
Blocked Clause Elimination

Matti Järvisalo1, Armin Biere2, and Marijn Heule3

1 Department of Computer Science, University of Helsinki, Finland
2 Institute for Formal Models and Verification, Johannes Kepler University, Linz, Austria

3 Algorithmics Group, Delft University of Technology, The Netherlands

Abstract. Boolean satisfiability (SAT) and its extensions are becoming a core
technology for the analysis of systems. The SAT-based approach divides into
three steps: encoding, preprocessing, and search. It is often argued that by en-
coding arbitrary Boolean formulas in conjunctive normal form (CNF), structural
properties of the original problem are not reflected in the CNF. This should result
in the fact that CNF-level preprocessing and SAT solver techniques have an inher-
ent disadvantage compared to related techniques applicable on the level of more
structural SAT instance representations such as Boolean circuits. In this work
we study the effect of a CNF-level simplification technique called blocked clause
elimination (BCE). We show that BCE is surprisingly effective both in theory and
in practice on CNFs resulting from a standard CNF encoding for circuits: without
explicit knowledge of the underlying circuit structure, itachieves the same level
of simplification as a combination of circuit-level simplifications and previously
suggested polarity-based CNF encodings. Experimentally,we show that by ap-
plying BCE in preprocessing, further formula reduction andfaster solving can be
achieved, giving promise for applying BCE to speed up solvers.

1 Introduction
Boolean satisfiability (SAT) solvers and their extensions,especially satisfiability mod-
ulo theories (SMT) solvers, are becoming a core technology for the analysis of systems,
ranging from hardware to software. SAT solvers are in the heart of SMT solvers, and
in some cases such as the theory of bit-vectors, state-of-the-art SMT solvers are based
on bit-blasting and use pure SAT solvers for actual solving.This gives motivation for
developing even more efficient SAT techniques.

SAT-based approaches typically consist of three steps: encoding, preprocessing, and
search. These steps, however, are tightly intertwined. Forexample, efficient propagation
techniques applied in search (unit propagation as a simple example) are also applica-
ble in preprocessing for simplifying the input formula. Furthermore, preprocessing and
simplifications can be applied both on the conjunctive normal form (CNF) level—which
still is the most typical input form for state-of-the-art SAT solvers–and on higher-level,
more structural formula representations, such as Boolean circuits. Indeed, SAT encod-
ings often go though a circuit-level formula representation, which is then translated into
CNF. This highlights the importance of good CNF representations of Boolean circuits.

It is often argued that by encoding arbitrary Boolean formulas in CNF, structural
properties of the original problem are not reflected in the resulting CNF. This should
result in the fact that CNF-level preprocessing and SAT solver techniques have an in-
herent disadvantage compared to related techniques that can be applied on the level

of more structural SAT instance representations such as Boolean circuits. Motivated
by this, various simplification techniques and intricate CNF encoders for circuit-level
SAT instance descriptions have been proposed [1–5]. On the other hand, based on the
highly efficient CNF-level clause learning SAT solvers and CNF simplification tech-
niques such as [6–11], there is also strong support for the claim that CNF is sufficient
as an input format for SAT solvers.

In this work we study the effect of a CNF-level simplificationtechnique called
blocked clause elimination (BCE), based on the concept of blocked clauses [12]. We
show thatBCE is surprisingly effective both in theory and in practice on CNFs resulting
from the standard “Tseitin” CNF encoding [13] for circuits:without explicit knowledge
of the underlying circuit structure,BCE achieves the same level of simplification as
a combination of circuit-level simplifications, such ascone of influence, non-shared
input elimination, andmonotone input reduction, and previously suggested polarity-
based CNF encodings, especially the Plaisted-Greenbaum encoding [14]. This implies
that, without losing simplification achieved by such specialized circuit-level techniques,
one can resort to applyingBCE after the straightforward Tseitin CNF encoding, and
hence implementing these circuit-level techniques is somewhat redundant. Moreover,
since other related circuit level optimizations forsequentialproblems—in particular,
thebounded cone of influence reduction[15] and using functional instead of relational
representations of circuits [16]—can be mapped to cone of influence, these can also
be achieved byBCE purely on the CNF-level. Additionally, as regards CNF-level sim-
plification techniques,BCE achieves the simplification resulting from, e.g.,pure lit-
eral elimination. In addition to the more theoretical analysis in this paper,we present
an experimental evaluation of the effectiveness ofBCE combined with SatElite-style
variable eliminating CNF preprocessing [10], comparing our implementation with the
standard Tseitin and Plaisted-Greenbaum encodings and themore recent NiceDAG [4,
5] and Minicirc [3] CNF encoders.

The rest of this paper is organized as follows. After background on Boolean circuits
and CNF encodings of circuits (Sect. 2) and on resolution-based CNF preprocessing
(Sect. 3), we introduce blocked clause elimination (Sect. 4). Then the effectiveness of
BCE is analyzed w.r.t. known circuit-level simplification techniques and CNF encod-
ings (Sect. 5) and resolution-based preprocessing (Sect. 6). Finally, our implementation
of BCE is briefly described (Sect. 7) and experimental results are reported on the prac-
tical effectiveness ofBCE (Sect. 8).

2 Boolean Circuits and CNF SAT

This section reviews the needed background related to Boolean circuits and CNF-level
satisfiability, and well-known CNF encodings of circuits.

Given a Boolean variablex, there are twoliterals, the positive literal, denoted byx,
and the negative literal, denoted byx̄, thenegation ofx. As usual, we identifȳ̄x with x.
A clauseis a disjunction (∨, or) of distinct literals and a CNF formula is a conjunction
(∧, and) of clauses. When convenient, we view a clause as a finiteset of literals and a
CNF formula as a finite set of clauses; e.g. the formula(a ∨ b̄) ∧ (c̄) can be written as
{

{a, b̄}, {c̄}
}

. A clause is atautologyif it contains bothx andx̄ for some variablex.

2.1 Boolean Circuits

A Boolean circuit over a finite setG of gatesis a setC of equations of formg :=
f(g1, . . . , gn), whereg, g1, . . . , gn ∈ G andf : {t, f}n → {t, f} is a Boolean function,
with the additional requirements that (i) eachg ∈ G appears at most once as the left
hand side in the equations inC, and (ii) the underlying directed graph

〈G, E(C) = {〈g′, g〉 ∈ G × G | g := f(. . . , g′, . . .) ∈ C}〉

is acyclic. If 〈g′, g〉 ∈ E(C), theng′ is a child of g andg is a parentof g′. If g :=
f(g1, . . . , gn) is in C, theng is anf -gate (or of typef), otherwise it is aninput gate. A
gate with no parents is anoutput gate. The fanout (fanin, resp.) of a gate is the number
of parents (children, resp.) the gate has.

A (partial) assignment forC is a (partial) functionτ : G → {t, f}. An assignmentτ
is consistentwith C if τ(g) = f(τ(g1), . . . , τ(gn)) for eachg := f(g1, . . . , gn) in C.

A constrained Boolean circuitCτ is a pair〈C, τ〉, whereC is a Boolean circuit and
τ is a partial assignment forC. With respect to aCτ , each〈g, v〉 ∈ τ is aconstraint, and
g is constrainedto v if 〈g, v〉 ∈ τ .

An assignmentτ ′ satisfiesCτ if (i) it is consistent withC, and (ii) it respects the
constraints inτ , meaning that for each gateg ∈ G, if τ(g) is defined, thenτ ′(g) = τ(g).
If some assignment satisfiesCτ , thenCτ is satisfiableand otherwiseunsatisfiable.

The following Boolean functions are some which often occur as gate types.

– NOT(v) is t if and only if v is f.
– OR(v1, . . . , vn) is t if and only if at least one ofv1, . . . , vn is t.
– AND(v1, . . . , vn) is t if and only if all v1, . . . , vn aret.
– XOR(v1, . . . , vn) is t if and only if an odd number ofvi’s aret.
– ITE(v1, v2, v3) is t if and only if (i) v1 andv2 aret, or (ii) v1 is f andv3 is t.

As typical, we inline gate definitions of typeg := NOT(g′). In other words, each occur-
rence ofg asĝ := f(. . . , g, . . .) is expected to be rewritten asĝ := f(. . . , NOT(g′), . . .).

2.2 Well-Known CNF Encodings

The standard satisfiability-preserving “Tseitin” encoding [13] of a constrained Boolean
circuit Cτ into a CNF formulaTST(Cτ) works by introducing a Boolean variable for
each gate inCτ , and representing for each gateg := f(g1, . . . gn) in Cτ the equivalence
g ⇔ f(g1, . . . gn) with clauses. Additionally, the constraints inτ are represented as
unit clauses: ifτ(g) = t (τ(g) = f, resp.), introduce the clause(g) ((ḡ), resp.). A
well-known fact is that unit propagation4 onTST(Cτ) behaves equivalently to standard
Boolean constraint propagation on the original circuitCτ (see, e.g., [17] for details).

A well-known variant of the Tseitin encoding is the Plaisted-Greenbaum encod-
ing [14] which is based ongate polarities. Given a constrained Boolean circuitCτ , a
polarity functionpol

τ
C : G → 2{t,f} assigns polarities to each gate in the circuit. Heret

andf stand for thepositiveandnegativepolarities, respectively. Any polarity function
must satisfy the following requirements.

4 Given a CNF formulaF , while there is a unit clause{l} in F , unit propagation removes from
F (i) all clauses inF in which l occurs, and (ii) the literal̄l from each clause inF .

– If 〈g, v〉 ∈ τ , thenv ∈ pol
τ
C(g).

– If g := f(g1, . . . , gn), then:
• If f = NOT, thenv ∈ pol

τ
C(g) impliesv̄ ∈ pol

τ
C(g1).

• If f ∈ {AND, OR}, thenv ∈ pol
τ
C(g) impliesv ∈ pol

τ
C(gi) for eachi.

• If f = XOR, thenpol
τ
C(g) 6= ∅ impliespol

τ
C(gi) = {t, f}.

• If f = ITE, thenv ∈ pol
τ
C(g) implies

pol
τ
C(g1) = {t, f} andv ∈ pol

τ
C(gi) for i = 2, 3.

The Plaisted-Greenbaum encoding [14] uses the polarity functionminpol
τ
C that as-

signs for each gate the subset-minimal polarities from2{t,f} respecting the requirements
above. In other words, for each gateg,

minpol
τ
C(g) := {v | τ(g) = v or v ∈ minpol

τ
C(g′) for some parentg′ of g}.

The Tseitin encoding, on the other hand, can be seen as using the subset-maximal polar-
ity assigning polarity functionmaxpol

τ
C(g) := {t, f} for each gateg. For the gate types

considered in this paper, the clauses introduced based on gates polarities are listed in
Table 1.

Table 1.CNF encoding for constrained Boolean circuits based on gatepolarities. In the table,gi

is ḡ′

i if gi := NOT(g′

i), andgi otherwise.

gateg t ∈ polτ
C
(g) f ∈ polτ

C
(g)

g := OR(g1, . . . , gn) (ḡ ∨ g1 ∨ · · · ∨ gn) (g ∨ ḡ1),. . . ,(g ∨ ḡn)
g := AND(g1, . . . , gn) (ḡ ∨ g1),. . . ,(ḡ ∨ gn) (g ∨ ḡ1 ∨ · · · ∨ ḡn)
g := XOR(g1, g2) (ḡ ∨ ḡ1 ∨ ḡ2), (ḡ ∨ g1 ∨ g2) (g ∨ ḡ1 ∨ g2), (g ∨ g1 ∨ ḡ2)
g := ITE(g1, g2, g3) (ḡ ∨ ḡ1 ∨ g2), (ḡ ∨ g1 ∨ g3) (g ∨ ḡ1 ∨ ḡ2), (g ∨ g1 ∨ ḡ3)
〈g, t〉 ∈ τ (g)
〈g, f〉 ∈ τ (ḡ)

Given a constrained Boolean circuitCτ , we denote the CNF resulting from the
Plaisted-Greenbaum encoding ofCτ by PG(Cτ).

Relevant concepts additional concepts related to polarities are

– monotone gates: gateg is monotone if|minpol
τ
C(g)| = 1; and

– redundant gates: gateg is redundant ifminpol
τ
C(g) = ∅.

3 Resolution and CNF-Level Simplification

The resolution rule states that, given two clausesC1 = {x, a1, . . . , an} and C2 =
{x̄, b2, . . . , bm}, the implied clauseC = {a1, . . . , an, b1, . . . , bm}, called theresolvent
of C1 andC2, can be inferred byresolvingon the variablex. We writeC = C1 ⊗ C2.
This notion can be lifted to sets of clauses: For two setsSx andSx̄ of clauses which all
containx andx̄, respectively, we define

Sx ⊗ Sx̄ = {C1 ⊗ C2 | C1 ∈ Sx, C2 ∈ Sx̄, andC1 ⊗ C2 is not a tautology}.

Following the Davis-Putnam procedure [18] (DP), a basic simplification technique,
referred to asvariable elimination by clause distributionin [10], can be defined. The
elimination of a variablex in the whole CNF can be computed by pair-wise resolving
each clause inSx with every clause inSx̄. Replacing the original clauses inSx∪Sx̄ with
the set ofnon-tautologicalresolventsS = Sx ⊗Sx̄ gives the CNF(F \ (Sx ∪Sx̄))∪S

which is satisfiability-equivalent toF .
Notice that DP is a complete proof procedure for CNFs, with exponential worst-case

space complexity. Hence for practical applications of variable elimination by clause
distribution as a simplification technique for CNFs, variable elimination needs to be
bounded. Closely following the heuristics applied in the SatElite preprocessor [10] for
applying variable elimination, in this paper we study as a simplification technique the
bounded variant of variable elimination by clause distribution,VE, under which a vari-
ablex can be eliminated only if|S| ≤ |Sx ∪ Sx̄|, i.e., when the resulting CNF formula
(F \ (Sx ∪ Sx̄)) ∪ S will not contain more clauses as the original formulaF .5

It should be noted that the result ofVE can vary significantly depending on the order
in which variables are eliminated. In more detail,VE doesn’t have a unique fixpoint
for all CNF formulas, and the fixpoint reached in practice is dependent on variable
elimination ordering heuristics. HenceVE is notconfluent.

Proposition 1. VE is not confluent.

4 Blocked Clause Elimination

The main simplification technique studied in this paper is what we callblocked clause
elimination(BCE), which removes so calledblocked clauses[12] from CNF formulas.

Definition 1 (Blocking literal). A literal l in a clauseC of a CNFF blocksC (w.r.t.
F) if for every clauseC′ ∈ F with l̄ ∈ C′, the resolvent(C \ {l})∪ (C′ \ {l̄}) obtained
from resolvingC andC′ on l is a tautology.

With respect to a fixed CNF and its clauses we have:

Definition 2 (Blocked clause).A clause is blocked if it has a literal that blocks it.

Example 1.Consider the formulaFblocked = (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ c). Only
the first clause ofFblocked is not blocked. Both of the literalsa andc̄ block the second
clause. The literalc blocks the last clause. Notice that after removing either(a ∨ b̄ ∨ c̄)
or (ā∨c), the clause(a∨b) becomes blocked. This is actually an extreme case in which
BCE can remove all clauses of a formula, resulting in a triviallysatisfiable formula.�

As a side-remark, notice that a literall cannot block any clause in a CNF formulaF

if F contains the unit clause{l̄}, and hence in this case no clause containingl can be
blocked w.r.t.F .

An important fact is thatBCE preserves satisfiability.

5 More precisely, the SatElite preprocessor [10] applies a variant of VE calledvariable elimi-
nation by substitution. The analysis onVE in this paper applies to this variant as well.

Proposition 2 ([12]).Removal of an arbitrary blocked clause preserves satisfiability.

Additionally, we have the following.

Proposition 3. Given a CNF formulaF , let clauseC ∈ F be blocked w.r.t.F . Any
clauseC′ ∈ F , whereC′ 6= C, that is blocked w.r.t.F is also blocked w.r.t.F \ {C}.

Therefore the result of blocked clause elimination is independent of the order in which
blocked clauses are removed, and hence blocked clause elimination has a unique fix-
point for any CNF formula, i.e.,BCE is confluent.

Proposition 4. BCE is confluent.

It should be noted that, from a proof complexity theoretic point of view, there are
CNF formulas which can be made easier to prove unsatisfiable with resolution (and
hence also with clause learning SAT solvers) byaddingblocked clauses [12]. In more
detail, there are CNF formulas for which minimal resolutionproofs are guaranteed to
be of exponential length originally, but by adding instance-specific blocked clauses to
the formulas, the resulting formulas yield short resolution proofs. The effect of adding
(instance-specific) blocked clauses has also been studied in different contexts [19–21].
However, in a more general practical sense, we will show thatremoval of blocked
clauses byBCE yields simplified CNF formulas which are both smaller in sizeand
easier to solve.

As a final remark before proceeding to the main contributionsof this paper, we
note that this is not the first time removing blocked clauses is proposed for simplifying
CNFs [6]. However, in contrast to this paper, the work of [6] does not make the connec-
tion between blocked clauses and circuit-level simplifications and CNF encodings and,
most importantly, [6] concentrates on extracting underlying circuit gate definitions for
applying this knowledge in CNF simplification; blocked clause removal in [6] is actu-
ally not applied in the case any underlying gate definitions can be extracted, but rather
as an auxiliary simplification over those clauses which cannot be associated with gate
definitions.

5 Effectiveness of Blocked Clause Elimination

The main results of this section show the surprising effectiveness of blocked clause
elimination when applied until fixpoint. We will apply the following definition of the
relative effectiveness of CNF encodings and both circuit and CNF-level simplification
techniques.

Definition 3. Assume two methodsT1 and T2 that take as input an arbitrary con-
strained Boolean circuitCτ and output CNF formulasT1(Cτ) andT2(Cτ), respectively,
that are satisfiability-equivalent toCτ . We say thatT1 is at least as effective asT2 if, for
anyCτ , T1(Cτ) contains at most as many clauses and variables asT2(Cτ) does. IfT1

is at least as effective asT2 and vice versa, thenT1 andT2 areequally effective.

Notice that, consideringBCE, a stricter variant of this definition, based on clause elim-
ination, could be applied:T1 is at least as effective asT2 , if for every circuitCτ we have

T1(Cτ) ⊆ T2(Cτ). However, forVE this stricter definition cannot be naturally applied,
since in generalVE produces non-tautological resolvents which are not subsumed by
the original clauses. Because of this inherent property ofVE, we will for simplicity in
the following use the “weaker” version, as in Definition 3. All the results presented not
concerningVE also hold under the stricter version of the definition. Also notice that the
“at least as effective” relation is analogously defined for two CNF-level simplification
methods which, instead of Boolean circuits, take CNF formulas as input.

When considering the effectiveness ofVE in this paper, we apply a non-deterministic
interpretation which allows foranyvariable elimination order, i.e., we say thatVE can
achieve the effectiveness of another simplification technique, if there is some elimi-
nation order for whichVE achieves the same effectiveness. Finally, note that in the
following we always assume that Boolean circuits (CNF formulas, resp.) are closed
under standard circuit-level Boolean constraint propagation (unit propagation, resp.).

An overview of the main results of this section is presented in Fig. 1. An edge from
X to Y implies thatX is as least as effective asY ; for further details, see the caption.
Notice that transitive edges are omitted: for example,BCE is at least as effective as the
combination ofPG, COI, NSI, andMIR.

Plaisted−Greenbaum encoding Tseitin encoding

C
N

F
−

le
ve

l s
im

pl
ifi

ca
tio

n
C

irc
ui

t−
le

ve
l s

im
pl

ifi
ca

tio
n

PGMIR PGNSI

VEPG BCE VE

[BCE + VE]PG BCE + VE

PLPG

BCEPG

PL

PGCOI COI MIR NSI

PG

Fig. 1.Relative effectiveness of combinations of CNF encodings with both circuit and CNF-level
simplification techniques. An edge fromX to Y implies thatX is as least as effective asY . No-
tice that transitive edges are omitted. On the left side,XPG means the combination of first apply-
ing the Plaisted-Greenbaum and then the CNF-level simplification techniqueX on the resulting
CNF. Analogously,PGX means the combination of first applying the circuit-level simplification
X and then the Plaisted-Greenbaum encoding. On the right sidethe standard Tseitin encoding is
always applied. The pointed circles aroundCOI, MIR, andNSI on the left and right represent
applying the combination of these three simplifications andthen the Plaisted-Greenbaum (left) or
Tseitin encoding (right). Additionally,BCE+VE refers to all possible ways of alternatingBCE
andVE until fixpoint.

5.1 Pure Literal Elimination by BCE

Before turning to the main results, relatingBCE with circuit-level simplification tech-
niques, we begin by first arguing that bothBCE andVE actually achieve the same
simplifications as the well-knownpure literal elimination. Given a CNF formulaF , a
literal l occurring inF is pure if l̄ does not occur inF .

Pure Literal Elimination (PL): While there is a pure literall in F , remove all clauses
containingl from F .

Notice that the following two lemmas apply for all CNF formulas, and is not re-
stricted to CNFs produced by theTST or PG encodings.

Lemma 1. BCE is at least as effective asPL.

Proof sketch.A pure literal blocks all clauses which contain it by definition, and hence
clauses containing a pure literal are blocked. �

Lemma 2. VE is at least as effective asPL.

Proof sketch.Let l be a pure literal. By definition,Sl̄ (the set of clauses containingl̄) is
empty. HenceSl ⊗ Sl̄ = ∅, and thereforeVE removes the clauses inSl. �

5.2 Effectiveness of BCE on Circuit-Based CNFs

In this section we will consider several circuit-level simplification techniques—non-
shared input elimination, monotone input elimination, and cone of influence reduc-
tion [17]—and additionally the Plaisted-Greenbaum CNF encoding.

For the following, we consider an arbitrary constrained Boolean circuitCτ .

Non-shared input elimination (NSI): While there is a (non-constant) gateg with the
definition g := f(g1, . . . , gn) such that eachgi is an input gate with fanout one
(non-shared) inCτ , remove the gate definitiong := f(g1, . . . , gn) from Cτ .

Monotone input reduction (MIR): While there is a monotone input gateg in Cτ , as-
signg to minpol

τ
C(g).

Cone of influence reduction (COI): While there is a redundant gateg in Cτ , remove
the gate definitiong := f(g1, . . . , gn) from Cτ .

First, we observe that the Plaisted-Greenbaum encoding actually achieves the effec-
tiveness ofCOI.

Lemma 3. PG(Cτ) is at least as effective asPG(COI(Cτ)).

Proof sketch.For any redundant gateg, minpol
τ
C(g) = ∅ by definition. Hence the

Plaisted-Greenbaum encoding does not introduce any clauses for such a gate. �

On the other hand, blocked clause elimination can achieve the Plaisted-Greenbaum
encoding starting with the result of the Tseitin encoding.

Lemma 4. BCE(TST(Cτ)) is at least as effective asPG(Cτ).

Proof sketch.We claim thatBCE removes all clauses inTST(Cτ) \ PG(Cτ) from
TST(Cτ). There are two cases to consider: redundant and monotone gates. For both
cases,BCE works implicitly in a top-down manner, starting from the output gates (al-
thoughBCE has no explicit knowledge of the circuitCτ underlyingTST(Cτ).

Consider an arbitrary redundant output gate definitiong := f(g1, . . . , gn). Sinceg

is not constrained underτ , all clauses inTST(Cτ) in whichg occurs are related to this
definition. Now it is easy to see that the literals associatedwith g (recall Table 1) block
each of these clauses, and hence the clauses are blocked. On the circuit level, this is
equivalent to removing the definitiong := f(g1, . . . , gn).

Now consider an arbitrary monotone output gate definitiong := f(g1, . . . , gn) with
minpol

τ
C(g) = {v}, wherev ∈ {t, f}. Theng must be constrained:τ(g) = v. Hence unit

propagation ong removes all clauses produced byTST for the case “ifv̄ ∈ pol
τ
C(g)”

in Table 1 and removes the occurrences ofg from the clauses produced for the case “if
v ∈ pol

τ
C(g)”. To see howBCE removes in a top-down manner those clauses related

to monotone gate definitions which are not produced byPG, consider the gate defi-
nition gi := f ′(g′1, . . . , g

′
n′). Assume that unit propagation ong has no effect on the

clauses produced byTST for this definition, thatminpol
τ
C(gi) = {v}, and thatBCE

has removed all clauses related to the parents ofgi in TST(Cτ)\PG(Cτ). Now one can
check that the literals associated withgi block each of the clauses produced byTST
for the case “ifv̄ ∈ pol

τ
C(gi)”. This is because all the clauses produced byTST for

the definitions ofgi’s parents and in whichgi occurs have been already removed by
BCE (or by unit propagation). Hence all the clauses produced byTST for the case “if
v̄ ∈ pol

τ
C(gi)” in Table 1 are blocked. �

Combining Lemmas 3 and 4, we have

Lemma 5. BCE(TST(Cτ)) is at least as effective asPG(COI(Cτ)).

Next, we consider non-shared input elimination.

Lemma 6. BCE(TST(Cτ)) is at least as effective asPG(NSI(Cτ)).

Proof sketch.Assume a gate definitiong := f(g1, . . . , gn) such that eachgi is a non-
shared input gate. It is easy to check from Table 1 that for each gi, each clause produced
by TST for g := f(g1, . . . , gn) is blocked bygi. The result now follows from Lemma 4
and Proposition 3 (notice thatPG(Cτ) is always a subset ofTST(Cτ)). �

On the other hand,PL cannot achieve the effectiveness ofNSI when applyingPG:
sincePG produces the same set of clauses asTST for any gateg with minpol

τ
C(g) =

{t, f}, no literal occurring in these clauses can be pure.
We now turn to the monotone input reduction. Notice thatMIR is a proper gen-

eralization ofPL: given a CNF formulaF , any pure literal inF is monotone in the
straight-forward circuit representation ofF where each clauseC ∈ F is represented
as an outputOR-gate the children of which are the literals inC. On the other hand, a
monotone input gate in a circuitCτ is not necessarily a pure literal inTST(Cτ): TST
introduces clauses which together contain both positive and negative occurrences of all
gates, including monotone ones. However, it actually turnsout that, when applying the
Plaisted-Greenbaum encoding,PL andMIR are equally effective.

Lemma 7. PL(PG(Cτ)) andPG(MIR(Cτ)) are equally effective.

Proof sketch.Assume a gate definitiong := f(g1, . . . , gn), where somegi is a mono-
tone input gate. To see thatPL(PG(Cτ)) is at least as effective asPG(MIR(Cτ)), first
notice that sincegi is monotone,g is monotone. Now, it is easy to check (recall Table 1)
thatgi occurs only either negatively or positively in the clauses introduced byPG for
g := f(g1, . . . , gn), and hencegi is pure.

To see thatPG(MIR(Cτ)) is at least as effective asPL(PG(Cτ)), notice that in
order to be a pure literal inPG(Cτ), a gate has to be both monotone and an input.�

Using this lemma, we arrive at the fact thatBCE onTST can achieve the combined
effectiveness ofMIR andPG.

Lemma 8. BCE(TST(Cτ)) is at least as effective asPG(MIR(Cτ)).

Proof sketch.SinceBCE can remove all clauses inTST(Cτ) \ PG(Cτ) by Lemma 4,
after thisBCE can remove all clauses containing some monotone input gategi since
BCE is at least as effective asPL (Lemma 1). The result then follows by Lemma 7.�

Combining Lemmas 4, 5, 6, and 8, we finally arrive at

Theorem 1. BCE(TST(Cτ)) is at least as effective as first applying the combination
of COI, MIR, andNSI on Cτ until fixpoint, and then applyingPG on the resulting
circuit.

As an interesting side-remark, we have

Proposition 5. The combination ofNSI, MIR, andCOI is confluent.

Moreover,BCE is more effective than applying the combination ofCOI, MIR, and
NSI on Cτ until fixpoint, and then applyingPG on the resulting circuit. To see this,
consider for example a gate definitiong := OR(g1, . . . , gn), whereg hasminpol

τ
C(g) =

{t, f} and only a singlegi is an input gate with fanout one (non-shared), i.e. it occurs
only in the definition ofg. In this case the clauses inTST(Cτ) in which gi occurs are
blocked.

6 Benefits of Combining BCE and VE

We will now consider aspects of applyingBCE in combination withVE. As imple-
mented in the SatElite CNF preprocessor,VE has proven to be an extremely effective
preprocessing technique in practice [10].

First, we show thatVE, using an optimal elimination ordering, can also achieve the
effectiveness of many of the considered circuit-level simplifications.

Theorem 2. The following claims hold.

1. VE(TST(Cτ)) is at least as effective as (i)TST(COI(Cτ)); (ii) TST(NSI(Cτ)).
2. VE(PG(Cτ)) is at least as effective asVE(TST(Cτ)).
3. VE(PG(Cτ)) is at least as effective as

(i) PG(COI(Cτ)); (ii) PG(NSI(Cτ)); and (iii) PG(MIR(Cτ)).

Proof sketch.

1. (i) Assume a redundant output gate definitiong := f(g1, . . . , gn). NowSg⊗Sḡ = ∅
since all resolvents are tautologies when resolving ong (recall Table 1).
(ii) Assume a gate definitiong := f(g1, . . . , gn) such that eachgi is an non-shared
input gate. ForOR (similarly for AND), Sg1

⊗Sḡ1
= ∅. After resolving ong1 we are

left with the clauses∪k
i=2{g ∨ ḡi}, where each̄gi is then a pure literal. ForXOR,

simply notice thatSg1
⊗ Sḡ1

= ∅. For ITE, notice thatSg1
⊗ Sḡ1

= {ḡ ∨ g2 ∨ g3},
and theng2 andg3 are both pure literals.

2. Follows fromPG(Cτ) ⊆ TST(Cτ)
3. (i) Follows directly from Lemma 3.

(ii) By a similar argument as in Item 1 (ii).
(iii) Follows directly from Lemmas 2 and 7.

�

However, there are cases in whichVE is not as effective asBCE. Namely,VE
cannot achieve the effectiveness ofMIR when applyingTST, in contrast toBCE. To
see this, notice that an input gate can have arbitrarily large finite fanout and still be
monotone. On the other hand,VE cannot be applied on gates which have arbitrarily
large fanout and fanin, since the elimination bound ofVE can then be exceeded (number
of clauses produced would be greater than the number of clauses removed). In general, a
main point to notice is that forVE, in order to achieve the effectiveness ofBCE (on the
standard Tseitin encoding), one has to apply the Plaisted-Greenbaum encoding before
applyingVE. In addition, sinceVE is not confluent in contrast toBCE, in practice
the variable elimination ordering heuristics forVE has to be good enough so that it
forces the “right” elimination order. In addition, there are cases in whichBCE is more
effective thanVEPG. For some intuition on this, consider a clauseC with blocking
literal l. Notice that the result of performingVE on l is not dependent on whetherC is
removed. However, for any non-blocking literall′ ∈ C the number of non-tautological
clauses after applyingVE on l′ would be smaller ifBCE would first removeC.

On the other hand, there are also cases in which the combination of BCE andVE
can be more effective than applyingBCE only. For instance, by applyingVE on a
CNF, new blocked clauses may arise. For more concreteness, consider a circuit with
an XOR-gateg := XOR(g1, g2) whereg1 andg2 are input gates with fanout one (non-
shared). Assume thatg := XOR(g1, g2) is rewritten as anAND-OR circuit structure
g := AND(a, b), a := OR(g1, g2), b := OR(NOT(g1), NOT(g2)), wherea and b are
newly introduced gates with fanout one. Notice thatg1 andg2 now have fanout two.
In the Tseitin encoding of this structure,BCE cannot see the non-sharedness ofg1

andg2 in the underlyingXOR. However, by first eliminating theOR-gatesa andb with
VE, BCE can then remove the clauses containing the variablesg1 andg2 (the gates
become implicitly “non-shared” again). In other words, there are cases in which variable
elimination results in additional clauses to be blocked.

7 Implementation

In short,BCE can be implemented in a similar way asVE in the SatElite preproces-
sor [10]: first “touch” all literals. Then, as long as there isa touched literall: find clauses

that are blocked byl, mark l as not touched any more, remove these blocked clauses,
and touch the negation of all literals in these clauses. The priority list of touched literals
can be ordered by the number of occurrences. Literals with few occurrences of their
negations are to be tried first. This algorithm is implemented in PrecoSAT version 465
(http://fmv.jku.at/precosat) and can be used to runBCE until completion.

In principle, the result is unique. However, as in our implementation ofVE [10] in
PrecoSAT, we have a heuristic cut-off limit in terms of the number of occurrences of
a literal. If the number of occurrences of a literal is too large, then we omit trying to
find blocked clauses for its negation. This may prevent the actual implementation from
removing some blocked clauses. In general, however, as alsowitnessed by the results of
usingBCE on the CNFs generated with the Tseitin and Plaisted-Greenbaum encodings,
this cut-off heuristic does not have any measurable effect.

8 Experiments

We evaluated how much reduction can be achieved usingBCE in combination with
VE and various circuit encoding techniques. Reduction is measured in the size of the
CNF before and after preprocessing, and on the other hand, asgain in the number of
instances solved.

We used all formulas of SMT-Lib (http://smtlib.org) over the theory of bit-vectors
(QF BV) made available on July 2, 2009, as a practice benchmark set for the SMT
competition 2009. From these we removed the large number of mostly trivial SAGE
examples. The remaining 3672 SMT problems were bit-blastedto And-Inverter Graphs
(AIGs) in the AIGER format (http://fmv.jku.at/aiger) using our SMT solver Boolec-
tor [22]. Furthermore, we used the AIG instances used in [5],consisting of two types
of instances: (i) AIGs representing BMC problems (with stepboundk = 45) obtained
from all the 645 sequential HWMCC’08 (http://fmv.jku.at/hwmcc08) model checking
problems, and (ii) 62 AIGs from the structural SAT track of the SAT competition. We
have made the SMT-Lib instances publicly available at http://fmv.jku.at/aiger/smtqfbv-
aigs.7z (260MB); the others cannot be distributed due to license restrictions. However,
the HWMCC’08 instances can easily be regenerated using publicly available tools6 and
the model checking benchmarks available at http://fmv.jku.at/hwmcc08. We encoded
these 4379 structural SAT instances with four algorithms: the standard Tseitin encod-
ing [13], the Plaisted-Greenbaum polarity-based encoding[14], the Minicirc encoder
based on technology mapping [3] andVE, and the most recent NiceDAG encoder [4,
5]. The NiceDAG implementation was obtained from the authors. For Minicirc, we used
an improved implementation of Niklas Eén.

In order to additionally experiment with application benchmarks already in CNF,
we also included 292 CNFs of the application track of the SAT competition 2009 to our
benchmark set. All resulting CNFs were preprocessed withVE alone (further abbrevi-
ated e), and separately first withBCE (b), followed byVE (e), and both repeated again,
which altogether gives 6 versions of each CNF (noBCE or VE, e, b, be, beb, bebe).

6 Notice thatCOI is performed already in the generation process by these tools. However, we
did not implement the non-trivial NSI or MIR for the experiments.

We call such an application of one preprocessing algorithm,eitherBCE or VE, which
is run to completion, apreprocessing phase.

The results are presented in Table 2. The first column lists the benchmark fam-
ily: S = SAT’09 competition, A = structural SAT track, H = HWMCC’08, B = bit-
blasted bit-vector problems from SMT-Lib. These are all AIGs except for the CNF
instances in S. The next column gives the encoding algorithmused: T = Tseitin, P =
Plaisted-Greenbaum, M = Minicirc, N = NiceDAG, and U = unknown for the S family
already in CNF. The t columns give the sum of the time in seconds spent in one encod-
ing/preprocessing phase. The columns V and C list in millions the sum of numbers of
variables and clauses over all produced CNFs in each phase.

The results show that the combination “be” ofBCE andVE always gives better
results thanVE (e) alone, with comparable speed. Using a second phase (beb)of BCE
gives further improvements, even more ifVE is also applied a second time (bebe).
The CNF sizes after applyingBCE (b) for the P encoder and the T encoder are equal,
as expected. Further preprocessing, however, diverges: since clauses and literals are
permuted,VE is not confluent, and thusVE phases can produce different results.

We applied a time limit of 900 seconds and a memory limit of 4096 MB for each
encoder and each preprocessing phase. Thus139 out of106848 = 6 · (4 · 4379 + 292)
CNFs were not generated: HM encoding ran out of memory on 5 very large BMC
instances, one large CNF in S could not be preprocessed at all, and there was a problem
with the parser in NiceDAG, which could not parse 14 actuallyrather small AIGs in
BN. Furthermore, there were 10 timeouts for various preprocessing phases in the A
family: 2 in AT/beb, 2 in AN/be, 2 in AN/e, 2 in AP/be, and 2 in AP/e. However, except
for the one large CNF, where alsoVE run out of memory, there is not a single case
whereBCE did not run until completion within the given time and memorylimits.

Reducing the size of a CNF by preprocessing does not necessarily lead to faster run-
ning times. Since it was impossible to run all structural instances with an appropriate
time limit, we only performed preliminary experiments witha very small time limit of
90 seconds. We used PrecoSAT v236, the winner of the application track of the SAT
competition 2009, and PicoSAT v918, a fast clause learning solver which does not use
sophisticated preprocessing algorithms, in contrast to PrecoSAT. In both cases the re-
sults were inconclusive. Running preprocessing until completion takes a considerable
portion of the 90 seconds time limit, even if restricted toVE. In addition, the success of
PrecoSAT shows that not running preprocessing until completion is a much better strat-
egy, particularly if the preprocessor is run repeatedly again, with enough time spent on
search in-between. However, this strategy is hard to evaluate when many preprocessing
techniques are combined.7 Therefore we decided to stick with the run-to-completion
approach, which also gives some clear indication of how muchCNF size reduction can
be achieved throughBCE.

For the 292 SAT competition instances we were able to run PrecoSAT with a more
reasonable timeout of 900 seconds. The cluster machines used for the experiments, with
Intel Core 2 Duo Quad Q9550 2.8 GHz processor, 8 GB main memory, running Ubuntu
Linux version 9.04, are around two times as fast as the ones used in the first phase of the

7 In PrecoSAT v465, we have failed literal preprocessing, various forms of equivalence reason-
sing, explicit pure literal pruning,BCE, VE, combined with on-the-fly subsumption.

Table 2.Effectiveness ofBCE in combination withVE using various encoders.

encoding b be beb bebe e
t V C t V C t V C t V C t V C t V C

S U 0 46 2562303 29 1781042 11 1451188 11 145 569 11 1442064 11 153
A T 12 9 27 116 7 181735 1 81835 1 6 34 1 6 244 1 9
A P 10 9 20 94 7 181900 1 6 36 1 6 34 1 61912 1 6
AM 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8
AN 9 3 10 50 3 101855 1 6 36 1 6 34 1 61859 1 6
H T 147 121 3471648 117 2772641 18 118 567 18 118 594 18 1163240 23 140
H P 130 121 2861398 117 2772630 18 118 567 18 118 595 18 1162835 19 119
HM 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90
HN 134 34 124 573 34 1221185 17 102 504 17 101 525 17 1001246 17 103
B T 577 442 12535799 420 11197023 57 3211410 56 3101505 52 2948076 64 363
B P 542 442 11535461 420 11197041 57 3211413 56 3101506 52 2947642 57 322
BM 10024 59 3111252 58 3031351 53 2871135 53 2861211 52 2801435 55 303
B N 13148 196 6432902 193 6354845 108 5082444 107 5042250 105 5005076 114 518

2009 SAT competition. In the first phase of the competition, with a similar time limit,
PrecoSAT solved many more instances than competitors. Nevertheless, usingBCE we
can improve the number of solved instances considerable: PrecoSAT solves 176 original
instances, 177 preprocessed byBCE andVE alone (b and e), 179 be instances, 180 beb
instances, and 183 bebe instances. If we accumulate the timefor all the preprocessing
phases and add it to the actual running time, then 181 instances can be solved in the last
case. For the other cases the number of solved instances doesnot change.

It would be interesting to compare our results to pure circuit-level solvers. To our
understanding, however, such solvers have not proven to be more efficient than running
CNF solvers in combination with specialized circuit to CNF encodings.

9 Conclusions
We study a CNF-level simplification technique we callBCE (blocked clause elimina-
tion). We show thatBCE, although a simple concept, is surprisingly effective: without
any explicit knowledge of the underlying circuit structure, BCE achieves the same sim-
plifications as combinations of circuit-level simplifications and the well-known polarity-
based Plaisted-Greenbaum CNF encoding. This implies that the effect of such special-
ized circuit-level techniques can actually be accomplished directly on the CNF-level.
To our best knowledge, these connections have not been knownbefore. Furthermore,
in contrast to specialized circuit-level techniques,BCE can be naturally applied on any
CNF formula, regardless of its origin. Experimental results with an implementation of
a CNF-level preprocessor combiningBCE and SatElite-style variable elimination are
presented, showing the effectiveness and possible benefitsof applyingBCE.

Acknowledgements.The authors thank Niklas Eén and Pete Manolios for providing
up-to-date versions of the Minicirc and NiceDAG encoders used in the experiments.
The first author is financially supported by Academy of Finland under the project “Ex-
tending the Reach of Boolean Constraint Reasoning” (#132812). The third author is
supported by the Dutch Organization for Scientific Researchunder grant 617.023.611.

References

1. Jackson, P., Sheridan, D.: Clause form conversions for Boolean circuits. In: SAT’04 Selected
Revised Papers. Volume 3542 of LNCS., Springer (2005) 183–198

2. Mishchenko, A., Chatterjee, S., Brayton, R.K.: DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis. In: DAC’06, ACM (2006) 532–535

3. Eén, N., Mishchenko, A., Sörensson, N.: Applying logicsynthesis for speeding up SAT. In:
SAT’07. Volume 4501 of LNCS., Springer (2007) 272–286

4. Manolios, P., Vroon, D.: Efficient circuit to CNF conversion. In: SAT’07. Volume 4501 of
LNCS., Springer (2007) 4–9

5. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solvingwith better CNF generation. In:
DATE’09, IEEE (2009) 1590–1595

6. Ostrowski, R., Grégoire,́E., Mazure, B., Sais, L.: Recovering and exploiting structural
knowledge from CNF formulas. In: CP’02. Volume 2470 of LNCS., Springer (2002) 185–
199

7. Brafman, R.I.: A simplifier for propositional formulas with many binary clauses. IEEE
Transactions on Systems, Man, and Cybernetics, Part B34(1) (2004) 52–59

8. Bacchus, F.: Enhancing Davis Putnam with extended binaryclause reasoning. In: AAAI’02,
AAAI Press (2002) 613–619

9. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: SAT’04. Volume 3542 of LNCS., Springer (2005) 276–291

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: SAT’05. Volume 3569 of LNCS., Springer (2005) 61–75

11. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF for-
mulas. In: SAT’05. Volume 3569 of LNCS., Springer (2005) 423–429

12. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics
96–97(1999) 149–176

13. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In Siekmann, J.,
Wrightson, G., eds.: Automation of Reasoning 2: Classical Papers on Computational Logic
1967–1970. Springer (1983) 466–483

14. Plaisted, D.A., Greenbaum, S.: A structure-preservingclause form translation. Journal of
Symbolic Computation2(3) (1986) 293–304

15. Biere, A., Clarke, E.M., Raimi, R., Zhu, Y.: Verifiying safety properties of a power PC
microprocessor using symbolic model checking without BDDs. In: CAV’99. Volume 1633
of LNCS., Springer (1999) 60–71

16. Jussila, T., Biere, A.: Compressing BMC encodings with QBF. Electronic Notes in Theoret-
ical Computer Science174(3) (2007) 45–56

17. Drechsler, R., Junttila, T., Niemelä, I.: Non-clausalSAT and ATPG. In Biere, A., Heule,
M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume 185 of Frontiers
in Artificial Intelligence and Applications. IOS Press (2009) 655–694

18. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the
ACM 7(3) (1960) 201–215

19. Purdom, P.W.: Solving satisfiability with less searching. IEEE Transactions on Pattern
Analysis and Machine Intelligence6(4) (1984) 510–513

20. Kautz, H.A., Ruan, Y., Achlioptas, D., Gomes, C.P., Selman, B., Stickel, M.E.: Balance and
filtering in structured satisfiable problems. In: IJCAI’01,Morgan Kaufmann (2001) 351–358

21. Heule, M.J.H., Verwer, S.: Using a satisfiability solverto identify deterministic finite state
automata. In: BNAIC’09. (2009) 91–98

22. Brummayer, R., Biere, A.: Boolector: An efficient SMT solver for bit-vectors and arrays. In:
TACAS’09. Volume 5505 of LNCS., Springer (2009) 174–177

