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Abstract. The Android system is in widespread use currently, and
Android apps play an important role in our daily life. How to specify and
verify apps is a challenging problem. In this paper, we study a formalism
for abstracting the behaviour of Android apps, called Activity Transition
Systems (ATS), which includes back transitions, value assignments and
assertions. Given such a transition system with a corresponding Activity
Transition Graph (ATG), it is interesting to know whether it violates some
value assertions. We first prove some theoretical properties of transitions
and propose a state-merging strategy. Then we further introduce a post-
reachability graph technique. Based on this technique, we design an algo-
rithm to traverse an ATG that avoids path cycles. Lastly, we also extend
our model and our algorithm to handle more complicated problems.

1 Introduction

The Android system, which provides rich and flexible features to ease the devel-
opment of applications (apps), is one of the most popular mobile operating
systems currently. Various Android apps are developed and released to the app
market, which attracts high downloads due to the convenient interaction, user-
friendly windows, and event-driven nature.

In Android system, the major component, activity, is a container which
consists of various GUI widgets (e.g., button). Users can interact with widgets
on an activity and trigger transitions between activities to perform a certain job.
Thus activity transition model for event-driven callbacks is a fundamental model
for analysis of Android apps. This serves as a cornerstone for many clients, such
as vulnerability detection [6,9,12-15,19,20], malware detection and mitigation
[10,11,19], GUI model generation [22,23], and GUI testing [3-5,16,17].
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All launched activities are arranged in the back stack in the order in which
each activity is opened. Take a short message (SMS) manager app as an example,
which may have an activity to show the list of contacts. When the user selects
a contact person, a new activity is opened to view all the messages from or to
the person. At the same time, the system will add the new activity to the back
stack. Then if the user presses the back button on the bottom of the screen,
that new activity is finished and popped off the stack. By default, activities in
the stack can only be rearranged by push and pop operations. This back-stack
mechanism is so flexible that a developer has to carefully inspect the status of the
back stack when developing the transitions between activities. An activity with
different back stacks may lead to different program behaviors, which brings the
difficulty to the modeling of apps. When the launch-mode of activity is involved,
the task will be more complicated.

Recent works [3,21,23,24] construct transition models of apps and traverse
models to generate transition paths or even sequences to guide the GUI testing,
some of them discuss the influences brought by the stack mechanism. These
works adopt the same assumption that when the back operation is triggered, the
model will roll back to the previous state. However, the assignments of global
variables will not roll back. For example, the operations in the setting activity
are also impossible to be rollback. As shown in Fig. 1, when the app TippyTipper

. . . OpenSetting ClickCheckbox
are transited in the order of main —— _—

Back, main, the global variables that are changed in setting2 will not roll back

by simply pressing the back button.

settingl setting2

Enter bill amount:

¥0.00 Third Tip Percentage Third Tip Percentage
reset ird tip ge pr

Enable Exclude Tax Rate
Excludes taxr

CLEAR

(a) main (b) settingl (c) setting2

Fig. 1. Tippy tipper application

Because the back transition will lead to state change, in this paper, we con-
sider a problem of determining if there exists a path that violates one of the
assertions in the ATG with back transitions.

The main contributions of this work are summarized as follows:
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— We propose an Activity Transition Graph (ATG) model with back transitions,
value assignments and assertions, to describe the activity relations of Android
apps in detail.

— We introduce a post-reachability graph and an algorithm to traverse an ATG
that avoids path cycles.

— We extend our model and our algorithm to handle more complicated and also
more interesting tasks.

The rest of this paper is organized as follows. Background and preliminary
material is in Sect. 2, the algorithm in Sect. 3, several extensions of our model
and approach in Sect. 4, related works in Sect. 5, and finally, concluding remarks
in Sect. 6.

2 Background

Definition 1. An Activity Transition System (ATS) (X,V,Vy, A, Ao, T)
consists of a set X of Boolean-valued variables, a set V of domains of variables
in X, an initial assignment Vy, a set A of activities, an initial activity Ag € A
and a set T of transitions.

Each transition 7 € 7 is a tuple (4, A’) where A and A’ are activities. Each
activity or transition corresponds to a set of statements such as assignment
statements like x := 0 and assertions like z =1 — y = 0.

Definition 2. Given an ATS (X,V,Vy, A, Ay, T), the Activity Transition
Graph (ATG) is a digraph which is constructed in the following way:

1. For each activity in A, introduce a verter A;.
2. For each transition T = (A;, A;), introduce an edge from A; to A;.

We introduce a special back transition 7, which transits from the latest
visited activity Ag to Ag_1. The statements of activity Ai_; will not be executed
after back transition. Back transition not only rolls back activity, but also the
part of assignments.

Definition 3. A wvariable is global if it does not roll back its assignment during
back transitions. Otherwise, it is a local variable.

Assume X consists of n global variables X¢ = {2§,... 2%} and m local
variables X* = {zf ... 2k} We use V¢ and V' to represent the assignments of
X% and X respectively. So back transition generates the k+1 step (A1, Vis1)
that V&, = V,&, V&, = VX, and Ay = Ap—1. We extend the ATS and ATG
with such back transitions.

In this paper, we consider a problem of determining if there exists a path
that violates one of the assertions in the ATG with back transitions.
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A0 AL
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T3
T Se0 T5
y- =0 L x¢:=1
vt T4 ¢ Statements:
v
A3 A4 =
. A0 x =0
Assertx®=1->y" =0 y-:=0 x¢:=1 AO y :=0
x®:=1 y-:=0 T1 y =0
I :
T / A3 Assert x =1 >y =0
o o A3 x :=1
A5 : ae BACK y roll back O
N > x®:=0 A1 y :=1
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Fig. 2. An example of an ATG Fig. 3. Statements of a path

Example. Figure2 presents an example of the ATG with back transitions. It
has 6 activities, 9 forward transitions and 2 boolean variables (one of them is
global and another one is local). The initial values for variable  and y are both
zero. Activity A1 and A3 contain assertions. The ATG starts from AQ. There

exists a path that violates the assertion in Al: (A0, (0,0)) I, (A3,(1,0)) back,

(A0, (1,0)) 13, (A1,(1,1)). Concatenating the blocks of statements in transi-
tions and activities, this path can be represented as Fig.3. So a path can be
considered as a sequence of statements. Since the initial assignment is deter-
mined, the assignment of variables on each statement is determined.

Relation with Pushdown Automata. There is a straightforward way to trans-
form the assertion violation problem of an ATG with back transitions into a
reachability problem of a pushdown automata:

— Let @ denote the set of states and I" denote the stack alphabet. Since the
assignments at an activity are finite, @ and I" are also finite. We introduce
an input symbol I, for the forward transition 7 and an additional symbol
BACK to represent back transitions.

— Consider a pair (A4,V) where A is an activity and V' is an assignment. For
(A, V), we introduce a state g4,y € @ and a symbol S(4 v).

— We introduce a transition from g4, v;) to qa, v, for a transition 7 from
activity A; to As in the original ATG, where V5 is the assignment result
after executing statements of 7 and As with input V;. This transition can
be simulated by (q(a, v,), Ir» S*, q(4s,v2), S(a,,v1)S™), where S* represents an
arbitrary stack symbol in I" and S, 1,)S™ indicates that this transition
pushes symbol S(4, v,) into stack.

— Consider a back transition from (As, V) to the previous state (Ap,V7) in
the stack. Let Vi represent the assignment after the back transition. We
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first introduce two states q(a,,v,) and g, v;)- Then we introduce a tran-
sition (q(a,,vy), BACK, S(a, v)S™, q(a,,vy),S*) to simulate this back transi-
tion, where S* € I' and S(4, v,)S™ indicates that this transition pops S(4, v;)-

3 Approach

We use a 3-tuple (A4,V,S) to represent a state, where A is an activity, V is an
assignment of variables and S is a stack that stores history information. Note
that the stack S is a set of states which are previously visited, instead of a set
of pairs like (A, V). Therefore, states containing different stacks are considered
to be different in our model. A state contains necessary information for forward
and back transitions. We can transit forward from one state to another and can
also transit back to the previous state with the stack S.

3.1 A Straightforward Method

Algorithm 1 is the basic framework of breadth-first-search over the given ATG.
It employs a queue @ to store states in this BFS algorithm. At the beginning,
it adds the initial state (Ag, Vp, @) into Q. Then it visits every state in Q. For
an unvisited element ¢ = (A,V,S) in @, it enumerates each forward transition
T = (A, Apert) from A. After that it executes statements and checks assertions
on 7 and the next activity Ayeq¢ to obtain the new assignment V,,..:. After copy
stack S to Spezr and push state g into stack Syept, the algorithm adds the new
state (Aneat, Vnent, Snext) into Q. After forward transitions, we consider the back
transition at the state q. The algorithm pops the stack S to obtain the previous
state (Apack, Voack, Sback)- Since the assignment of global variables remains, we
assign V& to bejck. Then the algorithm adds the new state (Apacks Voacks Sback)
into Q. At last, it visits another unvisited state in Q.

3.2 Post-reachability Graphs

The straightforward method may not terminate since it cannot handle cycle.

Consider the example in Fig.2, assume that we have already obtained a

sequence of states: 7 : (Ao, (1,0),9P) 15 (As,(1,0),{7}) 15 §1

(A4, (1,0),{7,15}) 52 (Ao, (0,0),{7,15,51}). It is a sequence starting
from state 7 to state S2 (states 7 and 15 are obtained in real execution of our
algorithm while S1 and S2 are not, for details, see Fig. 6). Since the assignments
of state 7 and state S2 are different, the sequence is not a cycle. However, if we
start from state S2 through transition 72 and a back transition, we obtain a
new state S4 : (Ao, (1,0),{7,15,51}). Then we find a cycle from state 7 to S4.
The straightforward method will keep visiting activities starting from state S4,
since S4 is different with state 7 in the perspective of stacks. In this example,
it is also not sufficient to avoid cycles by only checking the existence of the pair
(Ao, (1,0)), since it lacks path information. So, in this section, we introduce a
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Algorithm 1: Straightforward Version

1 function

2 | Qe {(Ao Vo, D)}

3 while @ not all visited do

4 pick an unvisited element ¢ = (A,V,S) in Q;

5 for each 7 = (A, Apest) start from A do

6 execute statements on 7 and Anez: and obtain Viezt;
7 if assertions on 7 or Aj..+ violated then return false;
8 Sheat Sy Snext-push(Q);

o | Q= QU {(Ancer, Vaet, Suear)

10 if S # @ then

11 (Abacks Voack, Stack) < S.pop();
12 Viger, < VY

13 | Q< QU {(Avack, Vback, Sback) };
14 | setgq visited;

post-reachability graph for each activity to store sufficient history information
for cycle avoidance.

Consider two states (4,V, S) and (A, V,S’) on same activity A. They contain
same variable assignment V', but different stacks S and S’. Intuitively, the for-
ward transitions starting from these two states will lead to similar results, since
in this case, stacks of history states only affect back transitions. So we could
merge these two states into a virtual state with variable assignment V' for the
exploration of forward transitions. In other words, given a new state (A, V,S"),
it is unnecessary to explore forward transitions starting from it. However, we
have to store S, S’ and S” as they represent different path traces which are
useful for the exploration of back transitions. To precisely describe the previous
strategy, we introduce following lemmas and Theorem 1.

Lemma 1. Given two states (A,V,S) and (A,U,R) on the same activ-
ity A. Consider a transition 7 = (A, Apext), let (Anexts Vieat, Snext) and
(Aneat, Unext, Runest) denote the states after transition 7. Then V. =U = Vyeqr =
Unewt-

Lemma 2. Given two states (A,V,S) and (A,U,R) on the same activity A.
Let (Ajast, Viast, Stast) and (Aast, Ulast, Riast) denote the last element of S and
R respectively. Consider two states (Ajasts Voacks Stast) and (Ajast; Upacks Riast)
after a back transition. Then V = U, Vigst = Uiast = Voack = Uback -

Proof. Recall the definition of roll back operation on variable assignments, we
know that V¢, = V¢ VE = VE UE, =U%and UL, = UEL,,. Since
V = U and Vjget = Ujgst, it is obvious that V€ = UC and Vi£, = Ulﬁst. As a

last
result, Viaer = Upack.- H
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Theorem 1. Given two states (Ao, Vo, So) and (Ao, Uy, Ro) on the same activ-
ity Ag and a sequence of normal and back transitions 11 ...7,. There are two
sequences of states (Ao, Vo, S0) ... (Ak, Vi, Sk) and (Ao, U, Ry) . .. (Ag, Uk, Ri).
Then Vi € {1,...,k},Vb =Uy, Sy C SZ',R() CR; =V, =Uk.

Proof. (Mathematical Induction)

Basis: 7 should be a forward transition as So C S; and Ry C R;. From
Lemma 1, we obtain V; = U; as V) = Uj.

Inductive Step: Show that V,, = U, if Vo = Uy, V4 =Uq,..., V1 =Up,_1.
Assume 7, is a forward transition. From Lemmal, we obtain V,, = U,
as V,—1 = U,_1. Assume 7, is a back transition. We observe that stacks
Sn—1 and R,_;1 are parts of sequences (4o, Vo, S0) ... (An—2,Vh_2,5,-2) and
(Ao, Uo, Ro) ... (An—2,Up—2, Rp_2). So the last elements of S,_1 and R,_;
should be a pair of states ((Al,Vl,Sl), (AZ,UZ,Rl)) from two sequences, where
0 <1 <n—2. From induction hypothesis, we know that V; = U;. From Lemma 2,
we obtain V,, =U,, as V,,_1 = U,,_1 and V; = U,. O

Theorem 1 shows that two states with same variable assignments are always
equivalent after a sequence of transitions (the number of forward transitions is
not less than back transitions) in perspective of variable assignments. When the
number of back transitions is more than forward transitions, we only have to con-
sider the stacks of two states respectively. To apply such strategy in algorithm,
we introduce the following concepts of post-reachable state and post-reachability
graph.

Definition 4. Given a state (Ao, Vo, So). After a sequence of normal and back
transitions 11 ... T, we obtain a sequence of states (Ao, Vo, So) ... (Ak, Vi, Sk)
that Vi € {1,...,k},S C S;. If A, = Ao and Sy, = So, the state (Ag, Vi, Sk) is
called a post-reachable state of (Ao, Vo, So).

Definition 5. Given a set of states S = {(A,V1,51),...,(A4,V,,S,)} on an
activity A. Then the Post-Reachabilitiy Graph (PRG) over S is a digraph
which is constructed in the following steps:

1. For each different variable assignment V; in S, introduce a vertex v;.
2. For each vertex v;, introduce the set of stacks Uy, _y, {S;} as its vertez value.

3. If (A, V;,5;5) is a post-reachable state of (A,V;,S;), where V; # V;, introduce
an edge from v; to v;.
In general, the PRG merges states with same variable assignment, and also

stores different stacks for the exploration of back transitions. Figure4 shows an
example of a PRG over 8 states

S ={(4,(1,0,0),{1}), (4, (1,0,0),{3}), (4, (1,0,1), {3}), (4, (0,1, 1), {1,2}),
(4,(0,1,1),{3}), (A, (1,1,1),{7}), (4, (0,0,0),{1,2}), (4, (0,0,0), {7}) }.

There are 5 different value assignments in S, so there are 5 vertices in this PRG.
Each vertex corresponds to a set of stacks, e.g., vertex (0,1,1) corresponds to
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stacks Yg,1,1) = {{1,2},{3}}. The edges present the post-reachability between
vertices. Besides the state-merging feature, the PRG also has a propagation
property. We present this property in the following theorem.

activity A activity A
), 3} 7 {1}, 3} 7

(1,1,1) (1,1,1)

1(0,1,1) [«——> (0,0,0) | 1(0,1,1) [&—>{(0,0,0) |

{1,2}, {3} 1,2}, {7} {1,2}, {1}, 3% {7} {1, 2, {1}, 3%, {7}

Fig.4. An example of a PRG over 8 Fig. 5. Propagate values of vertices on
states the left PRG

Theorem 2. Consider two vertices in a PRG of an activity A, e.g., v1 and
vy. Let Xy and X9 denote the values of vy and vy (i.e., two sets of stacks),
respectively. If there exists an edge from vy to vy in this PRG, we have X7 C Xs.

Proof. Since there exists an edge from vy to vg, from the property of the post-
reachable state, we could find a sequence of transitions that will transit (A, V1, S)
into (A4, V,,5), VS € X;. Then each stack in X also belongs to Xs. O

Theorem 2 indicates that we could propagate values of vertices on an PRG.
In the example of Fig. 4, we find that the stacks in X, ¢ o) should also belong to
Y00y, 1., Y1) = {{1},{3}}, from Theorem 2. As a result, we obtain the
new PRG presented in Fig. 5 by such value propagation, which contains 5 more
states.

3.3 The Algorithm with PRGs

Based on the PRG technique, we introduce our improved algorithm, which is also
a BFS procedure. The pseudo-code is presented in Algorithm 2. It maintains a
PRG G4 for each activity A. The value of the vertex V in G4 is denoted as
2G4, v. Similar to the straightforward method, the improved BFS exploration
also contains two parts: the exploration of forward transitions from line 5 to 11
and back transitions from line 12 to 15. @ is the queue of states to explore.
Algorithm 2 contains two sub-functions InsertState() and AddEdge(). In
the function InsertState(A,V,S), we introduce a new vertex if V' is different



396 C. Ge et al.

Algorithm 2: Improved Version with PRGs

1 function

2 Q@ < InsertState(Ao, Vo, D);

3 while @ not all visited do

4 pick an unvisited element ¢ = (A,V,S) in Q;
5 if vertex V in Ga is not visited then
6

7

8

9

for each 7 = (A, Apest) start from A do

execute statements on 7 and Apezr and obtain Vieqt;
if assertions on T or Anext violated then return false;
Snecvt — S, Snezt-pus}l(q);

10 Q — Q U InsertState(Aneat, Vaewst, Sneat);

11 | set V in G, visited;

12 if s # @ then

13 (Aback7 ‘/lu.sty Sback) — SPOP()7

14 ‘/b%,ck — ‘/lgsm ‘/Efjck — VG7

15 Q — Q U InsertState(Apack, Vhack, Svack) U AddEdge(Avack, Viast,

L ‘/back);
16 | set g in Q visited;

17 function InsertState(A, V, S)

18 if V is not yet a vertex in G 4 then

19 ‘ add vertex V into G4 and set Xq, v «— {S};
20 else

21 | Zaav — Za,v U{Sh

22 propagate on G4 and obtain new states S;

23 | return {(4,V,9)} US;

24 function AddEdge(A, U, V)

25 add an edge (U, V) into Ga;

26 propagate on G4 and obtain new states S;
27 return S;

with the existing vertices in G 4, otherwise, we only have to update X¢, v with
the new stack S. Then we apply propagation procedure on G 4 and return new
states which are obtained in InsertState(). In the function AddEdge (A, U, V),
we add a new edge from vertex U to vertex V (U # V) in G4. Then it also
propagates values on G 4 and returns these new states.

The algorithm starts from the initial state (Ag, Vo, @). It invokes the function
InsertState() to build the PRG with the initial state and generates the initial
queue Q. Then the algorithm repeatedly enumerates unvisited states in Q.

For an unvisited state ¢ = (A4,V,S), we first explore forward transitions
starting from . Recall the state-merging strategy over PRGs, we only have to
explore the forward transition once for each variable assignment. So at line 5, the
algorithm checks whether vertex V in G4 is already considered. Then it explores
each forward transition 7 = (A, Apeqrt). After that it executes statements and
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checks assertions on 7 and the next activity A, to obtain the new assignment
Vineat- Then it copies stack S to S+ and pushes the state ¢ into the stack Sycq:.
At last, it obtains the new state (Anext, Vaewt, Snext) and invokes InsertState ()
for it.

After the forward transitions, we consider the back transition at state
q. Note that different with the forward transitions, the back transition is
always explored. At first, our approach pops S to obtain the previous state
(Apacks Viasts Svack ). From the definition of back transitions, we know that V;uka
is equal to Vzgst and bejck is equal to V. Thus our approach obtains the new
state (Apacks Voack, Svack)- Then it invokes InsertState() and AddEdge() to
update G4 and Q. Recall the definition of post-reachable state that stacks of
two states should be same, so there is no new edge during the exploration of
forward transitions. However, since the algorithm has already explored a path
from (Apack, Viast, Svack) 10 (Abacks Voacks Sback ), the new state with Viger is the
post-reachable state of the last state Vi,s; when Viger # Vigse- Thus AddEdge ()
is invoked at line 15. At last, the algorithm visits another unvisited state in Q.

PRG of AO PRG of Al PRG of A5
L {} 7:4 4 17: 07 &:48,2)
11:{1, 2,5} 12:(1,2,5} 34;({7)} = Eli 9:{1,3)
27:{1, 2,19} 28: (1,2, 19} : | 37:{L30
41:{1, 32}
T T \ / .
(0,0) —> (1,0) (0,1) > (1,1)
13:{1,2,5)
A4 23:{1,2)
PRG of A3 PRG of A4 - 24:{1, 3}
©1 29:{1, 2,19}
38: {1, 30}
2:{1} 3:{1} 5:{1,2} 42:{1,32}
15: {7} 16: {7} 8:11, 3}
10: {1, 4}
25:{7,17}
|
i 35:{1, 30}
(1,0 (1,1) (1,0 39: {132}
¢ ¢ y PRG of A6
A4 19: {1, 2}
(0,0) (0,1) o 2041, 3} » BEAT
v ]  21:{1,4) 0,0 | 22:{1,2, 5,13}
26:{7, 17}
30: {1} 32:{1} 36: {1, 30}
31:{7} B3aiz) 40:{1,32}

Fig. 6. All PRGs for activities in the example in Fig. 2 (Color figure online)

Ezample. Consider the cycle mentioned in Sect.3.2: 7 : (Ao, (1,0),P) 15

(A3, (1,0),{7}) =% S1: (A4, (1,0),{7,15}) 15 §2: (4, (0,0),{7,15,S1}) ==
53 ¢ (As, (1,1),{7,15,51,52}) 22 84 1 (Ag, (1,0),{7,15,51}). Tt is a cycle

from Ag to Ag. Since the vertex (1,0) in G 4, has already been visited at state
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7, it is easy to see that our algorithm will not explore forward transitions from
S4. In practice, the algorithm stops exploration of forward transitions earlier
at S2, as the vertex (0,0) in G4, has already been visited at the initial state
(Ao, (0,0),9). Figure6 presents the PRGs for all activities in the example in
Fig.2, which are generated by Algorithm 2. There are 42 states in total. Note
that 12 of them (states in red) are generated by value propagation in PRGs.

4 Extensions

The model of ATG with back transitions is sometimes not sufficient for practical
analysis over Android apps. However, our approach is flexible to extend to handle
more complicated problems. In this section, we present several extensions to the
ATG model and also our algorithm. Some extensions are orthogonal to each
other, i.e., they could be employed at the same time.

4.1 Construct Paths for States

Our approach is designed for enumerating all possible different pairs of the activ-
ity and the variable assignment (A4,V’). Each (A, V) corresponds to a reach-
able state (A4,V,95), i.e., there exists a path from the initial state to (A4,V,S).
Although Algorithm 2 guarantees that states are reachable, it does not store suf-
ficient information to construct such path. Note that the path can be represented
by a sequence of transitions. Thus we store the sequence of transitions 7" along
with the stack, e.g., extend the state (A,V,S) to a 4-tuple (A,V,S,T).

For states obtained by forward and back transitions, it is simple to update T'
for this new state. But there are some states obtained by propagation in PRGs,
whose sequences are not trivial to obtain. We introduce the following technique
to handle such cases. First, for an edge (V,V’) in G4, we store a sequence of
transitions Tyy,y+y that will transit state (A4,V,S) to (4,V’,S) for all possible
S. Then, when propagating (A,V,S,T) to (A4,V’,S,T") via edge (V,V') in G4,
we could construct the new sequence 7" by concatenating T' with Ty,yy.

For example, in PRG of A0 in Fig. 6, there is an edge ((0,0) to (1,0)) and
T0,0),(1,0)) = 1T'1, back}. Consider a state (A0, (0,0),{1,2,5},{7T1,76,T4}) at
vertex (0,0), where {T1,76,T4} is the sequence of transitions that forms a
path from the initial state (A0, (0,0),®) to it. So we can obtain a new state
(A40,(1,0),{1,2,5},{T1,76,T4,T1,back}) by propagation.

4.2 Enumerated Variables and Arithmetic Expressions

We only consider Boolean-valued variables so far. However, it is easy to extend
our approach to handle enumerated variables. For enumerated variables, our
approach will still terminate in finite steps. Moreover, the results and techniques
presented in previous sections will still work with this modification.

Since our approach only relies on sequential executions over statements
instead of the satisfiability checking over constraints, it is easy to extend our



Checking ATS with Back Transitions Against Assertions? 399

approach to support statements with complex expressions, such as, arithmetic
expressions, comparison between variables, etc. In general, it supports extensions
to expressions that return definite values after substituting values of variables.
For example, z := x + y, assert > y, = := (y > 0).

4.3 Conditional Transitions

Transitions in the ATG do not contain any conditions. However, it is common
that transitions between activities contain conditions in practical Android apps,
e.g., transit from a Log-in activity to another unless users fill in correct pass-
words. For problems with such conditional transitions, it is sufficient to modify
our approach by checking conditions before exploring transitions.

4.4 Self Loops

The self transition is a forward transition 7 = (4, A). It also contains statements,
but the statements of activity A will not be executed after 7. Note that the roll
back operation is also enabled after 7. Self loops are generated by such self
transitions. In practice, there are Android apps contain self loops. For example,
in a video play activity, switching between the horizontal screen and the vertical
screen is a self loop. Exploring a self transition is just like exploring a normal
forward transition, except that the algorithm may have to introduce a new edge
in a PRG during the exploration of a self transition. Based on this observation,
we could extend our approach for self loops.

4.5 Overloading and Disabling Back Transitions

Overloading roll back function is common in practical Android apps, e.g., over-
load a back transition as a program exit. Moreover, overloading is so flexible
that the overloaded transition may be very complicated. It may contain multi-
ple functions. However, after some modifications, our approach still works. For
example, in Fig. 7, the back transition on A3 is overloaded by a transition from
A3 to EXIT. In this case, we have to disable the roll back operation at activity
A3. Then we introduce a forward transition from A3 to EXIT to simulate this
overloading back transition.

Obviously, disabling a back transition can be viewed as a special case of
overloading a back transition which does not introduce a new transition.

4.6 Activity Launch Modes

In Android, a parent activity can start a child activity by invoking, e.g., start-
Activity () as a form of an inter-component communication (ICC) call, passing
it an intent that describes the child activity to be launched. In addition, an
instance of an activity class A can be launched in one of the four launch modes,
standard, singleTask, singleTop and singlelInstance, either configured in
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Fig. 7. An example of overloading back transitions

AndroidManifest.xml or specified in the intent passed to startActivity().
The first one is the default while the other three are known as special launch
modes. These launch modes affect which activity instances are launched and
their transitions.

standard. For the default launch mode, standard always creates a new activity
instance of A and pushes the new instance into the back-stack. In our model,
the default mechanism of forward transitions is exactly same as standard. Thus
our algorithm naturally supports this mode.

singleTop. If the activity to be started has the same type as the top activity,
then the top activity is reused. Otherwise, we handle it identically as in the case
of standard. It is trivial to prove Theorem1 for problems with singleTop. It
shows that the state-merging strategy still works. However, the PRG technique
is no longer working since forward transitions may pop element from stack. As
a result, problems with this mode can be handled by Algorithm 1 with state-
merging strategy, which also has termination guarantee.

singleTask. This mode is similar to singleTop, except that the activity instance
closest to the top of the back-stack will be reused if it has the same type as the
new activity to be started. Otherwise, we fall back to the case where standard
is handled. For example, consider a forward transition 7 = (A, Ayere) with
singleTask and a state (A4, V,S). Then we tries to find a state on activity Ayeqt
in S. If a state (Anext, Void, Sotd) € S is found, we adopt it as the next state and
pops all state above it in S. Otherwise, we obtain the state (Anewt, Viewsts Snext)
like standard. Similar to singleTop, the state-merging strategy still works, but
the PRG technique is no longer working. Intuitively, transitions with singleTask
will always generate states no more than standard. Therefore, Algorithm 1 with
state-merging strategy also has termination guarantee.
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singleInstance. This mode is similar to singleTask, except that only one
instance of its activity class resides in its task. To simulate singleInstance, we
have to maintain more than one stack for each state. Thus it is not trivial to
extend our algorithm to this mode.

5 Related Work

An existing work [18] defines operational semantics for a fragment of Android
that includes its Dalvik bytecode and intercommunication mechanism of the
activities. It considers the Android specific activity stack and back operation.
However, this work does not define GUI static models or give any analysis
algorithms. Another work [7] proposes a formal model, Android Stack Machine
(ASM), to capture key mechanisms of Android multi-tasking such as activities,
back stacks, launch modes, as well as task affinities.

Aiming to describe real-world apps precisely, some static models are designed
by researchers. Azim et al. [3] extract the Static activity Transfer Graph (SATG)
for a given app, and use dynamic GUI exploration to handle dynamic activities
layouts to complement the SATG. They also implement a tool A>E which can
explore real-world Android apps and construct models for them. S. Yang et
al. [23] design a model called Window Transition Graph (WTG), with compre-
hensive behavior analysis for the key aspects of GUI behavior: widgets, event
handlers, callback sequences, and especially the window stack changes. Based on
the modeling of window stack, they develop analysis algorithms for WTG con-
struction and traversal. And a recent work [24] constructs more precise activity
Transition Graph with consideration of the launch-mode of each activity, which
is more precise in capturing activity transitions. With help of the statically con-
structed activity Transition Model (ATM), Mirzaei et al. [17] give an approach
to reduce the number of test cases by extracting the dependencies of GUI ele-
ments, which achieves a comparable coverage under exhaustive GUI testing using
significantly fewer test cases.

Some researchers leverage dynamic techniques to construct transition model
for Android apps. Amalfitano et al. [1,2] implemented a tool called AnroidRipper
which builds model using a depth-first search over the user interface. When
visiting a new state, it keeps a list of events belongs to the current state and
systematically triggers them. And it restarts the exploration from the entry state
when no new state can be detected in the current exploration. SwiftHand [8]
builds an approximate model for the application under test, which could guide
the test execution into unexplored parts of the state space while maximizing the
code coverage and fault revelation. These works do not take into consideration
the Android specific back stack. Yan et al. [21] make use of dynamic techniques to
construct a labeled transition model (LATTE), which considers the information
of activity back stack. They also implement a tool LAND to systematically
explore real-world Android apps and construct the widget-sensitive and back-
stack-aware models.
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6 Conclusion

In this paper, an ATG with back transitions, value assignments and assertions,
is introduced. It is a formalism for abstracting the behaviour of Android apps.
Based on the PRG technique, we propose an algorithm for assertion checking
over our formalism model, which has termination guarantee. Lastly, we study
interesting extensions of our model and our algorithm. In the future, we would
like to apply our algorithm to analyze Android apps with more activities and
more states. On the other hand, automated modeling technique is also an inter-
esting and challenging direction of our future works.

Acknowledgements. The authors are grateful to the reviewers for helpful comments
and suggestions, and to Ping Wang for reading a preliminary version of this paper
carefully.
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