
Theoretical Computer Science 743 (2018) 110–129
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Computing and estimating the volume of the solution space

of SMT(LA) constraints

Cunjing Ge a,c, Feifei Ma a,b,c,∗, Peng Zhang d, Jian Zhang a,d

a State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
b Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences, China
c University of Chinese Academy of Sciences, China
d School of Computer Science and Technology, Shandong University, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 November 2015
Received in revised form 16 October 2016
Accepted 28 October 2016
Available online 15 November 2016

Keywords:
SMT
Volume
Counting
Convex polytope

The satisfiability modulo theories (SMT) problem is a decision problem, i.e., deciding
the satisfiability of logical formulas with respect to combinations of background theories
(like reals, integers, arrays, bit-vectors). In this paper, we study the counting version of
SMT with respect to linear arithmetic – SMT(LA), which generalizes both model counting
and volume computation of convex polytopes. We describe a method for estimating the
volume of convex polytopes based on the Multiphase Monte-Carlo method. It employs
a new technique to reutilize random points, so that the number of random points can
be significantly reduced. We prove that the reutilization technique has no side-effect on
the error. We also investigate a simplified version of hit-and-run method: the coordinate
directions method. Based on volume estimation method for polytopes, we present an
approach to estimating the volume of the solution space of SMT(LA) formulas. It employs
a heuristic strategy to accelerate the volume estimation procedure. In addition, we devise
some specific techniques for instances that arise from program analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The satisfiability (SAT) problem in the propositional logic is a fundamental problem in computer science. But in practice,
many problems cannot be expressed by propositional formulas directly or naturally. In recent years, there have been a lot of
works on solving the Satisfiability Modulo Theories (SMT) problem, which try to decide the satisfiability of logical formulas
with respect to combinations of background theories (like reals, integers, arrays, bit-vectors). SMT can be regarded as an
extension to SAT, as well as a kind of constraint satisfaction problem (CSP). Quite efficient SMT solvers have been developed,
such as CVC3/CVC4, Z3 and Yices [1,10,11].

The counting version of CSP, i.e., #CSP, has been studied by various researchers [5,6]. There has also been much work on
the model counting problem in the propositional logic, i.e., counting the number of models of a propositional formula. It is
closely related to approximate reasoning [33,8].

On the other hand, the counting version of SMT, i.e., #SMT, has not been studied much. In this paper, we focus on the
#SMT problem with respect to the theory of linear arithmetic – #SMT(LA). Given a set of SMT(LA) constraints, we would like
to know how many solutions there are. Or, in other words, how large the solution space is. The problem can be regarded

* Corresponding author.
E-mail addresses: gecj@ios.ac.cn (C. Ge), maff@ios.ac.cn (F. Ma), algzhang@sdu.edu.cn (P. Zhang), zj@ios.ac.cn (J. Zhang).
http://dx.doi.org/10.1016/j.tcs.2016.10.019
0304-3975/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2016.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:gecj@ios.ac.cn
mailto:maff@ios.ac.cn
mailto:algzhang@sdu.edu.cn
mailto:zj@ios.ac.cn
http://dx.doi.org/10.1016/j.tcs.2016.10.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2016.10.019&domain=pdf

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 111
as an extension to SMT solving, and also a generalization of both the model counting problem in the propositional logic
and volume computation of convex polytopes. It has recently gained some attention in the software engineering community
[23,16].

An SMT(LA) formula is satisfiable if and only if there exists a Boolean assignment to its linear inequalities such that
the SMT formula is evaluated to true in Boolean level, and the conjunction of inequalities is also consistent. Such Boolean
assignment is called feasible assignment. The linear system corresponding to a feasible assignment forms a convex polytope.
Ma et al. [32] proposed an exact approach for #SMT(LA) problem which integrates SMT solving with volume computation
for convex polytopes. However, exact volume computation in general is a difficult problem. It has been proved to be #P-hard,
even for explicitly described polytopes [12,21,22]. Yet, in many applications, it suffices to have an approximate value of the
volume of the solution space. Therefore, it is desirable to study highly efficient methods for estimating the volume of the
solution space.

Volume computation for convex polytopes is a classical problem in mathematics. The high complexity of exact volume
computation procedure for convex polytopes is the bottleneck of the approach in [32]. On the other hand, volume estimation
methods for convex bodies have been extensively studied in theory. The Monte-Carlo method is a straightforward way to
estimate the volume of a convex body. However, it suffers from the curse of dimensionality, which means the possibility of
sampling inside a certain space in the target object decreases very quickly while the dimension increases. As a result, the
sample size has to grow exponentially to achieve a reasonable estimation. To avoid the curse of dimensionality, Dyer et al.
proposed a polynomial time randomized approximation algorithm (called Multiphase Monte-Carlo Algorithm) [13]. At first,
the theoretical complexity of this algorithm is O ∗(n23),1 it was reduced to O ∗(n4) at last by Lovász, Kannan et al. [28,19,26,
31]. Despite the polynomial time results and reduced complexity, there is still a lack of practical implementation.

In this paper, we first describe an algorithm for estimating the volume of convex polytopes which is based on the
Multiphase Monte-Carlo method. The algorithm is augmented with a new technique to reutilize random points, so that
the number of random points can be significantly reduced. We prove that the reutilization technique has no side-effect
on the error. We also investigate a simplified version of hit-and-run method: the coordinate directions method, which has
never been employed in volume estimation before. Then we integrate our volume estimation method for convex polytopes
into the framework of solving #SMT(LA) problems. We propose a heuristic improvement called two-round strategy, which
automatically adjusts the number of random points for each invocation of polytope volume estimation. Besides, for instances
arise from program analysis, we also introduce some effective techniques.

The rest of this paper is organized as follows. We first describe some basic concepts and notations, as well as some
essential techniques and tools in Section 2. Then Section 3 reviews some related works. In Section 4, we present our volume
estimation method for convex polytopes, with theoretical analysis. Section 5 presents our approach to volume computation
and estimation for SMT(LA) formulas. In Section 6, we further discuss how to improve our approach for the instances
generated from program analysis. Section 7 presents some experimental results. Finally, we conclude in Section 8.

This article is an extension of a conference paper [15] presented at the 9th International Workshop of Frontiers in
Algorithmics.

2. Preliminaries

This section describes some basic concepts and notations. We also mention some existing techniques and tools that will
be used later.

2.1. SMT(LA) formulas

Definition 1. A linear arithmetic (LA) constraint is an expression that may be written in the form a1x1 + a2x2 + · · · +
anxn op a0. Here x1, x2, . . . , xn are numeric variables, a0, a1, a2, . . . , an are constant coefficients, and op ∈ {<, ≤, >, ≥, =, �=}.

Definition 2. An SMT formula φ over LA constraints, i.e., an SMT(LA) formula, can be represented as a Boolean formula
P Sφ(b1, . . . , bn) together with definitions in the form: bi ≡ ci . Here cis are LA constraints. P Sφ is the propositional skeleton
of the formula φ.

The propositional skeleton contains logical operators, like AND, OR, NOT. A simple example of SMT(LA) formulas is

(x + y < 1 OR x ≥ y) AND (x + y < 1 OR x < y OR b).

Let the Boolean variables b1 and b2 represent the linear inequalities x + y < 1 and x < y respectively. Then we obtain the
propositional skeleton

(b1 OR (NOT b2)) AND (b1 OR b2 OR b).

1 The “soft-O” notation O ∗ indicates that we suppress factors of logn as well as factors depending on other parameters like the error bound.

112 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Definition 3. An SMT(LA) formula φ is satisfiable if there is an assignment α to the Boolean variables in P Sφ such that:

1. α propositionally satisfies φ, or formally α |= P Sφ ;
2. The conjunction of LA constraints under the assignment α is consistent.

The assignment α is called a feasible assignment. We denote the set of all feasible assignments of φ by Model(φ).

Let us consider two specific types of numeric variables, the integers and reals.

Definition 4. A linear integer arithmetic (LIA) constraint is an LA constraint with integer type variables. Analogously, we
define the linear real arithmetic (LRA) constraint for real type variables.

Accordingly, there are SMT(LIA) formulas and SMT(LRA) formulas. For an SMT(LIA) formula, we count the number of
solutions. For an SMT(LRA) formula, we compute the volume of the solution space instead.

2.2. Convex polytopes

The assignment of the propositional skeleton of the SMT(LA) formula corresponds to a conjunction of linear constraints
which can be regarded as a convex polytope.

Definition 5. A convex polytope P is a bounded subset of Rd which is the intersection of a finite set of half spaces (in-
equalities).

Formally, it is usually described using the H-representation {x|Ax ≤ b}, where A is a matrix of dimension m × d and b is
a vector of dimension m. aij represents the element at the i-th row and the j-th column of A, and ai represents the i-th
row vector of A.

There are already some tools available to compute the exact volume of a convex polytope. For example, Vinci [4] is
such a tool, whose input is a set of linear inequalities. Sometimes we are interested in the number of integer points in the
solution space for LIA constraints. LattE [25] is a tool dedicated to the counting of lattice points inside convex polytopes
and the solution of integer programs. But all the parameters in the matrix A and vector b should be integers.

In this paper, we use vol(K) to denote the volume of a body K . For an assignment α of an SMT(LA) formula φ, we use
vol(α) to denote the volume of the corresponding polytope. The volume of φ, denoted by vol(φ), is formally defined as
follows:

vol(φ) =
∑

α∈Model(φ)

vol(α).

3. Related works

3.1. Volume approximation for convex bodies

Liu et al. [24] developed a tool to estimate the volume of a convex body with a direct Monte-Carlo method. It can also
deal with non-convex cases. Suffered from the curse of dimensionality, it can hardly solve high-dimensional problem in-
stances. A more recent work [27] is an implementation of the O ∗(n4) volume algorithm in [31]. This algorithm is designed
for convex bodies. However, there are no experimental results except cubes within 10 dimensions, because the oracle de-
scribing the convex bodies takes too long to run. Furthermore, it takes hours to approximate the volume of an 8-dimension
cube. In Section 7.1.1, we present the experimental results about comparison between our approach and the method used
in [27].

3.2. Model counting for SMT formulas

There was little work on the counting of SMT solutions, until quite recently.
Fredrikson and Jha [14] relate a set of privacy and confidentiality verification problems to the so-called model-counting

satisfiability problem, and present an abstract decision procedure for it. They implemented this procedure for linear-integer
arithmetic. Their tool is called countersat.

Zhou et al. [36] propose a BDD-based search algorithm which reduces the number of conjunctions. For each conjunction,
they propose a Monte-Carlo integration with a ray-based sampling strategy, which approximates the volume. Their tool is
named RVC. It can handle formulas with up to 18 variables. But the running time is dozens of minutes.

A different approach is described in [9]. It is a bit-level hashing-based model counter. Their approach propositionalizes
the solution space and uses XOR-based bit-level hash functions to obtain a randomized subset of the solution space. Then
it calls an SMT solver repeatedly to count the subset and estimates the volume of the whole solution space. Note that this
approach does not need to modify existing SMT solvers. Their work focuses on the problem of approximate model counting

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 113
for a space projected from the solution space of a mixed integer SMT(LA) formula. For continuous problems, though [9]
proposed a discretization procedure, it is not so practical, since it introduces too many discrete variables that may be even
beyond the limit of Z3’s XOR reasoning.

More recently, Chakraborty et al. [7] proposed a hashing-based approximate model counter. It benefits from state-of-the-
art word-level SMT solvers. It also approximates the volume of the whole solution space instead of a projection space. For
discrete problems without projection, [7] outperforms the previous approximate counter that employs XOR-based hash func-
tions [9], especially, over benchmarks with word-level constraints (e.g., arithmetic constraints). In Section 7.2.3, we present
the comparison between our approach and [7].

4. Volume estimation for convex polytopes

In this section, we present our algorithm for estimating the volume of convex polytopes which is based on the Multi-
phase Monte-Carlo method [13]. We propose two improvements over the original Multiphase Monte-Carlo method. Firstly,
we develop a new technique to reutilize random points, so that the number of random points can be significantly reduced.
Secondly, we use the coordinate directions hit-and-run method instead of hypersphere directions method. We implemented
the new method in a tool called PolyVest [15] (Polytope Volume Estimation).

We assume that P is a full-dimensional and nonempty convex polytope. We use B(x, R) to denote the ball with radius R
and center x. And we define ellipsoid E = E(A, a) = {x ∈R

n|(x −a)T A−1(x −a) ≤ 1}, where A is a symmetric positive definite
matrix, i.e., for every non-zero column vector z, the scalar zT Az is positive.

The basic procedure of PolyVest consists of the following three steps: rounding, subdivision and random point gener-
ation.

4.1. Rounding

Given a convex polytope Q , the rounding procedure is to find an affine transformation T on Q such that B(0, 1) ⊆
T (Q) ⊆ B(0, r), with a constant γ = vol(Q)

vol(T (Q))
. If r > n, T can be found by the Shallow-β-Cut Ellipsoid Method [17] (Chap-

ter 3), where β = 1
r . It is an iterative method that generates a series of ellipsoids {Ei = E(Ti, oi)} s.t. Q ⊆ Ei , until we find

an Ek such that E(β2Tk, ok) ⊆ Q . Then we transform the ellipsoid Ek into B(0, r). Intuitively, rounding can transform a very
“thin” polytope, which cannot be subdivided directly, into a well-bounded one.

This procedure could take much time when r is close to n, e.g. r = n + 1. There is a tradeoff between rounding procedure
and random point generation, since the smaller r is, the more iterations for rounding and the fewer points have to be
generated. We used r = 2n in our implementation, so that the overhead of rounding is usually negligible compared to the
whole estimation method for polytopes. In the sequel, we use P to represent the new polytope T (Q), and we only consider
the polytope P instead of Q .

4.2. Subdivision

Then we divide P into a sequence of convex bodies. The high-level idea of the subdivision step is illustrated in Fig. 1.
We place l concentric balls {Bi} between B(0, 1) and B(0, r). Set Ki = Bi ∩ P , then K0 = B(0, 1), Kl = P and

vol(P) = vol(K0)

l−1∏
i=0

vol(Ki+1)

vol(Ki)
.

Let αi denote the ratio vol(Ki+1)/vol(Ki), then

vol(P) = vol(K0)

l−1∏
i=0

αi . (1)

Hence the volume of the polytope P is transformed to the product of a series of ratios and the volume of K0 . Note that
K0 = B(0, 1), whose volume can be easily computed. So, we only have to estimate the value of αi .

Of course, one would like to choose the number of concentric balls, l, to be small. However, from Theorem 5, one needs
about O (l2) random points to get a sufficiently good approximation for αi . It follows that the αi must not be too large. In
PolyVest, we set l =
n log2 r� and Bi = B(0, 2i/n) to construct the convex bodies {Ki}.

Proposition 1. If l =
n log2 r� and Bi = B(0, 2i/n), then 1 ≤ αi ≤ 2.

Proof. Let ri denote the radius of ball B(0, 2i/n), i.e., ri = 2i/n . Since Ki = Bi ∩ P ⊆ Bi+1 ∩ P = Ki+1, we get αi ≥ 1. On the
other hand, since P contains the origin after rounding procedure, Ki s also contain the origin. Note that Ki s are convex
bodies, so

Ki+1 ⊆ ri+1 Ki = 21/n Ki,

ri

114 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Fig. 1. Multiphase Monte-Carlo. Fig. 2. Hit-and-run.

we have

αi = vol(Ki+1)

vol(Ki)
≤ 2.

That is, 1 ≤ αi ≤ 2. �
4.3. Hit-and-run

To approximate αi , we generate step_size random points in Ki+1 and count the number of points ci in Ki . The value of
the parameter step_size will be discussed in Section 4.7. Then there is

αi ≈ step_size

ci
.

It is easy to generate points in uniform distributions on cubes or ellipsoids but not easy on Ki s. So we consider the random
walk method. Hit-and-run method is a random walk which has been studied for a long time [34,3,2]. There are two versions:
the hypersphere directions method (HDHR), and the coordinate directions method (CDHR). See Fig. 2 for an illustration.
HDHR starts from a point x in a convex body K , and generates the next point x′ in K by two steps: (i) select a line L
through x uniformly on a hypersphere, and (ii) then choose a point x′ uniformly on the segment of line L in K . The CDHR is
similar to HDHR, but it chooses directions with equal probability from the coordinate direction vectors and their opposites.
Berbee et al. [3] proved the following theorems.

Theorem 1. The HDHR algorithm generates a sequence of interior points whose limiting distribution is uniform.

Theorem 2. The CDHR algorithm generates a sequence of interior points whose limiting distribution is uniform.

Note that coordinate directions are special cases of directions generated on a hypersphere, hence the previous theoretical
research about volume approximation algorithm with hit-and-run methods mainly focuses on HDHR. In this paper, we
investigate CDHR and apply it to the volume approximation algorithm. In our algorithm, CDHR starts from a point x in
Kk+1, and generates the next point x′ in Kk+1 by two steps:

Step 1. Select a line L through x uniformly over n coordinate directions, e1, . . . , en .
Step 2. Choose a point x′ uniformly on the segment of line L in Kk+1.

More specifically, we randomly select the dth component xd of point x and get xd ’s bound [u, v] that satisfies

x|xd=t ∈ Kk+1, ∀t ∈ [u, v] (2)

x|xd=u, x|xd=v ∈ ∂ Kk+1 (3)

(“∂” denotes the boundary of a set). Then we choose x′
d ∈ [u, v] with uniform distribution and generate the next point

x′ = x|xd=x′
d
∈ Kk+1.

Since ri = 2i/n is the radius of Bi and Kk+1 = Bk+1 ∩ P , so x′ ∈ Bk+1 and x′ ∈ P , we have

x′ ∈ Bk+1 ⇔ |x′| ≤ rk+1 ⇔ x′ 2
d ≤ r2

k+1 −
∑
i �=d

x2
i

x′ ∈ P ⇔ ai x
′ ≤ bi ⇔ aidx′

d ≤ bi −
∑

aijx j = μi, ∀i

j �=d

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 115
Let

u = max
∀i s.t. aid<0

⎧⎨
⎩max

⎧⎨
⎩−

√
r2

k+1 −
∑
i �=d

x2
i ,

μi

aid

⎫⎬
⎭

⎫⎬
⎭

v = min∀i s.t. aid>0

⎧⎨
⎩min

⎧⎨
⎩

√
r2

k+1 −
∑
i �=d

x2
i ,

μi

aid

⎫⎬
⎭

⎫⎬
⎭

then interval [u, v] is the range of x′
d that satisfies Formula (2) and Formula (3).

4.4. Reutilization of random points

In the original description of the Multiphase Monte Carlo method, it is indicated that the ratios αi are estimated in
natural order, from the first ratio α0 to the last one αl−1. The method starts generating from the origin. At the kth phase, it
generates a certain number of random independent points in Kk+1 and counts the number of points ck in Kk to estimate αk .
However, our algorithm performs in the opposite way: Random points are generated from the outermost convex body Kl to
the innermost convex body K0, and ratios are estimated accordingly in reverse order.

The advantage of approximation in reverse order is that it is possible to fully exploit the random points generated in
previous phases. Suppose that we have already generated a set of points S by random walk with almost uniform distribution
in Ki+1, and some of them also hit the convex body Ki , denoted by S ′ . The ratio αi is thus estimated with |S|

|S ′| . However,
these random points can reveal more information than just the ratio αi . Since Ki is a sub-region of Ki+1, the points in S ′
are also almost uniformly distributed in Ki . Therefore, S ′ can serve as part of the random points in Ki . Furthermore, for
any K j (0 ≤ j ≤ i) inside Ki+1, the points in Ki+1 that hit K j can serve as random points to approximate α j as well.

Algorithm 1 Volume estimation algorithm with reutilization technique.
1: function EstimateVol(step_size)

2: γ ← Rounding()
3: x ← Origin
4: l ←
n log2 r�
5: count, t0, . . . , tl−1 ← 0
6: for i ← l − 1 downto 0 do
7: for j ← count to step_size do
8: x ← W alk(x, i, w) /* perform w steps of random walk in Ki+1*/
9: if x ∈ Ki then

10: calculate a value m such that x ∈ Km and x /∈ Km−1

11: tm ← tm + 1
12: end if
13: end for
14: count ← ∑i

i′=0 ti′
15: αi ← step_size/count

16: x ← 2− 1
n x

17: end for
18: return γ · unit_ball(n) · ∏l−1

i=0 αi

19: end function

Based on this insight, we devise a different direction, i.e., generate from outside to inside. At the i-th phase which
approximates ratio αi , the algorithm first calculates the number count of the former points that are also in Ki+1, then
generates the rest (step_size − count) points by random walk. The framework of our volume estimation algorithm with
reutilization technique is presented in Algorithm 1. The parameter w is the number of sufficient steps for hit-and-run
algorithm mixing. We discuss the value of w in Section 4.5.

Unlike generating random points in natural order, choosing the starting point for each phase in reverse order is a bit
complex. The whole generating process in reverse order also starts from the origin. At the end of the i-th phase, we select
a point x in Ki+1 and employ x′ = 2− 1

n x as the starting point of the next phase (the (i − 1)-th phase) since 2− 1
n x ∈ Ki . It is

easy to find out that the expected number of saved random points with our algorithm is

l−1∑
i=1

(
step_size × 1

αi

)
. (4)

Since αi ≤ 2, we only have to generate less than half random points with this technique. Actually, it can save over 70% time
consumption on a large set of benchmarks (see Section 7.1.4). In addition, we shall prove that the reutilization technique
has no effect on the error of the estimation result (see Section 4.6).

116 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Fig. 3. An illustration of the i-th phase, which aims to estimate αi = ki+1
ki

. The black round points are generated in and before the (i + 1)-th phase. The
white triangle points are generated in the i-th phase.

4.5. About the mixing time

When generating the next point x′ with the previous random point x, we have to make some steps from x to achieve
stationarity and make x′ independent of x. However, the number of sufficient steps w for hit-and-run algorithm mixing is
hard to decide. The previous theoretical research [30,29] presented the upper bounds on w in the Markov chain which are
of the form:

w = O (n2) for a random initial point, and

w = O (n3) for a fixed initial point.

Note that the hiding constant factors in O (n2) and O (n3) are 1030 and 1011 respectively. Lovász et al. [27] reported that
the upper bound for HDHR method is much higher than actually required according to the numerical experiences. And they
used to set w = n + 1. They also tried w = 2(n + 1) and w = n ln n without visible improvement. We investigate the value of
w for the CDHR method in a similar way, since obtaining the theoretical upper bound is hard. We conducted experiments
with linear size of w , i.e., w = n, w = 2n, and w = 3n. Based on the observation in Section 7.1.2, we choose w = n.

4.6. Analysis of the reutilization technique

In the following analysis, we assume that our algorithm generates points in uniform distribution. For simplicity, we
use ki to represent vol(Ki) in this section. Let f (k; n, p) represent the probability mass function of the binomial distribution
B(n, p), i.e., f (k; n, p) = (n

k

)
pk(1 − p)n−k .

Recall that in our volume estimation procedure, there are l phases in total. With the reutilization technique, in each
phase i (0 ≤ i ≤ l − 1), to estimate the value of αi = ki+1

ki
, we reuse all points in Ki+1 generated in the earlier phases, and

generate enough new points in Ki+1, so that the total number of already existing points and newly generated points in Ki+1
is equal to step_size. See Fig. 3 for an illustration.

We introduce some new notations for the analysis.
For every 0 ≤ i ≤ l − 1, define

Gi = {the points newly generated in the i-th phase}
and

Ci = {the points dropped in Ki at the end of the i-th phase}.
Note that Ci ⊆ Ki and Gi ⊆ Ki+1 for every 0 ≤ i ≤ l − 1. Let ci = |Ci | and gi = |Gi |.

At the end of the i-th phase, Algorithm 1 counts the number of points lying in Ki , and use

of random points in Ki+1

of random points in Ki
= step_size

ci

as the estimation of αi (0 ≤ i ≤ l − 1).
Recall that the first phase of Algorithm 1 is the (l − 1)-th phase. We additionally define Cl = ∅ (and thus cl = 0) to

indicate the fact that at the beginning of the algorithm, there is no random point in Kl .
By definition, we have

Lemma 1. For every 0 ≤ i ≤ l − 1,

ci+1 + gi = step_size.

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 117
Lemma 1 says that for every phase i, the sum of the number of random points that are generated in and before the
(i + 1)-th phase (in Fig. 3, these points are the black round points in Ki+1), and the number of random points newly
generated in the i-th (this) phase (in Fig. 3, these points are the triangle points in Ki+1), is equal to step_size.

Furthermore, we define

Ci, j = Ci ∩ K j, 0 ≤ i ≤ l − 1,0 ≤ j ≤ i,

Gi, j = Gi ∩ K j, 0 ≤ i ≤ l − 1,0 ≤ j ≤ i + 1.

By definition, we have Ci,i = Ci and Gi,i+1 = Gi .
Let ci, j = |Ci, j | and gi, j = |Gi, j|.

Lemma 2. For each i = 0, . . . , l − 1, we have

1. Ci = Ci+1,i ∪ Gi,i , and
2. ci = ci+1,i + gi,i .

Proof. By definition, Ci is the set of random points that lie in Ki at the end of the i-th phase of Algorithm 1. These points
consist of two parts as illustrated in Fig. 3. One part is the set of random points that lie in Ki and are generated before the
i-th phase. This set can be denoted by Ci+1 ∩ Ki = Ci+1,i using our notation. In Fig. 3, Ci+1,i is the set of black round points
in Ki . The other part is the set of random points that lie in Ki and are newly generated in the i-th phase. This set can be
denoted by Gi ∩ Ki = Gi,i using our notation. In Fig. 3, Gi,i is the set of triangle points in Ki .

The above analysis shows that

Ci = (Ci+1 ∩ Ki) ∪ (Gi ∩ Ki) = Ci+1,i ∪ Gi,i .

Since Ci+1,i and Gi,i are disjoint, we naturally have ci = ci+1,i + gi,i . The lemma follows. �
Lemma 3. ci+1,i and gi,i are conditionally independent given ci+1 or gi (i = 0, . . . , l − 1).

Proof. Lemma 1 indicates that the value of gi is determined by ci+1, and vice versa. So, we only need to show that ci+1,i
and gi,i are conditionally independent given one of ci+1 and gi , say, gi .

By definition, ci+1,1 = |Ci+1 ∩ Ki |, and gi,i = |Gi ∩ Ki |. See Fig. 3 for example. In Fig. 3, ci+1,i is the number of black round
points in Ki , and gi,i is the number of triangle points in Ki . Although the total number of random points in Ki+1 is equal
to step_size (which contains both ci+1,i and gi,i), given the value gi = |Gi |, the value gi,i is only related to the shape of Ki ,
since all the points in Gi are distributed uniformly at random in Ki+1, which is a superset of Ki . Therefore, ci+1,i and gi,i
are conditionally independent given the value gi . �

Lemma 3 is an important observation of our algorithm with reutilization technique. Then, with this observation, we
introduce the following theorem which concerns the correctness of our algorithm.

Theorem 3. For each i = 0, . . . , l − 1, ci ∼ B(step_size, ki
ki+1

).

Proof. For simplicity, let

p = ki

ki+1

and

s = step_size.

We consider the probability Pr(ci = x) for arbitrary 0 ≤ x ≤ s. We have

Pr(ci = x) =
s∑

y=0

Pr(ci = x, ci+1 = y) =
s∑

y=0

Pr(ci = x | ci+1 = y)Pr(ci+1 = y). (5)

The conditional probability Pr(ci = x | ci+1 = y) can be calculated as

Pr(ci = x | ci+1 = y)

= Pr(ci+1,i + gi,i = x | ci+1 = y)

LM 2

118 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
=
x∑

a=0

Pr(ci+1,i = a, gi,i = x − a | ci+1 = y)

=
LM 3

x∑
a=0

[Pr(ci+1,i = a | ci+1 = y) · Pr(gi,i = x − a | gi = s − y)]. (6)

Since the points in Ci+1 are generated uniformly at random in Ki+1, and Ci+1,i = Ci+1 ∩ Ki (that is, Ci+1,i is the set of
points in Ci+1 that are dropped in Ki), we have

Pr(ci+1,i = a | ci+1 = y) = f (a; y,
ki

ki+1
) = f (a; y, p). (7)

Similarly, since the points in Gi are generated uniformly at random in Ki+1, and Gi,i = Gi ∩ Ki , we have

Pr(gi,i = x − a | gi = s − y) = f (x − a; s − y, p). (8)

Combining Equations (6), (7) and (8), we have

Pr(ci = x | ci+1 = y) =
x∑

a=0

f (a; y, p) f (x − a; s − y, p)

=
x∑

a=0

(
y

a

)(
s − y

x − a

)
px(1 − p)s−x

= px(1 − p)s−x
x∑

a=0

(
y

a

)(
s − y

x − a

)

= px(1 − p)s−x
(

s

x

)
= f (x; s, p). (9)

Finally, combining Equations (5) and (9), we have

Pr(ci = x) =
s∑

y=0

Pr(ci+1 = y) f (x; s, p) = f (x; s, p). � (10)

The proof of Theorem 3 also shows that ci and ci+1 are independent (see Equations (9) and (10)). Actually, we have
stronger statement, which says that c0, . . . , cl−1 are mutually independent.

Theorem 4. The random variables c0, . . . , cl−1 are mutually independent.

Proof. We prove the theorem by induction on the indices of ci ’s, from l − 2 down to 0.
Basic Step: When i = l − 2, we have already proved that cl−2 and cl−1 are independent in the proof of Theorem 3 (see

Equations (9) and (10)).
Induction Hypothesis: Suppose that ci+1, ci+2, . . . , cl−1 are mutually independent, i.e.,

Pr(ci+1 = xi+1, . . . , cl−1 = xl−1) =
l−1∏

j=i+1

Pr(c j = x j). (11)

Induction Step: In the following we show that ci, ci+1, . . . , cl−1 are mutually independent. For arbitrary 0 ≤ xi, . . . , xl−1 ≤
step_size, we consider the probability

Pr(ci = xi, ci+1 = xi+1, . . . , cl−1 = xl−1)

= Pr(ci = xi | ci+1 = xi+1, . . . , cl−1 = xl−1) · Pr(ci+1 = xi+1, . . . , cl−1 = xl−1). (12)

By definition, the set Ci consists of points in Ci+1 and Gi which also lie in Ki . Though the set Ci+1 consists of points
generated in and before the (i + 1)-phase (i.e., Ci+1 = ⋃l−1

j=i+1(G j ∩ Ki+1)), the points in Ci+1 are still distributed uniformly
in Ki+1. In addition, although gi is determined by ci+1, the points in Gi are generated independently with the points in C j ’s
(j ≥ i + 1). Therefore, ci is only affected by the shape of Ki for any value of ci+1, since in the i-th phase, Algorithm 1 must
generate step_size uniformly distributed random points in Ki+1. In other words, the procedure to count ci in the i-th phase

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 119
of Algorithm 1 is equivalent to generating step_size random points in Ki+1 uniformly at random from scratch and then
counting the number of random points dropped in Ki . Furthermore, when generating random points in Ki+1, Algorithm 1
does not check or count the points in Ci+2, . . . , Cl−1. So, we have

Pr(ci = xi | ci+1 = xi+1, . . . , cl−1 = xl−1) = Pr(ci = xi | ci+1 = xi+1)

= Pr(ci = xi). (13)

Finally, combining Equations (11), (12) and (13), we have

Pr(ci = xi, ci+1 = xi+1, . . . , cl−1 = xl−1) =
l−1∏
j=i

Pr(c j = x j). �

4.7. Analysis on the number of random points

In this section, we provide some analysis about the number of random points for estimating each αi .

Theorem 5. Given ε > 0, δ ∈ (0, 1), if we let step_size =
⌈
(

z1−δ/2·l
ln(1+ε)

+ z)2
⌉

, then the estimation result of Algorithm 1 lies in [(1 +
ε)−1 vol(P), (1 + ε)vol(P)] with probability at least 1 − δ, where z1−δ/2 is the 1 − δ/2 quantile of a standard normal distribution.

Proof. For simplicity, let

s = step_size

and

z = z1−δ/2.

We use v to represent the output estimation of Algorithm 1. Let pi represent ci
s . From Theorem 3, the value of pi is the

proportion of successes in a Bernoulli trail process which follows binomial distribution B(s, vol(Ki+1)

vol(Ki+2)
). So, we apply the

approximate formula of a binomial proportion confidence interval pi ± z
√

pi(1−pi)
s , i.e.,

Pr

(
pi − z

√
pi(1 − pi)

s
≤ vol(Ki+1)

vol(Ki+2)
≤ pi + z

√
pi(1 − pi)

s

)
≥ 1 − δ.

Recall that Algorithm 1 uses s
ci

to estimate αi . There is v = vol(K0)
∏l−1

i=0
1
pi

. Then the 1 − δ confidence interval of v shall
be ⎡

⎢⎢⎣ vol(K0)∏l−1
i=0

(
pi + z

√
pi(1−pi)

s

) ,
vol(K0)∏l−1

i=0

(
pi − z

√
pi(1−pi)

s

)
⎤
⎥⎥⎦ .

To prove this theorem, it suffices to prove exact volume vol(P) lies in interval [(1 + ε)−1 v, (1 + ε)v] with probability at
least 1 − δ. Therefore, we only have to prove the following two inequalities,

vol(K0)∏l−1
i=0

(
pi + z

√
pi(1−pi)

s

) ≥ (1 + ε)−1 v, (14)

vol(K0)∏l−1
i=0

(
pi − z

√
pi(1−pi)

s

) ≤ (1 + ε)v. (15)

Consider Equation (14), it is equivalent to

l−1∏
i=0

(
1 + z

√
(1 − pi)

s · pi

)
≤ 1 + ε.

Since Proposition 1 indicates 1 ≤ pi ≤ 1, it is easy to see that (1 − pi)/pi ≤ 1. That is, we only have to prove
2

120 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
(
1 + z√

s

)l

≤ 1 + ε. (16)

Note that for arbitrary constant β , (1 +β/l)l is monotonically increasing with respect to l, and liml→∞(1 +β/l)l = eβ , where
e is the base of the natural logarithm. So, s = (z·l

ln(1+ε)
+ z)2 ≥ (z·l

ln(1+ε)
)2 guarantees Equation (16).

In a similar way, we prove Equation (15). It is equivalent to

l−1∏
i=0

1

1 − z
√

(1−pi)
s·pi

≤ 1 + ε. (17)

Consider the left-hand-side of Equation (17), there is

LH S ≤
(

1

1 − z√
s

)l

=
(

1 + z√
s − z

)l

.

Note that (1 + ln(1+ε)
l)l ≤ 1 + ε . So, it is easy to see that s ≥ (z·l

ln(1+ε)
+ z)2 guarantees (1 + z√

s−z
)l ≤ 1 + ε . �

5. Integrating polytope volume estimation into #SMT(LA) solving

In this section, we first review the exact volume computation approach for SMT(LA) formulas in [32], then describe how
to extend it to volume estimation of SMT(LA) Formulas. We also propose a two-round strategy to accelerate the volume
estimation procedure.

5.1. From computation to estimation for #SMT(LRA) problems

Given an SMT(LA) formula, the sum of volumes of all feasible assignments is the volume of the whole formula. Ma et al.
[32] presented an exact approach to solving #SMT(LA) problem which integrates SMT solving with volume computation for
convex polytopes. The basic idea is to enumerate feasible assignments by solving the SMT(LA) formula and accumulate the
volumes of these assignments. Polytope volume computation serves as a subroutine which produces the volume of each fea-
sible assignment. To reduce the number of calls of polytope volume computation, we also proposed a strategy that combines
the feasible assignments into “bunches”. Each time a feasible assignment is obtained, we search the neighborhood of this
assignment by negating its literals. We can combine the original assignment with one of its feasible neighbor assignments.
Then we obtain a partial assignment that still propositionally satisfies the formula. The resulting assignment may cover
a bunch of feasible assignments, hence is called a “bunch”. For example, given a feasible assignment {b1, ¬b2, ¬b3, b4} of
formula P Sφ(b1, b2, b3, b4), we search its neighborhood. Assume {b1, ¬b2, ¬b3, ¬b4} is also feasible, then we could obtain a
partial feasible assignment {b1, ¬b2, ¬b3} such that vol({b1, ¬b2, ¬b3}) = vol({b1, ¬b2, ¬b3, b4}) + vol({b1, ¬b2, ¬b3, ¬b4}).
And the volume computation subroutine is called for the polytope corresponding to each bunch rather than each feasible
assignment, so that the number of calls is reduced.

Although the number of calls of polytope volume computation is considerably reduced by the “bunch” strategy, polytope
volume computation is still the bottleneck of our previous approach because of its high complexity. To overcome this
obstacle, we can substitute the polytope volume computation subroutine with the volume estimation method in Section 4,
thereby generalize our previous approach to estimate the volume of the solution space of SMT(LRA) formulas. The basic
procedure is quite similar to that of volume computation as described in [32]. Each time we obtain a bunch of feasible
(partial) assignments, we call PolyVest to estimate the volume of the polytope corresponding to this bunch. The sum of
the estimated volumes of all bunches is approximately the volume for the whole formula.

5.2. Two-round strategy

In the Multiphase Monte-Carlo method, the number of random points at each phase, i.e., step_size, is a key parameter.
To control parameter step_size easily, we introduce a weight S for step_size so that the weighted version is step_size =
S ·

⌈
z1−δ/2·l2
ln(1+ε)

⌉
.

As the number of random points increases, the accuracy of estimation improves, and the estimation process also takes
more time. It is important to balance the accuracy and the running time since the estimation subroutine is usually called
many times. Therefore, we employ a two-round strategy that can dynamically determine a proper weight for each feasible
(partial) assignment. At the first round of estimation, each feasible assignment is generated with a fixed small weight to get
a quick and rough estimation. Since the volumes of feasible assignments may vary a lot, intuitively a feasible assignment
with relatively larger volume should be estimated with higher accuracy. Hence at the second round, the weight for each
assignment is determined according to its estimated volume from the first round. More specifically, we use the following
rule to decide the weights in the second round:

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 121
• Suppose the fixed small weight in the first round is Smin , and the largest weight in the second round is set to Smax . Let
Vmax denote the largest estimated volume in the first round, and V i denote the volume of the ith feasible assignment
estimated in the first round. Then the weight Si for the ith feasible assignment in the second round is:

Si = 2 × Smax × V i

Vmax
.

If Si ≤ Smin , the ith feasible assignment is neglected at the second round, and we use the result from the first round as
its estimated volume. If Si > Smax , then set Si to Smax .

We choose Smin = 0.01 and Smax = 1 in practice. It usually saves more than 95% points for random instances. The experi-
mental results and further discussions are presented at Section 7.2.1.

6. Handling practical instances from program analysis

SMT solvers are the core engine of many tools for program analysis, testing, and verification. These tools may generate a
large number of SMT(LA) formulas. It is important to improve the efficiency of our approach in these scenarios, especially
when handling large instances.

6.1. The difficulties

There almost always exist integer variables in the SMT(LA) formulas generated from program analysis. For such formu-
las, lattice counting with LattE can only handle instances with about 10 variables within a reasonable amount of time.
However, even when analyzing just one function in a program, we might obtain problem instances with dozens of integer
variables. Yet it is risky to use volume estimation (as described in the previous section) to approximate the number of
lattice points, since there is no bound of the relative error of such an approximation. For example, volume estimation or
computation will return zero directly if it encounters an equality constraint. But there may be many lattice points for such
cases. In the following we present divide-and-conquer methods to deal with some large formulas.

6.2. Several observations

We have made several observations on instances generated from program analysis.

• Usually there are just a few variables in each linear inequality.
• There exist groups of independent variables in the set of linear inequalities. So variables in different groups do not

appear in the same inequality.
• In particular, there may exist some linear inequalities with only one variable.
• Due to the bunch technique, it is common that the inequalities in a bunch only contain part of variables.

The following SMT(LA) formula is generated from the analysis of a space management program:

(a > 0) AND (t >= a) AND (t <= a + 16) AND
(NOT (b < c)) AND (NOT (d + 0 >= r)) AND
((e = 0) OR (e = 3) OR (e = 5) OR (e = 10) OR (e = 15)) AND
((y > p) OR (z > p) OR (x > q)) AND (f = 1)

It contains 13 variables and 14 linear inequalities. There are at most two variables in each inequality (our first observa-
tion). Then we consider one of the bunches:

(a > 0) AND (t >= a) AND (t <= a + 16) AND (b >= c) AND
(d + 0 < r) AND (e != 0) AND (e != 3) AND (e != 5) AND
(e != 10) AND (e = 15) AND (y <= p) AND (z > p) AND (f = 1)

There are 11 variables and 13 linear inequalities in this bunch (assume x > q is reduced by bunch techniques).
We can manually subdivide this bunch into 6 mutually independent groups of variables, as well as the inequalities:

G1. (a > 0) AND (t >= a) AND (t <= a + 16)
G2. (b >= c)
G3. (d + 0 < r)
G4. (e != 0) AND (e != 3) AND (e != 5) AND (e != 10) AND (e = 15)
G5. (y <= p) AND (z > p)
G6. (f = 1)

122 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Fig. 4. IRG of the Example in Section 6.2.

There are at most three different variables in each group. Specifically, there are only single-variable inequalities in
group 4 and 6. We can compute their solution space easily. And the number of lattice points equals to the multiplica-
tion of the number of lattice points of each group. So we reduce this bunch into several one to two dimensional problems
which are much easier to solve.

6.3. Reduction and division for linear inequalities

Based on the aforementioned observations, we propose several preprocessing techniques to reduce and divide the set
of inequalities and variables. In our implementation, we use m × n matrix A and vector b to represent the set of linear
inequalities Ax ≤ b, where m is the number of inequalities and n is the number of variables. For convenience, we use
vol(Ax ≤ b) to denote the volume of solution space of constraints Ax ≤ b.

6.3.1. Variable reduction
We call a variable active if it appears in at least one inequality in Ax ≤ b. Due to the bunch technique, some variables

are not always active in the inequalities of the bunch. So it is necessary to identify active variables and reduce the number
of inactive variables. We observe that such reduction procedure is quite useful. This will be discussed in the evaluation
section. In the example of Section 6.2, the bunch eliminates the inequality (x > q) and variables x and q. So we could
shrink the matrix A by deleting columns corresponding to x and q.

6.3.2. Graph-based division
We introduce the Inequality Relation Graph (IRG) to divide a bunch into mutually independent groups of inequalities.

It is constructed by two rules: (i) map each inequality into a vertex v ∈ V , (ii) add an edge e = (u, v) into E if and only if
there exists a variable in both inequalities represented by u and v . The time complexity of the direct construction for IRG
is O (m2n). Because there is no edge between vertices in different strongly connected components (SCC), the inequalities
represented by these vertices are also independent. So each SCC in the IRG can represent a group. To obtain SCCs, one can
use Tarjan’s algorithm [35] which is linear time. The overhead of this division procedure is negligible compared to other
parts of our approach for #SMT solving. Note that different groups don’t share inequalities or variables, so we have the
following proposition.

Proposition 2. vol(Ax ≤ b) = ∏
i vol(Ai x ≤ b), where Aix ≤ b represents the ith SCC.

Consider the example in Section 6.2. The IRG of the bunch is illustrated in Fig. 4. There are 6 SCCs in the graph which
correspond to the groups listed in Section 6.2.

6.3.3. Special case of one dimension
LattE is based on the Barvinok’s algorithm which is very sophisticated. For quite simple circumstances, such as one-

dimensional problems, there is not any special treatment for them in LattE. The initialization takes so much time that
division procedure becomes almost useless on small problems. And so does Vinci. Therefore, we handle one-dimensional
problems directly and do not call LattE or Vinci. For a one-dimensional problem, it is an interval. So we only have to
calculate the upper and lower bounds by checking the corresponding linear constraints.

7. Experimental results

In this section, we first present the evaluation of PolyVest2 in section 7.1. We then present the results of our approach
for #SMT(LA) problems in section 7.2. By default, we used ε = 0.45, δ = 0.1, and a timeout of 1 hour. Every experiment was
conducted on a workstation with 3.40 GHz Intel Core i7-2600 CPU and 8 GB memory. In the following tables, “—” means
that the instance takes more than one hour to solve (or the tool runs out of memory).

2 The tool and benchmarks are available at http :/ /lcs .ios .ac .cn /~zj /polyvest .html.

http://lcs.ios.ac.cn/~zj/polyvest.html

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 123
Table 1
Comparison between PolyVest and LVM.

Instance n v LVM PolyVest

Time (s) Result Err. e e/v a0 ε Time (s) Result

cube_2 2 4 643.4 4.013 0.051 0.013 6n 0.013 0.134 4.006
cube_3 3 8 1008 8.109 0.279 0.035 6n 0.035 0.128 8.071
cube_4 4 16 1419 15.48 0.452 0.028 6n 0.028 0.984 16.11
cube_5 5 32 1910 31.70 3.250 0.102 6n 0.102 0.291 32.43
cube_6 6 64 2583 62.34 2.8 0.044 2n 0.044 3.913 64.42
cube_7 7 128 3210 128.7 11.6 0.091 2n 0.091 2.442 129.2
cube_8 8 256 – – – – 2n 0.45 0.413 245.8

7.1. Evaluation of PolyVest

In this subsection, we first compare our approach with the Lovasz–Vempala method [27] and Vinci. Next we present
evaluations of the accuracy of our approach. Then we discuss the size of w . After that we compare CDHR and HDHR
methods. Finally, we show the effectiveness of reutilization technique. Our test cases include:

• “cube_n”: Hypercubes with side length 2. The volume of “cube_n” is 2n .
• “cube_n(S)”: Apply 10 times random shear mappings on “cube_n”. The random shear mapping can be represented as

P Q P , with Q =
(

I M
0 I

)
, where the elements of matrix M are randomly chosen and P is the product of permutation

matrices {Pi} that put rows and columns of Q in random orders. This mapping preserves the volume.
• “rh_n_m”: An n-dimensional polytope constructed by randomly choosing m hyperplanes tangent to sphere.
• “cuboid_n(S)”: Scaling “cube_n” by 100 in one dimension, and then apply random shear mapping to it once. We use

this instance to approximate a “thin stick” which is not parallel to any axis.

7.1.1. The performance of PolyVest
Table 1 presents the result of comparing the performance of PolyVest vis-a-vis Lovasz–Vempala Method (LVM), which

is also a volume estimation algorithm based on the Multiphase Monte-Carlo method. We only conducted experiments on
cubes as the implementation of LVM presented in [27] could not handle instances other than cubes. In Table 1, column 1
gives the instance name, column 2 gives the number of dimensions n, and column 3 gives the exact volume v . The running
times and estimating results for LVM are presented in columns 4 and 5. Column 6 gives the total error e which is estimated
by LVM. It indicates that the estimating result lies in the interval [v − e, v + e] with high probability.3 Column 7 gives the
ratio e/v which is the relative error estimated by LVM. Column 8 gives the settings of parameter a0 of LVM. In [27], the
authors used a0 = 6n for cube_2 and cube_5, and a0 = 2n for cube_8. Column 9 gives the parameter ε of our approach. The
running times and estimating results for PolyVest are presented in columns 10 and 11. In these experiments, we specify
the value of ε exactly the same as e/v . It means that LVM estimates with similar size of error to PolyVest. The results
show that our approach is significantly faster LVM. For the 8-dimensional cube, LVM could not solve in one hour. We could
not obtain the value of e/v as well. So, we used the value of parameter ε by default.

Table 2 presents the result of comparing the performance of PolyVest vis-a-vis Vinci. Vinci is a well-known pack-
age which implements the state-of-the-art algorithms for exact volume computation of convex polytopes. It consisted of
several methods. In Table 2, Trlass , Thot and Tlawnd represent the running times of three methods in Vinci respectively.
The “rlass” uses Lasserre’s method, which needs input of H-representation. The “hot” uses a Cohen&Hikey-like face enumer-
ation scheme, which needs input of V-representation. The “lawnd” uses Lawrence’s formula, which is the fastest method
in Vinci and both descriptions are needed. In Table 2, the running times of Vinci do not contain transformation from
H-representation to V-representation. Observe that the “rlass” and “hot” methods of Vinci usually take much more time
and space as the scale of the problem grows a bit, e.g. “cube_n(n ≥ 15)” and “rh_10_30”. Given H- and V- representations,
the “lawnd” method is very fast for instances smaller than 20 dimensions. However, enumerating all vertices of polytopes
is non-trivial, as it is the dual problem of constructing the convex hull by the vertices. This process is both time-consuming
and space-consuming. On the other hand, the running times of PolyVest appear to be more ‘stable’.

Recall that there are O (l) phases, O (l2) random points in each phase, and O (w) steps for one random point. Since l =
n log2 2n and w = n, our algorithm generates O (n4(log2 2n)3) steps of random walk. Note that 104(log2 20)3 : 204(log2 40)3 :
304(log2 60)3 ≈ 1 : 30 : 207. Consider the running time growth of a walk with respect to n (for details, see Table 5), the
overall running times of instances “cube_10”, “cube_20” and “cube_30” accord with the complexity. Besides, there are two
factors which are also related to the running time: (i) the reutilizing ratio and (ii) the shape of the polytope after rounding
procedure. These lead to the differences of running times for instances with the same scale, e.g., “cube_10” and “cube_10(S)”.
It is difficult to predict these factors. However, our analysis covers the worst cases.

3 Note that the authors of [27] did not specify the probability, but only reported it with “high” probability.

124 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Table 2
Comparison between PolyVest and Vinci.

Instance n m PolyVest Vinci

Result Time (s) Result Trlass (s) Thot (s) Tlawnd (s)

cube_10 10 20 1037.9 2.063 1024 0.004 0.044 0.008
cube_10(S) 10 20 990.5 0.939 1023.86 0.008 0.124 0.024
cube_15 15 30 32729.3 22.583 3.28e+4 0.300 212.8 0.156
cube_20 20 40 1.04e+6 126.1 1.05e+6 – – 8.085
cube_30 30 60 1.08e+9 1672.6 – – ### ###
rh_8_25 8 25 815.5 0.460 785.989 0.864 0.160 0.016
rh_10_20 10 20 14002 1.327 13882.7 0.284 0.340 0.012
rh_10_25 10 25 5705.48 1.434 5729.52 5.100 1.932 0.072
rh_10_30 10 30 2016.57 1.420 2015.58 660.4a 5.772 0.144
rh_8_25(S) 8 25 796.329 0.452 785.984 1.268 0.156 0.032
rh_10_20(S) 10 20 14062.9 1.278 13883.8 0.832 0.284 0.032
rh_10_25(S) 10 25 5507.95 1.443 5729.18 11.949 1.960 0.104
rh_10_30(S) 10 30 2043.33 1.489 2015.87 1251.1a 6.356 0.248

###: We did not test “cube_30” by “hot” and “lawnd”, because there are too many vertices in these polytopes.
a Enable the Vinci option to restrict memory storage, so as to avoid running out of memory.

Table 3
More statistical results of PolyVest.

Instance v [1.45−1 v,1.45v] [vmin, vmax] Avg. Std Dev.

cube_5 32 [22.07,46.4] [28.99,33.86] 31.93 1.05
cube_10 1024 [953.6,1485] [953.6,1089] 1019 25.98
cube_10(S) 1024 [953.6,1485] [980.4,1064] 1023 15.20
cube_15 32768 [22598,47513] [31169,34508] 32866 588.5
cube_20 1.05e+6 [7.23e+5,1.52e+6] [1.00e+6,1.09e+6] 1.05e+6 16889
cube_20(S) 1.05e+6 [7.23e+5,1.52e+6] [1.02e+6,1.08e+6] 1.05e+6 10739
cuboid_10(S) 1.02e+5 [7.06e+4,1.48e+5] [9.83e+4,1.07e+5] 1.02e+5 1626
cuboid_20(S) 1.05e+8 [7.23e+7,1.52e+8] [1.02e+8,1.07e+8] 1.05e+8 1.14e+6
rh_8_25 786.0 [542.1,1139.7] [751.0,822.9] 784.8 16.78
rh_10_20 13883 [9574.3,20130] [13220,14535] 13817 275.0
rh_10_25 5730 [3951,8308] [5422,5980] 5714 109.8
rh_10_30 2016 [1390,2922] [1937,2104] 2016 32.19

Table 4
Comparison about different sizes of w .

Instance w = 1 w = n w = 2n w = 3n

Avg. Std Dev. Avg. Std Dev. Avg. Std Dev. Avg. Std Dev.

cube_2 3.96 0.258 3.97 0.205 4.01 0.166 4.01 0.163
cube_5 32.07 2.51 32.08 1.28 32.18 1.09 32.05 1.10
cube_10 1027 63.03 1025 28.97 1022 23.36 1024 24.85
cube_15 32658 1520 32809 680.9 32685 605.2 32800 643.6
cube_20 1.05e+6 42703 1.05e+6 17080 1.05e+6 18516 1.05e+6 17108
rh_8_25 785.1 39.60 785.5 17.66 789.3 17.52 785.8 17.23
rh_10_20 13790 676.1 13882 298.4 13849 271.8 13881 247.6
rh_10_25 5724 272.3 5734 99.07 5731 92.26 5729 95.59
rh_10_30 2030 82.29 2015 37.73 2013 37.20 2017 34.60
rh_20_40 107.9 4.34 108.4 1.38 108.2 1.39 108.0 1.48

We did more tests on our approach to see how accurate it is. We executed PolyVest 100 times for each instance. In
Table 3, column 1 gives the instance name, column 2 gives the exact volume v , column 3 gives the interval [1.45−1 v, 1.45v],
column 4 gives the minimum value vmin and maximum value vmax over 100 times of experiment, column 5 and column 6
give the average values and standard deviations respectively. Since we used ε = 0.45 and δ = 0.1, from Theorem 5, the
estimating result should lie in interval [1.45−1 v, 1.45v] with probability at least 90%. Table 3 shows that [vmin, vmax] ⊂
[1.45−1 v, 1.45v] for each instance. In other words, it means that the frequency on interval [1.45−1 v, 1.45v] is 100 over
100 times of experiments, which follows our analysis. In addition, we observe that the interval [vmin, vmax] is significantly
smaller than [1.45−1 v, 1.45v]. Actually, there is [vmin, vmax] ⊂ [1.1−1 v, 1.1v] for most instances.

7.1.2. The experiments on mixing time
To achieve a proper mixing time, we experimented different sizes of w: w = 1, w = n, w = 2n and w = 3n. We executed

PolyVest 100 times for each instance. In Table 4, “Avg.” and “Std Dev.” represent the average values and the standard
deviations respectively.

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 125
Table 5
Comparison about speed between CDHR and HDHR.

n m CDHR (s) HDHR (s)

10 20 3.572 13.761
20 40 7.095 24.502
30 60 13.85 40.455
40 80 22.13 61.484

Table 6
Comparison about accuracy between CDHR and HDHR.

Instance Exact. CDHR HDHR

Avg. Std Dev. ERR. Avg. Std Dev. ERR.

cube_5 32 31.93 1.05 3.28% 31.88 1.51 4.73%
cube_10 1024 1019 25.98 2.55% 1032 32.04 3.10%
cube_15 3.28e+4 32866 588.5 1.79% 32973 766.4 2.32%
cube_20 1.05e+6 1.05e+6 16889 1.61% 1.05e+6 22240 2.12%
cuboid_10(S) 1.02e+5 1.02e+5 1626 1.59% 1.03e+5 2161 2.10%
cuboid_20(S) 1.05e+8 1.05e+8 1.14e+6 1.02% 1.05e+8 1.27e+6 1.21%
rh_8_25 785.99 784.8 16.78 2.14% 786.4 26.06 3.31%
rh_10_20 13883 13817 275.0 1.99% 14051 378.5 2.69%
rh_10_30 2016 2016 32.19 1.60% 2006 61.04 3.04%

Table 7
Effectiveness of reutilizing random points.

Instance Without reusing With reusing n2/n1

n1 Avg. Std Dev. n2 Avg. Std Dev.

cube_5 95324 32.18 1.19 33617 31.93 1.05 35.27%
cube_10 1.57e+6 1021 24.99 5.83e+5 1019 25.98 37.08%
cube_15 7.48e+6 32806 625.8 2.87e+6 32886 588.5 38.41%
cube_20 2.24e+7 1.05e+6 19388 8.84e+6 1.05e+6 16889 39.39%
cuboid_10 8.07e+5 1.03e+5 1488 2.52e+5 1.02e+5 1626 31.19%
cuboid_20 1.06e+7 1.05e+8 1.23e+6 3.66e+6 1.05e+8 1.14e+6 34.87%
rh_8_25 4.79e+5 786.0 16.90 1.43e+5 784.8 16.78 29.74%
rh_10_20 1.22e+6 13876 280.9 3.44e+5 13817 275.0 28.19%
rh_10_30 1.04e+6 2014 34.67 3.25e+5 2016 32.19 31.15%

Theorem 2 indicates that the standard deviation converges as w increases. In intuition, with sufficiently many times
of experiments, the variance should be monotonically decreasing as w increases. The results in Table 4 also show such
tendencies. Since we could only experiment with finite times (100 times), there exist errors, e.g., some standard deviations
for w = 3n are larger than the ones for w = 2n or the ones for w = n. This phenomenon also indicates that the standard
deviations are close to the convergence. There is a tradeoff of speed and accuracy, since the larger w , the smaller variance
but larger number of steps. We observe that the overall differences between the standard deviations for w = n and w = 3n
are small. So, we choose w = n at last.

7.1.3. The comparison of two hit-and-run methods
Table 5 illustrates the running times of 10 million steps of CDHR and HDHR in the intersection of a cube and a ball. This

experiment is irrelevant to the procedure of volume estimation. Table 5 shows that CDHR is faster than its rival. The reason
is that HDHR has to do more vector multiplications to find intersection points and m × n more divisions during each step
of walk.

In addition, we also compare the two hit-and-run methods on accuracy. We set w = n for both methods and executed
100 times for each instance. The results are listed in Table 6. The column of “ERR.” gives the ratios of standard deviations
and average values. It clearly shows that the standard deviations of the volume estimated by CDHR method are smaller than
HDHR method.

7.1.4. The advantage of reutilization of random points
We conducted experiments to demonstrate the effectiveness of the reutilization technique. We executed PolyVest 100

times for each instance. n1 (n2) represents the average number of newly generated random points without (with) this
technique. Table 7 shows that the reutilization technique can save 60% to 70% random points, yet it has no visible effect on
the average value and the variance.

126 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Table 8
Comparison between estimation and computation methods for #SMT(LRA).

Instance NV. BC. Estimation Computation

Result Time (s) Result Time (s)

ran_7_15_45 7 116 1.79e+15 2.817 1.84e+15 10.4
ran_7_20_60 7 253 6.85e+14 4.015 6.74e+14 73.2
ran_7_30_90 7 385 4.78e+13 7.994 4.58e+13 872
ran_8_15_45 8 220 3.49e+17 4.311 3.50e+17 71.8
ran_8_20_60 8 456 1.07e+17 11.07 1.09e+17 327
ran_8_30_90 8 1209 6.95e+16 28.69 – –
ran_9_20_60 9 439 1.21e+19 24.79 – –
ran_10_20_60 10 949 2.57e+22 58.44 – –

7.2. Evaluation of VolCE

We implement our volume estimation algorithm and preprocessing techniques in a tool called VolCE,4 which is de-
scribed in [32]. It has the following three functions:

• Estimate volume for SMT(LRA) formulas with PolyVest.
• Compute volume for SMT(LRA) formulas with Vinci [4].
• Count the number of lattice points for SMT(LIA) formulas with LattE [25].

For all experiments in this subsection, we used Smin = 0.01 and Smax = 1. The test cases include:

• Random instances ran_n_l_c: which have n numeric variables, l LACs and c clauses. They are generated by randomly
choosing coefficients of LACs and literals of clauses. The length of each clause is between 3 and 5.

• Instances generated from static program analysis. We analyzed the following programs: (i) abs: a function which
calculates absolute values; (ii) findmiddle: a function which finds the middle number among 3 numbers; (iii)
Space_manage: a program related to space technology; (iv) tritype: a program which determines the type of a
triangle; (v) calDate: a function which converts the special date into a Julian date; (vi) tcas: a program about
the traffic collision avoidance system; (vii) FINDpath: a selection program FIND [18]; (viii) getopPath: a program
function called getop() [20].

• Instances from SMT-Lib, including the QF_LIA benchmarks: CAV_2009, bignum, int_incompleteness,
pigeon-hole, fischer, prime_cone.

The QF_LIA benchmark set is a huge and broad collection of benchmarks, which can be found in the SMT-LIB and is
also part of the SMT Competition. It is the standard reference for measuring the performance of linear integer arithmetic
solvers. Since VolCE is a counter instead of a solver, these benchmarks are usually too difficult for VolCE. We scanned
this benchmark set and filtered out the complicated instances which cannot be handled by VolCE in one hour. At last, we
selected 6 families and 112 instances from this benchmark set.

7.2.1. Volume estimation for SMT(LRA) formulas
In this subsection, we experimented our tool VolCE on randomly generated SMT(LRA) formulas to evaluate the capability

of our volume estimation routine, i.e., VolCE with PolyVest. Note that the linear constraints in random instances contain
almost all variables, the reduction and division preprocessing techniques are not effective for these instances.

Table 8 presents the result of comparing the performance of volume estimation method (VolCE with PolyVest) and
volume computation method (VolCE with Vinci). In Table 8, column 1 gives the name of instances, column 2 and 3
give the number of numeric variables and partial feasible assignments respectively. The outputs and running times for
estimation routine and computation routine are presented in column 4 to column 7. The results show that the volume
estimation method for #SMT(LRA) is very efficient and the relative errors of approximation are small. When the dimension
of instance grows to 8 or larger, volume computation method often fails to give an answer in one hour or depletes memory.
Though Vinci has an option to restrict its memory storage, as a tradeoff it will take much more time to solve, and still
cannot solve instances within the time limit.

Table 9 presents the results about the effectiveness of our two-round strategy. Columns “n1” and “n2” present the number
of total random points generated by volume estimation method without and with the two-round strategy respectively.
Table 9 shows that the two-round strategy saves 90% to 98% random points and more than 90% of running time. At the
same time, the difference of the output results between the original and the two-round strategy is usually less than 5%.

4 The tool and benchmarks are available at http :/ /lcs .ios .ac .cn /~zj /vc .html.

http://lcs.ios.ac.cn/~zj/vc.html

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 127
Table 9
Effectiveness of the two-round strategy.

Instance BC. Original Two-round n2/n1

Result Time (s) n1 Result Time (s) n2

ran_7_15_45 116 1.86e+15 26.63 1.03e+7 1.79e+15 2.817 9.34e+5 9.07%
ran_7_20_60 253 6.65e+14 59.68 2.09e+7 6.85e+14 4.015 8.70e+5 4.17%
ran_7_30_90 385 4.53e+13 111.4 3.49e+7 4.78e+13 7.994 1.07e+6 3.06%
ran_8_15_45 220 3.56e+17 108.0 3.36e+7 3.49e+17 4.311 1.09e+6 3.23%
ran_8_20_60 456 1.09e+17 236.4 7.04e+7 1.07e+17 11.07 2.63e+6 3.73%
ran_8_30_90 1209 6.96e+16 723.6 1.91e+8 6.95e+16 28.69 3.58e+6 1.89%
ran_10_15_45 228 1.18e+23 399.4 8.41e+7 1.19e+23 11.77 2.28e+6 2.71%
ran_10_20_60 949 2.55e+22 1801 3.49e+8 2.57e+22 58.44 1.02e+7 2.92%
ran_10_30_90 8039 – – – 1.35e+21 361.6 4.56e+7 –
ran_15_40_200 1726 – – – 7.88e+27 619.2 3.88e+7 –
ran_15_50_250 495 – – – 1.25e+23 217.1 1.18e+7 –
ran_20_60_400 700 – – – 6.62e+32 1666 5.19e+7 –

Table 10
Comparison of the tool with and without preprocessing techniques.

Instance Scale Original Reduction Reduc&Div

NV. Ineq. Solved
(total)

Time (s) Solved
(total)

Time (s) Solved
(total)

Time (s)

abs 1 1 2 (2) 0.061 2 (2) 0.011 2 (2) 0.01
findmiddle 3 6.8 10 (10) 0.998 10 (10) 0.632 10 (10) 0.622
getopPath 2 15 2 (2) 0.392 2 (2) 0.199 2 (2) 0.063
tritype 4 15.0 54 (54) 9.93 54 (54) 5.27 54 (54) 5.39
calDate 6 6.67 21 (21) 1.18 21 (21) 0.378 21 (21) 0.379
FINDpath 8 15.5 2 (2) 0.139 2 (2) 0.115 2 (2) 0.123
Space_manage 17 12.5 56 (56) – 56 (56) 190 56 (56) 14.8
tcas 24 24.2 0 – 1801 70.45 1801 42.3

(1801) – (1801) (1801)

CAV_2009 9.17 17.5 2 (6) 0.138 2 (6) 0.753 2 (6) 0.752
bignum 6 13 2 (2) 0.095 2 (2) 0.061 2 (2) 0.059
int_incompletness 3.33 4.67 3 (3) 0.091 3 (3) 0.014 3 (3) 0.014
pigeon-hole 162 347 19 (19) 0.56 19 (19) 1.38 19 (19) 1.38
fischer 28.0 184 47 (49) 1605 47 (49) 1786 47 (49) 1747
prime_cone 11.2 24.7 15 (37) – 13 (37) 1103 14 (37) –

7.2.2. Reduction and division techniques
We experimented our reduction and division techniques over instances generated from program analysis and QF_LIA

benchmarks that are both SMT(LIA) formulas. Table 10 shows the experimental results about the comparison of the tool
with and without the improvements introduced in Section 6. Column “Scale” presents the average scale of the instances
in the instance family. Column “Original” presents the results of the original tool. Column “Reduction” presents the results
of our tool with the reduction technique. Column “Reduc&Div” presents the results of the improved tool with both of the
techniques. For each configuration, the experimental results consist of the number of solved instances and the running
times.

Table 10 shows that our preprocessing techniques work well for the instances generated from program analysis. There
is no significant improvements for the QF_LIA benchmarks, which are not surprising. In some circumstances, our tool is
even slower with preprocessing techniques, since the division may cause overhead. For example, a set of 6-dimensional
constraints is divided into three groups of 2-dimensional problems. Then the lattice counting has to be initialized three
times for these subproblems.

7.2.3. Performance comparison for SMT(LIA) formulas
To further evaluate the performance of VolCE for solution counting, we compare it with SMTApproxMC [7] which is a

hashing-based approximate counter for SMT(BV) formulas. For comparison, we transformed SMT(LIA) formulas into SMT(BV)
formulas manually by replacing integer variables with fixed-length variables, bit-vector constants and bit operations. We ex-
perimented SMTApproxMC with parameters ε = 0.8 and δ = 0.2. It guarantees the output lying in interval [1.8−1 R F , 1.8R F]
with probability at least 80%, where R F is the real count of a given formula F .

Table 11 presents the result of comparing the performance of VolCE with SMTApproxMC on a subset of our bench-
marks. In these experiments, VolCE calls LattE for integer solution counting inside a polytope, so our tool returns the
exact counts instead of approximations. Table 11 shows that our approach significantly outperforms SMTApproxMC for a
large class of benchmarks. We observe that the running time of SMTApproxMC is closely related to the number of the

128 C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129
Table 11
Comparison between VolCE and SMTApproxMC over SMT(LIA) formulas.

Instance NV. BV. VolCE SMT approx MC

BC. Result Time (s) TB. Result Time (s)

FINDpath_1 8 0 1 4.08e+6 0.07 32 3.98e+6 1021
FINDpath_2 8 0 1 87516 0.05 32 90000 116.8
getopPath_1 1 0 6 242 0.02 8 245 2.568
getopPath_2 3 0 18 8085 0.06 24 8381 14.96
findmiddle_4 3 0 2 5527040 0.02 24 – –
findmiddle_6 3 0 4 130560 0.04 24 1.33e+5 151.5
findmiddle_8 3 0 2 65280 0.02 24 62135 207.9
Space_manage_38 7 0 7 5.41e+14 0.11 56 – –
Space_manage_49 13 0 7 2.51e+27 0.85 104 – –
tcas_1200 5 0 6 2.81e+14 0.02 80 – –
tcas_1201 7 0 34 1.21e+24 0.05 112 – –
tcas_1214 7 0 10 1.84e+19 0.02 112 – –

prime_cone_sat_2 2 0 1 4159 0.02 32 3855 5.950
prime_cone_sat_3 3 0 1 25777 0.02 48 24672 284.3
prime_cone_sat_4 4 0 1 75662 0.12 64 65535 1134
prime_cone_sat_5 5 0 1 48505 1.23 80 – –
prime_cone_sat_6 6 0 1 55143 6.85 96 – –
prime_cone_sat_7 7 0 1 17823 76.37 112 – –
FISCHER1-1-fair 4 20 1 256 0.03 40 253 5.825
FISCHER2-7-fair 24 193 35 30135 4.94 240 28749 2463
FISCHER3-8-fair 36 320 565 120540 243.11 360 – –

solutions rather than the number of variables, i.e., the larger number of solutions, the more difficult for SMTApproxMC to
handle.

8. Concluding remarks

In contrast to various kinds of decision problems, counting problems have received less attention. We lack practical
methods for solving them. This paper studies the counting problem for SMT(LA) constraints. Given a formula/constraint
which is a Boolean combination of linear arithmetic inequalities, we would like to know the size of the solution space.
Previous exact methods are not scalable.

In this paper, we have described a practical method for estimating the volume of convex polytopes, based on the Mul-
tiphase Monte-Carlo method. It employs a new technique to reutilize random points, so that the number of random points
can be significantly reduced. We proved that the reutilization technique has no side-effect on the error. We also investigated
a simplified version of hit-and-run method: the coordinate directions method. Based on the volume estimation method for
polytopes, we presented an approach for estimating the volume of the solution space of SMT(LA) formulas, which is aug-
mented with a heuristic called two round strategy to accelerate the procedure. We also devised some specific techniques
for instances that arise from program analysis. The proposed methods have been evaluated on various benchmarks, and the
results are promising.

Acknowledgements

We are very grateful to the anonymous reviewers for their helpful comments and suggestions. This work has been
supported by the National 973 Program under grant No. 2014CB340701. Peng Zhang is partly supported by the National
Natural Science Foundation of China (61672323), the Natural Science Foundation of Shandong Province (ZR2015FM008), and
the Fundamental Research Funds of Shandong University (2015JC006).

References

[1] C. Barrett, C.L. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, C. Tinelli, CVC4, in: CAV 2011. Proceedings, 2011, pp. 171–177.
[2] C.J.P. Bélisle, H.E. Romeijn, R.L. Smith, Hit-and-run algorithms for generating multivariate distributions, Math. Oper. Res. 18 (2) (1993) 255–266.
[3] H.C.P. Berbee, C.G.E. Boender, A.H.G. Rinnooy Kan, C.L. Scheffer, R.L. Smith, J. Telgen, Hit-and-run algorithms for the identification of nonredundant

linear inequalities, Math. Program. 37 (2) (1987) 184–207.
[4] B. Büeler, A. Enge, K. Fukuda, Exact Volume Computation for Polytopes: A Practical Study, 2000, pp. 131–154.
[5] J. Cai, S. Huang, P. Lu, From Holant to #CSP and back: dichotomy for Holantc problems, Algorithmica 64 (3) (2012) 511–533.
[6] J. Cai, P. Lu, M. Xia, The complexity of complex weighted Boolean #CSP, J. Comput. Syst. Sci. 80 (1) (2014) 217–236.
[7] S. Chakraborty, K.S. Meel, R. Mistry, M.Y. Vardi, Approximate probabilistic inference via word-level counting, in: AAAI 2016. Proceedings, 2016,

pp. 3218–3224.
[8] M. Chavira, A. Darwiche, On probabilistic inference by weighted model counting, Artif. Intell. 172 (6–7) (2008) 772–799.
[9] D. Chistikov, R. Dimitrova, R. Majumdar, Approximate counting in SMT and value estimation for probabilistic programs, in: TACAS 2015. Proceedings,

2015, pp. 320–334.

http://refhub.elsevier.com/S0304-3975(16)30597-7/bib426172726574744344484A4B52543131s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib42656C69736C6552533933s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib426572626565424B5353543837s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib426572626565424B5353543837s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4275656C657232303030s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib436169484C3132s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4361694C583134s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4368616B7261626F7274794D4D563136s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4368616B7261626F7274794D4D563136s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib43686176697261443038s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4368697374696B6F76444D3135s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4368697374696B6F76444D3135s1

C. Ge et al. / Theoretical Computer Science 743 (2018) 110–129 129
[10] L.M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: TACAS 2008. Proceedings, 2008, pp. 337–340.
[11] B. Dutertre, Yices 2.2, in: CAV 2014. Proceedings, 2014, pp. 737–744.
[12] M.E. Dyer, A.M. Frieze, On the complexity of computing the volume of a polyhedron, SIAM J. Comput. 17 (5) (1988) 967–974.
[13] M.E. Dyer, A.M. Frieze, R. Kannan, A random polynomial time algorithm for approximating the volume of convex bodies, in: Proceedings of the 21st

Annual ACM Symposium on Theory of Computing, 1989, 1989, pp. 375–381.
[14] M. Fredrikson, S. Jha, Satisfiability modulo counting: a new approach for analyzing privacy properties, in: CSL-LICS 2014. Proceedings, 2014,

pp. 42:1–42:10.
[15] C. Ge, F. Ma, A fast and practical method to estimate volumes of convex polytopes, in: FAW 2015. Proceedings, 2015, pp. 52–65.
[16] J. Geldenhuys, M.B. Dwyer, W. Visser, Probabilistic symbolic execution, in: ISSTA 2012. Proceedings, 2012, pp. 166–176.
[17] M. Grötschel, L. Lovász, A. Schrijver, Geometric algorithms and combinatorial optimization, Combinatorica (1988).
[18] C.A.R. Hoare, Proof of a program: FIND, Commun. ACM 14 (1) (1971) 39–45.
[19] R. Kannan, L. Lovász, M. Simonovits, Random walks and an O∗(n5) volume algorithm for convex bodies, Random Structures Algorithms 11 (1) (1997)

1–50.
[20] B.W. Kernighan, D.M. Ritchie, The C Programming Language, 1978.
[21] L.G. Khachiyan, On the complexity of computing the volume of a polytope, Izv. Akad. Nauk SSSR, Eng. Cybern. 3 (1988) 216–217.
[22] L.G. Khachiyan, The problem of computing the volume of polytopes is NP-hard, Uspekhi Mat. Nauk 44 (3) (1989) 199–200.
[23] S. Liu, J. Zhang, Program analysis: from qualitative analysis to quantitative analysis, in: ICSE 2011. Proceedings, 2011, pp. 956–959.
[24] S. Liu, J. Zhang, B. Zhu, Volume computation using a direct Monte Carlo method, in: COCOON 2007. Proceedings, 2007, pp. 198–209.
[25] J.A. De Loera, R. Hemmecke, J. Tauzer, R. Yoshida, Effective lattice point counting in rational convex polytopes, J. Symbolic Comput. 38 (4) (2004)

1273–1302.
[26] L. Lovász, Hit-and-run mixes fast, Math. Program. 86 (3) (1999) 443–461.
[27] L. Lovász, I. Deák, Computational results of an O∗(n4) volume algorithm, European J. Oper. Res. 216 (1) (2012) 152–161.
[28] L. Lovász, M. Simonovits, The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume, in: 31st Annual Symposium on

Foundations of Computer Science, 1990, Vol. I, 1990, pp. 346–354.
[29] L. Lovász, S. Vempala, Where to Start a Geometric Random Walk, 2003.
[30] L. Lovász, S. Vempala, Hit-and-run from a corner, SIAM J. Comput. 35 (4) (2006) 985–1005.
[31] L. Lovász, S. Vempala, Simulated annealing in convex bodies and an O∗(n4) volume algorithm, J. Comput. Syst. Sci. 72 (2) (2006) 392–417.
[32] F. Ma, S. Liu, J. Zhang, Volume computation for Boolean combination of linear arithmetic constraints, in: CADE-22, 2009. Proceedings, 2009,

pp. 453–468.
[33] D. Roth, On the hardness of approximate reasoning, Artif. Intell. 82 (1–2) (1996) 273–302.
[34] R.L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions, Oper. Res. 32 (6) (1984) 1296–1308.
[35] R.E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (2) (1972) 146–160.
[36] M. Zhou, F. He, X. Song, S. He, G. Chen, M. Gu, Estimating the volume of solution space for satisfiability modulo linear real arithmetic, Theory Comput.

Syst. 56 (2) (2015) 347–371.

http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4D6F757261423038s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib44757465727472653134s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib44796572463838s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib44796572464B3839s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib44796572464B3839s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4672656472696B736F6E4A3134s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4672656472696B736F6E4A3134s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib47654D3135s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib47656C64656E6875797344563132s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib47726F74736368656C4C413838s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib486F6172653731s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4B616E6E616E4C533937s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4B616E6E616E4C533937s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4B65726E696768616E523738s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4B686163686979616E3838s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4B686163686979616E3839s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C69755A3131s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C69755A5A3037s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F6572614854593034s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F6572614854593034s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F7661737A3939s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F7661737A443132s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F7661737A533930s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F7661737A533930s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib6C6F7661737A323030337374617274s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F7661737A56303662s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4C6F7661737A56303661s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4D614C5A3039s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib4D614C5A3039s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib526F74683936s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib536D6974683834s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib5461726A616E3732s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib5A686F7548534843473135s1
http://refhub.elsevier.com/S0304-3975(16)30597-7/bib5A686F7548534843473135s1

	Computing and estimating the volume of the solution space of SMT(LA) constraints
	1 Introduction
	2 Preliminaries
	2.1 SMT(LA) formulas
	2.2 Convex polytopes

	3 Related works
	3.1 Volume approximation for convex bodies
	3.2 Model counting for SMT formulas

	4 Volume estimation for convex polytopes
	4.1 Rounding
	4.2 Subdivision
	4.3 Hit-and-run
	4.4 Reutilization of random points
	4.5 About the mixing time
	4.6 Analysis of the reutilization technique
	4.7 Analysis on the number of random points

	5 Integrating polytope volume estimation into #SMT(LA) solving
	5.1 From computation to estimation for #SMT(LRA) problems
	5.2 Two-round strategy

	6 Handling practical instances from program analysis
	6.1 The difﬁculties
	6.2 Several observations
	6.3 Reduction and division for linear inequalities
	6.3.1 Variable reduction
	6.3.2 Graph-based division
	6.3.3 Special case of one dimension

	7 Experimental results
	7.1 Evaluation of PolyVest
	7.1.1 The performance of PolyVest
	7.1.2 The experiments on mixing time
	7.1.3 The comparison of two hit-and-run methods
	7.1.4 The advantage of reutilization of random points

	7.2 Evaluation of VolCE
	7.2.1 Volume estimation for SMT(LRA) formulas
	7.2.2 Reduction and division techniques
	7.2.3 Performance comparison for SMT(LIA) formulas

	8 Concluding remarks
	Acknowledgements
	References

