Blocked Clause Elimination

Matti Jarvisald, Armin Biere?, and Marijn Heulé

! Department of Computer Science, University of Helsinkl&nd
2 Institute for Formal Models and Verification, Johannes Keplniversity, Linz, Austria
3 Algorithmics Group, Delft University of Technology, The therlands

Abstract. Boolean satisfiability (SAT) and its extensions are becgnarncore
technology for the analysis of systems. The SAT-based agpraivides into
three steps: encoding, preprocessing, and search. Ites afgued that by en-
coding arbitrary Boolean formulas in conjunctive normahfiqCNF), structural
properties of the original problem are not reflected in théd=CThis should result
in the fact that CNF-level preprocessing and SAT solverriggres have an inher-
ent disadvantage compared to related techniques ap@iocalthe level of more
structural SAT instance representations such as Booleauitsi. In this work
we study the effect of a CNF-level simplification techniqaéled blocked clause
elimination (BCE). We show that BCE is surprisingly effeetboth in theory and
in practice on CNFs resulting from a standard CNF encodingifouits: without
explicit knowledge of the underlying circuit structureaithieves the same level
of simplification as a combination of circuit-level simptifitions and previously
suggested polarity-based CNF encodings. Experimentaélyshow that by ap-
plying BCE in preprocessing, further formula reduction &aster solving can be
achieved, giving promise for applying BCE to speed up sslver

1 Introduction

Boolean satisfiability (SAT) solvers and their extensigspecially satisfiability mod-
ulo theories (SMT) solvers, are becoming a core technologthk analysis of systems,
ranging from hardware to software. SAT solvers are in thettefe&SMT solvers, and
in some cases such as the theory of bit-vectors, stateeedthSMT solvers are based
on bit-blasting and use pure SAT solvers for actual solvirgs gives motivation for
developing even more efficient SAT techniques.

SAT-based approaches typically consist of three stepsdng, preprocessing, and
search. These steps, however, are tightly intertwinede¥ample, efficient propagation
techniques applied in search (unit propagation as a singalmple) are also applica-
ble in preprocessing for simplifying the input formula. hermore, preprocessing and
simplifications can be applied both on the conjunctive ndforan (CNF) level—which
still is the most typical input form for state-of-the-art BAolvers—and on higher-level,
more structural formula representations, such as Booleenits. Indeed, SAT encod-
ings often go though a circuit-level formula representatighich is then translated into
CNF. This highlights the importance of good CNF represématof Boolean circuits.

It is often argued that by encoding arbitrary Boolean forasuh CNF, structural
properties of the original problem are not reflected in theulttng CNF. This should
result in the fact that CNF-level preprocessing and SATexolechniques have an in-
herent disadvantage compared to related techniques thdtecapplied on the level

of more structural SAT instance representations such aseBoaircuits. Motivated
by this, various simplification techniques and intricateFC&hcoders for circuit-level
SAT instance descriptions have been proposed [1-5]. Onttie band, based on the
highly efficient CNF-level clause learning SAT solvers andFCsimplification tech-
niques such as [6-11], there is also strong support for giendhat CNF is sufficient
as an input format for SAT solvers.

In this work we study the effect of a CNF-level simplificatitechnique called
blocked clause eliminatiorBCE), based on the concept of blocked clauses [12]. We
show thaBCE is surprisingly effective both in theory and in practice ddKS resulting
from the standard “Tseitin” CNF encoding [13] for circuitgithout explicit knowledge
of the underlying circuit structurd3CE achieves the same level of simplification as
a combination of circuit-level simplifications, such esne of influengenon-shared
input elimination and monotone input reductigrand previously suggested polarity-
based CNF encodings, especially the Plaisted-Greenbacodiey [14]. This implies
that, without losing simplification achieved by such spkznéal circuit-level techniques,
one can resort to applyingCE after the straightforward Tseitin CNF encoding, and
hence implementing these circuit-level techniques is sdmaé redundant. Moreover,
since other related circuit level optimizations feequentialproblems—in particular,
thebounded cone of influence reductid®] and using functional instead of relational
representations of circuits [16]—can be mapped to conefafénce, these can also
be achieved bBCE purely on the CNF-level. Additionally, as regards CNF-lesim-
plification techniquesBCE achieves the simplification resulting from, e.gure lit-
eral elimination In addition to the more theoretical analysis in this paper present
an experimental evaluation of the effectivenes®$6ft. combined with SatElite-style
variable eliminating CNF preprocessing [10], comparing ioyplementation with the
standard Tseitin and Plaisted-Greenbaum encodings amddreerecent NiceDAG [4,
5] and Minicirc [3] CNF encoders.

The rest of this paper is organized as follows. After backgrbon Boolean circuits
and CNF encodings of circuits (Sect. 2) and on resoluticsetaCNF preprocessing
(Sect. 3), we introduce blocked clause elimination (SectThen the effectiveness of
BCE is analyzed w.r.t. known circuit-level simplification tetues and CNF encod-
ings (Sect. 5) and resolution-based preprocessing (Seé&inglly, our implementation
of BCE is briefly described (Sect. 7) and experimental resultsegented on the prac-
tical effectiveness oBCE (Sect. 8).

2 Boolean Circuits and CNF SAT

This section reviews the needed background related to Boaiecuits and CNF-level
satisfiability, and well-known CNF encodings of circuits.

Given a Boolean variable, there are twditerals, the positive literal, denoted hy;
and the negative literal, denoted bythenegation ofz. As usual, we identify with .
A clauseis a disjunction Y, or) of distinct literals and a CNF formula is a conjunction
(A, and) of clauses. When convenient, we view a clause as a $iiitef literals and a
CNF formula as a finite set of clauses; e.g. the fornful& b) A (¢) can be written as
{{a,b},{c}}. A clause is aautologyif it contains bothz andz for some variabler.

2.1 Boolean Circuits

A Boolean circuit over a finite setr of gatesis a setC of equations of forny :=
f(g1,...,9n), Whereg, g1,...,9, € Gandf : {t,f}" — {t,f} is a Boolean function,
with the additional requirements that (i) eaghe G appears at most once as the left
hand side in the equationsdh and (ii) the underlying directed graph

(G.EC)={{d.9)€eGxG |g=f(...q,...)€C})

is acyclic. If (¢’,g9) € E(C), theng’ is achild of g andg is aparentof ¢'. If g :=
f(g1,--.,9,)isinC, theng is an f-gate (or of typef), otherwise it is arnput gate A
gate with no parents is asutput gate The fanout (fanin, resp.) of a gate is the number
of parents (children, resp.) the gate has.

A (partial) assignment fof is a (partial) functionr : G — {t,f}. An assignment
is consistenwith C if 7(g) = f(7(¢1),...,7(gn)) foreachg := f(g1,...,9n) InC.

A constrained Boolean circui™ is a pair(C, 7), whereC is a Boolean circuit and
7 is a partial assignment fat. With respectto &7, each(g, v) € 7 is aconstraint and
g is constrainedo v if {(g,v) € 7.

An assignment’ satisfiesCT if (i) it is consistent withC, and (ii) it respects the
constraints in-, meaning that for each gagec G, if 7(g) is defined, then’(g) = 7(g).
If some assignment satisfi€s, thenC” is satisfiableand otherwiseinsatisfiable

The following Boolean functions are some which often ocaugate types.

NOT(v) ist if and only ifv isf.

— OR(v1,...,v,)istifand only if at least one ofy, ..., v, ist.
— AND(v1,...,v,) istifand onlyifallvy,. .., v, aret.
— XOR(v1,...,v,)istif and only if an odd number of;’s aret.

ITE(v1, v, vs) it if and only if (i) v; andv, aret, or (i) vy isf andvs ist.

As typical, we inline gate definitions of tyge:= NOT(g’). In other words, each occur-
renceofyasg := f(...,q,...)is expectedto be rewritten 4s= f(...,NOT(¢'),...).

2.2 Well-Known CNF Encodings

The standard satisfiability-preserving “Tseitin” encayljh3] of a constrained Boolean
circuit C™ into a CNF formulal'ST(C™) works by introducing a Boolean variable for
each gate €™, and representing for each gagte= f(g1,...g») in C™ the equivalence
g < f(g1,-..9n) With clauses. Additionally, the constraints inare represented as
unit clauses: ifr(g) = t (r(g) = f, resp.), introduce the clauge) ((g), resp.). A
well-known fact is that unit propagatiébon TST(C™) behaves equivalently to standard
Boolean constraint propagation on the original circliit(see, e.g., [17] for details).

A well-known variant of the Tseitin encoding is the Plaist@teenbaum encod-
ing [14] which is based ogate polarities Given a constrained Boolean circdit, a
polarity functionpol; : G — o{t.f} assigns polarities to each gate in the circuit. Here
andf stand for thepositiveandnegativepolarities, respectively. Any polarity function
must satisfy the following requirements.

* Given a CNF formulaF”, while there is a unit clausfl} in F, unit propagation removes from
F (i) all clauses inF" in which [occurs, and (ii) the literdlfrom each clause i

— If (g,v) € 7, thenv € pol(g).
—Ifg:=f(91,...,9n), then:

If f = NOT, thenv € pol(g) impliesv € pol:(g1).

If f € {AND,OR}, thenv € poli(g) impliesv € poli(g;) for eachi.
If f = XOR, thenpol(g) # 0 impliespol(g;) = {t,f}.

If f =1TE, thenv € pol:(g) implies

poli(g1) = {t,f} andv € pol(g;) fori = 2, 3.

The Plaisted-Greenbaum encoding [14] uses the polaritgtimmminpol/; that as-

signs for each gate the subset-minimal polarities fedh{} respecting the requirements
above. In other words, for each gate

minpolz(g) := {v | 7(g) = v or v € minpol(g’) for some pareny’ of g}.

The Tseitin encoding, on the other hand, can be seen as hsisghbset-maximal polar-
ity assigning polarity functiomaxpol((g) := {t, f} for each gate. For the gate types
considered in this paper, the clauses introduced basedtes palarities are listed in
Table 1.

Table 1. CNF encoding for constrained Boolean circuits based onmateities. In the tableg;
is g; if g; :== NOT(g}), andg, otherwise.

gateg 1 t € polz(9) | f € polz (9) |
g :=OR(g1,--,9n) (GVvelV---Vegn) (gVg1).--(9V8&n)

g :=AND(g1,...,9n) (GVeg1)...(3Ven) (gVEgLV---Vgn)

g := XOR(g1, g2) (GVE1VE2),(GVerVe2)|(9VEL Ve2)(9VeLVE2)
g :=ITE(g1,92,93) |[(GV 81 Vea)(gVeVes)|l(gVE VE2) (gVegVes)
(9. €T (9)

(9.f) €T (9)

Given a constrained Boolean circdf, we denote the CNF resulting from the
Plaisted-Greenbaum encoding@fby PG(C7).

Relevant concepts additional concepts related to padariie

— monotone gategateg is monotone ifminpolZ(g)| = 1; and
— redundant gategyateg is redundant ifninpoli (g) = 0.

3 Resolution and CNF-Level Simplification

The resolution rule states that, given two clauégs= {z,a1,...,a,} andCy =
{Z,ba, ..., by}, the implied claus€ = {a1,...,an,b1,...,by}, called theresolvent
of C1 andCs, can be inferred byesolvingon the variable:. We writeC' = Cy ® Cs.
This notion can be lifted to sets of clauses: For two $gtandS; of clauses which all
containz andz, respectively, we define

S, ®S: ={C1®Cy | Cy € S;,C € Sz, andCy ® C5 is not a tautology.

Following the Davis-Putnam procedure [18] (DP), a basiqiiication technique,
referred to awariable elimination by clause distribution [10], can be defined. The
elimination of a variable: in the whole CNF can be computed by pair-wise resolving
each clause 5, with every clause ity;. Replacing the original clauses$h U Sz with
the set ohon-tautologicatesolventsS = S, ® S; gives the CNKF'\ (S, U Sz)) U S
which is satisfiability-equivalent té'.

Notice that DP is a complete proof procedure for CNFs, withogential worst-case
space complexity. Hence for practical applications of alale elimination by clause
distribution as a simplification technique for CNFs, valéablimination needs to be
bounded. Closely following the heuristics applied in théeElite preprocessor [10] for
applying variable elimination, in this paper we study asmapification technique the
bounded variant of variable elimination by clause distiitn, VE, under which a vari-
ablex can be eliminated only ifS| < |S, U Sz, i.e., when the resulting CNF formula
(F\ (S; U Sz)) U S will not contain more clauses as the original form#l&

It should be noted that the result'6f can vary significantly depending on the order
in which variables are eliminated. In more detaill. doesn’t have a unique fixpoint
for all CNF formulas, and the fixpoint reached in practice épendent on variable
elimination ordering heuristics. Hen&&: is notconfluent

Proposition 1. VE is not confluent.

4 Blocked Clause Elimination

The main simplification technique studied in this paper isitwe callblocked clause
elimination(BCE), which removes so calldalocked clausefl 2] from CNF formulas.

Definition 1 (Blocking literal). A literal I in a clauseC' of a CNF I blocksC' (w.r.t.
F) if for every claus&”’ € F withl € C’, the resolventC \ {l}) U (C’\ {l}) obtained
from resolvingC' andC” onl is a tautology.

With respect to a fixed CNF and its clauses we have:
Definition 2 (Blocked clause) A clause is blocked if it has a literal that blocks it.

Example 1.Consider the formuldi,joced = (a V) A (a VbV E) A (aV c). Only

the first clause of,1,ckeq 1S NOt blocked. Both of the literaks andé block the second
clause. The literat blocks the last clause. Notice that after removing either b\ ¢)
or(aVc), the clauséga Vv b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a trivialiyisfiable formulal]

As a side-remark, notice that a litedatannot block any clause in a CNF formuta
if F' contains the unit clausfl}, and hence in this case no clause contairiingn be
blocked w.r.t.F.

An important fact is thaBCE preserves satisfiability.

® More precisely, the SatElite preprocessor [10] appliesrantiof VE calledvariable elimi-
nation by substitutionThe analysis oVE in this paper applies to this variant as well.

Proposition 2 ([12]).Removal of an arbitrary blocked clause preserves satidfigbi
Additionally, we have the following.

Proposition 3. Given a CNF formulaF’, let clauseC' € F be blocked w.r.tF'. Any
clauseC’ € F, whereC’ # C, that is blocked w.r.tF’ is also blocked w.r.tF" \ {C}.

Therefore the result of blocked clause elimination is iretefent of the order in which
blocked clauses are removed, and hence blocked clausaalioni has a unique fix-
point for any CNF formula, i.e BCE is confluent.

Proposition 4. BCE is confluent.

It should be noted that, from a proof complexity theoretimpof view, there are
CNF formulas which can be made easier to prove unsatisfialtteresolution (and
hence also with clause learning SAT solvers)dagingblocked clauses [12]. In more
detail, there are CNF formulas for which minimal resolutmoofs are guaranteed to
be of exponential length originally, but by adding instaispecific blocked clauses to
the formulas, the resulting formulas yield short resolufiwoofs. The effect of adding
(instance-specific) blocked clauses has also been studitferent contexts [19-21].
However, in a more general practical sense, we will show teatoval of blocked
clauses byBCE yields simplified CNF formulas which are both smaller in s&@el
easier to solve.

As a final remark before proceeding to the main contributiohthis paper, we
note that this is not the first time removing blocked clausggoposed for simplifying
CNFs [6]. However, in contrast to this paper, the work of [6&d not make the connec-
tion between blocked clauses and circuit-level simplifareg and CNF encodings and,
most importantly, [6] concentrates on extracting undedygircuit gate definitions for
applying this knowledge in CNF simplification; blocked ct@uremoval in [6] is actu-
ally notapplied in the case any underlying gate definitions can braeted, but rather
as an auxiliary simplification over those clauses which caive associated with gate
definitions.

5 Effectiveness of Blocked Clause Elimination

The main results of this section show the surprising effectess of blocked clause
elimination when applied until fixpoint. We will apply thelfowing definition of the
relative effectiveness of CNF encodings and both circuit @\F-level simplification
techniques.

Definition 3. Assume two methods, and 75 that take as input an arbitrary con-
strained Boolean circui”™ and output CNF formula®; (C™) and7>(C™), respectively,
that are satisfiability-equivalent t6”. We say thaf’ is at least as effective &5 if, for
anyC™, T1(C™) contains at most as many clauses and variable$'467) does. IfT}
is at least as effective & and vice versa, thef; and T, are equally effective

Notice that, considerinBCE, a stricter variant of this definition, based on clause elim-
ination, could be applied’ is at least as effective &3 , if for every circuitC™ we have

T1(CT) C T5(C™). However, forVE this stricter definition cannot be naturally applied,
since in generaVE produces non-tautological resolvents which are not subsluoy
the original clauses. Because of this inherent propertyiof we will for simplicity in
the following use the “weaker” version, as in Definition 31 fhle results presented not
concerningvE also hold under the stricter version of the definition. Alstice that the
“at least as effective” relation is analogously defined oo CNF-level simplification
methods which, instead of Boolean circuits, take CNF foamals input.

When considering the effectivenessS\df in this paper, we apply a non-deterministic
interpretation which allows foanyvariable elimination order, i.e., we say thak can
achieve the effectiveness of another simplification tegphej if there is some elimi-
nation order for whichVE achieves the same effectiveness. Finally, note that in the
following we always assume that Boolean circuits (CNF folasuresp.) are closed
under standard circuit-level Boolean constraint progagdtinit propagation, resp.).

An overview of the main results of this section is presenteféig. 1. An edge from
X toY implies thatX is as least as effective &5, for further details, see the caption.
Notice that transitive edges are omitted: for examBI€E is at least as effective as the
combination ofP G, COI, NSI, andMIR.

I
[BCE + VE]pg : BCE + VE

|VEpG | |BCEP(1|

CNF-level simplification

Circuit-level simplification

Plaisted—Greenbaum encoding Tseitin encoding

Fig. 1. Relative effectiveness of combinations of CNF encodingh Wwoth circuit and CNF-level
simplification techniques. An edge froi to Y implies thatX is as least as effective &5 No-
tice that transitive edges are omitted. On the left sKigg means the combination of first apply-
ing the Plaisted-Greenbaum and then the CNF-level simatifio techniqueX on the resulting
CNF. AnalogouslyPG x means the combination of first applying the circuit-levetgiification

X and then the Plaisted-Greenbaum encoding. On the righttséddetandard Tseitin encoding is
always applied. The pointed circles arou@®I, MIR, andNSI on the left and right represent
applying the combination of these three simplifications tea the Plaisted-Greenbaum (left) or
Tseitin encoding (right). Additionally3CE + VE refers to all possible ways of alternatiBg"E
andVE until fixpoint.

5.1 Pure Literal Elimination by BCE

Before turning to the main results, relatiBg’E with circuit-level simplification tech-
nigues, we begin by first arguing that bd#CE and VE actually achieve the same
simplifications as the well-knowpure literal elimination Given a CNF formuld’, a
literal I occurring inF is pureif [does not occur it

Pure Literal Elimination (PL): While there is a pure literdlin F’, remove all clauses
containingl from F.

Notice that the following two lemmas apply for all CNF forras| and is not re-
stricted to CNFs produced by tA&T or PG encodings.

Lemma 1. BCE is at least as effective d3L.

Proof sketchA pure literal blocks all clauses which contain it by defioitj and hence
clauses containing a pure literal are blocked. O

Lemma 2. VE is at least as effective d3L.

Proof sketchLet! be a pure literal. By definitionS; (the set of clauses containifyis
empty. Hences; ® S; = (), and therefor& E removes the clauses B). O

5.2 Effectiveness of BCE on Circuit-Based CNFs

In this section we will consider several circuit-level silifipation techniques-ron-
shared input eliminationmonotone input eliminatigrand cone of influence reduc-
tion [17]—and additionally the Plaisted-Greenbaum CNF enapdin

For the following, we consider an arbitrary constrained IBaa circuitC.

Non-shared input elimination (NSI): While there is a (non-constant) gatevith the
definitiong := f(g1,...,9») such that eacly; is an input gate with fanout one
(non-shared) €™, remove the gate definition:= f(g1,...,9,) fromC".

Monotone input reduction (MIR): While there is a monotone input gajén C”, as-
signg to minpolZ (g).

Cone of influence reduction COI): While there is a redundant gagen C”, remove
the gate definitio := f(g1,...,g,) fromCT.

First, we observe that the Plaisted-Greenbaum encodinglacachieves the effec-
tiveness ofCOL.

Lemma 3. PG(C™) is at least as effective @G(COIL(CT)).

Proof sketch.For any redundant gatg, minpolz(g) = (by definition. Hence the
Plaisted-Greenbaum encoding does not introduce any ddoissuch a gate. O

On the other hand, blocked clause elimination can achiev®khisted-Greenbaum
encoding starting with the result of the Tseitin encoding.

Lemma 4. BCE(TST(C7)) is at least as effective &G (C7).

Proof sketchWe claim thatBCE removes all clauses i'ST(C™) \ PG(C™) from
TST(C™). There are two cases to consider: redundant and monotoes. drair both
casesBCE works implicitly in a top-down manner, starting from the put gates (al-
thoughBCE has no explicit knowledge of the circdif underlyingT'ST(C7).

Consider an arbitrary redundant output gate definigios: f(g1,...,gn). Sinceg
is not constrained undet; all clauses ifC'ST(C™) in which g occurs are related to this
definition. Now it is easy to see that the literals associatitidl g (recall Table 1) block
each of these clauses, and hence the clauses are blockele @incuit level, this is
equivalent to removing the definitian:= f(g1,...,9n)-

Now consider an arbitrary monotone output gate definijios f(g1, ..., g,) with
minpol:(g) = {v}, wherev € {t,f}. Theng must be constrained{g) = v. Hence unit
propagation ory removes all clauses produced B$T for the case “ifv € pol:(g)”
in Table 1 and removes the occurrenceg frfom the clauses produced for the case “if
v € poli(g)”. To see howBCE removes in a top-down manner those clauses related
to monotone gate definitions which are not producedy; consider the gate defi-
nition g; := f'(g1,---,9,,). Assume that unit propagation gnhas no effect on the
clauses produced BYST for this definition, thaiminpol?(g;) = {v}, and thatBCE
has removed all clauses related to the parengsiof TST(C™) \ PG(C™). Now one can
check that the literals associated withblock each of the clauses producedByT
for the case “ifv € pol:(g;)". This is because all the clauses producedIt§T for
the definitions ofg;’s parents and in whiclg; occurs have been already removed by
BCE (or by unit propagation). Hence all the clauses produce@®y for the case “if
v € pol:(g;)” in Table 1 are blocked. O

Combining Lemmas 3 and 4, we have

Lemma 5. BCE(TST(C7)) is at least as effective &G(COI(CT)).
Next, we consider non-shared input elimination.

Lemma 6. BCE(TST(C7)) is at least as effective &G (NSI(C7)).

Proof sketchAssume a gate definitiom := f(g1,. .., g,) such that each; is a non-
shared input gate. It is easy to check from Table 1 that fdn gg@ach clause produced
by TST forg := f(¢1,--.,9gn) iS blocked byg;. The result now follows from Lemma 4
and Proposition 3 (notice th®G(C™) is always a subset afST(C7)). O

On the other han® L cannot achieve the effectivenesNSI when applyingP G:
sincePG produces the same set of clause§'a" for any gatey with minpol((g) =
{t,f}, no literal occurring in these clauses can be pure.

We now turn to the monotone input reduction. Notice thHR is a proper gen-
eralization ofPL: given a CNF formulal’, any pure literal inF' is monotone in the
straight-forward circuit representation 6f where each claus€ € F' is represented
as an outpubr-gate the children of which are the literalsdh On the other hand, a
monotone input gate in a circuit” is not necessarily a pure literal IBST(C™): TST
introduces clauses which together contain both positidersgative occurrences of all
gates, including monotone ones. However, it actually toutghat, when applying the
Plaisted-Greenbaum encodiit], andMIR are equally effective.

Lemma 7. PL(PG(CT)) andPG(MIR(C™)) are equally effective.

Proof sketchAssume a gate definition := f(g1, ..., g,), where some; is a mono-
tone input gate. To see thBL(PG(C™)) is at least as effective &G(MIR(CT)), first
notice that sinceg; is monotoneg is monotone. Now, it is easy to check (recall Table 1)
thatg; occurs only either negatively or positively in the clausasaduced byPG for
g:= f(g1,...,9n), and hence; is pure.

To see thaPG(MIR(C™)) is at least as effective &L(PG(C7)), notice that in
order to be a pure literal IRG(C™), a gate has to be both monotone and an inpai.

Using this lemma, we arrive at the fact tia€E on TST can achieve the combined
effectiveness oMIR andPG.

Lemma 8. BCE(TST(C7)) is at least as effective &G (MIR(CT)).

Proof sketchSinceBCE can remove all clauses iiST(C™) \ PG(C™) by Lemma 4,
after thisBCE can remove all clauses containing some monotone inputggatiece
BCE is at least as effective a3 (Lemma 1). The result then follows by Lemma7.

Combining Lemmas 4, 5, 6, and 8, we finally arrive at

Theorem 1. BCE(TST(C7)) is at least as effective as first applying the combination
of COI, MIR, and NSI on C™ until fixpoint, and then applyin&G on the resulting
circuit.

As an interesting side-remark, we have
Proposition 5. The combination oRSI, MIR, andCOl is confluent.

Moreover BCE is more effective than applying the combination&@I, MIR, and
NSI on C™ until fixpoint, and then applyind®G on the resulting circuit. To see this,
consider for example a gate definitign= OR(¢1, . . ., g»), Whereg hasminpol:(g) =
{t,f} and only a singley; is an input gate with fanout one (non-shared), i.e. it occurs
only in the definition ofy. In this case the clauses TST(C™) in which g; occurs are
blocked.

6 Benefits of Combining BCE and VE

We will now consider aspects of applyiigCE in combination withVE. As imple-
mented in the SatElite CNF preprocessoF, has proven to be an extremely effective
preprocessing technique in practice [10].

First, we show thaVE, using an optimal elimination ordering, can also achieee th
effectiveness of many of the considered circuit-level difigations.

Theorem 2. The following claims hold.

1. VE(TST(C7)) is at least as effective as (DST(COI(CT)); (i) TST(NSI(CT)).
2. VE(PG(C7)) is at least as effective 88E(TST(CT)).
3. VE(PG(C™)) is at least as effective as

(i) PG(COI(CT)); (ii) PG(NSI(CT)); and (i) PG(MIR(CT)).

Proof sketch.

1. (i) Assume aredundant output gate definijar= f(g1,. .., gn). NowS,@5; = 0
since all resolvents are tautologies when resolving grecall Table 1).
(if) Assume a gate definition := f(¢1,. .., gn) Such that each; is an non-shared
input gate. FODR (similarly for AND), Sy, ® S5, = (0. After resolving ory; we are
left with the clauses)®_,{g V g;}, where eaclg; is then a pure literal. FoxoR,
simply notice thatS,, ® S5, = 0. ForITE, notice thatS,, ® S5, = {gV g2V g3},
and theng, andgs are both pure literals.
. Follows fromPG(C™) C TST(C")
3. (i) Follows directly from Lemma 3.
(ii) By a similar argument as in Item 1 (ii).
(iii) Follows directly from Lemmas 2 and 7.

N

O

However, there are cases in whistt is not as effective aBCE. Namely, VE
cannot achieve the effectivenessMfR when applyingl’'ST, in contrast toaBCE. To
see this, notice that an input gate can have arbitrarilyeldirgjte fanout and still be
monotone. On the other handE cannot be applied on gates which have arbitrarily
large fanout and fanin, since the elimination boun¥&fcan then be exceeded (number
of clauses produced would be greater than the number ofedaamoved). In general, a
main point to notice is that foVE, in order to achieve the effectivenesB{fE (on the
standard Tseitin encoding), one has to apply the Plaisteg+tbaum encoding before
applying VE. In addition, sinceVE is not confluent in contrast tBCE, in practice
the variable elimination ordering heuristics fuill has to be good enough so that it
forces the “right” elimination order. In addition, thereearases in whiclBBCE is more
effective thanVEp. For some intuition on this, consider a clausewith blocking
literal [. Notice that the result of performingE on! is not dependent on wheth€ris
removed. However, for any non-blocking litetake C' the number of non-tautological
clauses after applyin§E on !’ would be smaller iBCE would first removeC'.

On the other hand, there are also cases in which the cominaftBCE andVE
can be more effective than applyil®CE only. For instance, by applyin§E on a
CNF, new blocked clauses may arise. For more concretenassider a circuit with
anxoR-gateg := XOR(g1, g2) Whereg; andg, are input gates with fanout one (non-
shared). Assume that := XOR(g1, g2) IS rewritten as araND-OR circuit structure
g := AND(a,b), a := OR(g1,92), b := OR(NOT(g1),NOT(g2)), wherea andb are
newly introduced gates with fanout one. Notice thatand go now have fanout two.
In the Tseitin encoding of this structurBCE cannot see the non-sharednesgjof
andgs in the underlyingkor. However, by first eliminating ther-gatesa andb with
VE, BCE can then remove the clauses containing the variapleand g» (the gates
become implicitly “non-shared” again). In other words rehare cases in which variable
elimination results in additional clauses to be blocked.

7 Implementation

In short, BCE can be implemented in a similar way &% in the SatElite preproces-
sor [10]: first “touch” all literals. Then, as long as therai®uched literal: find clauses

that are blocked by, mark! as not touched any more, remove these blocked clauses,
and touch the negation of all literals in these clauses. Tioeity list of touched literals

can be ordered by the number of occurrences. Literals withdfecurrences of their
negations are to be tried first. This algorithm is implemdrtePrecoSAT version 465
(http://fmv.jku.at/precosat) and can be used toB@E until completion.

In principle, the result is unique. However, as in our impéartation of VE [10] in
PrecoSAT, we have a heuristic cut-off limit in terms of themher of occurrences of
a literal. If the number of occurrences of a literal is to@krthen we omit trying to
find blocked clauses for its negation. This may prevent tiesh@mplementation from
removing some blocked clauses. In general, however, asvitisessed by the results of
usingBCE on the CNFs generated with the Tseitin and Plaisted-Gresnleacodings,
this cut-off heuristic does not have any measurable effect.

8 Experiments

We evaluated how much reduction can be achieved uBii§ in combination with
VE and various circuit encoding techniques. Reduction is oreasin the size of the
CNF before and after preprocessing, and on the other harghiasn the number of
instances solved.

We used all formulas of SMT-Lib (http://smtlib.org) oveettheory of bit-vectors
(QF_BV) made available on July 2, 2009, as a practice benchmarfos¢he SMT
competition 2009. From these we removed the large numberostiyntrivial SAGE
examples. The remaining 3672 SMT problems were bit-blastéahd-Inverter Graphs
(AIGs) in the AIGER format (http://fmv.jku.at/aiger) ugirour SMT solver Boolec-
tor [22]. Furthermore, we used the AIG instances used ind&jsisting of two types
of instances: (i) AIGs representing BMC problems (with dbepndk = 45) obtained
from all the 645 sequential HWMCC’08 (http:/fmv.jku.atfmcc08) model checking
problems, and (ii) 62 AlGs from the structural SAT track o tBAT competition. We
have made the SMT-Lib instances publicly available at Hftpv.jku.at/aiger/smtqfbv-
aigs.7z (260MB); the others cannot be distributed due embe restrictions. However,
the HWMCC’08 instances can easily be regenerated usinggbpavailable tool$ and
the model checking benchmarks available at http:/fmvgibwmcc08. We encoded
these 4379 structural SAT instances with four algorithine:standard Tseitin encod-
ing [13], the Plaisted-Greenbaum polarity-based encoflidj the Minicirc encoder
based on technology mapping [3] aWd:, and the most recent NiceDAG encoder [4,
5]. The NiceDAG implementation was obtained from the aughBor Minicirc, we used
an improved implementation of Niklas Eén.

In order to additionally experiment with application bendrks already in CNF,
we also included 292 CNFs of the application track of the Sémpetition 2009 to our
benchmark set. All resulting CNFs were preprocessed Wihalone (further abbrevi-
ated e), and separately first witCE (b), followed byVE (e), and both repeated again,
which altogether gives 6 versions of each CNF BOE or VE, e, b, be, beb, bebe).

® Notice thatCOI is performed already in the generation process by these.tdolever, we
did not implement the non-trivial NSI or MIR for the experints.

We call such an application of one preprocessing algorisitherBCE or VE, which
is run to completion, @reprocessing phase

The results are presented in Table 2. The first column ligsbénchmark fam-
ily: S = SAT'09 competition, A = structural SAT track, H = HWMZ08, B = bit-
blasted bit-vector problems from SMT-Lib. These are all Al&cept for the CNF
instances in S. The next column gives the encoding algoritked: T = Tseitin, P =
Plaisted-Greenbaum, M = Minicirc, N = NiceDAG, and U = unkmofer the S family
already in CNF. The t columns give the sum of the time in ses@pent in one encod-
ing/preprocessing phase. The columns V and C list in militre sum of numbers of
variables and clauses over all produced CNFs in each phase.

The results show that the combination “be”BCE and VE always gives better
results tharVE (e) alone, with comparable speed. Using a second phasedbB)E
gives further improvements, even moreVitl is also applied a second time (bebe).
The CNF sizes after applyingCE (b) for the P encoder and the T encoder are equal,
as expected. Further preprocessing, however, divergase slauses and literals are
permutedVE is not confluent, and thd€E phases can produce different results.

We applied a time limit of 900 seconds and a memory limit of @848 for each
encoder and each preprocessing phase. Tsiisut of 106848 = 6 - (4 - 4379 + 292)
CNFs were not generated: HM encoding ran out of memory on $ kagge BMC
instances, one large CNF in S could not be preprocessed andlthere was a problem
with the parser in NiceDAG, which could not parse 14 actuedlfher small AIGs in
BN. Furthermore, there were 10 timeouts for various prepgsing phases in the A
family: 2 in AT/beb, 2 in AN/be, 2in AN/e, 2 in AP/be, and 2 in A2 However, except
for the one large CNF, where alsdE run out of memory, there is not a single case
whereBCE did not run until completion within the given time and memabnyits.

Reducing the size of a CNF by preprocessing does not nedg$sad to faster run-
ning times. Since it was impossible to run all structuratanses with an appropriate
time limit, we only performed preliminary experiments wihvery small time limit of
90 seconds. We used PrecoSAT v236, the winner of the applicetack of the SAT
competition 2009, and PicoSAT v918, a fast clause learrohges which does not use
sophisticated preprocessing algorithms, in contrast €@d3AT. In both cases the re-
sults were inconclusive. Running preprocessing until detign takes a considerable
portion of the 90 seconds time limit, even if restricted/B. In addition, the success of
PrecoSAT shows that not running preprocessing until cotigplés a much better strat-
egy, particularly if the preprocessor is run repeatedlyirageith enough time spent on
search in-between. However, this strategy is hard to etaluaen many preprocessing
techniques are combinédTherefore we decided to stick with the run-to-completion
approach, which also gives some clear indication of how n@@iék size reduction can
be achieved througBCE.

For the 292 SAT competition instances we were able to rundS&T with a more
reasonable timeout of 900 seconds. The cluster machind$ardbe experiments, with
Intel Core 2 Duo Quad Q9550 2.8 GHz processor, 8 GB main memarging Ubuntu
Linux version 9.04, are around two times as fast as the oregbinghe first phase of the

"In PrecoSAT v465, we have failed literal preprocessingiouarforms of equivalence reason-
sing, explicit pure literal pruning3CE, VE, combined with on-the-fly subsumption.

Table 2. Effectiveness oBCE in combination withVE using various encoders.

encoding b be beb bebe e
t v C|t v C|t vVvClt VvCclt VvCclt VC

SuU 0 46 2562303 29 1781042 1114%1188 11145 569 111442064 11 153
AT 12 9 27116 7 181735 1 81835 1 6 34 1 §q 244 1 ¢
AP 10 9 20 94 7 181900 1 6 36 1 g 34 1 q1912 1 ¢
AM| 190 1 § 42 1 7178 1 7675 1 41 68 1 7 48 1 8§
AN 9 3 10 50 3 10185 1 6 36 1 g 34 1 1859 1 ¢
HT|| 147121 3471648117 27|2641 18118 567 18118 594 181163240 23 140
HP| 130121 2861398117 272630 18118 567 18118 595 181162835 19 119
HM]|| 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 9(
HN|| 134 34 124 573 34 1221185 17102 504 17101 525 171001246 17 103
BT| 577442125%799420111%023 573211410 5631(1505 522948076 64 363
BP| 542442115%4614201115041 573211413 5631(1506 522947642 57 322

B

B8

BM||10024 59 311252 58 308L351 532871135 532861211 522801435 55 30
BN||13148196 642902193 63845108 508444 107 502250 10550(6076 114 51

2009 SAT competition. In the first phase of the competitioithva similar time limit,
PrecoSAT solved many more instances than competitors.riteless, usind3CE we
can improve the number of solved instances consideral#eoSAT solves 176 original
instances, 177 preprocesseddyE andVE alone (b and e), 179 be instances, 180 beb
instances, and 183 bebe instances. If we accumulate thddmadl the preprocessing
phases and add it to the actual running time, then 181 instazan be solved in the last
case. For the other cases the number of solved instancesaiogsange.

It would be interesting to compare our results to pure cir@yel solvers. To our
understanding, however, such solvers have not proven tabe efficient than running
CNF solvers in combination with specialized circuit to CNieedings.

9 Conclusions

We study a CNF-level simplification technique we da{l’E (blocked clause elimina-
tion). We show thaBCE, although a simple concept, is surprisingly effective hwiit
any explicit knowledge of the underlying circuit structuB&CE achieves the same sim-
plifications as combinations of circuit-level simplificatis and the well-known polarity-
based Plaisted-Greenbaum CNF encoding. This impliestibatffect of such special-
ized circuit-level techniques can actually be accompltistiieectly on the CNF-level.
To our best knowledge, these connections have not been khefene. Furthermore,
in contrast to specialized circuit-level techniquB§;E can be naturally applied on any
CNF formula, regardless of its origin. Experimental resuiith an implementation of
a CNF-level preprocessor combiniiBf’E and SatElite-style variable elimination are
presented, showing the effectiveness and possible beodipplyingBCE.

AcknowledgementsThe authors thank Niklas Eén and Pete Manolios for progidin
up-to-date versions of the Minicirc and NiceDAG encodersdum the experiments.
The first author is financially supported by Academy of Fidlamder the project “Ex-
tending the Reach of Boolean Constraint Reasoning” (#13p8he third author is
supported by the Dutch Organization for Scientific Researadder grant 617.023.611.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Jackson, P., Sheridan, D.: Clause form conversions folea circuits. In: SAT'04 Selected
Revised Papers. Volume 3542 of LNCS., Springer (2005) 183—1

Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-agvAlG rewriting: A fresh look at
combinational logic synthesis. In: DAC'06, ACM (2006) 5335

. Eén, N., Mishchenko, A., Sorensson, N.: Applying logyathesis for speeding up SAT. In:

SAT'07. Volume 4501 of LNCS., Springer (2007) 272—-286

. Manolios, P., Vroon, D.: Efficient circuit to CNF convarsi In: SAT'07. Volume 4501 of

LNCS., Springer (2007) 4-9

. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solviitly better CNF generation. In:

DATE'09, IEEE (2009) 1590-1595

. Ostrowski, R., GrégoireE., Mazure, B., Sais, L.: Recovering and exploiting streaitu

knowledge from CNF formulas. In: CP’02. Volume 2470 of LNCSpringer (2002) 185—
199

. Brafman, R.l.: A simplifier for propositional formulas thimany binary clauses. |IEEE

Transactions on Systems, Man, and Cybernetics, Pa#(B (2004) 52-59

. Bacchus, F.: Enhancing Davis Putnam with extended biclanse reasoning. In: AAAI'02,

AAAI Press (2002) 613-619

. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasirgaisée elimination resolution for

preprocessing SAT instances. In: SAT'04. Volume 3542 of ISNGpringer (2005) 276-291
Eén, N., Biere, A.: Effective preprocessing in SAT tigb variable and clause elimination.
In: SAT’'05. Volume 3569 of LNCS., Springer (2005) 61-75

Gershman, R., Strichman, O.: Cost-effective hypestation for preprocessing CNF for-
mulas. In: SAT’05. Volume 3569 of LNCS., Springer (2005) 4229

Kullmann, O.: On a generalization of extended resatutiDiscrete Applied Mathematics
96-97(1999) 149-176

Tseitin, G.S.: On the complexity of derivation in propiasal calculus. In Siekmann, J.,
Wrightson, G., eds.: Automation of Reasoning 2: ClassiegldPs on Computational Logic
1967-1970. Springer (1983) 466—-483

Plaisted, D.A., Greenbaum, S.: A structure-preserelagse form translation. Journal of
Symbolic Computatior2(3) (1986) 293-304

Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying fety properties of a power PC
microprocessor using symbolic model checking without BDDs CAV’99. Volume 1633
of LNCS., Springer (1999) 60-71

Jussila, T., Biere, A.: Compressing BMC encodings wiBFQElectronic Notes in Theoret-
ical Computer Scienc&74(3) (2007) 45-56

Drechsler, R., Junttila, T., Niemela, I.: Non-clauS&T and ATPG. In Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Sah#fig. Volume 185 of Frontiers
in Artificial Intelligence and Applications. 10S Press (2)®55-694

Davis, M., Putnam, H.: A computing procedure for quaedtion theory. Journal of the
ACM 7(3) (1960) 201-215

Purdom, P.W.: Solving satisfiability with less searghinlEEE Transactions on Pattern
Analysis and Machine Intelligend#4) (1984) 510-513

Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., S&inB., Stickel, M.E.: Balance and
filtering in structured satisfiable problems. In: IJCAI'Morgan Kaufmann (2001) 351-358
Heule, M.J.H., Verwer, S.: Using a satisfiability solt@identify deterministic finite state
automata. In: BNAIC'09. (2009) 91-98

Brummayer, R., Biere, A.: Boolector: An efficient SMT &l for bit-vectors and arrays. In:
TACAS’09. Volume 5505 of LNCS., Springer (2009) 174-177

