
JNuke: Efficient Dynamic Analysis for Java

Cyrille Artho1, Viktor Schuppan1, Armin Biere1,
Pascal Eugster2, Marcel Baur3, and Boris Zweimüller1

1 Computer Systems Institute, ETH Zürich, Switzerland
2 Avaloq Evolution, Zürich, Switzerland

3 Al Dente Brainworks, Zürich, Switzerland

Abstract. JNuke is a framework for verification and model checking of Java
programs. It is a novel combination of run-time verification, explicit-state model
checking, and counter-example exploration. Efficiency is crucial in dynamic ver-
ification. Therefore JNuke has been written from scratch in C, improving per-
formance and memory usage by an order of magnitude compared to competing
approaches and tools.

1 Introduction

Java is a popular object-oriented, multi-threaded programming language. Verification
of Java programs has become increasingly important. Dynamic analysis, including run-
time verification and model checking, has the key advantage of having precise informa-
tion available, compared to classical approaches like theorem proving and static anal-
ysis. There are fully automated dynamic analysis algorithms that can deduce possible
errors by analyzing a single execution trace [1,7,14].

Dynamic analysis requires an execution environment, such as a Java Virtual Ma-
chine (VM). However, typical Java VMs only target execution and do not offer all re-
quired features, in particular, backtracking and full state access. Code instrumentation,
used by JPaX, only solves the latter problem [9]. JNuke, our run-time verification and
model-checking framework, contains a specialized VM allowing both backtracking and
full access to its state. Custom checking algorithms can be implemented.

Related work includes software model checkers that apply directly to programs,
for example, the Java PathFinder system (JPF) developed by NASA [17], and similar
systems for checking Java programs [4,7,12,13] and other software [6,8,10,11]. JPF, as
a comparable system, is written in Java. Hence it effectively uses two layers of VMs,
the system layer and its own. Our benchmarks show that JNuke is more efficient.

2 System Design

The static part of JNuke includes a class loader, transformer and type checker, including
a byte code verifier. When loading a Java class file, JNuke transforms the byte code
into a reduced instruction set derived from the abstract byte code in [16], after inlining
intra-method subroutines. Additionally, registers are introduced to replace the operand
stack. A peep-hole optimizer takes advantage of the register-based byte code. Another



component can capture a thread schedule and use code instrumentation to produce class
files that execute a given schedule on an arbitrary VM or Java debugger [15].

At the core of JNuke is its VM, providing check-points [5] for explicit-state model
checking and reachability analysis through backtracking. A check-point allows explo-
ration of different successor states in the search, storing only the difference between
states for efficiency. Both the ExitBlock and ExitBlockRW [2] heuristics are available
for schedule generation. These algorithms reduce the number of explored schedules
in two ways. First, thread switches are only performed when a lock is released, thus
reducing interleavings. Second, the RW version adds a partial-order reduction if no
data dependencies are present between two blocks in two threads. If no data races are
present, behavioral equivalence is preserved. The supertrace algorithm [10] can be used
to reduce memory consumption. For generic run-time verification, the engine can also
run in simulation mode [17], where only one schedule defined by a given scheduling al-
gorithm is executed. Event listeners can implement any run-time verification algorithm,
including Eraser [14] and detection of high-level data races [1].

For portability and best possible efficiency, JNuke was implemented in C. A light-
weight object-oriented layer has been added, allowing for a modern design without
sacrificing speed. We believe that the choice of C as the programming language was not
the only reason for JNuke’s competitive performance. The ease of adding and testing
optimizations through our rigorous unit testing framework ensured quality and effi-
ciency. The roughly 1500 unit tests make up half of the 120,000 lines of code (LOC).
Full statement coverage results in improved robustness and portability. JNuke runs on
Mac OS X and the 32-bit and 64-bit variants of Linux (x86 and Alpha) and Solaris.

3 Experiments

The following experiments were used to compare JNuke to JPaX and JPF: two task-
parallel applications, SOR (Successive Over-Relaxation over a 2D grid), and a Trav-
elling Salesman Problem (TSP) application [18], a large cryptography benchmark [3]
and two implementations of well-known distributed algorithms [5]: For Dining Philoso-
phers, the first number is the number of philosophers, the second one the number of
rounds. Producer/Consumer involves two processes communicating the given number
of times through a one-element buffer. The experiments emphasize the aim of applying
a tool to test suites of real-world programs without manual abstraction or annotations.

All experiments were run on a Pentium III with a clock frequency of 733 MHz and
256 KB of level II cache. Table 1 shows the results of run-time verification in simulation
mode. Memory limit was 1 GB. Benchmarks exceeding it are marked with “m.o.”.

The columns “Eraser” refer to an implementation of the Eraser [14] algorithm.
Mode (1) distinguishes between accesses to individual array elements and is more pre-
cise. Mode (2) treats arrays as single objects and therefore requires much less memory
for large arrays. Columns “VC” refer to the view consistency algorithm [1] used to
detect high-level data races. Again, modes (1) and (2) concern array elements.

For comparison, the run times using the JPaX [9] and JPF [17] platforms are given.
In the JPaX figures, only the time required to run the instrumented program is given,
constituting the major part of the total run time. This refers to both the view consistency

2



Application Sun’s VM JNuke JNuke Eraser JNuke VC JPaX JPF
JIT no JIT VM 1 2 1 2 2 2

SOR 0.7 0.7 3.6 934.1 21.5 34.0 19.2 45.9 error
TSP, size 4 0.6 0.4 0.7 1.7 1.5 1.2 1.1 2.7 m.o.
TSP, size 10 0.6 0.4 1.8 10.0 9.3 9.1 8.4 56.3 m.o.
TSP, size 15 0.8 1.2 24.5 228.7 203.0 207.0 192.7 1109.5 m.o.
JGFCrypt A 6.6 19.1 415.0 m.o. 1667.7 m.o. 1297.7 m.o. m.o.
Dining Phil. (DP 3 5000) 1.2 1.9 11.0 15.7 15.6 987.0 987.0 83.2 m.o.
Prod./Cons. (PC 12000) 1.6 1.5 5.6 8.1 8.1 71.8 71.8 error m.o.

Table 1. Execution times for run-time verification in simulation mode, given in seconds.

and Eraser algorithms, which can use the same event log. JPaX currently only offers
mode (2). View consistency is currently not implemented in JPF [17]. In its simulation
mode, it ran out of memory after 10 – 20 minutes for each benchmark.

Generally, JNuke uses far less memory, the difference often exceeding an order of
magnitude. Maximal memory usage was 66.7 MB in the SOR benchmark in mode (2).
Analyzing a large number of individual array entries is currently far beyond the capacity
of JPaX and JPF. Certain benchmarks show that the view consistency algorithm would
benefit from a high-performance set intersection operation [14]. Because file I/O is not
available in JPF, most benchmarks required manual abstraction for JPF.

The focus of our experiments for explicit-state model checking capability is on per-
formance of the underlying engines, rather than on state space exploration heuristics.
Therefore correct, relatively small instances of Dining Philosophers and Prod./Cons.
from [5] were chosen where the state space can be explored exhaustively. JPF supports
two modes of atomicity in scheduling, either per instruction or per source line. JNuke
offers both ExitBlock and ExitBlockRW (EB and EB/RW, [2]) relying mainly on lock
releases as boundaries of atomic blocks. Hence, a direct performance comparison is
difficult. For this reason, Tab. 2 provides instructions per second in addition to absolute
numbers. Timeout (“t.o.”) was set to 1800 s.

JNuke often handles 5 – 20 times more instructions per second than JPF. Atomicity
in scheduling has a large impact, as shown by the number of instructions executed for
different heuristics. In absolute terms, JNuke is usually an order of magnitude faster.

4 Conclusions and Future Work

JNuke implements run-time verification and model checking, both requiring capabili-
ties that off-the-shelf virtual machines do not offer. Custom virtual machines, however,
should achieve a comparable performance, as JNuke does. Scheduler heuristics and
verification rules can be changed easily. JNuke is more efficient than comparable tools.

Future work includes a garbage collector and a just-in-time compiler. The segmen-
tation algorithm [7] would reduce false positives. Static analysis to identify thread-safe
fields will speed up run-time analysis. Finally, certain native methods do not yet allow
a rollback operation, which is quite a challenge for network operations.

3



JNuke (EB/RW) JNuke (EB) JPF (lines) JPF (byte codes)
time #ins #ins/s time #ins #ins/s time #ins #ins/s time #ins #ins/s

DP 2 10 6.4 189 29.6 8.6 323 37.6 84.7 503 5.9 816.9 2,770 3.4
DP 3 1 0.2 4 16.3 1.8 60 33.7 29.7 151 5.1 845.7 2,457 2.9
DP 3 2 5.1 127 25.0 20.7 693 33.5 186.7 1,112 6.0 t.o. t.o. t.o.
DP 3 3 32.5 818 25.2 92.8 2,994 32.3 597.6 3,670 6.1 t.o. t.o. t.o.
PC 100 1.1 67 61.9 1.1 80 70.4 48.4 279 5.8 390.8 1,363 3.5
PC 1000 15.9 661 41.5 17.7 794 44.8 409.4 2,795 6.8 t.o. t.o. t.o.

Table 2. Results for model checking. Time is in seconds, no. of instructions in thousands.

References

1. C. Artho, K. Havelund, and A. Biere. High-level data races. Journal on Software Testing,
Verification & Reliability (STVR), 13(4), 2003.

2. D. Bruening. Systematic testing of multithreaded Java programs. Master’s thesis, MIT, 1999.
3. J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A methodology for benchmarking

Java Grande applications. In Proc. ACM Java Grande Conference, 1999.
4. J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Ban-

dera: Extracting finite-state models from Java source code. In Proc. Intl. Conf. on Software
Engineering (ICSE’00). ACM Press, 2000.

5. P. Eugster. Java Virtual Machine with rollback procedure allowing systematic and exhaustive
testing of multithreaded Java programs. Master’s thesis, ETH Zürich, 2003.

6. P. Godefroid. Model checking for programming languages using VeriSoft. In Proc. ACM
Symposium on Principles of Programming Languages (POPL’97), 1997.

7. J. Harrow. Runtime checking of multithreaded applications with Visual Threads. In
Proc. SPIN Workshop (SPIN’00), volume 1885 of LNCS. Springer, 2000.

8. R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access errors. In
Proc. Winter USENIX Conf. (USENIX’92), 1992.

9. K. Havelund and G. Roşu. Monitoring Java programs with Java PathExplorer. In Proc. Run-
Time Verification Workshop (RV’01), volume 55 of ENTCS. Elsevier, 2001.

10. G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.
11. G. Holzmann and M. Smith. A practical method for verifying event-driven software. In

Proc. Intl. Conf. on Software Engineering (ICSE’99). IEEE/ACM, 1999.
12. M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-time assur-

ance tool for Java programs. In Proc. Run-Time Verification Workshop (RV’01), volume 55
of ENTCS. Elsevier, 2001.

13. Robby, M. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular software model
checking framework. In Proc. European Software Engineering Conf. (ESEC’03), 2003.

14. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. on Computer Systems, 15(4), 1997.

15. V. Schuppan, M. Baur, and A. Biere. JVM-independent replay in Java. In Proc. Run-Time
Verification Workshop (RV’04), ENTCS. Elsevier, 2004.

16. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer, 2001.
17. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc. IEEE

Intl. Conf. Automated Software Engineeering (ASE’00), 2000.
18. C. von Praun and T. Gross. Object-race detection. In OOPSLA 2001. ACM Press, 2001.

4


