables is not enforced, and
triangular constraints are possible. As a consequence, even the problem of
reachability for this class of automata is undecidable [12].

4 Bounded Model Checking for Hybrid Systems

In this section we give a very short overview of SAT based model checking, and
we discuss the encoding of our model of hybrid systems, informally described
in Section 3, into MathSAT.

4.1 SAT Based Bounded Model Checking

Bounded Model Checking (BMC) is a recent approach to symbolic model
checking [4]. Given a Kripke structure M , and an LTL formula f , the idea
is to check whether f is true in M by looking for a counterexample (i.e., a
witness to the violation of f) that can be presented within a bound of k steps.
Given k, the problem is reduced to the satisfiability of a propositional formula
[[M,¬f]]k. For instance, for a property of the form f := Gp(s), where p(s) is

26

Audemard et al.

a boolean formula in the boolean variables s, then

[[M,¬f]]k = I(s(0)) ∧
k∧

i=0

C(s(i)) ∧
k−1∧
i=0

R(s(i), s(i+1)) ∧
k∨

i=0

¬p(s(i)),

where I(s(0)) is a representation of the initial conditions, C(s(i)) is a representa-
tion of the invariant conditions at step i, and R(s(i), s(i+1)) is a representation
of the transition relation from step i to step i+ 1. If [[M,¬f]]k is satisfiable,
the propositional model provides a counterexaple of k steps to f . If [[M,¬f]]k
is unsatisfiable, then nothing can be said about the existence of counterexam-
ples to M |= f with higher bound. The typical technique is to generate and
solve [[M,¬f]]k for increasing values of k, until either a counter-example is
found, or a given time-out is reached.

BMC is being increasingly accepted as practical technique, effective in
particular in the process of falsification, i.e. bug finding. The technique relies
on the use of efficient SAT solvers (e.g., based on DPLL procedures [8]) for
checking the propositional satisfiability of [[M,¬f]]k. As shown in [7], BMC
avoids the blow-up in memory that can occur with model checking based on
Binary Decision Diagrams, and is therefore able to tackle much larger circuits.

4.2 The encoding

Our approach to the verification of hybrid automata is a generalization of
BMC for timed systems, as proposed in [3]. The approach reduces a BMC
problem for timed systems to the problem of deciding the satisfiability of
math-formulas, i.e. boolean combinations of boolean variables and linear
(in)equalities over real variables, representing absolute time and clocks. The
resulting math-formulas are tackled with MathSAT [2,1], a solver combining
an efficient DPLL procedure with mathematical constraint solvers of increasing
deductive power.

In the encoding for timed automata, boolean variables are used to encode
the discrete part of the system, while linear constraints on real variables en-
code the timed part. In particular, each location l is represented by a bitwise
encoding l, so that li holds if and only if the system is in the location li;
each synchronization event (channel, shared variable) is represented by a cor-
responding boolean variables; each switch is represented by a single boolean
variable (say, T) which holds if and only if the system executes the correspond-
ing switch; a boolean variable Tδ, representing a continuous transition, holds
if and only if time elapses by some δ > 0; finally, for each process Pi, we intro-
duce a boolean variable T i

null, that holds if and only if process Pi does nothing.
In order to deal with time, we introduce a real valued variable t representing
absolute time, and, for each clock x, a real valued variable ox representing
the difference with respect to absolute time. All mathematical constraints
required in the encoding are in the form v1 − v2 ./ c, ./∈ {≤,≥,=, >,<} v1

27

Audemard et al.

and v2 being real variables representing either absolute time or clock values.
The reader can refer to [3] for details.

We tackle the case of hybrid automata by considering that it is an extension
of the case of timed automata. The encoding for the timed case is extended
by introducing a set of real variables ωi’s, representing physical entities. To
simplify the notation, in the following we write: “∆t” for the difference t′ − t
between absolute time in the next and in the current state; “∆ω” for “ω′−ω”,
so that, e.g., we write “c ·∆t...” for “c · t′ − c · t...”; “∆ω = 0” for “ω′ = ω”,
“∆ω ≤ ...” for “ω′ ≤ ω + ...”. We also write “(w ∈ [t1, t2])” for “(w ≥
t1)∧ (w ≤ t2)”, where t1 and t2 are linear terms. If ψ is a formula, ψ′ denotes
the formula obtained by substituting in ψ each propositional variable pj with
p′j, and each real variable vi with v′i.

4.2.1 Initial conditions I(s(0)).

At step 0, in an initial location l, ω can either:

• be set to a given initial value c0. If so, we represent this fact by the axiom:

l(0) → (ω(0) = c0); (1)

• be set nondeterministically to an initial value within a closed interval [a0, b0],
a0, b0 ∈ [−∞,∞]. 3 If so, we represent this fact by the axiom:

l(0) → (ω(0) ∈ [a0, b0]). (2)

4.2.2 Invariant conditions C(s).

For each location l equipped with the set {ψ1, ..., ψh} of invariants on real
valued variables, we include the axiom

l→
∧
j

ψj. (3)

4.2.3 Transition relation R(s, s′).

For each switch T equipped with a set {γ1, ..., γk} of guards and with a set
{θ1, ..., θm} of jump conditions on the real valued variables ωi’s and t, we
include the axioms

T →
∧
j

γj, (4)

T →
∧
j

θ′j (5)

3 “a0 = −∞” and “b0 = −∞” mean that there is no lower bound and no upper bound for
ω respectively.

28

Audemard et al.

respectively. For each physical variable ω that is not interested by a jump
condition of switch T , and must therefore keep its value, we add the axiom:

T → (∆ω = 0). (6)

When process i does nothing, in correspondence of T i
null, each physical

variable ω maintains its value:

T i
null → (∆ω = 0). (7)

When time elapses in a location l, physical variables ωi evolve according to
the set of variable dynamics {Ψ1, . . . ,Ψk} associated with l. For each location,
we add the axiom

(l ∧ Tδ) →
∧
i

Ψi (8)

Different forms of variable dynamics are possible:

• ω maintains its value under a dynamic of the form:

(l ∧ Tδ) → (∆ω = 0); (9)

• ω may evolve deterministically according to a linear function:

(l ∧ Tδ) → (∆ω = c ·∆t) (10)

c being a constant.

• ω may evolve nondeterministically within two linear functions:

ω′ ∈ [b1ω + c1 ·∆t− a1, b2ω + c2 ·∆t+ a2], (11)

a1, a2 ≥ 0, b1, b2 ∈ {0, 1}, c1, c2 ∈ (−∞,∞). (12)

If a1 = a2 = 0, then (11) encodes a triangular constraint. If b1 = b2 = 0
and c1 = c2 = 0, then (11) encodes a rectangular constraint.

• in the general case, the evolution of the variables can be nondeterministic
within the space described by the linear inequalities {Ψ1, . . . ,Ψk}, as in
equation 8.

The encoding of properties basically follows the encoding in [3]. Our ap-
proach is bounded complete, in the following sense: if there exists a trace of
length k, then the encoding of length k is satisfiable, and can be found by
running MathSAT on it. The undecidability of the class of hybrid automata
we are dealing with tells us that it is in general impossible to decide if a
counterexample might be found with bigger k, or if the problem is unsolvable.

5 Experimental Evaluation

We evaluated the potential of the approach by tackling an example of hybrid
systems of industrial relevance, i.e. the model of the SPS. The bounded reach-
ability method described in Section 4 can be used both for model debugging

29

Audemard et al.

Time T0 :

Locations : no fail, gbx pto driven, atsm idle, sps ok, closed
Analog Variables : sp me = sm2, sp gbx = sg2, sp atsm = 0
Discrete Trans : me grippage
Synchronizations : none

Time T1 :

Locations : grippage, gbx pto driven, atsm idle, sps ok, closed
Analog Variables : sp me = sm5, sp gbx = sg3, sp atsm = 0
Discrete Trans : atsm inc a, sps inc a, valve open
Synchronizations : SPS and ATSM on inc a, SPS and VALVE on open

Time T2 :

Locations : grippage, gbx pto driven, atsm inc a, sps inc a, open
Analog Variables : sp me = sm6, sp gbx = sg4, sp atsm = sa2

Discrete Trans : atsm inc a inc b, sps inc a inc b
Synchronizations : SPS and ATSM on inc b

Time T3 :

Locations : grippage, gbx pto driven, atsm inc b, sps inc b, open
Analog Variables : sp me = sm7, sp gbx = sg1, sp atsm = sa3

Fig. 4. An example of MathSAT trace

(i.e., bug hunting) and for simulation of hybrid systems. In the following we
provide some hints about the use of our methodology by showing some experi-
mental results. For illustration purposes, we will discuss a simplified one-sided
model of the SPS case study, including one instance of the ME, GBX, VALVE,
ATSM, PTO and SPS computer components of Figure 1. Under this abstrac-
tion, the analogous components of the opposite side of the system are assumed
to be correctly working. An example of property to be checked is given by
(the negation of) the following formula:

(! GBX.loc broken & ! GBX.loc grippage & ! VALVE.loc stuck closed &

! ATSM.loc broken & ! PTO.loc fused) U GBX.sp gbx <= sg1 (P1)

This is a typical safety property expressed via the LTL until operator.
The intended semantics is whether there exists a path such that no failures of
the GBX, VALVE, ATSM and PTO components happen along the path, and
finally the speed of the gearbox (GBX component) drops below the constant
value sg1. The negation of the above property can be seen as a safety property
to be verified by the system (i.e., in presence of failures due only to the main
engine, the gearbox speed cannot drop below sg1). The rationale behind this
property is that the cross-bleed procedure initiated by the SPS computer (see
Section 2) is able to recover from an engine failure by using power coming
from the opposite engine (which is assumed to be working in this one-sided
model).

30

Audemard et al.

The property may or may not hold depending on the value chosen for the
constant sg1. In particular, if the value chosen for sg1 exceeds a given thresh-
old, the property is falsified by MathSAT (this means that the cross-bleed
procedure is not able to prevent the gearbox speed to drop below that par-
ticular value). In this case, MathSAT generates an output trace showing an
execution of the system which leads to the violation. The trace includes infor-
mation on the discrete transitions and the time elapse transitions taken by the
automata, the exact time delays and time points at which the transitions take
place, and the synchronization channels between different automata. If the
value of the constant sg1 is chosen below a suitable threshold, property (P1)
holds, and therefore MathSAT correctly does not find any counterexample.
Regarding the choice of the constant sg1, see the discussion in Section 7.

The trace generated by MathSAT is schematically shown in Figure 4.
For each time instant, the trace shows the current locations of the ME,
GBX, ATSM, and VALVE automata, the current values of the sp me, sp gbx,
sp atsm analog variables, the discrete transitions which take place at that time
instant, and the synchronizations channels. For a better understanding of the
trace, in Figure 5 we show a simplified version of the SPS computer automaton
(only the part relevant to the simulation is shown). Notice that this automaton
shows as example of triangular constraint, i.e. sp gbx− sp atsm ≤ c1 [≥ c1],
and of communication with shared variables (variables sp gbx and sp atsm
model, respectively, the speed of the GBX and ATSM components).

The simulation begins at time T0, when an engine grippage takes place.
Both the engine and the gearbox speeds begin to decrease. At time T1, the
SPS computer detects a gearbox low speed condition, and therefore issues the
opening of the valve (the VALVE and SPS computer automata synchronize
on the open channel); as a result, the ATSM begins to increase its speed (SPS
and ATSM synchronize on the inc a channel). At time T2, the SPS computer
issues a change in the ATSM dynamics (SPS and ATSM synchronize on inc b).
The simulation stops at time T3, when the gearbox speed reaches the value
sg1.

The same approach can be used for guided simulation. To give an example,
we consider the following formula:

(! ME.loc eng flameout & ! GBX.loc broken & ! GBX.loc grippage &

! VALVE.loc stuck closed & ! ATSM.loc broken & ! PTO.loc fused)

U GBX.sp atsm >= sa1 (P2)

It is a variation of the previous reachability property, here we require that
at the end of the path the speed of the ATSM component is greater than the
constant value sa1. Furthermore, by explicitly ruling out an engine flameout,
we limit the possible failure modes of the main engine to grippage. As ex-
plained in Section 2, in presence of an engine failure, the ATSM component is
responsible of carrying out the cross-bleed procedure, which consists in driv-

31

Audemard et al.

'

&

$

%

'

&

$

%

'

&

$

%
sps ok

open!

sp gbx-sp atsmsp gbx ≥ sg2

≥ c1

sp gbx - sp atsm ≤ c1sp gbx ≤ sg2

sps inc a sps inc b

inc a! inc b!

Fig. 5. SPS computer automaton (fragment)

Property P1 Property P2
k Time Σ Time Mem. Result Time Σ Time Mem. Result
2 0.06 0.06 5.6 UNSAT 0.10 0.10 5.5 UNSAT

3 0.20 0.26 6.2 UNSAT 0.16 0.26 6.0 UNSAT

4 0.53 0.79 7.1 UNSAT 0.30 0.56 6.8 UNSAT

5 1.81 2.60 7.7 UNSAT 0.49 1.05 7.5 UNSAT

6 6.49 9.09 8.4 UNSAT 0.84 1.89 8.2 UNSAT

7 4.53 13.62 8.9 SAT 1.53 3.42 8.8 UNSAT

8 2.88 6.30 9.4 UNSAT

9 4.94 11.24 10.0 UNSAT

10 8.69 19.93 10.7 UNSAT

11 8.88 28.81 11.3 SAT

Table 1
Experimental results (Time in seconds, Memory in MB)

ing the gearbox with the pneumatic power coming from the valve. Correct
functioning of the cross-bleed procedure requires the ATSM (which is initially
idle) to start and bring up the gearbox speed. Using MathSAT, we are able
to reconstruct a trace corresponding to the above property, which illustrates
how the cross-bleed procedure is carried out. It is possible to tune the above
simulation and perform further ones by adding further constraints on the trace
to look for.

The performance of our method on the examples described above are re-
ported in Table 1. For each problem length, we show computation time, total
computation time up to that problem instance, and memory usage. Com-
putation times include both parse and search time. The results have been
obtained on a Pentium III machine 1.0 GHz, with 256 Mb memory, running
Linux Redhat 7.1. The minimal length trace generated by MathSat for P1
has length 7, whereas the one generated for P2 has length 11.

We also attempted a comparison with HyTech [11], a state-of-the-art tool
for the analysis of hybrid systems. Differently from our approach, HyTech

is based on the calculation of the reachable state space, and is therefore not
limited to the bounded case. In principle, HyTech may not terminate when
tackling an undecidable class of automata (as in the case of the SPS).

We encoded the models of the SPS, as closely as possible, into HyTech.
Overflow errors in the underlying polyhedral libraries made it impossible for
HyTech to compute the space of reachable configurations beyond the 5th iter-
ation. We also attempted to use the -o1 and -o2 options, that are sometimes
able to limit such problems, but in our case obtained no effect. From the

32

Audemard et al.

point of view of performance, the time required by HyTech to reach the 5th
iteration was 32 seconds, when run without options; the use of -o1 and -o2

required 50 and 86 seconds, respectively. The analysis is very preliminary, but
seems to suggest that there is a clear potential in our techniques.

6 Related Work

The work presented in this paper builds upon our previous work on timed
systems [3]. In [3], we showed how to reduce the problem of bounded model
checking for timed systems to the satisfiability of a math-formula, which can
then be checked by a SAT-solver. We also presented the MathSat solver [2,1],
an efficient SAT-solver which is based on the integration of SAT techniques [4]
with some specialized decision procedures for linear mathematical constraints.
A work related to ours, but still limited to timed systems, is [17]. In the present
work, as explained in Section 4.2, we have extended the encoding in order to
deal with hybrid systems.

Our model for hybrid systems is closely related with the linear and rectan-
gular hybrid automata models presented in [10,13], the main difference being in
the definition of the dynamics of the real-valued variables. In [10], the dynam-
ics (called flow conditions) of the real-valued variables are defined by means
of linear constraints over the first derivatives of such variables, whereas in our
model dynamics can be characterized by means of linear functions of the time
delay, which directly constrain the behaviour of the variables. This approach
is analogous to restricting the flows of the real-valued variables to stay inside
a rectangular region, as in the rectangular automata model of [10]. In fact, as
noted in [12], under the hypothesis of working with convex linear constraints,
requiring the flow to be inside a rectangular region amounts to requiring the
existence of a smooth function inside the corresponding piecewise-linear enve-
lope.

The model of hybrid I/O automata presented in [14] is general enough
to accommodate our model of hybrid automata. Discrete and continuous
communication are achieved by means of, respectively, shared actions and
shared variables. However, discrete events are not allowed to change the value
of shared variables, as in our case.

As an alternative approach to the verification of hybrid systems, we cite
[15], where the CheckMate tool is presented. CheckMate performs verification
of hybrid systems using finite-state approximations called quotient transition
systems. Although this approach is not restricted to linear hybrid automata,
the verification analysis may be inconclusive, in which case a refinement of the
current approximation may be attempted. An analysis of the current trends
in model checking of hybrid systems can be found in [16].

This line of research has been carried on inside the ESACS [6] project
(see http://www.esacs.org), an European-Union-sponsored project whose
main goals are to define a methodology and a shared environment to improve

33

Audemard et al.

the safety analysis practice for complex systems development. The Secondary
Power System [5] is one of the case-studies investigated in ESACS. One of the
main motivations for our research is the realization that the use of traditional
finite-state model checking, based on the discretization of real variables, has a
very hard time in dealing with the complexity of hybrid systems [5]. In fact,
the results may depend on the step of discretization, and the state explosion
problem makes such an approach infeasible in practice.

7 Conclusions and Future Work

In this paper, we have addressed the problem of verification of industrial
systems that are naturally modeled as linear hybrid automata. The approach
is an enhancement of the bounded model checking approach for timed systems
proposed in [3] to the case of linear hybrid automata. Efficiency is gained
by the use of the MathSAT solver. The main limitations are given by the
undecidability of the analyzed class, and the constraints on the linearity of
real variables dynamics. Despite this, however, the approach allows us to
model and analyze systems of practical relevance, that HyTech is currently
unable to deal with.

In the future, we will provide a more thorough experimental evaluation,
by enlarging both the set of tools we compare with (some of them are cited
in Section 6), and the set of case studies to analyze. Regarding the SPS ex-
ample, we plan to experiment with more complex models, at different levels
of granularity and abstraction (e.g., a two-sided model of the system). We
will investigate how to optimize the MathSAT solver on these specific prob-
lems (e.g., by constraining the splitting variables in the style of [9,18]), and
will experiment with different encodings. As a first step towards bridging
the gap between bounded model checking and unbounded verification, induc-
tive reasoning techniques to prove invariant properties will be investigated.
An important point we plan to address in the near future is concerned with
parametric analysis, which is currently supported in HyTech. To exemplify,
parametric analysis would allow us to replace the constant value sg1 in prop-
erty (P1) (see Section 5) with a parameter α in order to find out constraints
on the parameter for which the property does or does not hold. Finally, in the
future we plan to extend the framework to properties expressed in full LTL.

References

[1] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korni lowicz,
and Roberto Sebastiani. A SAT Based Approach for Solving Formulas over
Boolean and Linear Mathematical Propositions. In Andrei Voronkov, editor,
CADE-18: Conference on Automated Deduction, volume 2392 of LNAI, pages
195–210, Copenhagen, Denmark, 2002. Springer.

34

Audemard et al.

[2] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Korni lowicz,
and Roberto Sebastiani. Integrating Boolean and Mathematical Solving:
Foundations, Basic Algorithms and Requirements. In Jacques Calmet, Bernard
Benhamou, Olga Caprotti, Laurent Henocque, and Volker Sorge, editors,
CALCULEMUS-2002: Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning, volume 2385 of LNAI, pages 231–245, Marseille,
France, 2002. Springer.

[3] Gilles Audemard, Alessandro Cimatti, Artur Korni lowicz, and Roberto
Sebastiani. Bounded Model Checking for Timed Systems. In Doron A. Peled
and Moshe Y. Vardi, editors, FORTE 2002: Conference on Formal Techniques
for Networked and Distributed Systems, volume 2529 of LNCS, Houston, Texas,
November 2002. Springer.

[4] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In R. Cleaveland, editor, Proc. 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS’99),
volume 1579 of LNCS, pages 193–207. Springer-Verlag, 1999.

[5] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Villafiorita. Improving
Safety Assessment of Complex Systems: An industrial case study. In Proc.
Formal Methods Europe (FME 2003), volume 2805 of LNCS, pages 208–222,
2003.

[6] M. Bozzano, A. Villafiorita, O. Åkerlund, P. Bieber, C. Bougnol, E. Böde,
M. Bretschneider, A. Cavallo, C. Castel, M. Cifaldi, A. Cimatti, A. Griffault,
C. Kehren, B. Lawrence, A. Lüdtke, S. Metge, C. Papadopoulos, R. Passarello,
T. Peikenkamp, P. Persson, C. Seguin, L. Trotta, L. Valacca, and G. Zacco.
ESACS: An Integrated Methodology for Design and Safety Analysis of Complex
Systems. In European Safety and Reliability Conference (ESREL’03), pages
237–245. Balkema Publisher, 2003.

[7] F. Copty, L. Fix, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi. Benefits
of Bounded Model Checking at an Industrial Setting. In Proc. CAV’2001,
LNCS. Springer, 2001.

[8] M. Davis, G. Longemann, and D. Loveland. A machine program for theorem
proving. Journal of the ACM, 5(7), 1962.

[9] E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act, and the Rest Will
Follow: Exploiting Determinism in Planning as Satisfiability. In Proc. AAAI’98,
pages 948–953, 1998.

[10] T.A. Henzinger. The Theory of Hybrid Automata. In Proceedings 11th Annual
International Symposium on Logic in Computer Science (LICS’96), pages 278–
292, New Brunswick, New Jersey, 1996. IEEE Computer Society Press.

[11] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for
Hybrid Systems. Software Tools for Technology Transfer, 1:110–122, 1997.

[12] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s Decidable About
Hybrid Automata? Journal of Computer and System Sciences, 57:94–124, 1998.

35

Audemard et al.

[13] T.A. Henzinger and R. Majumdar. Symbolic Model Checking for Rectangular
Hybrid Systems. In S. Graf and M. I. Schwartzbach, editors, Proceedings
6th International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’00), volume 1785 of LNCS, pages 142–156, Berlin,
Germany, 2000. Springer-Verlag.

[14] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O Automata. Information
and Computation, 2003. To appear.

[15] B.I. Silva, K. Richeson, B.H. Krogh, and A. Chutinan. Modeling and
verification of hybrid dynamical system using CheckMate. In Proc. ADPM
2000, Automation of mixed processes: Hybrid Dynamic Systems. Shaker Verlag,
2000.

[16] B.I. Silva, O. Stursberg, B.H. Krogh, and S. Engell. An assessment of
the Current Status of Algorithmic Approaches to the Verification of Hybrid
Systems. In Proc. 40th Conference on Decision and Control, 2001.

[17] M. Sorea. Bounded Model Checking for Timed Automata. In Proceedings
3rd Workshop on Models for Time-Critical Systems (MTCS’02), Brno, Czech
Republic, 2002.

[18] Ofer Strichman. Tuning SAT checkers for bounded model checking. In Proc.
CAV00, volume 1855 of LNCS, pages 480–494, Berlin, 2000. Springer.

36

BMC 2004 Preliminary Version

Exploiting Target Enlargement and
Dynamic Abstraction within

Mixed BDD and SAT Invariant Checking

Gabriel P. Bischoff, Karl S. Brace

Massachusetts Microprocessor Design Center,
Intel Architecture’s Group, Shrewsbury, MA

G. Cabodi, S. Nocco, S. Quer 1

Dip. di Automatica e Informatica, Politecnico di Torino, Turin, Italy

Abstract

In this paper, we propose a methodology to make Binary Decision Diagrams (BDDs)
and Boolean Satisfiability (SAT) Solvers cooperate. The underlying idea is simple:
We start a verification task with BDDs, we go on with them as long as the problem
remains of manageable size, then we switch to SAT, without losing the work done
on the BDD domain.

We propose target enlargement as an attempt to bring some of the advantages of
state set manipulation from BDDs to SAT-based verification. We first, “enlarge”
initial and target state sets of a given verification problem by affordable BDD ma-
nipulations. This step is carried on with a few breadth-first steps of traversal, or
with what we call high-density dynamic abstraction, i.e., a new technique to collect
under-approximate reachable state sets. Then, we perform SAT-based verification
with the newly computed “enlarged” sets.

We experimentally test our methodology within an industrial environment, the
Intel BOolean VErifier BOVE. Preliminary results on standard benchmarks (the
ISCAS’89, ISCAS’89–addendum, and VIS suites), and industrial ones (the IBM
Formal Verification Benchmark Library) are provided. Results show interesting
improvements over state-of-the-art techniques: We could decrease CPU time up to
a 5x factor, when performing verification with the same depth, or we could increase
the verification depth up to 30%, when performing verification within the same time
limit.

Key words: Invariant Checking, Satisfiability Solver (SAT),
Binary Decision Diagrams (BDDs), Target Enlargement.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bischoff, Brace, Cabodi, Nocco, Quer

1 Introduction

Current design methods are so complex that simulation is no longer adequate.
In current design frameworks, hundreds to thousands of bugs must be found
and removed during the initial phases of the design. While finding bugs re-
mains an important goal, it is also essential to be able to prove their absence,
i.e., formally verifying the correctness, before starting the production process.

Binary Decision Diagrams [7] (BDDs) have been widely used to formally
verify correctness because of their ability to exhaustively analyze a problem.
Nevertheless, BDDs have never been able to deal with the largest models
and problem instances. Boolean Satisfiability [25] (SAT) Solvers, on the
other hand, have been gaining ground especially for their debugging capa-
bility adopting Bounded Model Checking [3,11] (BMC). Unbounded inductive
verification [23] guarantees full verification, but it is more complex than BMC
and typically converges at higher sequential depths than BDDs.

In this work, we explore a new way to make BDD-based and SAT-based
tools cooperate. Our target is to trade-off space and time, i.e., to improve
“time efficiency” of SAT-based verification with the help of affordable, i.e.,
“space manageable”, BDD-based operations. First of all, we “enlarge” ini-
tial and target state sets of the given verification problem by means of BDD
manipulations. Then we perform SAT-based verification exploiting the newly
computed “enlarged” set. In this way, we partition a verification task between
two different tools. Initial BDD operations are useful for their breadth-first
state space visit, and for their ability to represent state sets. Whenever we
switch to SAT, BDD-based state sets provide a tighter space pruning and
an enforced convergence within the SAT engine. Our main contribution is
to study the impact of enlarged sets over SAT-based (both bounded and un-
bounded) model checking. We show that our approach is a task partitioning
strategy, a way to restrict the SAT search, and to tighten the convergence of
the unbounded algorithm. Another contribution of our work is to propose a
BDD sub-setting procedure mixing the high density paradigm with an effort
to reduce the number of variables (abstraction) in the support of a BDD. We
call this technique “dynamic abstraction”.

Preliminary results are reported on standard benchmarks (the ISCAS’89,
ISCAS’89–addendum, and VIS suites), and industrial ones (the IBM Formal
Verification Benchmark Library [18]). They show interesting improvements in
terms of both efficiency and power, and demonstrate how target enlargement
is able to boost BMC and induction toward larger verification tasks.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some preliminary concepts on notation, SAT problems and reachability
analysis. Section 3 is dedicated to the related work. Section 4 introduces
the outline of our approach justifying and describing algorithms for target en-
largements within SAT. Section 5 describes our dynamic under-approximate

1 Email: stefano.quer@polito.it

38

Bischoff, Brace, Cabodi, Nocco, Quer

reachability analysis to compute target enlargements. Section 6 presents our
top-level algorithm with some more implementation-level details. Section 7
presents our experimental evidence. Finally, Section 8 concludes the paper
with a brief summary, and some possible future works.

2 Background

2.1 Model and Notation

The sequential systems we address are usually modeled as Finite State Ma-
chines (FSMs). Each FSM is described by a Transition Relation TR(s, y),
which indicates its present–next state behavior, and an initial state set S.

An invariant property 2 P is checked by attempting to prove (or disprove)
the reachability of its complement T (target state set, T = ¬P) from S. For
sake of simplicity, we will always refer to the above kind of properties, even
though our techniques can be applied to a broader set, the LTL properties
supported by SAT-based verification algorithms.

2.2 SAT-Based Bounded Model Checking and Inductive Verification

In order to decide if a Boolean formula f is satisfied, most solvers adopt
variants of the basic Davis-Putnam recursive algorithm. SAT solvers generally
operate on problems for which the propositional formula f is specified in
Conjunctive Normal Form (CNF). This form is a two-level decomposition:
The logical AND of one or more clauses , each of which consists of the logical
OR of one or more literals.

SAT-based BMC considers only paths of bounded length k and builds
a propositional formula f that is satisfiable iff there is a counter-example (a
path from S to T) of the same length. Complete verification is usually achieved
by BMC with longer and longer bounds or by inductive techniques [23,19]. In
short, in inductive verification, a sequence of BMC steps with increasing bound
is complemented with SAT-based induction checks. In [23] the authors call a
path a sequence of states through TR:

path(s[0..n]) =
∧

0≤i<n

TR(si, si+1)(1)

and they define loopFree a path that visits a state at most once:

loopFree(s[0..n]) = path(s[0..n]) ∧
∧

0≤i<j≤n

(si 6= sj)(2)

The property is proved correct, i.e., S and T are mutually unreachable, if the
following conditions hold:

• Base case: No bounded path of length less than k connects S to T.

2 Or AG CTL property.

39

Bischoff, Brace, Cabodi, Nocco, Quer

FwdMC (TR, S, T)
R0 = S
i = 0
do

if ((Ri ∧ T) 6= ∅)
return (Trace (TR, S, R, T))

i = i + 1
Ri = S ∨ Img (TR, Ri−1)

while (Ri 6= Ri−1)
return (Pass)

Fig. 1. Forward Model Checking.

• Inductive proof : No simple path of length k exists such that its first state
is initial and no other state is initial, or such that its final state is in T and
no other state is in T.

The authors of [23] demonstrate that the resulting method is sound and
complete. Intuitively, the two conditions introduced as inductive proof corre-
spond to the fact that, starting from the initial state, the full reachable state
space has been visited, or that, after the property has been proved correct for
k − 1 time steps, it cannot become false (i.e., starting from the target state,
we cannot reach the initial state). For this reason, in the sequel we call the
two inductive checks as “forward” or “backward” induction.

2.3 BDD-Based Model Checking

Standard BDD-based forward model checking is presented in Figure 1. The
procedure is based on the iterated application of the post-image (Img) function,
to compute symbolic post-images of the set of state Ri−1. Ri are the state sets
generated at each traversal iteration. Notice that in the pseudo-code the whole
reached state set is given as input to the image procedure, whereas any state
set in the interval between the newly reached states and the whole reached
states set could be used. On-the-fly tests for intersection with the target
are done at each iteration, thus avoiding full computation of reachable states
whenever T is reached before the fix-point. A counter-example is possibly
computed, by the function Trace, starting from S, T and the array R of
frontier sets Ri identifying all admissible paths.

CTL model checking procedures are often implemented (as well as our
exact search) as backward traversal procedures, so let us also mention here
that an invariant can be verified by proving/disproving the mutual reachability
of S and T in the backward direction. This is easily expressed by swapping
the S and T sets, and changing the Img function with the PreImg computation
in Figure 1. In the sequel we will call FR and BR the forward and backward
reachable state set respectively.

Approximate Traversals [10,13] are a popular way to extend the applica-
bility of reachability analysis to larger circuits. The approach is based on

40

Bischoff, Brace, Cabodi, Nocco, Quer

the approximate image (Img+) operator, returning over-estimations of exact
images:

Img+(TR, FRi) ⊇ Img(TR, FRi)(3)

Notice that, in the sequel, we will indicate with FR+ and BR+ (FR− and BR−)
the over (under) estimations of the forward and backward reachable state set
respectively.

3 Related Works and Comparison Remarks

With the advent of SAT-based BMC tools a lot of researchers compared
SAT-based methods with more traditional BDD-based ones. As different re-
searchers agree that the two approaches are essentially complementary, a lot
of recent works concentrate on dovetailing the two approaches in a loose or
strict fashion. In this section, we review, among these works, the ones more
strictly related to our approach.

Gupta et al. [16,17] perform BDD-based reachability analysis by using a
SAT procedure within symbolic image computation. They call their approach
BDDs at SAT Leaves. More specifically, they use BDDs to represent state sets
and a CNF formula to represent the transition relation. Symbolic image of a
state set is computed by exhaustive SAT search of all solutions within the space
of primary input, present and next state variables. However, rather than using
SAT to enumerate each solution all the way down to a leaf, image switches
to BDD-based computations at certain intermediate points within the SAT
decision tree. This is done as a trade off between space complexity of BDDs
and time complexity of full SAT enumeration. In a sense, this approach can be
regarded as SAT providing a disjunctive decomposition for image computation
into many sub-problems, each of which is handled symbolically using BDDs.

As far as SAT performance is improved by BDD learning, Cabodi et al. [9]
propose BDD pre-processing by means of over-approximate reachability. The
authors show how to translate over-approximate state sets from BDDs to CNF
clauses, to be used by a SAT solver as an extra learning, which is redundant,
yet able to improve overall performance in BMC.

Gupta et al. [14] propose an approach sharing similarities with the previous
one. They start from the CNF representation of the problem, and they build
BDDs of selected “structural” points to learn useful information, in order to
improve the learning ability of the solver.

Another work by Gupta et al. [15] may be considered as a variation of [9]
for the BMC case, as they also use over-approximate reachability analysis
to constrain the BMC search. A novel idea in their work is the extension
to induction-based unbounded verification, where the authors exploit over-
approximate information as an additional (non redundant) constraint.

Our work shares with the previous ones a few guiding ideas. We use both
BDD and SAT-tools to cope with their contrasting limits but we partition

41

Bischoff, Brace, Cabodi, Nocco, Quer

the work-load in a new way. Moreover, in our approach, BDDs are not used
to perform a learning activity virtually useful only to prune the subsequent
search, but are adopted to partially truly perform the verification task. As in
other approaches, we rely on a loose coupling between the BDD and the SAT
tool, but we strongly interact with the model checker.

4 Methodology’s Outline

In this section we overview our methodology. The approach we propose can
be viewed:

• As a way to partition a verification task between a BDD and a SAT engine.
We perform a preliminary effort with BDDs, we conclude the task through
a SAT solver, working on the solution space left uncovered by BDD pre-
processing. In other words, counterexamples are computed (or refuted)
partially within the BDD domain and partially within the SAT one.

• As an optimization of SAT-based model checking, where the results of BDD
preprocessing are used not merely to reduce the search area, but to further
optimize SAT search in its target sub-space. More in detail, state sets gen-
erated during the BDD phase are used as a stronger constraint for the rela-
tive SAT problem, and to enforce the convergence of SAT-based unbounded
model checking.

In the rest of this section we first show how BDD-based target enlargement
can be considered in terms of task partitioning between the BDD and SAT
tools. Then we introduce some specific optimizations for SAT searches. BDD
preprocessing for target enlargement and the overall verification algorithm will
be described in the following sections.

4.1 Target Enlargement as a Task Partitioning Strategy

Target Enlargement [24,2] is a known paradigm in hardware verification. It
is an effort to better coordinate and balance a verification workload between
two tools or two different search procedures within the same tool.

Whenever a verification task looks for a path to a given target state, one
might “enlarge” the target by computing a set of states reachable in the op-
posite direction from the target. Roughly speaking, the target is now replaced
by a wider area, and the chance to reach it (or to prove it is unreachable) is
now higher. Analogous considerations hold for the initial set of states.

We apply it by means of under-approximate BDD-based reachability start-
ing either/both from S or/and T. Our idea is to first compute BDD-based
reachable state sets, so that they can be used as new targets for easier SAT
processing.

Let us work on a SAT-based model checking problem where the goal is to
prove the mutual reachability between S and T. We can generate a related

42

Bischoff, Brace, Cabodi, Nocco, Quer

SAT problem with new enlarged initial and/or target state sets Se and Te,
such that

Se = FR−(S) ⊆ FR(S)

Te = BR−(T) ⊆ BR(T)
(4)

The new enlarged start (target) state set is a set of states for which a path
from S (to T) exists. BDD-based computation of Se and Te will be discussed in
the next section. Let us just consider here the straightforward case of under-
approximation by bounded exact reachability, i.e., a few traversal iterations,
with Se = FRdF

and Te = BRdB
. In this case dF and dB are the depths of the

bounded traversals in the forward and backward directions respectively. The
enlarged set Se replaces S and the first dF time frames in the combinational
unrolling. Dually for Te. More formally:

Se = ∃s0..sdF−1
(S

∧
i=0..dF−1

TR(si, si+1))(5)

• Disproving mutual reachability for Se and Te is equivalent to disproving it
for S and T.

• Proving mutual reachability for Se and Te, i.e., finding a counterexample
connecting them, is equivalent to proving mutual reachability for S and T.
The generated counterexample is partial, and we need to complete it with
a prefix and a suffix, in order to reach the original S and T states.

Intuitively, we may expect a performance gain from the above task parti-
tioning if the preprocessing work done with BDDs is manageable and, more
importantly, it is able to decrease the overall memory/time complexity. As
BDDs are able to start a mutual reachability task from S and T, the sequential
depth of SAT exploration (e.g., the induction depth) can be lower with target
enlargement than with the original problem. Moreover, we may expect to
handle sequentially deeper problems, given the expected capacity of the SAT
tool. Obviously, the above expectations strongly depend on how efficiently
the enlarged state sets replace the equivalent set of time frames in the com-
binational unrolling. In general we may expect an advantage related to the
reduction of variables and clauses in the final problem.

Let us examine the substitution on the particular case of BMC. We choose
it for sake of simplicity, and we show that a given BMC problem of bound
k can be solved, with target enlargement, as a BMC problem with shorter
bound. Similar formulations can be done with unbounded model checking.
The following proposition holds.

Proposition 4.1 Let BMCk(TR, S, T) be a BMC problem of bound k, over a
given transition relation TR, an initial S and a target T state sets. Let Seand
Tebe “enlarged” initial and target sets as defined above. Let us define d̂F (d̂B)
the maximum value of lF (lB) such that FRlF ⊆ Se (BRlB ⊆ Te). Then the orig-
inal BMCk problem can be solved as a new BMC problem BMCh(TR, Se, Te)

43

Bischoff, Brace, Cabodi, Nocco, Quer

with possibly shorter bound, i.e., such that h = k − (d̂F + d̂B).

4.2 Restricting SAT Search with Enlarged Target

We now show that target enlargement can restrict the search space of the
SAT solver, with additional benefits, in terms of performance, besides simple
bound reduction. More specifically, let us concentrate on a particular form
of BMC, the so called exact− assume variant of BMC, and on the inductive
steps of unbounded SAT as proposed in [23].

Exact-assume BMC can be expressed as:

BMCk(TR, S, T) = S(s0) ∧ path(s[0..k]) ∧
∧

0≤i<k

(¬T(si)) ∧ T(sk)(6)

Inductive steps in unbounded model checking [23] can be expressed as:

FwdInductiveStepk(TR, S) = loopFree(s[0..k]) ∧ S(s0) ∧
∧

0<i≤k

(¬S(si))(7)

BwdInductiveStepk(TR, T) = loopFree(s[0..k]) ∧ T(sk) ∧
∧

0≤i<k

(¬T(si))(8)

In all the above formulas, the complement of S and/or T are used to constrain
the state at the i-th time frame. The effect of our approach is not only to con-
strain the SAT search space, but also to tighten the termination conditions of
unbounded model checking. Our argument here is that larger start and target
state sets are able to provide tighter constraints, enhancing SAT performance
and enforcing termination of unbounded checks.

In the BMC case with bound k, all time frames but the last one are con-
strained by ¬Te. In the induction case with bound k, all time frames but the
first one are constrained by ¬Se, whereas all time frames but the last one are
constrained by ¬Te. This is clearly a stronger search space pruning than in the
original BMC problem. Intuitively all states in all BDD-computed enlarged
state sets are forbidden in all state paths considered by the SAT solver. In
another way, a state is not considered within a SAT state path if it belongs to
any BDD-based state path prefix or suffix, which is not necessarily a possible
prefix or suffix of the current path in the SAT search. This search state pruning
is not achievable by SAT reasoning on the original BMCk(TR, S, T) problem,
due to the “linear time” reasoning employed. Moreover, the termination of
unbounded induction-based verification is enforced by the smaller number of
states available for loop-free state paths starting from S (leading to T). The
above fact directly stems from the fact that every loop free path satisfying the
FwdInductiveStepk obtained by using the enlarged state sets is also included
or equal to a loop free path satisfying the same problem generated by using
the original state sets, whereas the reverse is not true.

As a final remark, notice that the complement of our target state set T
(i.e., ¬Te) can be used as constraint for the i-th time frame (with i < k)
in FwdInductiveStepk (TR, Se). Moreover, Se can by used dually in Bwd-

44

Bischoff, Brace, Cabodi, Nocco, Quer

InductiveStepk (TR, Te). This is not far from using an over-approximation of
forward (backward) reachable states as constraint for the backward (forward)
induction, as described in [15]. Nevertheless, here ¬Te (¬Se) is not an over-
approximation of the forward (backward) reachable state set. On the contrary,
it is an over-approximation of the search area where we look for states in loop-
free paths. Similar considerations also hold for the BMC case.

5 Under-approximate Reachability and Dynamic Ab-
straction

Over-approximate reachability has been proposed in several works as an ab-
straction technique, with the aim of improving capacity and scalability. On
the contrary, under-approximate techniques have received less attention in
formal verification in recent years. Under-approximation was specifically ad-
dressed in the BDD sub-setting work by Somenzi et al. [21]. Many works
then followed the partitioning and guided search paradigms [8,22,12] where
a difficult reachability task could be faced by case splitting or focusing on a
search sub-space. Within this framework, BDD sub-setting was just one of
the possible ways to produce a cut on a complex state set.

The techniques we are proposing here essentially aim at using under-
approximation to gather “enlarged” state sets Seand Te, such that:

• They are included in the exact forward and backward reachable state sets:

S ⊆ Se ⊆ FR(S)

T ⊆ Te ⊆ BR(T)
(9)

• Their characteristic functions can be computed and represented in terms of
BDDs at a manageable cost.

Among the various available choices, we present here:

• Bounded traversals.

• A new form of high-density BDD sub-setting that we call high-density dy-
namic abstraction.

The former strategy is a very straightforward option, particularly suited for
symbolic traversals characterized by affordable initial iterations. With the
latter one we tackle BDD explosion more aggressively. As BDD blow up is
often related to the number of support variables, i.e., the variables BDDs
depend on, we aim at reducing the support of state sets, with a possibly
minimal impact on the number of represented state sets.

5.1 Under-Approximation by Bounded Traversal

We call bounded traversal a simple variant of a standard forward and/or
backward traversal, where BDD-based breadth-first reachability stops before

45

Bischoff, Brace, Cabodi, Nocco, Quer

reaching a fix-point. Threshold based BDD control is a natural exit condition,
but other options are possible as well, like cardinality of the reached state
set, number of support variables, and pre-determined number of traversal
iterations.

In all cases, the traversal ends up computing FRdF
and BRdB

, and the
traversal depths dF and dB are the exact parameter required to decrease the
length of SAT checks.

In general, forward reachable state sets depend on all variables since it is
the first iteration, whereas backward state sets follow the so called Cone-Of-
Influence of the property. In practice the number of support variables (and
the BDD size) of Te grows for growing values dB. The good choice is a trade-
off between BDD size and number of state variable we are able to further
constrain in successive SAT processing.

5.2 Under-Approximation by High-Density Dynamic Abstraction

Our target in this section, is to adopt some optimization to gather as more
states as possible in the enlarged sets before switching to SAT. As opposed to
partitioning strategies, where a complex task is split in subtasks, sub-setting
here means that, given a large BDD, we select a “relevant” subset, that we
use for further processing steps. The pruned subset is either temporarily or
permanently removed from the traversal process, since it is deemed completely
or almost completely irrelevant.

We work within the inner loop of a BDD-based traversal. Whenever a
state set violates a predefined threshold (BDD size and/or support size), we
dynamically operate sub-setting. High density as introduced in [21] aimed at
clipping a BDD so that a minimal number of minterms (i.e., states) was re-
moved from it. Density was defined as the ratio number between the minterms
in the subset and in the original BDD. Pruning was done recursively, so no
particular care was taken at reducing the amount of variables in the support.

The sub-setting technique we propose is a compromise between support
reduction and high-density. It can be used either for BDD super-setting or
sub-setting, as the basic step is variable quantification. If sub-setting is our
goal, we universally quantify a variable so that a minimal number of minterms
are removed from the original BDD. Super-setting would be achieved in a
dual way, by adopting existential quantification and minimizing the newly
introduced minterms.

Let us suppose a function f(X) is represented as a BDD, and let us use the
notation |f | to indicate its minterm count (i.e., the number of domain points
where f = 1). We compute the subset:

f−σ (X − σ) = ∀σf(X) = f(x)σ=0 ∧ f(x)σ=1(10)

The σ ∈ X variable is selected so that |f−|/|f | is maximal. We loop through
such sub-setting steps until we get a sufficient reduction either in terms of BDD

46

Bischoff, Brace, Cabodi, Nocco, Quer

size or support variables. The variable selection criteria is clearly greedy, as a
sequence of optimal variable selection is not guaranteed to produce the best
overall result. We should also notice that, although variable quantification
does not guarantee BDD size reduction, it often does so. To take into account
possible BDD size increase, our variable selection is a weighted compromise
between size and density.

We call our sub-setting dynamic abstraction as opposed to over-approximate
reachability and abstraction-refinement techniques, where variable abstrac-
tion schemes are generally decided statically as a pre-processing and/or post-
processing step of entire traversals. Here we do variable selection and universal
abstraction “on-the-fly”, within inner steps of a traversal procedure. The main
motivation for selecting this kind of sub-setting is that we control BDD ex-
plosion (as in other abstraction schemes) by reducing the number of support
variables. We still resort to a high density heuristic, as we want to maximize
the amount of state space “covered” by the enlarged set.

Due to the above mentioned dynamic scheme, time and memory efficiency
of variable selection is a key issue, as the introduced overhead should by neg-
ligible within the overall traversal process. A naive approach consists of first
computing variable abstraction for all variables, then selecting the one with
best weighted size-density benefit. This can be very expensive, as it means to
compute a new (possibly larger) BDD for each variable.

An alternative and much more effective approach is density estimation
without computing the abstraction. Given f(X) and a candidate variable
xi ∈ X, we can compute |f−| through a variant of the standard minterm
count routine, that visits the subset of BDD nodes in f(x) reachable both
under the xi = 1 and xi = 0 constrains. A double “linear” visit can achieve
this task. In the first visit we mark the f(x) nodes reachable with xi = 0. The
second visit achieves the actual minterm count, by working on the previously
marked nodes, under the opposite constraint xi = 1.

As a result, a best density abstraction variable can be computed in linear
time without generating any new BDD. This does not take into account the
BDD size of the result. So we add an extra step where we actually compute
the abstraction for the topmost variables, after ordering them by estimated
minterm density. Possible BDD blow up is avoided by a size threshold con-
trolling universal abstraction as a try-and-abort operator.

6 Overall Verification Algorithms

The techniques described in the previous sections are integrated within a
mixed BDD/SAT verification framework using a mix of bounded (Section 5.1)
and high-density dynamic abstraction (Section 5.2) traversal. The pseudo-
code in Figure 2 shows the unbounded verification procedure based on induc-
tion. BMC is easily derived as a simplified version of the shown pseudo-code,
where inductive checks are removed, and the main SAT verification loop stops

47

Bischoff, Brace, Cabodi, Nocco, Quer

InductiveMcWithTE (TR, S, T)
Set under-approx thresholds and bounds
Se= FwdUnderApproxTrav (TR, S)
Te= BwdUnderApproxTrav (TR, T)
h = 0
while (true)

(result, cex) = BMCh(TR,Se,Te)
if (result = Sat)

prefix = ComputeCex (TR, S, Se, cex)
suffix = ComputeCex (TR, T, Te, cex)
return (prefix, cex, suffix)

result = FwdInductiveSteph+1 (TR, Se)
if (result = UnSat)

return (Pass)
result = BwdInductiveSteph+1 (TR, Te)
if (result = unsat)

return (Pass)
h = h+1

Fig. 2. Inductive verification with target enlargement.

at a predefined bound.

Initial BDD-based traversals compute enlarged sets Se and Te. SAT verifi-
cation iterates over BMC and inductive steps until either a counterexample is
found by BMC or an inductive step is unsat. If a counterexample is found, it
is extended by a prefix and a suffix, computed within Seand Te. If verification
passes, the procedure returns the depth of termination.

Figure 2 basically shows that BDD traversals are done as a pre-processing
step outside the loop over increasing bound h. This means that the overhead
due to BDD manipulation decreases as far as verification requires longer and
longer depths.

The procedure hides some details, as BDD to CNF conversion, required
for generate the BMC and inductive problems with the enlarged initial and
target sets. In principle, any BDD can be converted to CNF with an amount
of variables and clauses linear in the BDD size. We adopt a more sophisticated
approach, as described in [9], with heuristics trading off the number of clauses
and of new variables required by the BDD to CNF conversion.

7 Experimental Results

This section describes an experimental comparison in terms of BMC and in-
ductive verification with and without the technique described in this paper.
The presented methodology is implemented within the industrial Intel tool
BOolean VErifier (BOVE) [4]. We do not compare our results with any other
tool because we want to discuss only the improvement obtained exploiting the
described method over the standard methodology. Furthermore, due to the
specific features implemented in BOVE (e.g., ternary encodings, gated clocks,

48

Bischoff, Brace, Cabodi, Nocco, Quer

initial state set evaluated during an initial synchronization sequence compu-
tation [20], etc.), any comparison would be unfair.

Model # SV Property B BOVE Original BOVE with Target Enlargement

Var. # Clauses Mem. Time BBwd Mem. Time [sec]

[MByte] SAT [MByte] Trav. SAT

am2901 68 P1 Pass 10 23252 67413 − ovf 2 94 223 1653

P1 Fail 16 37112 107709 − ovf 2 − 223 ovf

philo60 120 P1 Pass 20 94139 276838 72 745 2 74 151 591

P1 Pass 40 187859 552778 173 2561 2 129 151 1264

FIFOs 142 P1 Pass 14 31227 89028 80 1395 2 82 231 494

P1 Pass 16 35551 101396 − ovf 2 163 231 1659

s15850.1 534 P1 Pass 75 351424 969151 96 142 5 81 5 28

P1 Fail 76 356097 982054 97 130 5 85 5 48

s13207.1 638 P1 Pass 109 344363 919464 144 580 4 89 3 157

P1 Fail 110 347514 927887 121 384 4 108 3 283

P2 Pass) 215 678369 1812302 − ovf 10 216 5 1182

P2 Fail 216 681520 1820725 − ovf 10 − 5 ovf

Table 1
SAT-based Bounded Model Checking: Comparison between standard and

target-enlarged BMC. ovf means overflow on memory or time (memory limit
512 MBytes, time limit 3600 sec). − means data not available.

We present experiments on two separate sets of circuits:

• Standard benchmarks: ISCAS’89 [6], ISCAS’89-addendum [1], and circuits
belonging to the VIS distribution [5].

• Industrial designs: The IBM Formal Verification Benchmark Library [18].
This suite includes 75 circuits in Blif format. They contain from 95 to 917
memory elements. For each of them, there is a unique output (formula 1)
which also indicates the property to check.

Among the previous sets we selected all verification instances hard-enough to
be improved with our technique. All our data are collected on a Pentium
IV 1700 MHz Workstation equipped with 1 GByte main memory, running
RedHat Linux 7.1. We use a time limit of 1 hour for all experiments.

Tables 1 and 2 report our results on BMC and inductive verification re-
spectively.

In both the tables the models are sorted by number of state variables (col-
umn # SV). For each design we present a set of properties denoted by P1, P2,
etc. For each property we indicate the maximum sequential depth explored,
i.e., the length of the counterexample B (bound). Within the reported bound,
the properties are labeled according to the result they produce: They are ei-
ther proved correct and denoted by Pass, or they are falsified and labeled by
Fail 3 .

The subsequent columns report statistics for the original and proposed
methods, i.e., number of variables and clauses, memory and time used. More

3 For Table 1, where we consider only BMC, when Pass, the property is, of course, proved
correct only up to the given bound.

49

Bischoff, Brace, Cabodi, Nocco, Quer

Model # SV Property BOVE Original BOVE with TE

B Time B Time

BMC IBwd IFwd Total BMC IBwd IFwd Total

29 batch 95 P1 Pass 32 1 % 83 % 16 % ovf 40 5 % 77 % 18 % ovf

18 batch 143 P1 Pass 39 11 % 71 % 18 % 3151 35 13 % 68 % 19 % 1826

16 1 batch 150 P1 Pass 31 16 % 49 % 35 % ovf 34 15 % 55 % 30 % ovf

02 1 batch 3 161 P1 Pass 28 12 % 42 % 46 % ovf 37 19 % 40 % 41 % 3354

19 batch 181 P1 Pass 19 23 % 57 % 20 % 2786 16 20 % 56 % 24 % 1022

22 batch 191 P1 Fail 15 4 % 83 % 13 % 536 15 12 % 72 % 16 % 197

04 batch 256 P1 Pass 25 2 % 80 % 18 % ovf 28 8 % 74 % 18 % ovf

Table 2
Induction-based Verification: Comparison between standard and target-enlarged
induction. ovf means overflow on memory or time (memory limit 512 MBytes,

time limit 3600 sec).

specifically, BOVE Original indicates our implementation (within the BOVE
environment) of standard BMC [3] and inductive [23] verification. BOVE with
TE is the previous version improved with the target enlargement methodology
described in this paper.

Within Table 1 we used the bounded traversal technique in order to get
the enlarged sets, so we report the number of backward reachability steps per-
formed (column BBwd), and the Trav. Time needed to conclude this phase.
Notice that in this table we compare experiments using BOVE Original and
BOVE with TE with the same value of the bound B. This table shows a maxi-
mum gain of about 5X for the first experiment, and a good improvement for
most of the benchmarks.

For Table 2 we used the dynamic abstraction technique, so that column
B represents the depth reached by BOVE when the result was found or an
overflow occurred for the two methodologies respectively. In particular, for
enlarged case, the meaning of this column must be intended as the sum of the
maximum time step analyzed with SAT and those provided by BDDs (k =
h + dF + dB). Columns BMC, IBwd, and IFwd indicate the percentage of time
dedicated to the BMC, backward, and forward induction steps respectively
over the total amount of Total time. Statistics about the BDD manipulations
are not reported.

Analyzing these data, the first observation we do is that the backward
inductive step is almost always the hardest check. Indeed, in our experiments,
this step was always the one providing the proof of correctness (when the
property was true). Nevertheless, with our new technique, the weights of
BMC and the inductive (backward) check have been slightly balanced. At
first glance, it could seem that BMC now is more costly than with the original
method, but, in absolute terms, the time required for each check has been
usually reduced. Notice also that we could almost always explore a deeper
time step.

Results are still preliminary yet encouraging for both bounded and un-
bound SAT-based verification. While in some cases we drastically reduced

50

Bischoff, Brace, Cabodi, Nocco, Quer

the verification time (up to a 5x factor), on others we could substantially in-
crement the bound (up to almost 30%) analyzed in the same amount of time,
i.e., before expiring system resources.

8 Conclusions and Future Works

BDDs and SAT-solvers are the most widely used core technologies within the
verification domain. In this paper we propose an idea to exploit the best of this
two methodologies. First of all, we perform symbolic forward and backward
reachability analysis to partially carry out the verification task. This step
also enlarge the initial and the target sets of states. These enlarged sets are
subsequently used within a SAT-based bounded model checking or inductive
verification phase. Preliminary experimental results show the potentiality of
the approach within academic and industrial tools.

Among the possible future work we envisage two main tasks. First of all,
we have to check the methodology on a broader set of experiments possibly
using real verification instances from the industrial Intel designs. Secondly,
we envisage the possibility to integrate the method with an abstraction–and–
refinement approach.

References

[1] MCNC Private Communication.

[2] Baumgartner, J. and A. Kuehlmann, Enhanced Diameter Bounding Via
Structural Transformation, in: Proc. Design Automation & Test in Europe
Conf., Paris, France, 2004.

[3] Biere, A., A. Cimatti, E. M. Clarke, M. Fujita and Y. Zhu, Symbolic Model
Checking using SAT procedures instead of BDDs, in: Proc. 36th Design Automat.
Conf., New Orleans, Louisiana, 1999, pp. 317–320.

[4] Bischoff, G. P., K. S. Brace, S. Jain and R. Razdan, Formal Implementation
Verification of the Bus Interface Unit for the Alpha 21264 Microprocessor, in:
Proc. Int’l Conf. on Computer Design, Austin, Texas, 1997.

[5] Brayton, R. K., et al., VIS, in: M. Srivas and A. Camilleri, editors, Proc. Formal
Methods in Computer-Aided Design, LNCS 1166 (1996), pp. 248–256.

[6] Brglez, F., D. Bryan and K. Koźmiński, Combinatorial Profiles of Sequential
Benchmark Circuits, in: Proc. IEEE ISCAS’89, 1989, pp. 1929–1934.

[7] Bryant, R. E., Graph–Based Algorithms for Boolean Function Manipulation,
IEEE Trans. on Computers C–35 (1986), pp. 677–691.

[8] Cabodi, G., P. Camurati, L. Lavagno and S. Quer, Disjunctive Partitioning and
Partial Iterative Squaring: an effective approach for symbolic traversal of large

51

Bischoff, Brace, Cabodi, Nocco, Quer

circuits, in: Proc. 34th Design Automat. Conf., Anaheim, California, 1997, pp.
728–733.

[9] Cabodi, G., S. Nocco and S. Quer, Improving SAT-based Bounded Model
Checking by Means of BDD-based Approximate Traversals, in: Proc. Design
Automation & Test in Europe Conf., Munich, Germany, 2003, pp. 898–903.

[10] Cho, H., G. D. Hatchel, E. Macii, B. Plessier and F. Somenzi, Algorithms for
Approximate FSM Traversal Based on State Space Decomposition, IEEE Trans.
on Computer-Aided Design 15 (1996), pp. 1465–1478.

[11] Copty, F., L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella and
M. Y. Vardi, Benefits of Bounded Model Checking at an Industrial Setting, in:
G. Berry, H. Comon and A. Finkel, editors, Proc. Computer Aided Verification,
LNCS 2102 (2001), pp. 435–453.

[12] Ganai, M. K., A. Aziz and A. Kuehlmann, Enhancing Simulation with BDDs
and ATPG, in: Proc. 36th Design Automat. Conf., New Orleans, LA, 1999, pp.
385–390.

[13] Govindaraju, S. G., D. L. Dill, A. Hu and M. A. Horowitz, Approximate
Reachability Analysis with BDDs using Overlapping Projections, in: Proc. 35th
Design Automat. Conf., San Francisco, California, 1998, pp. 451–456.

[14] Gupta, A., M. Ganai, C. Wang, A. Yang and P. Ashar, Learning from BDDs
in SAT-based Bounded Model Checking, in: Proc. 40th Design Automat. Conf.,
Anaheim, CA, 2003, pp. 824–829.

[15] Gupta, A., M. Ganai, C. Wang, Z. Yang and P. Ashar, Abstraction and BDDs
Complement SAT–Based BMC in Diver, in: W. A. H. Jr. and F. Somenzi,
editors, Proc. Computer Aided Verification, LNCS 2725 (2003), pp. 206–209.

[16] Gupta, A., Z. Yang, P. Ashar and A. Gupta, SAT–Based Image Computation
with Application in Reachability Analysis, in: Proc. Formal Methods in
Computer-Aided Design, LNCS 1954, Austin, TX, USA, 2000.

[17] Gupta, A., Z. Yang, P. Ashar, L. Zhang and S. Malik, Partition–Based Decision
Heuristic for Image Computation using SAT and BDDs, in: Proc. Int’l Conf.
on Computer-Aided Design, San Jose, California, 2001.

[18] IBM Formal Verification Benchmark Library,
http://www.haifa.il.ibm.com/projects/verification/rb homepage/fvbenchmarks.html.

[19] McMillan, K. L., Interpolation and SAT-Based Model Checking, in: W. A. H.
Jr. and F. Somenzi, editors, Proc. Computer Aided Verification, LNCS 2725,
Boulder, CO, USA, 2003, pp. 1–13.

[20] Pixley, C., S. W. Jeong and G. D. Hachtel, Exact Calculation of Synchronization
Sequences Based on Binary Decision Diagrams, in: Proc. 29th Design Automat.
Conf., 1992, pp. 614–619.

[21] Ravi, K. and F. Somenzi, High–Density Reachability Analysis, in: Proc. Int’l
Conf. on Computer-Aided Design, San Jose, California, 1995, pp. 154–158.

52

Bischoff, Brace, Cabodi, Nocco, Quer

[22] Ravi, K. and F. Somenzi, Hints to Accelerate Symbolic Traversal, in: Correct
Hardware Design and Verification Methods (CHARME’99), LNCS 1703 (1999),
pp. 250–264.

[23] Sheeran, M., S. Singh and G. St̊almarck, Checking Safety Properties Using
Induction and SAT Solver, in: W. A. Hunt and S. D. Johnson, editors, Proc.
Formal Methods in Computer-Aided Design, LNCS 1954 (2000), pp. 108–125.

[24] Yang, C. H. and D. L. Dill, Validation with Guided Search of State Space, in:
Proc. 35th Design Automat. Conf., San Francisco, California, 1998.

[25] Zhang, L. and S. Malik, The Quest for Efficient Boolean Satisfiability Solvers,
in: E. Brinksma and K. G. Larsen, editors, Proc. Computer Aided Verification,
LNCS 2404, Cophenagen, Denmark, 2002, pp. 17–36.

53

54

BMC 2004 Preliminary Version

An Incremental Algorithm to Check
Satisfiability for Bounded Model Checking 1

HoonSang Jin 2 Fabio Somenzi 3

University of Colorado at Boulder

Abstract

In Bounded Model Checking (BMC), the search for counterexamples of increasing
lengths is translated into a sequence of satisfiability (SAT) checks. It is natural to
try to exploit the similarity of these SAT instances by forwarding clauses learned
during conflict analysis from one instance to the next. The methods proposed to
identify clauses that remain valid fall into two categories: Those that are oblivious
to the mechanism that generates the sequence of SAT instances and those that rely
on it. In the case of a BMC run, it was observed by Strichman [20] that those
clauses learned during one SAT check that only depend on the structure of the
model remain valid when checking for longer counterexamples. Eén and Sörensson
[9] pointed out that all learned clauses can be forwarded if the translation into
SAT obeys commonly followed rules. Many clauses that are forwarded this way,
however, are of little usefulness and may degrade performance. This paper presents
an extension to Strichman’s approach in the form of a more general criterion to
filter conflict clauses that can be profitably forwarded to successive instances. This
criterion, in particular, is still syntactic and quite efficient, but accounts for the
presence of both primary and auxiliary objectives in the SAT instance. This paper
also introduces a technique to distill clauses to be forwarded even though they fail
the syntactic check. Distillation is a semantic approach that can be applied in
general to incremental SAT, and often produces clauses that are independent of
the primary objective, and hence remain valid for the remainder of the sequence of
instances. In addition, distillation often improves the quality of the clauses, that
is, their ability to prevent the examination of large regions of the search space.
Experimental results obtained with the CirCUs SAT solver confirm the efficacy of
the proposed techniques, especially for large, hard problems.

Key words: bounded model checking, propositional satisfiability,
conflict-learned clauses, incremental algorithms.

1 This work was supported in part by SRC contract 2003-TJ-920.
2 Email: Jinh@Colorado.EDU
3 Email: Fabio@Colorado.EDU

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Jin and Somenzi

1 Introduction

Bounded Model Checking (BMC) [3] determines whether for model K there
exists a counterexample to property ϕ of length less than or equal to k. If
such a counterexample is found, or if k is large enough [19,18,6,1], then BMC
effectively answers the question K |= ϕ; otherwise, it increases the user’s
confidence in the correctness of K.

BMC converts the search for a counterexample of a certain maximum
length into a sequence of propositional satisfiability (SAT) checks. In its sim-
plest form, the length starts from 0 and is incremented by 1 for each instance.
At the i-th step of this iteration, a propositional formula is built from K and
ϕ that is satisfiable if and only if there exists a counterexample to ϕ in K of
length k = i− 1. Though variations on this scheme are easy to envisage, and
can be accommodated by the techniques discussed in this paper, we shall limit
our discussion to this case. Each formula checked for satisfiability consists of
three parts, corresponding to the initial state constraint, the unrolled tran-
sition relation, and the property to be satisfied. In the last part, one often
distinguishes a primary objective (e.g., the last state of the counterexample
violates an invariant) from auxiliary objectives (e.g., no state except the last
one violates that invariant). Auxiliary objectives express information about
the problem gathered from failed attempts to find shorter counterexamples.
They may help in directing the search process.

The emergence of efficient SAT solvers over the last decade [21,25,26,11]
has greatly contributed to the success of BMC. The new generation of SAT
solvers improves over the classical DPLL procedure [8,7] in several ways. Of
interest to us are conflict analysis and clause recording: When a conflicting
assignment is found, it is analyzed to identify a subset that is still conflicting.
The disjunction of the negation of the literals in the subset is a conflict-learned
clause (or, more concisely, a conflict clause) that can be added to the given
SAT instance to prevent the examination of regions of the search space that are
guaranteed to contain no solutions. Not all conflict clauses are worth keeping;
many SAT solvers periodically discard those that have proved ineffective.

Incremental SAT solvers [24,20,9] try to leverage the similarity between the
elements of a sequence of SAT instances; most do so by re-utilizing conflict
clauses, though when many closely related instances must be solved, caching
solutions [15] and incremental translation [2] can also be effective. If a SAT
instance is obtained from another by adding some clauses (as in [12]), then
all conflict clauses of the first can be forwarded to the second. This is cor-
rect because the second instance implies the first, which in turn implies all
its (conflict) clauses. Therefore, when clauses are only added through the se-
quence of instances, there is no need to screen conflict clauses to determine
which ones can be forwarded. This, on the other hand, is necessary when
arbitrary clauses are both added and subtracted to create a new instance. A
common approach to such general case is to have the incremental SAT solver

56

Jin and Somenzi

keep track of whether a conflict clause depends on some removed clauses. The
approach of [24] is to record, for each conflict clause, the clauses that made up
the corresponding implication graph. This approach does not require any fore-
knowledge of the subsequent SAT instances to be solved incrementally, and
does not restrict the changes possible from one instance to the next; however,
keeping track of dependencies may be expensive.

Strichman [20] was the first to observe that in BMC some clauses are
known to survive through all instances in the sequence. A formula passed by
BMC to the SAT solver contains clauses that describe the transition relation
of the model unrolled a number of times. These clauses are not discarded
when the length of the counterexample is increased. Hence, a conflict clause
that depends only on them can be forwarded. The advantage of this approach
is that complete dependence information is no longer needed; one-bit marker
per clause is sufficient. Such a marker is derived from the structure of the
implication graph that produces the clause. Therefore, we speak of a syntactic
criterion in this case.

The authors of [9] remarked that tracking dependencies is not required if
only unit clauses are removed. Such clauses can be regarded as assumptions
by the SAT solver. As a result, a conflict clause incorporates its assumptions
or some of their implied literals, and is not invalidated when the assumptions
are repealed. It was further observed in [9] that the standard encoding of
objectives into SAT guarantees that the clauses that must be removed when
the counterexample length is incremented are unit clauses. Hence, all conflict
clauses can be forwarded. The approach of [9] exemplifies those incremen-
tal satisfiability algorithms that are aware of the mechanism generating the
sequence of SAT instances. On the other hand, when one of its unit clause
assumptions is reversed, a conflict clause becomes satisfied and therefore inert.

Having many inert clauses in the solver may significantly affect perfor-
mance. Therefore we want to forward only clauses that have a good chance of
remaining active in successive instances. To this purpose, we propose a syn-
tactic criterion that improves on the one of [20] in two ways. First, it accounts
for auxiliary objectives, and hence can forward more clauses. Second, it does
not require the examination of the entire implication graph when marking a
conflict clause.

We also present a semantic forwarding criterion, which distills the clauses
that cannot be forwarded according to the syntactic check into clauses implied
by the new instance. These distilled clauses are sometimes independent of the
objective of the new instance and usually more effective than the raw clauses
from which they are derived in preventing exploration of fruitless regions of
the search space.

The rest of this paper is organized as follows. Section 2 reviews background
material. Section 3 describes the incremental SAT algorithm, while Section 4
discusses the experiments conducted to assess its effectiveness. Section 5 con-
cludes.

57

Jin and Somenzi

2 Preliminaries

Let V = {v1, . . . , vn} and W = {w1, . . . , wm} be sets of Boolean variables. We
designate by V ′ the set {v′1, . . . , v′n} consisting of the primed version of the
elements of V , and by V i the set {vi

1, . . . , v
i
n}. Likewise, W i = {wi

1, . . . , w
i
m}.

An open system is a 4-tuple

Ω = 〈V, W, I, T 〉 ,

where V is the set of (current) state variables, W is the set of combinational
variables, I(V) is the initial state predicate, and T (V, W, V ′) is the transition
relation. The variables in V ′ are the next state variables. All sets are finite,
and all variables range over finite domains.

Bounded Model Checking (BMC) [3] reduces the search for a counterex-
ample to a linear time property to propositional satisfiability. Given an open
system Ω, an LTL [17] formula ϕ, and a bound k, BMC tries to refute Ω |= ϕ
by proving the existence of a witness of length k to the negation of the LTL
formula.

BMC generates a propositional formula [[Ω,¬ϕ]]k that is satisfiable if and
only if a counterexample to ϕ of length k exists in Ω; [[Ω,¬ϕ]]k is defined as
follows:

[[Ω,¬ϕ]]k = I(V 0) ∧
∧

0≤i<k

T (V i, W i, V i+1) ∧ [[¬ϕ]]k , (1)

where [[¬ϕ]]k expresses the satisfaction of ¬ϕ along that path. (See [3] for the
details of the translation.) It is customary to write [[¬ϕ]]k as ωk ∧ Fk, where
ωk is a literal called the primary objective. If it is known that [[Ω,¬ϕ]]j is
unsatisfiable for j < k, then one can conjoin (1) with∧

0≤i<k

¬[[¬ϕ]]i . (2)

Each term ¬[[¬ϕ]]i is written ¬ωi ∧ Fi, where ¬ωi is an auxiliary objective.

A SAT solver returns assignments to the variables of a propositional for-
mula that satisfy it, if such assignments exist. A literal is either a variable
or its complement, a clause is a disjunction of literals from distinct variables,
and a conjunctive normal form (CNF) formula is a conjunction of clauses.
An And-Inverter Graph (AIG) [16] is a Boolean circuit such that each node’s
output is the conjunction of its two inputs. The arcs of the circuit may be
complementing. A Binary Decision Diagram (BDD) [5] is a Boolean circuit
such that each node is a multiplexer controlled by an input variable. Most
SAT solvers operate on a propositional formula in CNF. Our SAT solver Cir-
CUs [14,13], on the other hand, accepts a combination of CNF clauses, AIG,
and reduced, ordered BDDs. Each result of a conflict analysis is represented as
one clause [10]. Hence, the algorithms described in this paper can be applied
to any SAT solver based on clause recording.

58

Jin and Somenzi

1 DPLL() {
2 while (ChooseNextAssignment())
3 while (Deduce() == CONFLICT) {
4 blevel = AnalyzeConflict();
5 if (blevel ≤ 0) return UNSATISFIABLE;
6 else Backtrack(blevel);
7 }
8 return SATISFIABLE;
9 }

Fig. 1. DPLL algorithm with conflict analysis

Figure 1 shows the pseudocode of the DPLL procedure as implemented in
most modern SAT solvers, including CirCUs. The algorithm maintains a list
of assignments that is initialized with the unit clauses from the SAT instance.
If all variables have been given a value, a satisfying set of assignments has been
found. Otherwise, an assignment is either extracted from the list, or created
by a new decision; it is added to the assignment stack, and its consequences
are deduced. Every time a new decision is made, the decision level, which is
initially 0, is incremented. If a conflict is detected, it is analyzed. The results
of the analysis are a conflict clause and a backtracking decision level. The
latter tells how much of the assignment stack should be erased (decreasing
the decision level) before continuing the search.

Conflict analysis relies on the implication graph, which is a directed acyclic
graph (DAG) whose nodes are the variables in the current set of assignments
plus a special conflict node if the assignments are conflicting. The arcs of the
DAG are such that if the predecessors of node ν are ν1, . . . , νm, then there
exists a clause, an AIG node, or a BDD, such that it implies the value of ν
given the values of ν1, . . . , νm. The predecessors of the conflict node identify a
clause, AIG node, or BDD, whose assignments are inconsistent. A root of the
graph corresponds to a decision assignment. Note that different implication
graphs may be obtained from the same set of assignments, depending on the
order in which their implications are propagated. A conflict clause is obtained
by disjoining the negation of the literals forming a cut in the implication graph
that separates the conflict node from the roots of the graph. The First Unique
Implication Point (UIP) approach [26] starts from the conflict node and looks
for the first cut such that it contains exactly one literal implied by the most
recent decision.

Every non-root node of the implication graph identifies an antecedent
clause: The implied value of the node contributes one literal, and the negation
of the predecessor values supplies the others. Some of these clauses correspond
to clauses in the input description or were derived from previous conflicts. Oth-
ers come from AIG nodes or BDDs. For instance, an AIG node a = b∧ c, and
assignment a = 1 implying c = 1 implicitly give the clause (¬a∨ c). The con-
flict clause is obtained by successive resolutions starting from the conflicting
clause associated to the conflict node. At each step one literal implied at the

59

Jin and Somenzi

current decision level is resolved using its antecedent clause. All the clauses
involved in the resolution are implied by the function whose satisfiability is
being checked.

3 Forwarding Clauses

We consider an incremental SAT algorithm that exploits the similarities among
SAT instances that form a sequence by using the conflict clauses generated
from the previous instances to guide the search for a solution to the current
instance. We assume that the second and successive instances of the sequence
are obtained by removing some clauses from the instances immediately pre-
ceding them, and then adding some other clauses.

In BMC the unsatisfiability of a SAT problem usually comes from the
simultaneous constraining of the initial and final state of a path because the
formula representing the unrolled transition relation and the constraint on
the initial states is normally satisfiable. However, this does not mean that the
conflicts the solver goes through in proving unsatisfiability involve variables
from most time frames. First, there may be conflicts due to inconsistent
assignments to the inputs and outputs of some circuit elements. Second, the
proof of unsatisfiability may rely on conflicts that establish non-trivial facts
about intermediate states of possible counterexamples, given the constraints
on the initial states. Figure 2 provides some intuition for how local conflicts
arise. It shows an AIG produced by unrolling a transition relation twice.
The property being checked is an invariant. The three parts of the figure are
three snapshots taken during the search. Each circle is a node of the AIG.
A circle is filled if the node is assigned a value. The three snapshots suggest
that the implication graph initially consists of several connected components.
If a conflict occurs when extending one of the components not including the
objective (the diamond at the far right), then the resulting conflict clause
is totally independent of the current objective and is a good candidate for
forwarding.

As recalled in Section 1, it was noted in [9] that when objectives are iden-
tified by literals, all conflict clauses can be forwarded. However, a clause that
contains the old primary objective, is trivially satisfied when that objective
is turned into auxiliary by negating its literal. In general, the usefulness of
conflict clauses that depend on the primary objective is dubious, even when
they do not contain the objective literal. Hence, in the following, we propose
two techniques to identify objective-independent clauses.

3.1 Objective Tracing

We are interested in extending the criterion of [20] to account for auxiliary
objectives since they contribute to many conflicts, especially when looking for
looping counterexamples.

60

Jin and Somenzi

Fig. 2. Examples of justification clouds

Definition 3.1 Let [[¬ϕ]]k = ωk∧Fk. A conflict clause γ is objective-dependent
if ωk is an ancestor of the conflict node in the implication graph, or at least one
objective-dependent clauses is used in its resolution. Otherwise γ is objective-
independent.

We show an AIG and an implication graph for it in Figure 3. Each hor-
izontal line in Figure 3(a) represents an AIG node; a dot stands for comple-
mentation. The objective is x9 and a conflict happens after three decisions
have been made for x1, x4, and x3. Along with the implications, we also
propagate the objective flag through the implication graph. For example, we
mark x7 and x8 because they are implied by the objective. The dotted line in
Figure 3(b) encloses the marked nodes.

61

Jin and Somenzi

x6@3

x9@0

¬x8@0

x1@1

x3@3 x4@2

(a) (b)

¬x2@1

¬x7@0

¬x5@3

Conflict

¬x8@0

¬x7@0

x1@1

¬x2@1

x4@2

x3@3

x6@3

¬x5@3

x9@0

Conflict

Fig. 3. Example of tracing objective

In our incremental algorithm, conflict analysis has the additional goal to
check whether the conflict is related to the objective. The conflict in Fig-
ure 3 is objective-dependent, since one of the ancestors of the conflict node is
x9. A naive approach could identify objective-dependent conflicts by checking
whether the objective is in the transitive fanin of the conflict node. However,
most modern SAT solvers, including CirCUs, use the first UIP to find con-
cise explanations of conflicts. Therefore, standard conflict analysis does not
need to traverse all the transitive fanin of the conflict node. Hence the naive
approach may incur overhead.

Since we propagate the objective flag during implication, we can check if
the conflict is related to the objective by checking the mark of the conflict node.
If the conflict node is not marked then we need to traverse the implication
graph to check whether objective-dependent conflict clauses are the reason for
the current conflict. However, we only traverse until the first UIP is found.
Even though the rest of the implication graph has objective-dependent conflict
clauses, they can be ignored. The reason of the conflict is isolated from those
clauses by the first UIP.

In [20], the author propose a method to identify conflict clauses to be
forwarded in BMC based solely on the circuit structure. First, all the clauses
created from the circuit structure are marked. Once a conflict happens, one
checks if all clauses leading to the conflict are marked. It so, the conflict is
derived from inconsistency between the current assignment and the circuit
structure. Therefore, the conflict is marked for forwarding. This method does
not account for auxiliary objectives, which, as shown in Section 4, often speed-
up BMC. Second when BMC is applied to optimized circuits, in which most
redundancies have been removed, the clauses that are solely derived from the
circuit structure tend to be few. This occurs in our experimental setup, since
we apply BDD sweeping [16] to remove redundancy.

62

Jin and Somenzi

(a ∨ b ∨ ¬c)

(¬a ∨ f)

(¬a ∨ g)

(¬a ∨ h)

root

b 0 1 f 1

1

10

1

10h

0a

0 g

c 0

(a ∨ b ∨ c)

Fig. 4. Example of clause trie. Each node has two sets of children corresponding to
the two literals of each variables.

3.2 Distillation

Although the criterion of Section 3.1 forwards more clauses than the one of
[20], it is still rather conservative and may miss many useful conflict clauses.
Therefore, in this section, we develop a semantic criterion that is applied
to small clauses that failed the syntactic check based on dependency on the
objective.

To distill a clause under the new objective, we check whether the clause is
satisfied under the assignments that are implied by the unit clauses of the new
SAT instance. If the clause is satisfied, it is discarded. Otherwise, we assert
the negations of its literals and carry out the resulting implications. If this
does not result in a conflict, the clause is discarded. (Therefore, distillation
can be applied also when not all clauses can be forwarded.) Otherwise, the
clause obtained by conflict analysis is the distilled version of the given clause
and is forwarded.

Even though we limit the number of literals in the candidate clauses, there
may still be many of them. Therefore, we build a trie (cf. [25]) with the set
of candidates. Figure 4 shows an example. With the trie, we can distill the
clauses with at most 7 decisions, instead of the 12 decisions required if we
process the clauses one by one. We do not explicitly optimize the trie when
clauses can be merged. In Figure 4, (a ∨ b ∨ ¬c) and (a ∨ b ∨ c) could be
merged into (a∨ b). If the new clause indeed causes a conflict, it will be found
when trying (a ∨ b ∨ ¬c). The size of the trie depends on the order of the
variables. We sort the variables according to their number of occurrences in
the candidate clauses.

Figure 5 shows the distillation algorithm. For each element in the trie, the
decision on the children ‘0’ and ‘1’ is made in DistillationAux() if there
is a non-empty suffix from them. Conflict analysis is invoked when BCP()
results in a conflict. If the resulting conflict clause has fewer literals than the
number of trie nodes on the path from the root, it is forwarded. Otherwise the

63

Jin and Somenzi

1 Distillation (Trie) {
2 for each t in Trie {
3 if (Value(t.node)! = X) {
4 Distillation(t.child[Value((t.node)]);
5 continue ;
6 }
7 DistillationAux(t, 0);
8 DistillationAux(t, 1);
9 }
10 }
11
12 DistillationAux (t, value) {
13 if (t.child[value]) {
14 level = MakeDecisionBasedOnTrie(t.node, value);
15 if (BCP(level) == CONFLICT) {
16 conflictClause = ConflictAnalysis(level);
17 if (numLiterals(conflictClause) < level)
18 AddConflictClause(conflictClause) ;
19 else
20 AddConflictCaluseBasedOnTrieNode();
21 UndoImplication(level);
22 return ;
23 }
24 else {
25 Distillation(t.child[value]);
26 }
27 }
28 }

Fig. 5. Distillation algorithm

conflict clause based on the decisions that have been made is forwarded. The
former case is more frequent. Since we want to go through all the trie nodes
one by one, we use chronological backtracking based on the trie structure.

The distillation process has several advantages. First, it is a semantic
approach that may derive clauses that were not produced by previous SAT
checks. Second, some of these clauses are reusable because they do not depend
on the current objective. Since the criterion based on tracing the objective
is conservative, we often find many objective-independent clauses from the
objective-dependent clauses of the previous run. Third, the quality of conflict
clauses usually is improved by distillation. This is partly due to the different
order in which assignments are made, and which results from the traversal of
the trie. Moreover, the first UIP tends to be closer to the conflict than the
literals in the clause to be distilled that it replaces.

A final, important advantage of distillation is that the variable scores used
to make decisions are updated during the process. Therefore, distillation

64

Jin and Somenzi

biases the search based on information from the previous instances in the
sequence. In [23], the entire proof of unsatisfiability from one SAT run is used
to bias the variable scores of the next run. With distillation, only the part of
the proof that is still useful with the new primary objective affects the scores.

4 Experimental Results

We have implemented the clause forwarding techniques in CirCUs, which is
built on top of VIS-2.1 [4,22]. To show the effectiveness of objective tracing
and distillation, we compare non-incremental SAT to incremental SAT. The
non-incremental version of CirCUs was shown to be competitive with a popular
CNF SAT solver, Zchaff, in [14].

The experimental setup is as follows. We build BMC instances for given
LTL properties from the VIS benchmark suite [22]. We check for counterexam-
ples of length up to 20. We first expand the AIG for the prescribed number of
time frames and then apply BDD sweeping [16] to the result to remove redun-
dancy. The maximum number of literals of a clause that undergoes distillation
is 50.

All experiments have been performed on a 1.7 GHz Pentium IV with 1
GB of RAM running Linux. We have set the time-out limit to 10000 s. Two
lines are drawn in each plot: the main diagonal, and the result of least square
fitting for y = a · xb.

The left scatter plot of Figure 6 shows that using auxiliary objectives
provides a rather consistent speed-up. The combined effect of all the new
techniques, including auxiliary objectives, objective tracing, and distillation,
is shown in the right plot of Figure 6 by comparison to non-incremental SAT.

To show the impact of distillation, we compare incremental SAT with and
without distillation in the left plot of Figure 7. To justify the claim that UIP-
based conflict analysis enhances the quality of conflict clauses we compare it
to using the clauses as they come out of the trie. As one can see in the right
plot of Figure 7, the use of UIP-based conflict analysis often generates better
results.

The number of conflict clauses forwarded by several methods is shown in
Table 1. The number of forwarded clauses by the method of [20] is shown in the
third column. It is collected from BMC runs for all timeframes. The fourth
column shows the number of forwarded clauses by the proposed objective
tracing method. This method identifies many more clauses than the method
of [20].

The fifth and sixth columns show the number of clauses forwarded by distil-
lation. The objective-independent clauses from distillation are collected from
all timeframes, but the objective-dependent clauses from distillation are gen-
erated from the last timeframe only. Only the objective-independent clauses
are forwarded to the next runs.

To support the claim that the quality of conflict clauses is improved by

65

Jin and Somenzi

101

102

103

104

101 102 103 104

W
ith

 A
ux

ili
ar

y
O

bj
ec

t :
 ti

m
e

(s
)

Without Auxiliary Object : time (s)

101

102

103

104

101 102 103 104

In
cr

em
en

ta
l C

ir
C

U
s

: t
im

e
(s

)

CirCUs : time (s)
Fig. 6. Effects of auxiliary objective (left) and effects of incremental solution (right)

101

102

103

104

101 102 103 104

W
ith

 D
is

til
la

tio
n

: t
im

e
(s

)

Without Distillation : time (s)

101

102

103

104

101 102 103 104

W
ith

 U
IP

 C
on

fl
ic

t A
na

ly
si

s
: t

im
e

(s
)

Without UIP Conflict Analysis : time (s)
Fig. 7. Effects of distillation (left) and effects of UIP conflict analysis (right)

distillation, we show the number of literals per conflict. We achieve a reduction
of approximately 10% in the number of literals per conflict.

5 Conclusions

We have presented two techniques for efficient incremental SAT checking in
BMC. One is a syntactic technique that identifies clauses that can be profitably
forwarded from one SAT instance to the next by tracing their dependence
on the primary objective of the SAT problem. The other technique distills
clauses that fail the tracing criterion into fewer, smaller clauses that can be

66

Jin and Somenzi

Table 1
Number of reused conflict clauses by various methods

Distillation Lit/Conflict

Design total [20] Tracing non-obj. obj. before after

simple8 19350 76 353 2014 2954 5.7 5.0

cups 38292 720 1891 5663 11222 5.7 5.1

blackjack 43852 335 619 1883 2765 4.5 4.0

gcd 54383 437 1013 4246 4446 5.2 4.8

two 68255 422 979 2890 6340 6.0 5.4

vending 106898 361 1144 5083 7720 5.2 4.6

goodbakery 118323 268 636 4053 9074 5.3 4.6

rcnum16 122263 591 1530 5567 21939 6.5 5.8

spinner32 154788 298 3205 12924 33181 5.5 5.1

all 206398 248 1458 4253 7303 5.9 5.3

forwarded. Experiments indicate that the combination of these two techniques
greatly increases the number of forwarded clauses over previous methods, while
preventing many useless clause from cluttering the solver’s data structures.
This results in a significant improvement in the speed of BMC. Though we
have described our techniques for a hybrid solver used for BMC, they are
applicable in general to solvers based on clause recording, and to problems
that benefit from an incremental approach to satisfiability.

References

[1] M. Awedh and F. Somenzi. Proving more properties with bounded model
checking. In R. Alur and D. Peled, editors, Sixteenth Conference on Computer
Aided Verification (CAV’04). Springer-Verlag, Berlin, July 2004. To appear.

[2] M. Benedetti and S. Bernardini. Incremental compilation-to-SAT procedures.
In International Conference on Theory and Applications of Satisfiability Testing
(SAT 2004), Vancouver, Canada, May 2004.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Fifth International Conference on Tools and Algorithms
for Construction and Analysis of Systems (TACAS’99), pages 193–207,
Amsterdam, The Netherlands, Mar. 1999. LNCS 1579.

[4] R. K. Brayton et al. VIS: A system for verification and synthesis. In
T. Henzinger and R. Alur, editors, Eighth Conference on Computer Aided

67

Jin and Somenzi

Verification (CAV’96), pages 428–432. Springer-Verlag, Rutgers University,
1996. LNCS 1102.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, Aug. 1986.

[6] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and
complexity of bounded model checking. In Verification, Model Checking, and
Abstract Interpretation, pages 85–96, Venice, Italy, Jan. 2004. Springer. LNCS
2937.

[7] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5:394–397, 1962.

[8] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7(3):201–215, July 1960.

[9] N. Eén and N. Sörensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4),
2003. First International Workshop on Bounded Model Checking.
http://www.elsevier.nl/locate/entcs/.

[10] M. K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combining strengths
of circuit-based and CNF-based algorithms for a high-performance SAT solver.
In Proceedings of the Design Automation Conference, pages 747–750, New
Orleans, LA, June 2002.

[11] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In
Proceedings of the Conference on Design, Automation and Test in Europe, pages
142–149, Paris, France, Mar. 2002.

[12] J. N. Hooker. Solving the incremental satisfiability problem. Journal of Logic
Programming, 15(1–2):177–186, Jan. 1993.

[13] H. Jin, M. Awedh, and F. Somenzi. CirCUs: A satisfiability solver geared
towards bounded model checking. In R. Alur and D. Peled, editors, Sixteenth
Conference on Computer Aided Verification (CAV’04). Springer-Verlag, Berlin,
July 2004. To appear.

[14] H. Jin and F. Somenzi. CirCUs: A hybrid satisfiability solver. In International
Conference on Theory and Applications of Satisfiability Testing (SAT 2004),
Vancouver, Canada, May 2004.

[15] J. Kim, J. Whittemore, J. P. M. Silva, and K. A. Sakallah. On solving stack-
based incremental satisfiability problems. In Proceedings of the International
Conference on Computer Design, pages 379–382, Sept. 2000.

[16] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning.
In Proceedings of the Design Automation Conference, pages 232–237, Las Vegas,
NV, June 2001.

68

Jin and Somenzi

[17] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, pages 97–107, New
Orleans, Jan. 1985.

[18] K. L. McMillan. Interpolation and SAT-based model checking. In W. A.
Hunt, Jr. and F. Somenzi, editors, Fifteenth Conference on Computer Aided
Verification (CAV’03), pages 1–13. Springer-Verlag, Berlin, July 2003. LNCS
2725.

[19] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using
induction and a SAT-solver. In W. A. Hunt, Jr. and S. D. Johnson, editors,
Formal Methods in Computer Aided Design, pages 108–125. Springer-Verlag,
Nov. 2000. LNCS 1954.

[20] O. Shtrichman. Pruning techniques for the SAT-based bounded model checking
problem. In Correct Hardware Design and Verification Methods (CHARME
2001), pages 58–70, Livingston, Scotland, Sept. 2001. Springer. LNCS 2144.

[21] J. P. M. Silva and K. A. Sakallah. Grasp—a new search algorithm for
satisfiability. In Proceedings of the International Conference on Computer-
Aided Design, pages 220–227, San Jose, CA, Nov. 1996.

[22] URL: http://vlsi.colorado.edu/∼vis.

[23] C. Wang, H. Jin, G. D. Hachtel, and F. Somenzi. Refining the SAT decision
ordering for bounded model checking. In Proceedings of the Design Automation
Conference, pages 535–538, San Diego, CA, June 2004.

[24] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Proceedings of the Design Automation Conference, pages
542–545, Las Vegas, NV, June 2001.

[25] H. Zhang. SATO: An efficient propositional prover. In Proceedings of the
International Conference on Automated Deduction, pages 272–275, July 1997.
LNAI 1249.

[26] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in Boolean satisfiability solver. In Proceedings of the International
Conference on Computer-Aided Design, pages 279–285, San Jose, CA, Nov.
2001.

69

70

BMC 2004 Preliminary Version

Making the Most of BMC Counterexamples

Alex Groce 1,2 Daniel Kroening 1,3

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

The value of model checking counterexamples for debugging programs (and speci-
fications) is widely recognized. Unfortunately, bounded model checkers often pro-
duce counterexamples that are difficult to understand due to the values chosen by
a SAT solver. This paper presents two approaches to making better use of BMC
counterexamples. The first contribution is a new notion of counterexample min-
imization that minimizes values with respect to the type system of the language
being model checked, rather than at the level of SAT variables. Greedy and op-
timal approaches to the minimization problem are presented and compared. The
second contribution extends a BMC-based error explanation approach to automat-
ically hypothesize causes for the error in a counterexample. These hypotheses (in
terms of relationships between variables) can be automatically checked to deter-
mine if a causal dependence exists. Experimental results show that causes can be
automatically determined for errors in interesting ANSI C programs.

Key words: model checking, counterexamples, error explanation

1 Introduction

The value of counterexamples [9] in model checking [10] is indisputable: Boun-
ded Model Checking (BMC) [4] can even be seen as a recognition of the central-
ity of the search for a counterexample to a property. For practical purposes,

1 This research was sponsored by the Gigascale Systems Research Center (GSRC) un-
der contract no. 9278-1-1010315, the National Science Foundation (NSF) under grant no.
CCR-9803774, the Office of Naval Research (ONR), the Naval Research Laboratory (NRL)
under contract no. N00014-01-1-0796, the Army Research Office (ARO) under contract no.
DAAD19-01-1-0485, and the General Motors Collaborative Research Lab at CMU. The
views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of GSRC,
NSF, ONR, NRL, ARO, GM, or the U.S. government.
2 Email: agroce@cs.cmu.edu
3 Email: kroening@cs.cmu.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Groce

1 void f (int a, int b, int c)

2 {
3 int temp;

4 if (a > b) {
5 temp = a;

6 a = b;

7 b = temp;

8 }
9 if (b > c) {
10 temp = b;

11 b = c;

12 c = temp;

13 }
14 if (a < b) {
15 temp = a;

16 a = b;

17 b = temp;

18 }
19 assert ((a <= b) && (b <= c));

20 }

Fig. 1. sort.c

the diagnostic uses of counterexamples in understanding and correcting errors
in a system or its specification are obvious.

A model checking counterexample is intended to be read by a person and
used for debugging. Ideally, such a counterexample would be the most succinct
and easily comprehensible witness to the existence of an error. The utility of
small (in various senses, including length) counterexamples is widely recog-
nized. Minimization of counterexamples, both in bounded [23] and explicit-
state [14] model checking is a topic of ongoing research.

Previous work on minimization of counterexamples has concentrated either
on producing counterexamples of minimal length or on removing irrelevant in-
formation from a counterexample. This paper presents a technique that can
be used to minimize counterexample length, but focuses on a semantic min-
imization, with respect to the type system of the language (ANSI C, in this
case). In particular, this approach minimizes the values of variables in the
counterexample. As an example, consider the program in Figure 1. Without
minimization, the Bounded Model Checker CBMC [19] produces the coun-
terexample shown in Figure 2.

CBMC and similar tools are likely to produce counterexamples with un-
usually high (or low) values for variables. Bounded model checkers unwind
a transition system to produce a propositional formula that is satisfiable if
a counterexample of a certain length exists. The SAT solvers used to check
these formulas for satisfiability typically return the first satisfying assignment
produced. The counterexample values, therefore, are highly dependent on the
decision heuristics used by the SAT solver. That these choices may result in
needlessly large values for the actual program variables is independent of the
issue of unnecessarily complete assignments addressed by other minimization
work [23]. The issue is an artifact of the bit-level translation; however, using
an integer-based technique such as UCLID [5] would not preserve the proper
bit operation and overflow semantics of ANSI C.

72

Groce

Counterexample:

Initial State

--

State 1

--

a=-8193 (11111111111111111101111111111111)

State 2

--

b=-402 (11111111111111111111111001101110)

State 3

--

c=-2080380800 (10000011111111111110100010000000)

State 4

--

temp=0 (00000000000000000000000000000000)

State 10 file sort.c line 10 function c::f

--

temp=-402 (11111111111111111111111001101110)

State 11 file sort.c line 11 function c::f

--

b=-2080380800 (10000011111111111110100010000000)

State 12 file sort.c line 12 function c::f

--

c=-402 (11111111111111111111111001101110)

Failed assertion: assertion file sort.c line 19 function c::f

Fig. 2. Counterexample for sort.c

Counterexample:

Initial State

--

temp=-1 (11111111111111111111111111111111)

a=0 (00000000000000000000000000000000)

b=0 (00000000000000000000000000000000)

c=-1 (11111111111111111111111111111111)

State 6 file sort.c line 10 function c::f

--

temp=0 (00000000000000000000000000000000)

State 7 file sort.c line 11 function c::f

--

b=-1 (11111111111111111111111111111111)

State 8 file sort.c line 12 function c::f

--

c=0 (00000000000000000000000000000000)

Failed assertion: assertion file sort.c line 19 function c::f

Fig. 3. Minimized counterexample for sort.c

In this case, the decision heuristics used by ZChaff [22] assign 1 to a large
number of bits. This results in large values for the program variables, making
it difficult to follow what is happening. This problem, already evident in a
small example program, is greatly exacerbated when many variable values are
involved.

Using the optimization approach to value minimization presented in Sec-
tion 4.2, we produce a new counterexample with minimal values for the pro-
gram variables, making it much easier to follow the behavior of the program
(Figure 3). Note that both counterexamples are of the same length and con-
tain the same amount of program state.

This paper presents two approaches to value minimization. The first is
a greedy approach that makes use of incremental SAT (Section 4.1), while

73

Groce

the second solves an optimization problem in order to guarantee true min-
imality (Section 4.2). Both approaches are used for counterexample length
minimization, as well.

The second issue addressed in this work is that of making better use of
counterexamples. Minimization directly improves the usability of counterex-
amples. Error explanation [15] provides information about the causality of
errors beyond that contained in the counterexample alone. The explain

tool [16] automatically generates explanations for CBMC counterexamples,
based on the counterfactual theory of causality proposed by David Lewis [21].
Previous work [15] presented a notion of causal dependence, and noted that
explain could check whether an error was causally dependent on a predi-
cate. This feature was of limited utility, however, as the user was required to
supply a possible cause to be checked. Section 6 presents a new method for
automatically hypothesizing possible causes for an error.

2 Related Work

Minimization of counterexample length has been addressed in various contexts,
including heuristic approaches [9,14,13]. Other kinds of minimization, based
on game-semantics or minimal SAT assignments [18,23] have also appeared.
The approach presented here for minimizing counterexample values can also
be used to minimize counterexample lengths.

More generally, maximizing the utility of counterexamples has been ad-
dressed by the ideas of proof-like and evidence-based counterexamples [8,26].

The automatic causal dependence hypothesis-generation and checking pre-
sented in Section 6 is a natural extension of BMC-based error explanation
[15,16]. Error explanation facilities have been described for MSR’s SLAM
model checker [3] and NASA’s JPF model checker [17]. The game-based min-
imization approach of Jin, Ravi, and Somenzi [18] also provides an error ex-
planation. The distance metric based approach used in Section 6 is related to
Zeller’s delta-debugging techniques [28,27] and the fault localization approach
taken by Renieris and Reiss [24].

3 Bounded Model Checking for C Programs

CBMC reduces the model checking problem to determining the validity of
a bit-vector equation; full details are presented elsewhere [11]. In a process
analogous to that used for Bounded Model Checking of Kripke structures, the
transition system is unwound by duplicating the loop bodies in the case of
for and while loops, duplicating code in the case of loops build by means
of backward goto statements, and function inlining in the case of recursive
functions. Unwinding assertions ensure that sufficient unwinding has been
performed – i.e. that it is not possible that a counterexample can be found
by allowing more loop iterations.

74

Groce

x=x+y;

if(x!=1)

x=2;

else

x++;

assert(x<=3);

→

x1=x0+y0;

if(x1!=1)

x2=2;

else

x3=x1+1;

x4=(x1!=1)?x2:x3;

assert(x4<=3);

→

C := x1=x0+y0 ∧

x2=2 ∧

x3=x1+1 ∧

x4=(x1!=1)?x2:x3

P := x4 ≤3

Fig. 4. Transformation into SSA

The program, after unwinding, is composed of only if statements and
assignments. This program is then transformed into static single assignment
(SSA) form [2], which requires a pointer analysis. We omit the full details
of this process. For programs in SSA form, each variable is assigned at most
once (Figure 4). The SSA form is then transformed into an equation C by
replacing the assignments by equalities. The property is denoted by P . In
order to check the property, CBMC converts C ∧ ¬P into CNF by adding
intermediate variables and passes the CNF to a SAT solver such as Chaff [22].
If the equation is satisfiable, the solution to C represents a counterexample
for P . If it is unsatisfiable, P holds.

The conversion of most operators into CNF is straight-forward and re-
sembles the generation of appropriate arithmetic circuits. The tool can also
output the bit-vector equation before it is flattened to CNF, for the benefit of
circuit-level SAT solvers.

4 Counterexample Value Minimization

4.1 Greedy Minimization

The first method for value minimization is a greedy heuristic approach based
on incremental SAT. The first step of the algorithm is to attempt to minimize
the length of the counterexample. CBMC generates a Boolean guard variable
for each basic block. The variable is 1 if and only if the block is executed in
the trace. In hardware BMC, length minimization is not generally an issue if
BMC is performed in an incremental fashion. The unwinding used by CBMC,
however, includes program statements that may or may not be executed –
the unwinding length is not the number of execution steps – it is the potential
number of execution steps, if all guards are satisfied, which typically is not the
case. Different counterexamples with the same unwinding depth may execute
varying numbers of program statements.

The length minimization algorithm sorts the list of guard variables by the
number of instructions each guard affects. Starting with the guard that affects
the most instructions, the heuristic proceeds as follows: first, a clause is added
to the clause data base with the negation of the guard variable as the only

75

Groce

literal (forcing the guard to be false). The algorithm then proceeds depending
on the value of the variable in the current satisfying assignment:

• If the value of the variable in the current satisfying assignment is 0, the
old satisfying assignment is also a satisfying assignment for the new set of
clauses.

• If the value is 1, the SAT solver is restarted. If the new instance is also sat-
isfiable, the new clause remains in the clause database. If it is unsatisfiable,
the attempt failed and the new clause is removed.

The algorithm continues with the next guard from the sorted list until
all guards have been used. The heuristic approach only then attempts to
minimize the variables that are used in the counterexample trace. Because
the guard values are now fixed, the only values minimized are those that will
appear in the counterexample: assignments guarded by false conditions are
not taken into account. Alternatively, one could attempt to minimize first
values and then execution steps.

The heuristic begins with the most significant bits of all variables, and
then continues towards the least significant bit. In case of unsigned variables,
the heuristic attempts to make all the bits zero. Signed variables are encoded
as two’s complement, and the goal is to minimize the absolute value. Fur-
thermore, positive values are preferred over negative values. Thus, in case of
signed variables, the algorithm first tries to set the sign bit to 0. The fol-
lowing bits are then minimized to 0 or 1, depending on the outcome of the
SAT instance for the corresponding sign bit. If the sign bit is 1, the heuristic
attempts to make the following bits 1 as well, and vice versa.

4.2 Optimal Minimization

The greedy approach to minimization does not always work well. A very
unfortunate choice for the initial value to minimize for the program in Figure
1 produces a counterexample (Figure 5) that is not only almost unminimized,
but is longer than the original counterexample. 4

True minimization of counterexample values can be considered as a 0-1 ILP
problem. PBS [1] is a pseudo-Boolean constraint solver which, given a SAT
instance in CNF and a set of integer coefficients for SAT variables, will solve
optimization problems over the constraints. The length of the counterexample
is minimized before values are minimized. Each guard bit is given a weight
equal to the number of program statements guarded by that condition. The
psuedo-Boolean optimization problem is to minimize the weighted sum, i.e.,
the number of executed program statements. As with the greedy algorithm,
counterexample length minimization is completed and guard values are locked
before value minimization begins.

4 The length increase actually results from the attempt to greedily minimize counterexam-
ple length, rather than values.

76

Groce

Counterexample:

Initial State

--

State 1

--

a=2114977792 (01111110000100000000000000000000)

State 2

--

b=-33554433 (11111101111111111111111111111111)

State 3

--

c=2138989455 (01111111011111100110001110001111)

State 4

--

temp=0 (00000000000000000000000000000000)

State 6 file sort.c line 5 function c::f

--

temp=2114977792 (01111110000100000000000000000000)

State 7 file sort.c line 6 function c::f

--

a=-33554433 (11111101111111111111111111111111)

State 8 file sort.c line 7 function c::f

--

b=2114977792 (01111110000100000000000000000000)

State 14 file sort.c line 15 function c::f

--

temp=-33554433 (11111101111111111111111111111111)

State 15 file sort.c line 16 function c::f

--

a=2114977792 (01111110000100000000000000000000)

State 16 file sort.c line 17 function c::f

--

b=-33554433 (11111101111111111111111111111111)

Failed assertion: assertion file sort.c line 19 function c::f

Fig. 5. Greedily minimized counterexample for sort.c

The notion of value minimality used here is to minimize the sum of the
absolute values of all variables (appearing in the counterexample), with respect
to the type system of the language. Again, consider the program in Figure 1.
At first glance, it would appear that the goal is to minimize the sum: |a| +

|b| + |c| + |temp|. However, each of these variables may take on different
values during execution of the program. Therefore, the sum that is minimized
is over all program variables after loop unrolling and static single assignment
[2], in this case |a#0| + |a#1| + |a#2| + |a#3| + |a#4| + |b#0| + ...

+ |b#6| + |c#0| + |c#1| + |c#2| + |temp#0| + ... + |temp#6|.

For unsigned bit-vectors, the pseudo-Boolean constraints produced simply
use values proportional to the place values, i.e., the least significant bit receives
a weight of 1, the next least significant receives a weight of 2, up to a weight
of 2n−1 for the most significant bit of an n-bit vector. Let a0 denote the least
significant bit of the bit-vector a, and an−1 the most significant bit. We denote
the integer value of an unsigned bit-vector a by 〈a〉:

〈a〉 :=
n−1∑
i=0

ai · 2i(1)

For signed bit-vectors, such as those in sort.c, a different approach is
required. CBMC encodes signed bit-vectors using two’s complement. Note

77

Groce

that the ANSI C standard also permits other encodings.

The integer value represented by a is in the range from −2n−1 to 2n−1 − 1
and is denoted by [a]:

[a] :=−2n−1 · an−1 + 〈an−2 . . . a0〉(2)

The bit an−1 is called the sign bit. We denote it by sign(a).

We aim at minimizing the absolute value of a. If a is positive, i.e., if an−1

is 0, then the absolute value of a is equal to a. If the sign bit is 1, the negation
of a is

−[a] = 〈a〉+ 1(3)

where a denotes the bit-wise negation of a.

We implement this computation as follows: For each variable x of a signed
bit-vector type, we introduce a new variable x′ which is the bit-wise xor of x
with its own sign bit:

x′i := xi ⊕ sign(x)(4)

If x is positive, then x′ = x and it is obvious that x′ it is equal to the
absolute value of x, i.e.,

|[x]| = 〈x′〉
If x is negative, then x′ = x, and obviously

|[x]| = −[x] = 〈x′〉+ 1

Combining both cases results in

|[x]| = 〈x′〉+ xn−1

As x′n−1 is always zero, we get

|[x]| = 〈x′n−2 . . . x′0〉+ xn−1

The pseudo-Boolean constraints are then assigned almost exactly as in
the unsigned case, with the following exceptions: (i) the constraints for every
place value, not including the sign bit are based on x′ rather than x and (ii)
the weight of the sign bit is 1, rather than 2n−1. Thus, we minimize

xn−1 +
n−2∑
i=0

2i · x′i(5)

5 Experimental Results

Table 1 shows results for minimization of counterexamples for several pro-
grams. The first column shows which program is being model checked. The
remaining columns give results for the non-minimized counterexample, the
greedily minimized counterexample, and the optimally minimized counterex-
ample, in groups of three. In each group, the first column gives the time
taken to generate a counterexample (time(s)). The second column (Σ[x]) in
each group gives the sum of the absolute values of the variables and the third

78

Groce

normal greedy optimal

Program time(s) Σ[x] l time(s) Σ[x] l time(s) Σ[x] l

sort.c 0.70 4.161 × 109 7 1.11 1.073 × 1010 10 995.72 2 7

TCAS #1 1.30 111,905 73 5.22 111,905 73 13.35 9,734 73

TCAS #11 1.20 747,623 65 4.44 747,623 65 14.55 9,524 65

TCAS #31 1.64 488,241 68 4.05 488,241 68 12.23 8,932 68

TCAS #40 0.87 640,307 63 3.83 640,307 63 5.32 9,526 63

TCAS #41 1.69 937,749 72 4.00 937,749 72 6.05 9,528 72

adpcm coder 4.42 814 106 39.52 73 91 107.30 391 91

adpcm decoder 2.47 578 83 41.20 517 78 9.49 574 73

epic quantize 1.06 18 28 7.58 14 28 3.65 14 28

g721 decode 8.10 1.075 × 109 289 168.63 855,224 298 18.45 855,106 289

gsm decode 367.60 5257 250 3667.68 3,166 374 2436.08 180,041 225

mpeg2dec 3.82 6.334 × 109 61 141.41 9 60 55.36 9 60

Table 1
Time and minimization results for greedy and optimal strategies.

column (l) gives the length in steps of the counterexample. Sums over 1 billion
are given in scientific notation. The benchmarks are taken from the example
program sort.c, the TCAS suite [25], and the MediaBench benchmarks [20].

For the sort example and TCAS benchmarks, greedy optimization resulted
in no improvements in the original counterexamples but in all cases took less
time than true optimization.

For the MediaBench benchmarks, the results are mixed. The greedy heuris-
tic is typically slower than the true optimization, but results in smaller values
in some cases (the values are a secondary goal, and larger values in the optimal
algorithm can be caused by different control flow traces computed in the first
stage). On two benchmarks, hardly any minimization is achieved by either
algorithm. These benchmarks make heavy use of large lookup-arrays, which
are computed at run-time.

6 Hypothesizing and Checking Causal Dependence

Previous work [15] using CBMC to explain errors in programs presented a
notion of causal dependence derived from David Lewis’ counterfactual theory
of causality [21]:

Definition 6.1 [causal dependence] A predicate e is causally dependent on a
predicate c in an execution a iff:

(i) c and e are both true for a (we abbreviate this as c(a) ∧ e(a))

(ii) ∃ an execution b . ¬c(b)∧¬e(b)∧(∀b′ . (¬c(b′)∧e(b′)) ⇒ (d(a, b) < d(a, b′)))

where d is a distance metric for program executions. In other words, e is
causally dependent on c in an execution a iff executions in which the removal

79

Groce

of the cause also removes the effect are more like a than executions in which
the effect is present without the cause.

The previous work did not focus on checking causal dependence, as de-
termining if e depends on c is only useful after arriving at likely candidate
causes. This would be putting the cart before the horse, as the chief goal of
error explanation is to help the user move from awareness of the existence of
an error to a small set of candidate causes. The distance metric that allows
causal dependence checking was instead used to discover a successful execu-
tion that was as similar as possible to a given counterexample. The distance
metric used by CBMC is based on the total number of atomic changes (∆s)
in variable and guard values between two executions [15]. These differences
are presented to the user as causes for the error.

However, differences in actual variable values are often too specific. The
relevant information is often a change in relationships between variables: i.e.,
not that x was 100 and must be changed to 200 to avoid violating an assertion,
but that in the failing run x < y and in the successful run, x > y. The
basic explanation approach may, unfortunately, completely omit y from an
explanation if only the value of x is altered in the successful execution. Because
the distance metric minimizes the number of changes, such omissions are very
likely to occur. A more general notion of ∆s would report to the user all
predicates whose values are different for the counterexample and the successful
execution. As the set of changed predicates is potentially infinite (comparisons
of variables with constant values, etc.), only a subset of the potential ∆s can
be considered. Our implementation only checks basic ordering and equality
relations between program variables, e.g. x == y, x < y, x > y, x <= y, etc.

Directly presenting the set of changed ∆s is not particularly useful: changes
in important variables are likely to introduce many accidental and unimpor-
tant changes, hiding the relevant differences in a large set of uninteresting
results. However, the set of changes can be used a set of candidate causes
for checking causal dependence. Only the ∆s on which the error is causally
dependent are presented to the user.

The set of predicate ∆s that need to be checked is minimized by requiring
that one of the variables being compared has changed its value in the successful
execution. If neither variable has changed value, the predicate value must be
unchanged. Given a possible cause c, the counterexample execution a, and an
error (or effect) e, checking causal dependence requires two steps:

(i) Find an execution b such that (1) c does not hold and (2) the distance
d(a, b) is minimal. b is an execution that is as similar as possible to the
counterexample a, except that the potential cause c is present in a but
not in b. If the error e is present in b, it is not causally dependent on c.

(ii) Perform bounded model checking over all executions such that (1) c does
not hold and (2) the distance to a is equal to d(a, b). If all such executions
are error free (e does not hold), then e is causally dependent on c.

80

Groce

Error is causally dependent on these predicates:

c#0 < a#0

c#0 < b#0

Fig. 6. Causes for sort.c

Error is causally dependent on these predicates:

Input Down Separation#0 == Layer Positive RA Alt Thresh#1

Input Down Separation#0 <= Layer Positive RA Alt Thresh#1

Down Separation#1 == Layer Positive RA Alt Thresh#1

Down Separation#1 <= Layer Positive RA Alt Thresh#1

Fig. 7. Causes for TCAS error #1

100c100

// (correct version)

< result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation >= ALIM())));

// (faulty version #1)

> result = !(Own Below Threat()) || ((Own Below Threat()) &&

(!(Down Separation > ALIM())));

Fig. 8. diff of correct TCAS code and variation #1

Figure 6 shows a subset of the causes discovered for the counterexample
shown in Figure 3. In this case, the only causes shown are those which relate
two input values. The algorithm actually detects 63 additional causes, relating
inputs to intermediate values, or intermediate values to each other. For this
reason, an option is provided to only check for relationships between input
variables. The high degree of causal dependence in this case derives from
the nature of the code: for a faulty sorting routine, ordering relations will
obviously be crucial to the occurrence of the error, unless the sorting routine
is invariably incorrect. The relationships between intermediate values are
somewhat uninteresting in this case, as the set of input values is equivalent to
the set of all values computed by the program.

For variation # 1 of the TCAS case study [25,12] examined in earlier work
[15,16], however, a much smaller set of causes (Figure 7) is produced without
restriction to input values. Figure 8 shows the error in the TCAS code as
a diff between correct and incorrect versions. The automatically generated
explanation, as described in the earlier work, focuses attention on line 100.
The function call to ALIM() on this line always returns a value that is equal to
Layer Positive RA Alt Thresh#1. Any user familiar with the specification
of the TCAS code will be aware of this equivalence. Knowing (i) that the
fault can be localized to line 100 and (ii) that the error is causally dependent
on the predicate Down Separation#1 == Layer Positive RA Alt Thresh#1,
a user should be able to quickly conclude that the > comparison on line 100
should be a >= comparison.

6.1 Alternative Approaches for Hypothesis Selection

The particular choice of predicates for which to check causal dependence in-
volves a number of tradeoffs: using too many predicates will increase com-

81

Groce

putation time and may result in redundant results; using too few may miss
causal dependencies. An obvious alternative method is to use predicates taken
from guards and Boolean assignments in the program source. Such compar-
isons should be generalized: if x > y appears in a guard, checking x <= y, x
== y, and so forth is necessary to catch cases where the choice of comparison
operations is incorrect. The primary difference between this generalization
and the method implemented in CBMC is that no causality checking is done
for (1) comparisons with constants and (2) comparisons with temporary re-
sults that are never stored in a variable (i.e. x > (y + 50)) are not checked
for causality. On the other hand, comparisons between values that do not
appear in guards together are checked. Causal dependencies that are directly
present in a guard in the source code are generally not as difficult to detect
as indirect dependencies: a change in guard value is likely to appear in the
explanation. For this reason, it seems at least reasonable to expect that the
current tradeoff is often the correct choice. More extensive evaluation will be
needed to determine if a source code-mining approach is preferable.

Another alternative approach is to leverage predicate abstraction. The
predicate abstraction based model checker MAGIC [6] now supports distance
metric based explanation over abstract executions [7]. The predicates used in
the abstract model could be tested for causal dependence. Checking causal
dependence is less important in this case, however, as the explanations are
presented in terms of changes in relationships between variables in the first
place, and irrelevant ∆s are suppressed by the metric and the abstract model.

7 Conclusions and Future Work

This paper presents a new kind of counterexample minimization: in contrast
to previous work, the simplification is with respect to the semantic values of
program variables. Small values are particularly beneficial for understanding
traces of sequential programs, such as ANSI C programs. Conventional BMC
implementations suffer from the fact that SAT solvers choose values according
to built-in heuristics which do not favor readable counterexamples.

Two approaches are described: a greedy minimization heuristic using in-
cremental SAT, and an algorithm that computes an exact solution using a
pseudo-Boolean solver. The experimental results show that the optimal ap-
proach not only produces better results in a great many cases, but that it can
be faster than the greedy approach. However, both algorithms are consider-
ably slower than plain BMC without minimization.

More sophisticated heuristic approaches taken from the optimization com-
munity should outperform the naive greedy implementation. In future work,
we plan to investigate SAT solvers with decision heuristics that are aware
of a metric for counterexample simplicity: the idea being to make favoring
simple counterexamples a part of the search algorithm, as opposed to a post-
processing step.

82

Groce

The paper also presents a new use of BMC counterexamples, an extension
of previous work on error explanation. This algorithm allows a model checker
to identify predicates on which an error is causally dependent, in addition to
providing a counterexample and fault localization. In future work, we hope to
extend the range of predicates considered and consider subsumption or other
methods for reducing the number of causes presented to the user.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A backtrack search
pseudo Boolean solver. In Symposium on the theory and applications of
satisfiability testing (SAT), pages 346–353, 2002.

[2] B. Alpern, M. Wegman, and F. Zadeck. Detecting equality of variables in
programs. In Principles of Programming Languages, pages 1–11, 1988.

[3] T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing errors
in counterexample traces. In Principles of Programming Languages, pages 97–
105, 2003.

[4] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 193–207, 1999.

[5] R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying systems using a logic
of counter arithmetic with lambda expressions and uninterpreted functions. In
Computer-Aided Verification, pages 78–92, 2002.

[6] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in C. IEEE Transactions on Software Engineering,
30(6):388–402, 2004.

[7] S. Chaki, A. Groce, and O. Strichman. Explaining abstract counterexamples.
In SIGSOFT/Foundations of Software Engineering, 2004. To appear.

[8] M. Chechik and A. Gurfinkel. Proof-like counter-examples. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 160–175, 2003.

[9] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and witnesses in symbolic model checking. In Design
Automation Conference, pages 427–432, 1995.

[10] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.

[11] E. Clarke, D. Kroening, and K. Yorav. Behavioral consistency of C and Verilog
programs using Bounded Model Checking. Technical Report CMU-CS-03-126,
Carnegie Mellon University, School of Computer Science, 2003.

[12] A Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezze. Using symbolic execution
for verifying safety-critical systems. In European Software Engineering
Conference/Foundations of Software Engineering, pages 142–151, 2001.

83

Groce

[13] S. Edelkamp, A. L. Lafuente, and S. Leue. Trail-directed model checking. In
Workshop of Software Model Checking (SoftMC), 2001.

[14] P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in spin.
In SPIN Workshop on Model Checking of Software, pages 92–108, 2004.

[15] A. Groce. Error explanation with distance metrics. In Tools and Algorithms
for the Construction and Analysis of Systems, pages 108–122, 2004.

[16] A. Groce, D. Kroening, and F. Lerda. Understanding counterexamples with
explain. In Computer-Aided Verification, 2004. To appear.

[17] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In
SPIN Workshop on Model Checking of Software, pages 121–135, 2003.

[18] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 445–458,
2002.

[19] D. Kroening, E. Clarke, and F. Lerda. A tool for checking ANSI-C programs.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
168–176, 2004.

[20] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing multimedia and
communicatons systems. In International Symposium on Microarchitecture,
pages 330–335, 1997.

[21] D. Lewis. Causation. Journal of Philosophy, 70:556–567, 1973.

[22] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In Proceedings of the 38th Design
Automation Conference (DAC’01), pages 530–535, 2001.

[23] K. Ravi and F. Somenzi. Minimal assignments for bounded model checking.
In Tools and Algorithms for the Construction and Analysis of Systems, pages
31–45, 2004.

[24] M. Renieris and S. Reiss. Fault localization with nearest neighbor queries. In
Automated Software Engineering, 2003.

[25] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test
selection technique. Software Engineering, 24(6):401–419, 1999.

[26] L. Tan and R. Cleaveland. Evidence-based model checking. In Computer-Aided
Verification, pages 455–470, 2002.

[27] A. Zeller. Isolating cause-effect chains from computer programs. In Foundations
of Software Engineering, pages 1–10, 2002.

[28] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

84

BMC 2004 Preliminary Version

Bounded Model Checking with SNF,
Alternating Automata, and Büchi Automata

Daniel Sheridan 1

School of Informatics
University of Edinburgh

Edinburgh, UK

Abstract

Model checking of LTL formulæ is traditionally carried out by a conversion to Büchi
automata, and there is therefore a large body of research in this area, including some
recent studies on the use of alternating automata as an intermediate representation.

Bounded model checking has until recently been apart from this, typically using
a direct conversion from LTL to propositional logic. In this paper we give a new
bounded model checking encoding using alternating automata and focus on the
relationship between alternating automata and SNF. We also explore the differences
in the way SNF, alternating, and Büchi automata are used from both a theoretical
and an experimental perspective.

Key words: Bounded model checking, SNF, LTL, Büchi
automata, Alternating automata

1 Introduction

Before the introduction of bounded model checking in 1999 [1], LTL model
checking was typically performed by converting the formula to an automa-
ton expressing the formula, forming the product with the model automaton,
then checking the result for emptiness. Research into producing the smallest
automaton for a given LTL has been extensive and varied. There is litera-
ture giving improvements to the original “GPVW” conversion algorithm [11]
including simplifying the LTL before conversion, and the automaton after
conversion (eg,[6]) as well as the conversion itself. Some recent work [9,10]
proposes the use of alternating automata (AA) as an intermediate represen-
tation of the formula. The LTL to AA conversion is linear space so allows for
simplifications to be easily performed before the exponential space conversion
to a Büchi automaton.

1 Email: d.j.sheridan@sms.ed.ac.uk
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

Sheridan

Bounded model checking (BMC) has traditionally taken a different ap-
proach: the original paper [1] gives an encoding from LTL directly to propo-
sitional logic. Being defined recursively on the structure of the formula this
(näıvely) appears to be exponential in size, although with careful treatment [4]
the result is polynomial in size. An alternative encoding [8] based directly on
the fixpoint characterisations of LTL operators produces an encoding which
is linear in size. The use of LTL to automata conversions as part of bounded
model checking was first explicitly suggested by de Moura et al. [5]. The
only experimental comparison [4] is very brief and mainly exercises the LTL
simplification available in many automata conversion programs.

Although there are grounds for distinguishing between the direct-to-propo-
sitional conversion and the conversions via automata as “syntactic” versus
“semantic” [4], we demonstrate in this paper the close correspondence between
SNF and alternating automata and their conversion procedures from LTL. We
review the use of Büchi automata for BMC and give a new encoding to enable
direct use of alternating automata. This allows us to compare more closely the
use of the SNF encoding with the use of automata, to explore the advantages
and disadvantages of each approach. We demonstrate some of these differences
with a series of experiments.

2 Background

2.1 Bounded model checking

BMC solves the LTL model checking problem by observing a restricted number
of states, k. Infinite counterexamples may be represented by a path of the form
abω: a k-l-loop path with k = |ab| and l = |a|. We constrain a finite sequence of
states π to be a k-l-loop by the assertion lLk =̇ (π(k) = π(l)) 2 . Alternatively
we can give finite counterexamples as a k-prefix path for some LTL properties.
In particular, it is not possible to show to give a counterexample for F f for
a k-bounded path. Typically, we verify a model by examining a sequence of
k states π interpreted as either a prefix or a loop; we write a disjunction over
the k possible interpretations, testing all of the options for the type of path
and the value of l simultaneously.

2.2 The Separated Normal Form

SNF [7] is a clause-like normal form based on the Separation Theorem of
Gabbay, with the general form G

∧
i(Pi ⇒ Fi) where Pi ⇒ Fi, called rules are

restricted to (writing p and f for propositional formulæ)

Initial rules of the form start ⇒ f where start holds only in the initial
state of each path

2 Note that we give an equivalence between π(k) and π(l) rather than the transition in the
original presentation [1]

86

Sheridan

Global invariant rules p⇒ f with no temporal operator

Global step rules p⇒ X f

Global eventuality rules p⇒ F f

Frisch et al. [8] describe a series of transformations from LTL to SNF aimed
at bounded model checking. Transformation is linear time and space: an LTL
formula with n temporal operators produces up to 2n rules and introduces n
new variables.

2.3 Büchi Automata

Definition 2.1 A Büchi automaton B is defined by the tuple 〈Q,Σ, δ, I, T 〉
where Q is the set of states; Σ is the alphabet of transition labels; δ is the
transition function Q→ 22Σ×Q; I ⊆ Q is the set of initial states; T ⊆ Q is the
set of accepting states.

Note that we use 2Σ in the definition of the transition relation in place of
Σ in order to gather transitions that differ only by their actions — this can
be a significant optimisation.

A run of a Büchi automaton is a path through the automaton; it is accept-
ing if the states in T are visited an infinite number of times. That is,

Definition 2.2 A run of a Büchi automaton B with respect to a word u0u1 . . .
∈ Σω is a sequence of states in q0q1 . . . ∈ Qω with q0 ∈ I and ∀i∃αi 〈αi, qi+1〉 ∈
δ(qi) such that ui ∈ αi. A run is accepting if infinitely many states in the run
are members of T .

A generalised Büchi automaton (GBA) has a set of accepting sets T ⊆ 2Q;
each set must be visited infinitely often for acceptance. A GBA may be
reduced to a classical Büchi automaton but incurs a linear blowup of O(|T |).

2.4 Alternating Automata

Alternating automata are a type of tree automaton (runs are described as trees
rather than linear traces) combining both deterministic and nondeterministic
behaviours: a transition in a nondeterministic automaton leads to a set of
states from which one is chosen; a transition in a deterministic tree automaton
leads to a successor set. Alternating automata exhibit the combination of these
existential and universal behaviours. Although the presentation that we adopt
below is one of a nondeterministic choice between conjunctions of states, it
can be generalised to arbitrary propositional formulæ over ∧,∨ and states.
Alternating automata are exponentially more succinct than Büchi automata.

There are two presentations of LTL to automata conversion via alternating
automata. We follow the slightly unconventional presentation by Gastin and
Oddoux [10]: transitions are from a state to a conjunction of states; each state
may have multiple transitions, selected nondeterministically. This effectively

87

Sheridan

encodes a disjunction of conjunctions of states reached from a given state. The
presentation given by Fritz and Wolper [9] is equivalent, but the differences in
the definitions lead to larger representations of the automata.

Definition 2.3 An alternating co-Büchi automaton A is defined by the tuple
〈Q,Σ, δ, I, F 〉 where Q is the set of states; Σ is the alphabet of transition
labels; δ is the transition function Q → 22Σ×2Q

; I ⊆ 2Q is the set of initial
combinations of states; F ⊆ Q is the set of final states

As for the Büchi automaton definition above, the transition labels are from
2Σ; accepted words are nevertheless from Σω.

Alternating automata representing LTL formulæ are known to be very
weak, which means that there is a partial order on the states (Q,v) deter-
mined by the transitions, such that ∀q ∈ Q, ∀ 〈α, q′〉 ∈ δ(q), q′ v q. That is,
transitions are only permitted from a state to a lower or equal state. The re-
sult of this restriction is that the only loops in very weak co-Büchi alternating
automaton (VWAA) are self-loops.

Definition 2.4 A run σ of a VWAA on a word u0u1 . . . ∈ Σω is a labelled
DAG 〈V,E, λ〉 with V partitioned into levels Vi, V =

⋃
i∈N Vi and E ⊆⋃

i∈N Vi×Vi+1. λ : V → Q labels the vertices of the graph with states of the au-
tomaton. Vi may be seen as a multiset of elements of Q. The graph is related
to the word and the automaton by λ(V0) ∈ I and ∀v ∈ Vi,∃ 〈λ(v), α, s′〉 ∈
δ(λ(v)).ui ∈ α ∧ s′ = λ(E(v)) A run is accepting if every infinite branch of σ
has only a finite number of nodes with labels in F .

2.4.1 LTL to VWAA Conversion

We report here the conversion procedure given by Gastin and Oddoux. The set
operator ⊗ constructs the conjunctions of two sets of disjunctive normal form
transitions: X ⊗ Y = {〈α1 ∩ α2, e1 ∧ e2〉 | 〈α1, e1〉 ∈ X, 〈α2, e2〉 ∈ Y }. The
overbar operator ψ̄ converts ψ to a set-style disjunctive normal form represen-
tation: a set of conjunctions of atomic propositions or temporal subformulæ.

For an LTL formula ϕ over atomic propositions P , the VWAA Aϕ =
〈Q,Σ, δ, I, F 〉 is given by

• Q is the set of temporal subformulæ of Q (the set of subformulæ with an
LTL operator as the main connective, union the set of atomic propositions)

• Σ = 2P ; I = ψ̄; F is the set of formulæ of the form ψ1 Uψ2 or Fψ1

• δ is defined as

δ(>) = {〈Σ,>〉}
δ(p) = {〈{a ∈ Σ | p ∈ a},>〉}

δ(¬p) = {〈{a ∈ Σ | p /∈ a},>〉}
δ(Xψ) = {〈Σ, e〉 | e ∈ ψ̄}
δ(Fψ) = ∆(ψ) ∪ ({〈Σ,Fψ〉})

88

Sheridan

δ(Gψ) = ∆(ψ)⊗ {〈Σ,Gψ〉})
δ(ψ1 Uψ2) = ∆(ψ2) ∪ (∆(ψ1)⊗ {〈Σ, ψ1 Uψ2〉})
δ(ψ1 Rψ2) = ∆(ψ2)⊗ (∆(ψ1) ∪ {〈Σ, ψ1 Rψ2〉})

where ∆ is the extension of δ to include the propositional subformulæ of ϕ:

∆(ψ) = δ(ψ) if ψ ∈ Q
∆(ψ1 ∧ ψ2) = ∆(ψ1)⊗∆(ψ2)

∆(ψ1 ∨ ψ2) = ∆(ψ1) ∪∆(ψ2)

2.4.2 Compact Representation of Runs

The representation of a run of a VWAA as a DAG is problematic as the
number of vertices at each level grows without bound. We can reduce the
representation of a run by restricting each level to a set rather than a multiset,
forming a reduced DAG. We call successive sets configurations, Ci ⊆ Q. A
sequence of configurations over a word u0u1 . . . ∈ Σω is accepting if there exists
a set of edges E partitioned into Ei ⊆ Ci × Ci+1 such that ∀q ∈ Ci∃ 〈α, q′〉 ∈
δ(q).ui ∈ α∧q′ ⊆ Ei(q) and every path q0q1 . . . such that qi+1 ∈ Ei(qi) contains
only finitely many occurrences of the members of F .

This is significantly weaker than the original formulation, but we can show
that the languages accepted are equivalent. Firstly, every accepting sequence
of configurations Ci with acceptance described by edges Ei may be directly
translated into the DAG

〈⋃
i∈NCi,

⋃
i∈NEi, I

〉
where I is the identity function

on states. In the opposite direction, every accepting DAG can be reduced
to an accepting run of configurations given by Ci =

⋃
v∈Vi

λ(v). We show
this sequence is accepting by appealing to an important property of accepting
paths: they are both left-append and suffix closed — that is, a suffix of an
accepting path is also accepting, as is an accepting path prefixed with a finite
number of additional states. This means that the acceptance condition can
on configurations can be reduced to the existence of an accepting path from
each element of each Ci. This is assured by examination of the DAG, since
every element of each Vi must be followed by an accepting sequence of edges.

2.4.3 Superset Property of Runs

Both formulations of runs describe the minimal elements (or multiset) of states
at each point in time, but neither requires that the set consists solely of these
elements. We may, without changing the language accepted, replace Ci with
a superset of Ci (similarly Vi) provided that successive configurations (lev-
els of the tree) can be modified to accommodate the evolution of the extra
states while remaining consistent with the definitions of the runs. This is
crucial to the encoding described below: we need only constrain the current
configuration to be any superset of that described by the transitions.

89

Sheridan

3 Bounded Model Checking Encodings

Having discussed three representations of LTL formulæ suited to model check-
ing we now turn to the way that these representations can be used for bounded
model checking. The encoding of Büchi automata was discussed by de Moura
et al. [5] as well as Clarke et al. [4]. The use of SNF for bounded model check-
ing was the subjection of a paper by Frisch et al. [8]. The approach that we
take here to bring the encodings together is to isolate the components of the
encoding of the specification into three parts: that which constrains the path
in all cases; that which constrains the path only when it is a finite path prefix;
and that which constrains the path only when it is a k-loop. The addition of
the first constraint to the original approach [1] has the potential to simplify
the resulting formula 3 considerably:

JM, fKk := JMKk ∧ encc(f, k) ∧

(
encn(f, k) ∨

k∨
l=0

(lLk ∧ encl(f, k, l))

)

where encc, encn, and encl denote the common, finite, and loop encodings as
described below.

3.1 Bounded Model Checking with Büchi Automata

We present a variation on the encoding of de Moura et al. [5], making explicit
the representation of states in order to avoid the overhead of enforcing mutual
exclusion on states. In contrast with other presentations, we use generalised
Büchi automata: the complexity of checking multiple acceptance sets is much
lower than the overhead of conversion to classical Büchi automata.

All paths accepted by a Büchi automaton are infinite — formulæ with finite
counterexamples such as Fφ are encoded with a trivial infinite loop. The finite
prefix case is therefore never accepting, and we deduce that encn(f, k) = ⊥.

Given a generalised Büchi automaton representing LTL formula f , Bf =
〈Q,Σ, δ, I, T 〉, we encode the current state q ∈ Q as a base two integer in the
range 0 . . . |Q|−1: there is a one-to-one mapping ε ⊆ Q×{i | 0 ≤ i < |Q|−1}.
That is, for each state i, we have a set of propositional variables qn(i), 0 ≤
n < dlog2(|Q|)e and we write JqKi for the assertion that the bit pattern q0q1 . . .
is the base two representation of ε(q). For Büchi automata representing LTL,
Σ is the set of propositions in that model; the encoding of elements a ∈ Σ is
given as JaKi as for the standard encoding.

The transition relation is encoded as a set of constraints on the originating

3 The formula given is derived from the usual BMC formulation as given in Biere et al. [1].
We write JMKk for the encoding of the model, lLk for the constraint that the path is a
k-l-loop, but we omit the

∧
0≤l<k ¬lLk non-loop constraint as suggested by [3]

90

Sheridan

state, target state, and label. If the transition relation is total, we can write

TBf
(i, k) =

∨
〈s,α,s′〉∈δ

∨
a∈α

(
(JsKi ∧ JaKi ∧ Js′Ki+1

)
The initial set is encoded directly as a disjunction over members of I:

IBf
(k) =

∨
s∈I

JsK0

Finally, we encode the acceptance sets. The Büchi acceptance condition
is that each member of T is visited infinitely often. As we have ruled out
finite path prefixes, we know that all paths being considered are of the form
abω. If we assert as part of the loop encoding that the corresponding paths
in the Büchi automaton follow the same pattern, we can simply require that
representatives from each acceptance set appear in the loop (ie, in b):

FBf
(k, l) =

∧
T∈T

k∨
i=l

∨
s∈T

JsKi

Thus we have

encc(f, k) = IBf
(k) ∧

k−1∧
i=0

TBf
(i, k)

encn(f, k) = ⊥

encl(f, k, l) = FBf
(k, l) ∧

dlog2(|Q|)e−1∧
i=0

qi(l) ↔ qi(k)

Although the LTL to Büchi automaton conversion is exponential in the
size of the formula, the encoding above introduces only a linear number of
variables. The resulting formula is linear size in the product of the number of
transitions and k except for FBf

which is quadratic: O(|T |k2).

3.2 Bounded Model Checking with Alternating Automata

The encoding of alternating automata is very similar to Büchi automata.
Since a run is a sequence of configurations rather than states we use one
state variable to represent each state; configurations are then represented
by conjunctions of states. Given a VWAA representing LTL formula f ,
Af = 〈Q,Σ, δ, I, F 〉, we encode the presence of a a state q in the ith con-
figuration by the variable q(i). A configuration is encoded as a conjunction of
its members: we write JCKi =

∧
q∈C q(i), with J∅Ki = ⊥. Note that this con-

strains the necessary, but not sufficient, members of the configuration, and so

91

Sheridan

describes the smallest configuration that describes the run as discussed in Sec-
tion 2.4.3. The targets of transitions can be seen as subsets of configurations
and are hence encoded in the same way.

For VWAAs derived from LTL formulæ as above, the transitions are la-
belled with a set of sets of atomic propositions: the set of permitted assign-
ments to propositions. These can be denoted 4 by a conjunction of literals
where p ∧ q denotes {a ∈ Σ | p ∈ a} ∩ {a ∈ Σ | q ∈ a}. We write JαKi for the
conjunction of literals representing α ∈ 2Σ — this is particularly convenient
as the implementation of the LTL to VWAA conversion [10] produces these
conjunctions directly.

As before, the transition relation is given as a series of constraints

TAf
(i, k) =

∧
q∈Q

(
q(i) →

∨
〈α,q′〉∈δ(q)

(
JαKi ∧ Js′Ki+1

))

and the initial set of configurations is encoded

IAf
(k) =

∨
C0∈I

JC0K0

A VWAA run is accepting if no branch contains an infinite occurrence of
elements of F . This can be assured on a k-prefix path if the empty configura-
tion is reached at any point: the very weak property means that all successive
configurations are also empty and hence no state is visited infinitely often.
This also means that we can reduce the check to an empty kth configuration:
this will hold even if the first empty configuration is before k.

PAf
(k) =

∧
q∈Q

¬q(k)

For the loop case, we cannot simply check for an infinite number of oc-
currences of the members of F as the co-Büchi condition is on paths through
the configuration space. That is, an accepting run could consist of an infinite
number of paths each with a finite number of occurrences of an acceptance
state. In this case the acceptance state would appear in a configuration within
the loop suggesting that the state was visited infinitely often. In fact, we must
make use of the very weak condition again: the only loops in VWAAs are self-
loops, and hence the only paths that visit a state infinitely often must do so
by always taking the self-loop transition. By the left-append and prefix closed
property of accepting paths, we can deduce that if it is possible to take a
non-self-loop transition from an accepting state then that state must be part

4 See Remark 2 in Gastin and Oddoux [10]

92

Sheridan

of an accepting path.

FAf
(k, l) =

∧
q∈F

k∨
i=l

(
JqKi →

∨
〈α,q′〉∈δ(q)

q /∈q′

(
JαKi ∧ Jq′Ki+1

))

Thus we have

encc(f, k) = IAf
(k) ∧

k−1∧
i=0

TAf
(i, k)

encn(f, k) = PAf
(k)

encl(f, k, l) = FAf
(k, l) ∧

∧
q∈Q

q(l) ↔ q(k)

This encoding produces a linear number of variables in the size of the LTL
formula. The resulting propositional formula is linear in the product of the
number of transitions and k, again except for FAf

which is quadratic in k.

3.3 Bounded Model Checking with SNF

As SNF is a specialisation of LTL we could encode it using the standard
BMC method, but we can produce a much better result by considering the
structure of rules. Given a set of rules representing an LTL formula f , Ψf , we
form the partition I, P,X, F ⊆ Ψf according to the type of rule and consider
the interpretation of each type:

Initial rules I specify initial conditions so are included in encc

Global invariant rules P are constraints on the configurations of individ-
ual states so are also included in encc

Global step rules X connect states with their successors, very much like
a transition relation. Above, we included the transition relation in encc

together with a loop condition on its states in encl. However, we can simplify
this by isolating the common cases at time < k from the boundary cases
which distinguish the behaviour of the finite prefix and k-loop conditions.
These rules are divided between encc for i < k, and encn and encl for i = k

Global eventuality rules F are superficially similar to acceptance condi-
tions but can be interpreted more directly — as in [1]. For a finite prefix,
this is simply a disjunction over states; for a k-loop of the form abω, evalu-
ating F in b is equivalent to evaluating it at the start of b.

Thus we have

encc(f, k) =
∧

(start⇒f)∈I

JfK0 ∧
k∧

i=0

∧
(p⇒f)∈P

Jp→ fKi ∧
k−1∧
i=0

∧
(p⇒X f)∈X

JpKi
k → JfKi+1

93

Sheridan

encn(f, k) =
∧

(p⇒X f)∈X

JpKk → ⊥ ∧
k∧

i=0

∧
(p⇒F f)∈F

(
JpKi →

k∨
j=i

JfKj

)

encl(f, k, l) =
∧

(p⇒X f)∈X

JpKk → JfKl ∧
k∧

i=0

∧
(p⇒F f)∈F

(
JpKi

k →
k∨

j=min(i,l)

JfKj

)

As noted above, SNF is linear in the size of the LTL formula; the number
of variables in the encoding is therefore linear in the product of k and the size
of the formula. The size of the resulting formula is linear in the product of k
and the size of the LTL except for the encoding of eventuality rules which are
quadratic in k.

3.3.1 The Fixpoint Form and Counterexample Length

This quadratic factor is eliminated by the Fixpoint encoding [8], a refinement
of SNF in the bounded case which replaces eventuality rules with step rules
using the fixpoint characterisation of F and introduces a boundary condition
asserting that the eventuality does not occur after state k. Unfortunately, this
can lengthen counterexamples in some circumstances as only a single itera-
tion of the loop is considered when evaluating F. This is solved by projecting
eventualities evaluated within the loop back to the start of the loop — equiv-
alent to the direct encoding. By the introduction of an untimed intermediate
variable this can be achieved in linear space.

4 SNF versus Automata

We have examined two established methods of encoding LTL for bounded
model checking and introduced a third: the encoding via alternating au-
tomata. We now clarify the relationships and relative advantages of the en-
codings.

4.1 SNF and Alternating Automata

The configuration view of alternating automata makes it apparent that Fix-
point and AA are nearly equivalent. Step rules in SNF/Fixpoint relate states
and their successors to the evolved state of the model, while AA transitions
which relates states and their successors to the present state of the model. We
can project each SNF variable x created during LTL conversion to a VWAA
state Xx: the set of SNF variables is directly related to the members of the
configurations of the VWAA. Furthermore, we can show that SNF step rules
created from LTL always have atomic antecedents: a necessary condition to
relate step rules to transitions.

The boundary condition used in Fixpoint to represent eventualities cor-
responds to an assertion that x occurs finitely, not infinitely, often. It is
introduced for the same states that, in the alternating automaton conversion,

94

Sheridan

would be in the co-Büchi acceptance set. The difficulty of checking the co-
Büchi acceptance condition are sidestepped by the start-of-loop projection
introduced in Section 3.3.1. Effectively, all branches of the run are collapsed
into one.

In fact, this is the main advantage of SNF over VWAAs: the encoding of
the acceptance set is complex and comparatively large for the alternating au-
tomaton encoding. There are other advantages: not being a transition system,
the variables introduced by SNF are not included in the loopback condition Lk,
eliminating the need for the empty-configuration assertion in the finite case.
This can even reduce slightly the bound at which counterexamples are found.
Alternating automata do benefit from the simplification [10] and simulation [9]
reductions, some of which do not project directly to SNF; the advantages of
these have the potential to outweigh the drawbacks of the encoding.

4.2 SNF and Alternating Automata versus Büchi Automata

Most of the encoding issues discussed above apply equally to Büchi automata,
the exception being the acceptance set which is simpler than the alternating
case, although still more complex than the Fixpoint case. The biggest draw-
back for BMC is the requirement for an infinite path. Safety properties with
finite counterexamples must still end up in a loop — in both the specification
automaton and the model which could lengthen the counterexample consider-
ably. In fact, the best choice for simple specifications seems to be the direct
encoding: in such a case, the loop constraint could be eliminated altogether.

There are two other loop-related problems with the use of Büchi automata.
Firstly, when both the specification and model automata must be in a loop,
the length of the loop is the least common multiple of the lengths of the
loops in the two automata on their own. This is not an issue for alternating
automata because of the weakness property: all loops will be a single state.
Secondly, BMC is able to take special advantage of the loopback where a finite
counterexample takes the form abi. For example, consider the word xx(abb)ω,
which is recognised in this form by the specification F (b ∧ F (a)) using the
direct or SNF encodings, but which must be expanded to xxabb(abb)ω to be
recognised by the automata-based encodings.

4.3 Empirical Results

To demonstrate some of the differences between the approaches we give a
selection of experimental results comparing a variety of BMC encodings. The
existing encodings, the original BMC encoding [1] (marked “Orig.” in the
results), the SNF encoding and its refinement [8] (“SNF” and “FIX”) are
compared against Büchi automata, in this case the Etessami and Holzmann [6]
procedure (“TMP”), and the VWAA produced by the tool from Gastin and
Oddoux [10] with and without its simplifications (“AA” and “AA-”).

To provide a comparison over a range of LTL specifications we fix the

95

Sheridan

model for the experiments, using a distributed mutual exclusion example [12]
with the specifications given in Frisch et al. [8], at several bounds to illustrate
scalability. The number and nesting depths of temporal operators appearing
in the specifications are reported as pairs of numbers alongside their names in
the tables. We used a modified version of NuSMV [2] with an improved CNF
conversion [14]; timings were made in the SAT solver zChaff [13].

The first table, below, shows three correct specifications, verified at bound
50. Rather than report the number of states that each automata conversion
produces, we report the size of the CNF result. This means that the au-
tomaton methods can be directly compared to the SNF and direct encodings.
We observe that as the specifications become more complex, the simplicity
of the SNF encoding has an increasing advantage. The alternating automata
approach lags close behind the Büchi automata produced by TMP: a par-
ticularly interesting result, as the latter includes advanced simulation-based
simplification techniques, while the former uses simple transition and state
simplifications.

Enc. Clauses Vars Time Clauses Vars Time Clauses Vars Time

Accessibility (4,2) Overtaking 1 (5,5) Overtaking 2 (8,8)

AA 24276 4080 4.67 26177 4131 8.45 27179 4233 10.11

AA- 25485 4539 5.28 28291 4845 11.87 30045 5049 7.23

SNF 23778 3978 4.04 24081 4080 2.76 24634 4233 2.22

FIX 23779 4029 4.43 24083 4131 4.17 24636 4284 2.59

TMP 24279 3978 4.90 27539 4029 3.54 29758 4080 7.07

Orig 28368 3876 9.83 142404 3876 17.69 Encoding > 1800 secs

We illustrate the effect of the different encodings on counterexample size by
comparing two incorrect specifications with different minimal counterexamples
(overleaf). Here we see that the Büchi automaton procedure is slower due to
the longer counterexample produced. The other procedures are all comparable
although the VWAA method is slightly faster on the larger example.

5 Conclusions and Future Work

The main advantage of automata based bounded model checking, the high
state of development of the conversion procedures, is balanced by the numer-
ous drawbacks of conversion. We have described how the use of alternating
automata overcomes many of these problems and demonstrated their use for
BMC. A simple alternating automata encoding has been shown to be almost
as effective as a highly developed Büchi automata approach, although both
lag behind the SNF encoding (without any simplification) on many of the
examples given.

96

Sheridan

Enc. k Time k Time

Priority 1 (4,2) Priority 2 (4,2)

AA 14 0.03 53 0.30

AA- 14 0.03 53 0.89

SNF 13 0.02 52 0.49

FIX 13 0.02 52 0.83

TMP 53 3.26 > 200

Orig 13 0.02 52 1.15

This work has indicated several promising directions for further develop-
ment. Simulation-based simplification for alternating automata [9] may im-
prove the performance of the approach, and the close relationship with SNF
could mean that the SNF encoding could also be improved by such simplifi-
cation techniques. This relationship could also yield better encodings for the
co-Büchi condition, further improving the performance.

6 Acknowledgements

I would not have begun to investigate these encoding methods without the
helpful comments from the reviewers for CHARME 2003. I am also indebted
to Dr Paul Jackson for extensive discussion and input on the topics in this
paper.

References

[1] Biere, A., A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without
BDDs, in: W. Cleaveland, editor, Tools and Algorithms for the Construction and
Analysis of Systems. 5th International Conference, TACAS’99, Lecture Notes
in Computer Science 1579 (1999), pp. 193–207.

[2] Cimatti, A., E. Clarke, F. Giunchiglia and M. Roveri, NuSMV: a new Symbolic
Model Verifier, in: N. Halbwachs and D. Peled, editors, Proceedings of the
Eleventh Conference on Computer-Aided Verification (CAV’99), number 1633
in Lecture Notes in Computer Science (1999), pp. 495–499.

[3] Cimatti, A., M. Pistore, M. Roveri and R. Sebastiani, Improving the encoding
of LTL model checking into SAT, in: A. Cortesi, editor, Third International
Workshop on Verification, Model Checking and Abstract Interpretation, Lecture
Notes in Computer Science 2294 (2002), pp. 196–207.

[4] Clarke, E. M., D. Kroening, J. Ouaknine and O. Strichman, Completeness
and complexity of bounded model checking, in: B. Steffen and G. Levi, editors,

97

Sheridan

Verification, Model Checking, and Abstract Interpretation, 5th International
Conference, VMCAI 2004, Venice, January 11-13, 2004, Proceedings, Lecture
Notes in Computer Science 2937 (2004), pp. 85–96.

[5] de Moura, L., H. Rueß and M. Sorea, Lazy theorem proving for bounded model
checking over infinite domains, in: A. Voronkov, editor, Automated Deduction
- CADE-18; 18th International Conference on Automated Deduction, Lecture
Notes in Computer Science 2392 (2002), pp. 438–455.

[6] Etessami, K. and G. J. Holzmann, Optimizing Büchi automata, in:
C. Palamidessi, editor, CONCUR 2000 - Concurrency Theory, 11th
International Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings, Lecture Notes in Computer Science 1877 (2000), pp. 153–167.

[7] Fisher, M., A resolution method for temporal logic, in: Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI) (1991), pp.
99–104.

[8] Frisch, A., D. Sheridan and T. Walsh, A fixpoint based encoding for bounded
model checking, in: M. D. Aagaard and J. W. O’Leary, editors, Formal
Methods in Computer-Aided Design; 4th International Conference, FMCAD
2002, Lecture Notes in Computer Science 2517 (2002), pp. 238–254.

[9] Fritz, C., Constructing Büchi automata from linear temporal logic using
simulation relations for alternating Büchi automata, in: O. H. Ibarra and
Z. Dang, editors, Implementation and Application of Automata. Eighth
International Conference (CIAA 2003), Lecture Notes in Computer Science
2759, Santa Barbara, CA, USA, 2003, pp. 35–48.

[10] Gastin, P. and D. Oddoux, Fast LTL to Büchi automata translation, in:
G. Berry, H. Comon and A. Finkel, editors, Proceedings of the 13th Conference
on Computer Aided Verification (CAV’01), number 2102 in Lecture Notes in
Computer Science (2001), pp. 53–65.

[11] Gerth, R., D. Peled, M. Vardi and P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in: P. Dembinski and M. Sredniawa, editors,
Protocol Specification, Testing and Verification XV, Proceedings of the Fifteenth
IFIP WG6.1 International Symposium on Protocol Specification, Testing and
Verification, IFIP Conference Proceedings 38 (1995), pp. 3–18.

[12] Martin, A. J., The design of a self-timed circuit for distributed mutual exclusion,
in: H. Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on VLSI
(1985), pp. 245–260.

[13] Moskewicz, M., C. Madigan, Y. Zhao, L. Zhang and S. Malik, Chaff:
Engineering an efficient SAT solver, in: 39th Design Automation Conference,
Las Vegas, 2001, pp. 530–535.

[14] Sheridan, D., The optimality of a fast CNF conversion and its use with SAT,
Technical Report APES-82-2002, APES Research Group (2004), available from
http://www.dcs.st-and.ac.uk/~apes/apesreports.html.

98

Authors

A

Armoni, R. 7

Audemard, G. . 21

B

Bischoff, G. P. . 37

Bozzano, M. . . . 21

Brace, K. S. 37

C

Cabodi, G. 37

Cimatti, A. 21

F

Fix, L. 7

Fraer, R. 7

G

Groce, A. 71

H

Huddleston, S. . . 7

J

Jin, H.-S. 55

K

Kröning, D. 71

N

Nocco, S. 37

P

Piterman, N. 7

Q

Quer, S. 37

S

Sebastiani, R. . . 21

Sheridan, D. . . . 85

Somenzi, F. 55

V

Vardi, M. Y. 7

	Preface
	Contents
	Papers
	SAT-based Induction for Temporal Safety Properties
	Verifying Industrial Hybrid Systems with MathSAT
	Exploiting Target Enlargement and Dynamic Abstraction within Mixed BDD and SAT Invariant Checking
	An Incremental Algorithm to Check Satisfiability for Bounded Model Checking
	Making the Most of BMC Counterexamples
	Bounded Model Checking with SNF, Alternating Automata, and B{unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {uglobal mathchardef accent@spacefactor spacefactor }accent 127 uegroup spacefactor accent@spacefactor }chi Automata

	Authors

