
A New Probabilistic Algorithm
for Approximate Model Counting

Cunjing Ge1,3, Feifei Ma1,2,3(B), Tian Liu4, Jian Zhang1,3, and Xutong Ma3,5

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{gecj,maff,zj}@ios.ac.cn
2 Laboratory of Parallel Software and Computational Science, Institute of Software,

Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

4 School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

5 Technology Center of Software Engineering, Institute of Software,
Chinese Academy of Sciences, Beijing, China

Abstract. Constrained counting is important in domains ranging from
artificial intelligence to software analysis. There are already a few
approaches for counting models over various types of constraints.
Recently, hashing-based approaches achieve success but still rely on solu-
tion enumeration. In this paper, a new probabilistic approximate model
counter is proposed, which is also a hashing-based universal framework,
but with only satisfiability queries. A dynamic stopping criteria, for the
new algorithm, is presented, which has not been studied yet in previ-
ous works of hashing-based approaches. Although the new algorithm
lacks theoretical guarantee, it works well in practice. Empirical evalu-
ation over benchmarks on propositional logic formulas and SMT(BV)
formulas shows that the approach is promising.

1 Introduction

Constrained counting, the problem of counting the number of solutions for a
set of constraints, is important in theoretical computer science and artificial
intelligence. Its interesting applications in several fields include program anal-
ysis [17,18,20,21,28,30], probabilistic inference [12,31], planning [14] and pri-
vacy/confidentiality verification [19]. Constrained counting for propositional for-
mulas is also called model counting, to which probabilistic inference is easily
reducible. However, model counting is a canonical #P-complete problem, even

This work has been supported by the National 973 Program of China under Grant
2014CB340701, Key Research Program of Frontier Sciences, Chinese Academy of
Sciences (CAS) under Grant QYZDJ-SSW-JSC036, and the National Natural Sci-
ence Foundation of China under Grant 61100064. Feifei Ma is also supported by the
Youth Innovation Promotion Association, CAS.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Galmiche et al. (Eds.): IJCAR 2018, LNAI 10900, pp. 312–328, 2018.
https://doi.org/10.1007/978-3-319-94205-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94205-6_21&domain=pdf

A New Probabilistic Algorithm for Approximate Model Counting 313

for polynomial-time solvable problems like 2-SAT [37], thus it presents fascinat-
ing challenges for both theoreticians and practitioners.

There are already a few approaches for counting solutions over propositional
logic formulas and SMT(BV) formulas. Recently, hashing-based approximate
counting achi-eves both strong theoretical guarantees and good scalability [29].
The use of universal hash functions in counting problems began in [34,36], but
the resulting algorithm scaled poorly in practice. A scalable approximate counter
ApproxMC in [10] scales to large problem instances, while preserving rigorous
approximation guarantees. ApproxMC has been extended to finite-domain discrete
integration, with applications to probabilistic inference [4,7,15]. It was improved
by designing efficient universal hash functions [8,25] and reducing the use of NP-
oracle calls from linear to logarithmic [11].

The basic idea in ApproxMC is to estimate the model count by randomly and
iteratively cutting the whole space down to a small “enough” cell, using hash
functions, and sampling it. The total model count is estimated by a multipli-
cation of the number of solutions in this cell and the ratio of the whole space
to the small cell. To determine the size of the small cell, which is essentially a
small-scale model counting problem with the model counts bounded by some
thresholds, a model enumeration in the cell is adopted. In previous works, the
enumeration query was handled by transforming it into a series of satisfiability
queries, which is much more time-consuming than a single satisfiability query.
An algorithm called MBound [23] only invokes satisfiability query once for each
cut. Its model count is determined with high precision by the number of cuts
down to the boundary of being unsatisfiable. However, this property is not strong
enough to give rigorous guarantees, and MBound only returns an approximation
of upper or lower bound of the model count.

In this paper, a new hashing-based approximate counting algorithm, with
only satisfiability query, is proposed. Dynamic stopping criterion for the algo-
rithm to terminate, once meeting the criterion of accuracy, is presented, which
has not been proposed yet in previous works of hashing-based approaches. The-
oretical insights over the efficiency of a prevalent heuristic strategy called leap-
frogging are also provided. The new algorithm works well in practice but does
not provide theoretical guarantees, since it builds on an assumption of a corre-
lation between the model count and the probability of the hashed formula being
unsatisfiable, which has not been proved yet.

The proposed approach is a general framework easy to handle various types
of constraints. Prototype tools for propositional logic formulas and SMT(BV)
formulas are implemented. An extensive evaluation on a suite of benchmarks
demonstrates that (i) the approach significantly outperforms the state-of-the-
art approximate model counters, including a counter designed for SMT(BV)
formulas, and (ii) the dynamic stopping criterion is promising.

The rest of this paper is organized as follows. Preliminary material is in
Sect. 2, related works in Sect. 3, the algorithm in Sect. 4, analysis in Sect. 5,
experimental results in Sect. 6, and finally, concluding remarks in Sect. 7.

314 C. Ge et al.

2 Preliminaries

Let F (x) denote a propositional logic formula on n variables x = (x1, . . . , xn).
Let S and SF denote the whole space (the space of assignments) and the solution
space of F , respectively. Let #F denote the cardinality of SF , i.e. the number
of solutions of F .

(ε, δ)-bound To count #F , an (ε, δ) approximation algorithm, ε > 0 and δ > 0,
is an algorithm which on every input formula F , outputs a number Ỹ such that
Pr[(1 + ε)−1#F ≤ Ỹ ≤ (1 + ε)#F] ≥ 1 − δ. Such an algorithm is called a
(ε, δ)-counter and the bound is called a (ε, δ)-bound [26].

Hash Function. Let HF be a family of XOR-based bit-level hash functions
on the variables of a formula F . Each hash function H ∈ HF is of the form
H(x) = a0

⊕n
i=1 aixi, where a0, . . . , an are Boolean constants. In the hashing

procedure Hashing(F), a function H ∈ HF is generated by independently and
randomly choosing ais from a uniform distribution. Thus for an assignment α,
it holds that PrH∈HF

(H(α) = true) = 1
2 . Given a formula F , let Fi denote a

hashed formula F ∧H1 ∧· · ·∧Hi, where H1, . . . , Hi are independently generated
by the hashing procedure.

Satisfiability Query. Let Solving(F) denote the satisfiability query of a for-
mula F . With a target formula F as input, the satisfiability of F is returned by
Solving(F).

Enumeration Query. Let Counting(F, p) denote the bounded solution enu-
meration query. With a constraint formula F and a threshold p (p ≥ 2) as inputs,
a number s is returned such that s = min(p − 1,#F). Specifically, 0 is returned
for unsatisfiable F , or p = 1 which is meaningless.

SMT(BV) Formula. SMT(BV) formulas are quantifier-free and fixed-size that
combine propositional logic formulas with constraints of bit-vector theory. For
example, ¬(x + y = 0) ∨ (x = y << 1), where x and y are bit-vector variables,
<< is the shift-left operator. It can be regarded as a propositional logic formula
¬A∨B that combines bit-vector constraints A ≡ (x+y = 0) and B ≡ (x = y <<
1). To apply hash functions to an SMT(BV) formula, a bit-vector is bit-blasted
to a set of Boolean variables.

3 Related Works

[3] showed that almost uniform sampling from propositional constraints, a closely
related problem to constrained counting, is solvable in probabilistic polynomial
time with an NP oracle. Building on this, [10] proposed the first scalable approx-
imate model counting algorithm ApproxMC for propositional formulas. ApproxMC
is based on a family of 2-universal bit-level hash functions that compute XOR
of randomly chosen propositional variables. In the current work, this family of
hash functions is adopted, which was shown to be 3-independent in [24], and is

A New Probabilistic Algorithm for Approximate Model Counting 315

Algorithm 1
1: function ApproxMC(F , T , pivot)
2: for 1 to T do
3: c ← ApproxMCCore(F , pivot)
4: if (c �= 0) then AddToList(C, c)
5: end for
6: return FindMedian(C)
7: end function
8: function ApproxMCCore(F , pivot)
9: F0 ← F

10: for i ← 0 to ∞ do
11: s ← Counting(Fi, pivot + 1)
12: if (0 ≤ s ≤ pivot) then return 2is
13: Hi+1 ← Hashing(F)
14: Fi+1 ← Fi ∧ Hi+1

15: end for
16: end function

revealed to potentially possess better properties than expected by the experi-
mental results and the theoretical analysis in the current work.

The sketch framework of ApproxMC [10,13] is listed as Algorithm 1. Its inputs
are a formula F and two accuracy parameters T and pivot, where T determines
the number of times ApproxMCCore is invoked, and pivot determines the thresh-
old of the enumeration query. The function ApproxMCCore starts from the for-
mula F0, iteratively calls Counting and Hashing over each Fi, to cut the space
(cell) of all models of F0 using random hash functions, until the count of Fi is
no larger than pivot, then breaks out of the loop and adds the approximation
2is into list C. The main procedure ApproxMC repeatedly invokes ApproxMCCore
and collects the returned values, at last returning the median number of list C.
The general algorithm in [8] is similar to Algorithm 1, but cuts the cell with
dynamically determined proportion instead of the constant 1

2 , due to the word-
level hash functions. [11] improves ApproxMCCore via binary search to reduce the
number of enumeration queries from linear to logarithmic. This binary search
improvement is orthogonal to our approach.

A recent work [1] considered a special family of shorter XOR-constraints to
improve the efficiency of SAT solving while preserving rigourous guarantee. This
improvement of hash functions is also orthogonal to our approach as we use hash
functions and SAT solving as black boxes. However, it is unknown whether there
exist similar theoretical results like [1].

4 Algorithm

In this section, a new hashing-based algorithm for approximate model counting,
with only satisfiability queries, will be proposed, building on an assumption
of a probabilistic approximate correlation between the model count and the
probability of the hashed formula being unsatisfiable.

316 C. Ge et al.

Let Fd = F ∧H1∧· · ·∧Hd be a hashed formula resulted by iteratively hashing
d times independently over a formula F . Fd is unsatisfiable if and only if no
solution of F satisfies Fd, thus PrFd

(Fd is unsat) = PrFd
(Fd(α) = false, α ∈

SF). Assume we have

Pr
Fd

(Fd is unsat) ≈ (1 − 2−d)#F . (1)

Then based on Eq. (1), an approximation of #F is achieved by taking logarithm
on the value of PrFd

(Fd is unsat), which is estimated in turn by sampling Fd.
This is the general idea of our approach. The pseudo-code is presented in Algo-
rithm 2. The inputs are the target formula F and a constant T which determines
the number of times GetDepth invoked. GetDepth calls Solving and Hashing
repeatedly until an unsatisfiable formula Fdepth is encountered, and returns the
depth. Every time GetDepth returns a depth, the value of C[i] is increased, for
all i < depth. At line 9, the algorithm picks a number d such that C[d] is close
to T/2, since the error estimation fails when C[d]/T is close to 0 or 1. The final
result is returned by the formula log1−(1/2)d

counter
T at line 11.

Algorithm 2. Satisfiability Testing based Approximate Counter (STAC)
1: function STAC(F , T)
2: initialize C[i]s with zeros
3: for t ← 1 to T do
4: depth ← GetDepth(F)
5: for i ← 0 to depth − 1 do
6: C[i] ← C[i] + 1
7: end for
8: end for
9: pick a number d such that C[d] is closest to T/2

10: counter ← T − C[d]
11: return log1−2−d

counter
T

/* return 0 when d = 0 */
12: end function
13: function GetDepth(F)
14: F0 ← F
15: for i ← 0 to ∞ do
16: b ← Solving(Fi)
17: if (b is false) then return i
18: Hi+1 ← Hashing(Fi)
19: Fi+1 ← Fi ∧ Hi+1

20: end for
21: end function

Note that our approach is based on Eq. (1) which is only an assumption. In
Sect. 5, we provide theoretical analysis, including the bound of the approxima-
tion and the correctness of algorithm, based on the hypothesis. Then in Sect. 6,
experimental results on an extensive set of benchmarks show that the approx-
imation given by our approach fits the bound well. It indicates that Eq. (1) is
probably true as it is a reasonable explanation to the positive results.

A New Probabilistic Algorithm for Approximate Model Counting 317

Dynamic Stopping Criterion. The essence of Algorithm 2 is a randomized sam-
pler over a binomial distribution. The number of samples is determined by the
value of T , which is pre-computed for a given (ε, δ)-bound, and we loosen the
value of T to meet the guarantee in theoretical analysis. However, it usually
does not loop T times in practice. A variation with dynamic stopping criterion
is presented in Algorithm 3.

Algorithm 3. STAC with Dynamic Stopping Criterion
1: function STAC DSC(F , T , ε, δ)
2: initialize C[i]s with zeros
3: for t ← 1 to T do
4: depth ← GetDepth(F)
5: for i ← 0 to depth − 1 do
6: C[i] ← C[i] + 1
7: end for
8: for each d that C[d] > 0 do

9: q ← t−C[d]
t

10: M ← log1−2−d q

11: U ← log1−2−d(q − z1−δ

√
q(1−q)

t
)

12: L ← log1−2−d(q + z1−δ

√
q(1−q)

t
)

13: if U < (1 + ε)M and L > (1 + ε)−1M then
14: return M
15: end if
16: end for
17: end for
18: end function

Lines 2 to 7 is the same as Algorithm 2, still setting T as a stopping rule
and terminating whenever t = T . Line 8 to 16 is the key part of this variation,
calculating the binomial proportion confidence interval [L,U] of an intermediate

result M for each cycle. A commonly used formula q ± z1−δ

√
q(1−q)

t [5,38] is
adopted, which is justified by the central limit theorem to compute the 1 − δ
confidence interval. However, it becomes invalid for small sample size or propor-
tion close to 0 or 1. In practice, we also considered some improvements, e.g.,
Wilson score interval [40]. The exact count #F lies in the interval [L,U] with
probability 1 − δ. Combining the inequalities presented in line 13, the interval
[(1+ε)−1M, (1+ε)M] is the (ε, δ)-bound (if the assumption of Formula 1 holds).
So the algorithm terminates when the condition in line 13 comes true. The time
complexity of Algorithm 3 is still the same as the original algorithm, though it
usually terminates earlier.

Satisfiability and Enumeration Query. The bounded counting can be done by
negating solution and calling SAT oracle repeatedly, which is employed by

318 C. Ge et al.

ApproxMC. In practice, enumerating solutions in this way is not very efficient.
In evaluation section, experimental results show that the average number of SAT
calls of ApproxMC is usually 20 to 30 times to STAC. It may also cause problems
while extending to other kinds of formulas. For example, for linear integer arith-
metic formula, inserting solution negation clauses will exponentially increase the
number of calls of LIP solver.

Leap-frogging Strategy. Recall that GetDepth is invoked T times with the same
arguments, and the loop of line 15 to 20 in the pseudo-code of GetDepth in
Algorithm 2 is time consuming for large i. A heuristic called leap-frogging to
overcome this bottleneck was proposed in [9,10]. Their experiments indicate
that this strategy is extremely efficient in practice. The average depth d̄ of each
invocation of GetDepth is recorded. In all subsequent invocations, the loop starts
by initializing i to d̄ − k · offset, where k ≥ 1. Note that if Fi is unsatisfiable, the
algorithm repeatedly decreases i by increasing k and check the satisfiability of
the new Fi, until a proper initialization i is found for satisfiable Fi. In practice,
the constant offset is usually set to 5. Theorem 3 in Sect. 5 shows that the depth
computed by GetDepth lies in an interval [d, d + 7] with probability over 90%.
So it suffices to invoke Solving in constant time since the second iteration.

5 Analysis

In this section, we assume Eq. (1) holds. Based on this assumption, theoretical
results on the error estimation of our approach are presented. For lack of space,
we omit proofs in this section.

Recall that in Algorithm 2, #F is approximated by a value log1−2−d
counter

T .
Let qd denote the value of (1 − 2−d)#F . We obtain that Pr(Fd is unsat) = qd

for a randomly generated formula Fd. This is justified by Eq. (1). Since the ratio
counter

T in Algorithm 2 is a proportion of successes in a Bernoulli trial process,
which is used to estimate the value of qd. Then counter is a random variable
following a binomial distribution B(T, qd).

Theorem 1. Let z1−δ be the 1 − δ quantile of N(0, 1) and

T = max

(

	(z1−δ

2qd(1 − qε
d)

)2
, 	(z1−δ

2(q(1+ε)−1

d − qd)
)2)

)

. (2)

Then Pr[#F
1+ε ≤ log1−2−d

counter
T ≤ (1 + ε)#F] ≥ 1 − δ.

Proof. By above discussions, the ratio counter
T is the proportion of successes

in a Ber-noulli trial process which follows the distribution B(T, qd). Then we
use the approximate formula of a binomial proportion confidence interval qd ±
z1−δ

√
qd(1−qd)

T , i.e., Pr[qd − z1−δ

√
qd(1−qd)

T ≤ counter
T ≤ qd + z1−δ

√
qd(1−qd)

T] ≥

A New Probabilistic Algorithm for Approximate Model Counting 319

1 − δ. The log function is monotone, so we only have to consider the following
two inequalities:

log1−2−d (qd − z1−δ

√
qd(1 − qd)

T
) ≤ (1 + ε)#F, (3)

(1 + ε)−1#F ≤ log1−2−d (qd + z1−δ

√
qd(1 − qd)

T
). (4)

We first consider Eq. (3). By substituting log1−2−d qd for #F , we have

log1−2−d (qd − z1−δ

√
qd(1 − qd)

T
) ≤ (1 + ε) log1−2−d qd

⇔ qd − z1−δ

√
qd(1 − qd)

T
≥ q

(1+ε)
d

⇔ qd(1 − qε
d) ≥ z1−δ

√
qd(1 − qd)

T

⇔ T ≥ (
z1−δ

qd(1 − qε
d)

)2qd(1 − qd).

Since 0 ≤ qd ≤ 1, we have
√

qd(1 − qd) ≤ 1
2 . Therefore, T = 	(z1−δ

2qd(1−qε
d)

)2
 ≥
(z1−δ

qd(1−qε
d)

)2qd(1 − qd).
We next consider Eq. (4). Similarly, we have

log1−2−d (qd + z1−δ

√
qd(1 − qd)

T
) ≥ (1 + ε)−1 log1−2−d qd

⇔ qd + z1−δ

√
qd(1 − qd)

T
≤ q

1/(1+ε)
d

⇔ T ≥ (
z1−δ

q
1/(1+ε)
d − qd

)2qd(1 − qd).

So Eq. (2) implies Eqs. (3) and (4).

Theorem 1 shows that the result of Algorithm 2 lies in the interval [(1 +
ε)−1#F, (1 + ε)#F] with probability at least 1 − δ when T is set to a proper
value. So we focus on the possible smallest value of T in subsequent analysis.

The next two lemmas are easy to show by derivations.

Lemma 1. z1−δ

2x(1−xε) is monotone increasing and monotone decreasing in [(1 +

ε)− 1
ε , 1] and [0, (1 + ε)− 1

ε] respectively.

Lemma 2. z1−δ

2(x1/(1+ε)−x)
is monotone increasing and monotone decreasing in

[(1 + ε)− 1+ε
ε , 1] and [0, (1 + ε)− 1+ε

ε] respectively.

Theorem 2. If #F > 5, then there exists a proper integer value of d such that
qd ∈ [0.4, 0.65].

320 C. Ge et al.

Proof. Let x denote the value of qd = (1 − 1
2d)#F , then we have (1 − 1

2d+1)#F =

(12 + x
1

#F

2)#F . Consider the derivation

d
d#F (12 + x

1
#F

2)#F = (
1
2

+
x

1
#F

2
)#F ln (

1
2

+
x

1
#F

2
)
x

1
#F

2
ln x

d

d#F
(#F−1).

Note that (12 + x
1

#F

2)#F and x
1

#F

2 are the positive terms and ln (12 + x
1

#F

2), lnx

and d
d#F (#F−1) are the negative terms. Therefore, the derivation is negative,

i.e., (12 + x
1

#F

2)#F is monotone decreasing with respect to #F . In addition,

(12 + x
1
5

2)5 is the upper bound when #F ≥ 5.

Let x = 0.4, then (1 − 1
2d+1)#F ≤ (12 + 0.4

1
5

2)5 ≈ 0.65. Since (1 − 1
20)#F = 0

and limd→+∞(1 − 1
2d)#F = 1 and (1 − 1

2d)#F is continuous with respect to
d, we consider the circumstances close to the interval [0.4, 0.65]. Assume there
exists an integer σ such that (1 − 1

2σ)#F < 0.4 and (1 − 1
2σ+1)#F > 0.65.

According to the intermediate value theorem, we can find a value e > 0 such
that (1 − 1

2σ+e)#F = 0.4. Obviously, we have (1 − 1
2σ+e+1)#F ≤ 0.65 which is

contrary with the monotone decreasing property.

From Theorem 2 and Lemmas 1 and 2, it suffices to consider the results of
Eq. (2) when qd = 0.4 and qd = 0.65. For example, T = 22 for ε = 0.8 and
δ = 0.2, T = 998 for ε = 0.1 and δ = 0.1, etc. We therefore pre-computed a table
of the value of T . The proof of next theorem is omitted.

Theorem 3. There exists an integer d such that qd < 0.05 and qd+7 > 0.95.

Let depth denote the result of GetDepth in Algorithm 2. Then Fd is unsat-
isfiable only if d ≥ depth. Theorem 3 shows that there exists an integer
d such that Pr(depth < d) < 0.05 and Pr(depth < d + 7) > 0.95, i.e.,
Pr(d ≤ depth ≤ d + 7) > 0.9. So in most cases, the value of depth lies in
an interval [d, d + 7]. Also, it is easy to see that log2 #F lies in this interval as
well. The following theorem is obvious now.

Theorem 4. Algorithm 2 runs in time linear in log2 #F relative to an NP-
oracle.

6 Evaluation

To evaluate the performance and effectiveness of our approach, two prototype
implementations STAC CNF and STAC BV with dynamic stopping criterion for
propositional logic formulas and SMT(BV) formulas are built respectively. We
considered a wide range of benchmarks from different domains: grid networks,
plan recognition, DQMR networks, Langford sequences, circuit synthesis, ran-
dom 3-CNF, logistics problems and program synthesis [8,10,27,33]1. For lack of
1 Our tools STAC CNF and STAC BV and the suite of benchmarks are available at

https://github.com/bearben/STAC.

https://github.com/bearben/STAC

A New Probabilistic Algorithm for Approximate Model Counting 321

space, we only list a part of results here. All our experiments were conducted on
a single core of an Intel Xeon 2.40 GHz (16 cores) machine with 32 GB memory
and CentOS6.5 operating system.

6.1 Quality of Approximation

Recall that our approach is based on Eq. (1) which has not been proved. So we
would like to see whether the approximation fits the bound. We experimented
100 times on each instance.

Table 1. Statistical results of 100-times experiments on STAC CNF (ε = 0.8, δ = 0.2)

Instance n #F [1.8−1#F, 1.8#F] Freq. t̄ (s) T̄ Q̄

special-1 20 1.0 × 106 [5.8 × 105, 1.9 × 106] 82 0.3 12.2 86.7

special-2 20 1 [0.6, 1.8] 86 0.6 12.6 37.6

special-3 25 3.4 × 107 [1.9 × 107, 6.0 × 107] 82 11.2 11.8 90.1

5step 177 8.1 × 104 [4.5 × 104, 1.5 × 105] 90 0.1 11.9 80.5

blockmap 05 01 1411 6.4 × 102 [3.6 × 102, 1.2 × 103] 84 1.1 12.0 73.8

blockmap 05 02 1738 9.4 × 106 [5.2 × 106, 1.7 × 107] 89 12.7 11.8 87.7

blockmap 10 01 11328 2.9 × 106 [1.6 × 106, 5.2 × 106] 83 80.3 12.0 85.0

fs-01 32 7.7 × 102 [4.3 × 102, 1.4 × 103] 80 0.02 12.6 76.2

or-50-10-10-UC-20 100 3.7 × 106 [2.0 × 106, 6.6 × 106] 77 7.7 12.0 86.1

or-60-10-10-UC-40 120 3.4 × 106 [1.9 × 106, 6.1 × 106] 91 3.5 12.1 86.0

In Table 1, column 1 gives the instance name, column 2 the number of
Boolean variables n, column 3 the exact counts #F , and column 4 the inter-
val [1.8−1#F, 1.8#F]. The frequencies of approximations that lie in the interval
[1.8−1#F, 1.8#F] in 100 times of experiments are presented in column 5. The
average time consumptions, average number of iterations, and average number
of SAT query invocations are presented in columns 6, 7 and 8 respectively, which
also indicate the advantages of our approach.

Under the dynamic stopping criterion, the counts returned by our approach
should lie in an interval [1.8−1#F, 1.8#F] with probability 80% for ε = 0.8 and
δ = 0.2. The statistical results in Table 1 show that the frequencies are around
80 for 100-times experiments which fit the 80% probability. The average number
of iterations T̄ listed in Table 1 is smaller than the loop termination criterion
T = 22 which is obtained via Formula 2, indicating that the dynamic stopping
technique significantly improves the efficiency. In addition, the values of T̄ appear
to be stable for different instances, hinting that there exists a constant upper
bound on T which is irrelevant to instances.

Intuitively, our approach may start to fail on “loose” formulas, i.e., with
an “infinitesimal” fraction of non-models. Instance special-1 and special-3 are

322 C. Ge et al.

such “loose” formulas where special-1 has 220 models with only 20 variables
and special-3 has 225 − 1 models with 25 variables. Instance special-2 is another
extreme case which only has one model. The results in Table 1 demonstrate that
STAC CNF also works fine on these extreme cases.

Table 2. Statistical results of 100-times experiments on STAC CNF (ε = 0.2, δ = 0.1)

Instance n #F [1.2−1#F, 1.2#F] Freq. t̄ (s) T̄ Q̄

special-1 20 1.0 × 106 [8.7 × 105, 1.3 × 106] 86 4.0 179 1023

special-2 20 1 [0.8, 1.2] 91 0.1 179 540

special-3 25 3.4 × 107 [2.8 × 107, 4.0 × 107] 91 138 178 1029

5step 177 8.1 × 104 [6.8 × 104, 9.8 × 105] 96 1.9 190 1078

blockmap 05 01 1411 6.4 × 102 [5.3 × 102, 7.7 × 102] 94 17.1 190 1069

blockmap 05 02 1738 9.4 × 106 [7.9 × 106, 1.1 × 107] 87 281 193 1088

blockmap 10 01 11328 2.9 × 106 [2.4 × 106, 3.5 × 106] 93 1371 180 1034

fs-01 32 7.7 × 102 [6.4 × 102, 9.2 × 102] 91 0.1 172 975

or-50-10-10-UC-20 100 3.7 × 106 [3.1 × 106, 4.4 × 106] 90 140 166 925

or-60-10-10-UC-40 120 3.4 × 106 [2.8 × 106, 4.1 × 106] 92 66 167 949

Table 3. Statistical results of 100-times experiments on STAC BV (ε = 0.8, δ = 0.2)

Instance TB #F [1.8−1#F, 1.8#F] Freq t̄ (s) T̄ Q̄

FINDpath1 32 4.1 × 106 [2.3 × 106, 7.3 × 106] 83 27.5 12.4 88.0

queue 16 8.4 × 10 [4.7 × 10, 1.5 × 102] 75 1.7 12.0 70.6

getopPath2 24 8.1 × 103 [4.5 × 103, 1.5 × 104] 88 2.7 12.2 79.5

coloring 4 32 1.8 × 109 [1.0 × 109, 3.3 × 109] 76 51.9 12.0 96.1

FISCHER2-7-fair 240 3.0 × 104 [1.7 × 104, 5.4 × 104] 79 149 11.8 79.8

case2 24 4.2 × 106 [2.3 × 106, 7.6 × 106] 79 16.5 12.4 89.3

case4 16 3.3 × 104 [1.8 × 104, 5.9 × 104] 87 2.2 12.5 85.2

case7 18 1.3 × 105 [7.3 × 104, 2.4 × 105] 83 2.9 12.4 84.1

case8 24 8.4 × 106 [4.7 × 106, 1.5 × 107] 82 14.4 12.1 91.1

case11 15 1.6 × 104 [9.1 × 103, 2.9 × 104] 76 2.1 12.0 81.2

We considered another pair of parameters ε = 0.2, δ = 0.1. Then the interval
should be [1.2−1#F, 1.2#F] and the probability should be 90%. Table 2 shows
the results on such parameter setting. The frequencies that the approximation
lies in interval [1.2−1#F, 1.2#F] are all around or over 90 which fits the 90%
probability.

We also conducted 100-times experiments on SMT(BV) problems and the
results show that STAC BV is also promising. Table 3 similarly shows the results

A New Probabilistic Algorithm for Approximate Model Counting 323

of 100-times experiments on STAC BV. Its column 2 gives the sum of widths of
all bit-vector variables (Boolean variable is counted as a bit-vector of width 1)
instead. The statistical results demonstrate that the dynamic stopping criterion
is also promising on SMT(BV) problems.

6.2 Performance Comparison with (ε, δ)-counters

We compared our tools with ApproxMC2 [11] and SMTApproxMC [8] which are
hashing-based (ε, δ)-counters. Both STAC CNF and ApproxMC2 use CryptoMini-
SAT [35], an efficient SAT solver designed for XOR clauses. STAC BV and SMT-
ApproxMC use the state-of-the-art SMT(BV) solver Boolector [6].

0.03

0.3

3

30

300

3000

30000

0.03 0.3 3 30 300 3000 30000

Ap
pr
ox
M
C2

STAC_CNF

Fig. 1. Performance comparison
between STAC CNF and ApproxMC2

0.03

0.3

3

30

300

3000

30000

0.03 0.3 3 30 300 3000 30000

SM
TA

pp
ro
xM

C

STAC_BV

Fig. 2. Performance comparison
between STAC BV and SMTApproxMC

We first conducted experiments with ε = 0.8, δ = 0.2 and 8 hours timeout
which are also used in evaluation in previous works [8,11]. Figure 1 presents a
comparison on performance between STAC CNF and ApproxMC2. Each point rep-
resents an instance, whose x-coordinate and y-coordinate are the running times
of STAC CNF and ApproxMC2 on this instance, respectively. The figure is in loga-
rithmic coordinates and demonstrates that STAC CNF outperforms ApprxMC2 by
about one order of magnitude. Figure 2 presents a similar comparison on perfor-
mance between STAC BV and SMTApproxMC, showing that STAC BV outperforms
SMTApproxMC by one or two orders of magnitude. Furthermore, the advantage
enlarges as the scale grows.

Table 4 presents more experimental results with (ε, δ) parameters other than
(ε = 0.8, δ = 0.2). Nine pairs of parameters were experimented. “Time Ratio”
represents the ratio of the running times of ApproxMC2 to STAC CNF. “#Calls
Ratio” represents the ratio of the number of SAT calls of ApproxMC2 to STAC CNF.
The results show that ApproxMC2 gains advantage as ε decreases and STAC CNF
gains advantage as δ decreases. On the whole, ApproxMC2 gains advantage when

324 C. Ge et al.

Table 4. Performance comparison between STAC CNF and ApproxMC2 with different
pairs of (ε, δ) parameters

(ε, δ) Instance

blockmap fs-01 5step ran5 ran6 ran7

05 01 05 02 10 01

(0.8, 0.3) Time Ratio 1.11 3.99 1.22 3.00 3.83 6.53 8.24 5.57

#Calls Ratio 22.60 39.02 17.91 19.12 23.11 22.53 21.28 23.68

(0.8, 0.2) Time Ratio 1.84 6.16 2.44 2.80 6.05 9.61 15.41 7.37

#Calls Ratio 26.70 34.68 25.16 33.46 27.24 33.35 38.22 30.94

(0.8, 0.1) Time Ratio 2.27 7.36 3.72 5.25 12.62 9.60 9.54 8.19

#Calls Ratio 44.88 48.26 40.01 49.40 43.03 46.12 44.84 52.63

(0.4, 0.3) Time Ratio 0.75 1.37 0.42 3.00 5.04 1.97 2.31 2.74

#Calls Ratio 17.75 36.20 14.69 16.40 27.63 21.07 27.34 21.63

(0.4, 0.2) Time Ratio 0.77 1.44 0.86 4.50 7.70 2.82 1.77 3.02

#Calls Ratio 20.91 26.35 29.16 26.72 40.66 26.49 27.82 28.94

(0.4, 0.1) Time Ratio 1.08 2.57 1.29 4.90 7.09 3.84 3.43 3.11

#Calls Ratio 37.16 46.28 39.40 31.99 39.36 41.02 35.88 34.11

(0.2, 0.3) Time Ratio 0.42 0.47 0.23 5.08 3.79 1.26 1.14 1.81

#Calls Ratio 13.75 20.82 24.35 13.37 19.74 25.20 19.19 20.06

(0.2, 0.2) Time Ratio 0.57 0.92 0.26 8.42 3.37 2.07 1.50 2.45

#Calls Ratio 21.80 29.62 25.60 21.83 21.59 25.88 22.72 22.98

(0.2, 0.1) Time Ratio 0.87 0.92 0.44 16.69 3.17 3.61 2.27 2.60

#Calls Ratio 27.86 29.91 33.36 34.17 31.58 40.81 29.01 29.90

ε and δ both decrease. Note that the numbers of SAT calls represent the com-
plexity of both algorithms. In Table 4, #Calls Ratio is more stable than Time
Ratio among different pairs of parameters and also different instances. It indi-
cates that the difficulty of NP-oracle is also an important factor of running time
performance.

6.3 Performance Comparison with Bounding and Guarantee-Less
Counters

Since our approach is not a (ε, δ)-counter in theory, we also com-
pared STAC CNF with bounding counters (SampleCount [22], MBound [23]) and
guarantee-less counters (ApproxCount [39], SampleTreeSearch [16]). Table 5
shows the experimental results.

For SampleCount, we used α = 2 and t = 3.5 so that αt = 7, giving a correct-
ness confidence of 1 − 2−7 = 99%. The number of samples per variable setting,
z, was chosen to be 20. Our results show that the lower-bound approximated by
SampleCount is smaller than exact count #F by one or more orders of magni-
tude. We tried larger z, such as z = 100 and z = 1000, but still failed to obtain

A New Probabilistic Algorithm for Approximate Model Counting 325

T
a
b
le

5
.
P
er

fo
rm

a
n
ce

co
m

p
a
ri

so
n

o
f
S
T
A
C
C
N
F

w
it

h
ex

is
ti

n
g

b
o
u
n
d
in

g
co

u
n
te

rs
a
n
d

g
u
a
ra

n
te

e-
le

ss
co

u
n
te

rs

In
st
a
n
c
e

n
#

F
(i
f
k
n
o
w
n
)
S
T
A
C
C
N
F

(ε
=

0
.8

,
δ
=

0
.2
)

S
a
m
p
l
e
C
o
u
n
t

(9
9
%

c
o
n
fi
d
e
n
c
e
)

M
B
o
u
n
d

(9
9
%

c
o
n
fi
d
e
n
c
e
)

A
p
p
r
o
x
C
o
u
n
t

S
a
m
p
l
e
T
r
e
e
S
e
a
r
c
h

M
o
d
e
ls

T
im

e
L
-b

o
u
n
d

T
im

e
L
-b

o
u
n
d

T
im

e
M

o
d
e
ls

T
im

e
M

o
d
e
ls

T
im

e

b
lo
ck

m
a
p

0
5
0
1

1
4
1
1

6
4
0

≈
8
0
7

1
s

≥
2
2

1
1
6
s

>
6
4

9
s

=
6
4
0

7
s

≈
6
4
6

7
1
s

b
lo
ck

m
a
p

0
5
0
2

1
7
3
8

9
.4

×
1
0
6

≈
7
.1

×
1
0
6
1
6
s

3
.6

×
1
0
4

5
m

>
2
.1

×
1
0
6
5
m

=
9
.4

×
1
0
6

1
3
s

≈
9
.4

×
1
0
6

1
1
4
s

b
lo
ck

m
a
p

1
0
0
1

1
1
3
2
8
2
.9

×
1
0
6

≈
2
.6

×
1
0
6
9
6
s

—
≥
8
h

>
5
.2

×
1
0
5
9
m

—
≥
8
h

≈
3
.0

×
1
0
6

6
2
m

b
lo
ck

m
a
p

1
5
0
1

3
3
0
3
5
—

≈
2
.0

×
1
0
9
4
1
m

—
≥
8
h

—
≥
8
h

—
≥
8
h

—
≥
8
h

fs
-0
1

3
2

7
6
8

≈
7
0
9

0
.1

s
≥

6
8

0
.2

s
>

6
4

2
s

≈
9
2
5

1
7
s

≈
7
6
9

0
.1

s

P
L
A
N

R
E
C
O
G
N
IT

IO
N

5
st
e
p

1
7
7

8
.1

×
1
0
4

≈
8
.1

×
1
0
4
0
.2

s
≥

2
.8

×
1
0
3

4
s

>
8
.2

×
1
0
3
6
s

=
8
.1

×
1
0
4

1
8
s

≈
7
.5

×
1
0
4

1
s

ti
re
-1

3
5
2

7
.3

×
1
0
8

≈
9
.8

×
1
0
8
6
4
m

≥
7
.0

×
1
0
5

1
4
s

>
6
.7

×
1
0
7
8
h

=
7
.3

×
1
0
8

4
8
s

≈
7
.6

×
1
0
8

5
s

ti
re
-3

5
7
7

2
.2

×
1
0
1
1

—
≥
8
h

≥
1
.3

×
1
0
6

4
9
s

—
≥
8
h

≈
2
.1

×
1
0
1
1
6
3
s

≈
1
.2

×
1
0
1
1
5
s

L
A
N
G
F
O
R
D

P
R
O
B
S
.

la
n
g
1
2

5
7
6

2
.2

×
1
0
5

≈
3
.2

×
1
0
5
8
0
m

≥
3
.6

×
1
0
3

3
m

>
1
.6

×
1
0
4
4
h

≈
0

1
1
1
s

≈
1
.9

×
1
0
5

1
0
1
m

la
n
g
1
5

1
0
2
4

—
—

≥
8
h

≥
4
.7

×
1
0
5

4
m

—
≥
8
h

≈
0

1
2
2
s
—

≥
8
h

D
Q
M

R
N
E
T
W

O
R
K
S

o
r-
1
0
0
-2
0
-6
-U

C
-6
0
2
0
0

2
.8

×
1
0
7

≈
3
.4

×
1
0
7
1
4
m

≥
1
.1

×
1
0
2
9
1
5
s

>
4
.2

×
1
0
6
6
m

≈
0

1
7
s

≈
2
.8

×
1
0
7

0
.8

s

o
r-
5
0
-1
0
-1
0
-U

C
-4
0
1
0
0

3
.1

×
1
0
3

≈
3
.2

×
1
0
3
0
.1

s
≥

2
.7

×
1
0
2

0
.1

s
>

5
.1

×
1
0
2
4
s

≈
2
.1

×
1
0
1
6
6
8
s

≈
3
.1

×
1
0
3

0
.5

s

o
r-
5
0
-2
0
-1
0
-U

C
-3
0
1
0
0

6
.8

×
1
0
8

≈
7
.4

×
1
0
8
3
5
m

≥
6
.0

×
1
0
7

0
.2

s
>

1
.3

×
1
0
8
3
h

≈
2
.7

×
1
0
1
6
6
2
s

≈
7
.9

×
1
0
8

0
.7

s

o
r-
6
0
-1
0
-1
0
-U

C
-3
0
1
2
0

6
.8

×
1
0
7

≈
6
.2

×
1
0
7
4
m

≥
1
.0

×
1
0
1
7
9
s

>
1
.7

×
1
0
7
3
8
m

≈
2
.4

×
1
0
1
9
8
3
s

≈
6
.5

×
1
0
7

1
s

o
r-
6
0
-5
-2
-U

C
-4
0

1
2
0

2
.1

×
1
0
6

≈
1
.9

×
1
0
6
6
s

≥
1
.0

×
1
0
1
7
1
6
s

>
5
.2

×
1
0
5
1
9
9
s

≈
2
.3

×
1
0
1
9
8
9
s

≈
2
.1

×
1
0
6

0
.9

s

o
r-
7
0
-1
0
-6
-U

C
-4
0

1
4
0

1
.2

×
1
0
4

≈
7
.2

×
1
0
3
0
.1

s
≥

1
.0

×
1
0
2
0
7
s

>
2
.0

×
1
0
3
4
s

≈
0

1
6
5
s

≈
1
.2

×
1
0
4

0
.5

s

o
r-
7
0
-5
-2
-U

C
-3
0

1
4
0

1
.7

×
1
0
7

≈
4
.7

×
1
0
7
5
1
s

≥
1
.0

×
1
0
2
0
1
0
s

>
2
.1

×
1
0
6
1
1
m

≈
0

1
6
5
s

≈
1
.7

×
1
0
7

0
.8

s

R
A
N
D
O
M

3
-C

N
F

ra
n
6

3
0

1
.2

×
1
0
6

≈
1
.9

×
1
0
6
0
.6

s
≥

1
.1

×
1
0
5

0
.2

s
>

1
.3

×
1
0
5
1
1
s

≈
8
.3

×
1
0
5

2
3
s

≈
1
.3

×
1
0
6

0
.2

s

ra
n
1
2

4
0

3
.5

×
1
0
8

≈
4
.2

×
1
0
8
1
0
m

≥
3
.1

×
1
0
7

0
.5

s
>

6
.7

×
1
0
7
1
5
m

≈
2
.6

×
1
0
8

2
3
s

≈
3
.9

×
1
0
8

0
.3

s

ra
n
2
7

5
0

1
.5

×
1
0
8

≈
1
.2

×
1
0
8
8
m

≥
1
.3

×
1
0
7

1
8
s

>
1
.7

×
1
0
7
2
8
m

≈
5
.5

×
1
0
7

5
9
s

≈
1
.1

×
1
0
8

0
.3

s

ra
n
4
4

6
0

1
.1

×
1
0
6

≈
1
.9

×
1
0
6
6
s

≥
9
.5

×
1
0
4

8
s

>
1
.3

×
1
0
5
5
2
s

≈
3
.3

×
1
0
5

1
3
9
s

≈
9
.1

×
1
0
5

0
.5

s

326 C. Ge et al.

a lower-bound larger than #F/10. Moreover, there are some wrong approxima-
tions on DQMR networks problems, e.g., or-100-20-6-UC-60 only has 2.8×107

models but SampleCount returns a lower-bound ≥ 1.1 × 1029. SampleCount is
more efficient on Langford problems and random 3-CNF problems, but weaker
on problems with a large number of variables, such as blockmap problems.

For MBound, we used α = 1 and t = 7 so that αt = 7, also giving a correctness
confidence of 1 − 2−7 = 99%. MBound also employs a family of XOR hashing
functions which is similar to the function used by our approach. The size of
XOR constraints k should be no more than half of the number of variables n,
i.e., k ≤ n/2. We found that XOR constraints start to fail as k << n/2. So
in our experiments, k was chosen to be close to n/2. Since MBound can only
check the bound and may return failure as the bound is too close to the exact
count, we implemented a binary search to find the best lower-bound verified by
MBound. The results in Table 5 are the best lower-bounds and the running times
of the whole binary search procedure. Though the lower-bounds are better than
SampleCount, they are still around #F/10. Similar to our approach, the running
times of MBound are also quite relevant to the size of #F .

For ApproxCount, we manually increased the value of “cutoff” as Approx-
Count requires. Note that ApproxCount calls exact model counter Cachet [32]
and Relsat [2] after formula simplifications, so it sometimes returns the exact
counts, such as blockmap 05 01, blockmap 05 02, 5step and tire-1. On Lang-
ford problems and DQMR networks problems, wrong approximations were pro-
vided. On other instances, the results show that STAC CNF usually outperforms
ApproxCount.

For SampleTreeSearch, we used its default setting about the number of sam-
ples, which is a constant. The results show that it is very efficient and provides
good approximations. Our approach only outperforms SampleTreeSearch on
blockmap problems which consist of a large number of variables. However, there
is a lack of analysis on the accuracy of the approximation of SampleTreeSearch,
i.e., no explicit relation between the number of samples and the accuracy.

7 Conclusion

In this paper, we propose a new hashing-based approximate algorithm with
dynamic stopping criterion. Our approach has two key strengths: it requires only
one satisfiability query for each cut, and it terminates once meeting the criterion
of accuracy. We implemented prototype tools for propositional logic formulas
and SMT(BV) formulas. Extensive experiments demonstrate that our approach
is efficient and promising. Despite that we are unable to prove the correctness
of Eq. (1), the experimental results fit it quite well. This phenomenon might
be caused by some hidden properties of the hash functions. To fully understand
these functions and their correlation with the model count of the hashed formula
might be an interesting problem to the community. In addition, extending the
idea in this paper to count solutions of other formulas is also a direction of future
research.

A New Probabilistic Algorithm for Approximate Model Counting 327

References

1. Achlioptas, D., Theodoropoulos, P.: Probabilistic model counting with short XORs.
In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 3–19. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 1

2. Bayardo, Jr, R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of AAAI, pp. 203–208 (1997)

3. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510–526 (2000)

4. Belle, V., Broeck, G.V., Passerini, A.: Hashing-based approximate probabilistic
inference in hybrid domains. In: Proceedings of UAI, pp. 141–150 (2015)

5. Brown, L.D., Cai, T.T., Dasgupta, A.: Interval estimation for a binomial propor-
tion. Stat. Sci. 16(2), 101–133 (2001)

6. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2 16

7. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for SAT. In: Proceedings of AAAI,
pp. 1722–1730 (2014)

8. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic
inference via word-level counting. In: Proceedings of AAAI, pp. 3218–3224 (2016)

9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform gen-
erator of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 608–623. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39799-8 40

10. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40627-0 18

11. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Proceedings of IJCAI, pp. 3569–3576 (2016)

12. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6–7), 772–799 (2008)

13. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and
value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 26

14. Domshlak, C., Hoffmann, J.: Probabilistic planning via heuristic forward search
and weighted model counting. J. Artif. Intell. Res. (JAIR) 30, 565–620 (2007)

15. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: discrete
sampling with universal hashing. Adv. Neural Inf. Process. Syst. 26, 2085–2093
(2013)

16. Ermon, S., Gomes, C.P., Selman, B.: Uniform solution sampling using a constraint
solver as an oracle. In: Proceedings of UAI, pp. 255–264 (2012)

17. Filieri, A., Pasareanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder:
a brief summary. In: Proceedings of ICSE, pp. 39–40 (2014)

18. Filieri, A., Pasareanu, C.S., Yang, G.: Quantification of software changes through
probabilistic symbolic execution (N). In: Proceedings of ASE, pp. 703–708 (2015)

19. Fredrikson, M., Jha, S.: Satisfiability modulo counting: a new approach for ana-
lyzing privacy properties. In: Proceedings of CSL-LICS, pp. 42:1–42:10 (2014)

https://doi.org/10.1007/978-3-319-66263-3_1
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-39799-8_40
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-662-46681-0_26
https://doi.org/10.1007/978-3-662-46681-0_26

328 C. Ge et al.

20. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In:
Proceedings of ISSTA, pp. 166–176 (2012)

21. von Gleissenthall, K., Köpf, B., Rybalchenko, A.: Symbolic polytopes for quanti-
tative interpolation and verification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV
2015. LNCS, vol. 9206, pp. 178–194. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21690-4 11

22. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model
counting. In: Proceedings of IJCAI, pp. 2293–2299 (2007)

23. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. In: Proceedings of AAAI, pp. 54–61 (2006)

24. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. Adv. Neural Inf. Process. Syst. 19, 481–488 (2006)

25. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints 21(1), 41–58
(2016)

26. Karp, R.M., Luby, M., Madras, N.: Monte-carlo approximation algorithms for enu-
meration problems. J. Algorithms 10(3), 429–448 (1989)

27. Kroc, L., Sabharwal, A., Selman, B.: Leveraging belief propagation, backtrack
search, and statistics for model counting. Ann. OR 184(1), 209–231 (2011)

28. Liu, S., Zhang, J.: Program analysis: from qualitative analysis to quantitative anal-
ysis. In: Proceedings of ICSE, pp. 956–959 (2011)

29. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D.,
Ivrii, A., Malik, S.: Constrained sampling and counting: universal hashing meets
SAT solving. In: Proceedings of Workshop on Beyond NP (BNP) (2016)

30. Phan, Q., Malacaria, P., Pasareanu, C.S., d’Amorim, M.: Quantifying information
leaks using reliability analysis. In: Proceedings of SPIN, pp. 105–108 (2014)

31. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302
(1996)

32. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Proceedings of SAT
(2004)

33. Sang, T., Beame, P., Kautz, H.A.: Performing bayesian inference by weighted model
counting. In: Proceedings of AAAI, pp. 475–482 (2005)

34. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the
15th Annual ACM Symposium on Theory of Computing, pp. 330–335 (1983)

35. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

36. Stockmeyer, L.J.: The complexity of approximate counting (preliminary version).
In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
pp. 118–126 (1983)

37. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. 8(3), 410–421 (1979)

38. Wallis, S.: Binomial confidence intervals and contingency tests: mathematical fun-
damentals and the evaluation of alternative methods. J. Quant. Linguist. 20(3),
178–208 (2013)

39. Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh,
T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005).
https://doi.org/10.1007/11499107 24

40. Wilson, E.B.: Probable inference, the law of succession and statistical inference. J.
Am. Stat. Assoc. 22(158), 209–212 (1927)

https://doi.org/10.1007/978-3-319-21690-4_11
https://doi.org/10.1007/978-3-319-21690-4_11
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/11499107_24

	A New Probabilistic Algorithm for Approximate Model Counting
	1 Introduction
	2 Preliminaries
	3 Related Works
	4 Algorithm
	5 Analysis
	6 Evaluation
	6.1 Quality of Approximation
	6.2 Performance Comparison with (,)-counters
	6.3 Performance Comparison with Bounding and Guarantee-Less Counters

	7 Conclusion
	References

