
Lower Bound Techniques for QBF Proof Systems

Meena Mahajan

The Institute of Mathematical Sciences, HBNI, Chennai.

Proof Complexity Workshop, FLoC 2018, Oxford, UK.
7,8 July, 2018

8 July 2018 Meena Mahajan, IMSc

Credits

My work on QBF proof complexity –

partially supported by the EU Marie Curie IRSES grant CORCON.

joint work with
Olaf Beyersdorff Univ of Leeds, UK
Leroy Chew Univ of Leeds, UK
Anil Shukla formerly at IMSc, Chennai

now at IIT Ropar

8 July 2018 Meena Mahajan, IMSc

QBF Proof systems

What are they?

Why do we study them?

8 July 2018 Meena Mahajan, IMSc

Satisfiability

SAT: Satisfiability.
eg. Is there an assignment to x , y , z satisfying all the clauses
(x ∨ y ∨ z), (x ∨ ¬ y ∨ ¬ z), (¬ x ∨ y ∨ ¬ z), (¬ x ∨ ¬ y ∨ z)?

Quintessential NP-complete problem.

Very hard – in theory.

In practice – a solved problem! Many good SAT solvers around.

Ambitious programs to design good solvers for problems harder than
SAT.

8 July 2018 Meena Mahajan, IMSc

Satisfiability

SAT: Satisfiability.
eg. Is there an assignment to x , y , z satisfying all the clauses
(x ∨ y ∨ z), (x ∨ ¬ y ∨ ¬ z), (¬ x ∨ y ∨ ¬ z), (¬ x ∨ ¬ y ∨ z)?

Quintessential NP-complete problem.

Very hard – in theory.

In practice – a solved problem! Many good SAT solvers around.

Ambitious programs to design good solvers for problems harder than
SAT.

8 July 2018 Meena Mahajan, IMSc

Satisfiability

SAT: Satisfiability.
eg. Is there an assignment to x , y , z satisfying all the clauses
(x ∨ y ∨ z), (x ∨ ¬ y ∨ ¬ z), (¬ x ∨ y ∨ ¬ z), (¬ x ∨ ¬ y ∨ z)?

Quintessential NP-complete problem.

Very hard – in theory.

In practice – a solved problem! Many good SAT solvers around.

Ambitious programs to design good solvers for problems harder than
SAT.

8 July 2018 Meena Mahajan, IMSc

QBF solvers

QBF: Quantified Boolean Formula

Subsumes SAT. eg. Is this QBF true?

∃x∃y∃z(x ∨ y ∨ z), (x ∨ ¬ y ∨ ¬ z), (¬ x ∨ y ∨ ¬ z), (¬ x ∨ ¬ y ∨ z)

PSPACE-complete, so much more expressive than SAT.
eg. Is this formula true?

∃e ∀u ∃c ∃d (¬ e ∨ c)(e ∨ d)(¬ u ∨ c)(u ∨ d)(¬ c ∨ ¬ d)

Quite a few QBF solvers developed in the last couple of decades.

8 July 2018 Meena Mahajan, IMSc

Improving solvers

How to improve the performance of a solver?

Understand where it flounders.

Underlying solver heuristics are formal proof systems: Runs of
SAT/QBF solver provide proofs of unsatisfiability/falsity.

Lower bounds in formal proof system
(no short proof of unsat/falsity)

⇓
no short runs.

Proving lower bounds – back to theory!

8 July 2018 Meena Mahajan, IMSc

Improving solvers

How to improve the performance of a solver?

Understand where it flounders.

Underlying solver heuristics are formal proof systems: Runs of
SAT/QBF solver provide proofs of unsatisfiability/falsity.

Lower bounds in formal proof system
(no short proof of unsat/falsity)

⇓
no short runs.

Proving lower bounds – back to theory!

8 July 2018 Meena Mahajan, IMSc

Improving solvers

How to improve the performance of a solver?

Understand where it flounders.

Underlying solver heuristics are formal proof systems: Runs of
SAT/QBF solver provide proofs of unsatisfiability/falsity.

Lower bounds in formal proof system
(no short proof of unsat/falsity)

⇓
no short runs.

Proving lower bounds – back to theory!

8 July 2018 Meena Mahajan, IMSc

The Resolution Proof System for UNSAT

C: bag of clauses. ã: assignment to the variables.
If ã satisfies Then ã satisfies

C =

...
A ∨ x

B ∨ ¬ x
...

C′ =

...
A ∨ x

B ∨ ¬ x
...

A ∨ B

C0 ∈ SAT =⇒ C1 ∈ SAT =⇒ . . . =⇒ Ct−1 ∈ SAT =⇒ Ct ∈ SAT

C0 6∈ SAT⇐ . . .⇐ Ci 6∈ SAT⇐ . . .⇐ Ct 6∈ SAT⇐ � ∈ Ct

8 July 2018 Meena Mahajan, IMSc

The Resolution Proof System for UNSAT

C: bag of clauses. ã: assignment to the variables.
If ã satisfies Then ã satisfies

C =

...
A ∨ x

B ∨ ¬ x
...

C′ =

...
A ∨ x

B ∨ ¬ x
...

A ∨ B

C0 ∈ SAT =⇒ C1 ∈ SAT =⇒ . . . =⇒ Ct−1 ∈ SAT =⇒ Ct ∈ SAT

C0 6∈ SAT⇐ . . .⇐ Ci 6∈ SAT⇐ . . .⇐ Ct 6∈ SAT⇐ � ∈ Ct

8 July 2018 Meena Mahajan, IMSc

Extending Resolution to QBFs

QBFs: Quantified Boolean Formulas

W.l.o.g., QBF in prenex CNF: Q~x · F (~x); F a set of clauses.

Resolution is sound: If Q~x · F (x) is true, and we add a clause C to F
through resolution to get F ′, then Q~x · F ′(x) is also true.

But Resolution alone is not enough. Consider

∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Resolution can add (x ∨ ¬ x) or (u ∨ ¬ u). Useless.

Universal variable u has to be handled differently.

Two ways to proceed, modelling • CDCL-based solvers
• expansion-based solvers

8 July 2018 Meena Mahajan, IMSc

Extending Resolution to QBFs

QBFs: Quantified Boolean Formulas

W.l.o.g., QBF in prenex CNF: Q~x · F (~x); F a set of clauses.

Resolution is sound: If Q~x · F (x) is true, and we add a clause C to F
through resolution to get F ′, then Q~x · F ′(x) is also true.

But Resolution alone is not enough. Consider

∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Resolution can add (x ∨ ¬ x) or (u ∨ ¬ u). Useless.

Universal variable u has to be handled differently.

Two ways to proceed, modelling • CDCL-based solvers
• expansion-based solvers

8 July 2018 Meena Mahajan, IMSc

The Evaluation Game on QBFs

QBF Q~x · F (x)

Two players, Red and Blue, step through quantifier prefix left-to-right.
Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: ã.

Red wins a run of the game if F (ã) true. Otherwise Blue wins.

example:
∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Red: x = 1, Blue: u = 1: Red wins
Red: x = 1, Blue: u = 0: Blue wins
Red: x = 0, Blue: u = 1: Blue wins
Blue can always win: set u 6= x .

Q~x · F (x) false if and only if Blue has a winning strategy.

Use this to extend Resolution.

8 July 2018 Meena Mahajan, IMSc

The Evaluation Game on QBFs

QBF Q~x · F (x)

Two players, Red and Blue, step through quantifier prefix left-to-right.
Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: ã.

Red wins a run of the game if F (ã) true. Otherwise Blue wins.

example:
∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Red: x = 1, Blue: u = 1: Red wins
Red: x = 1, Blue: u = 0: Blue wins
Red: x = 0, Blue: u = 1: Blue wins
Blue can always win: set u 6= x .

Q~x · F (x) false if and only if Blue has a winning strategy.

Use this to extend Resolution.

8 July 2018 Meena Mahajan, IMSc

The Evaluation Game on QBFs

QBF Q~x · F (x)

Two players, Red and Blue, step through quantifier prefix left-to-right.
Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: ã.

Red wins a run of the game if F (ã) true. Otherwise Blue wins.

example:
∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Red: x = 1, Blue: u = 1: Red wins
Red: x = 1, Blue: u = 0: Blue wins
Red: x = 0, Blue: u = 1: Blue wins

Blue can always win: set u 6= x .

Q~x · F (x) false if and only if Blue has a winning strategy.

Use this to extend Resolution.

8 July 2018 Meena Mahajan, IMSc

The Evaluation Game on QBFs

QBF Q~x · F (x)

Two players, Red and Blue, step through quantifier prefix left-to-right.
Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: ã.

Red wins a run of the game if F (ã) true. Otherwise Blue wins.

example:
∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Red: x = 1, Blue: u = 1: Red wins
Red: x = 1, Blue: u = 0: Blue wins
Red: x = 0, Blue: u = 1: Blue wins
Blue can always win: set u 6= x .

Q~x · F (x) false if and only if Blue has a winning strategy.

Use this to extend Resolution.

8 July 2018 Meena Mahajan, IMSc

The Evaluation Game on QBFs

QBF Q~x · F (x)

Two players, Red and Blue, step through quantifier prefix left-to-right.
Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: ã.

Red wins a run of the game if F (ã) true. Otherwise Blue wins.

example:
∃x ∀u (x ∨ ¬ u) (¬ x ∨ u).

Red: x = 1, Blue: u = 1: Red wins
Red: x = 1, Blue: u = 0: Blue wins
Red: x = 0, Blue: u = 1: Blue wins
Blue can always win: set u 6= x .

Q~x · F (x) false if and only if Blue has a winning strategy.

Use this to extend Resolution.

8 July 2018 Meena Mahajan, IMSc

The ∀ reduction rule

Consider this scenario:

Q~x · F (x) is true. So Red has a winning strategy.

F (x) has a clause C in which the rightmost variable (as per Q~x) is a
universal variable u.
i.e. C = A ∨ `; ` ∈ {u,¬ u}; all variables in A are left of u.

Then, by the time Blue has to fix u, Red’s strategy must ensure that
sub-clause A is already satisfied.

That is, Red has a winning strategy on Q~x · [F (x) ∧ A].
So Q~x · [F (x) ∧ A] is also true.

8 July 2018 Meena Mahajan, IMSc

The ∀ reduction rule

Consider this scenario:

Q~x · F (x) is true. So Red has a winning strategy.

F (x) has a clause C in which the rightmost variable (as per Q~x) is a
universal variable u.
i.e. C = A ∨ `; ` ∈ {u,¬ u}; all variables in A are left of u.

Then, by the time Blue has to fix u, Red’s strategy must ensure that
sub-clause A is already satisfied.

That is, Red has a winning strategy on Q~x · [F (x) ∧ A].
So Q~x · [F (x) ∧ A] is also true.

8 July 2018 Meena Mahajan, IMSc

The proof system QU-Res = Res+∀Red

Q~x · C

Grow the bag of clauses C using

Resolution: If A ∨ x and B ∨ ¬ x are in the bag,
can add A ∨ B (provided not a tautology),

∀-Reduction: If A ∨ `(u) in the bag, and all variables in A left of u,
can add A,

until the empty clause � is added.

8 July 2018 Meena Mahajan, IMSc

The proof system QU-Res (cont’d)

Sound: A derivation of � reveals a winning strategy for Blue.
[vanGelder 2012]

Complete: Use a winning strategy of Blue to decide which clauses to
derive.

Suffices to resolve with existential pivots only
(Q-Res, [KleineBüningKarpinskiFlögel 1995])
Suffices to eliminate variables in right-to-left order of quantification
blocks (Level-ordered Q-Res)

8 July 2018 Meena Mahajan, IMSc

The proof system QU-Res (cont’d)

Sound: A derivation of � reveals a winning strategy for Blue.
[vanGelder 2012]

Complete: Use a winning strategy of Blue to decide which clauses to
derive.

Suffices to resolve with existential pivots only
(Q-Res, [KleineBüningKarpinskiFlögel 1995])
Suffices to eliminate variables in right-to-left order of quantification
blocks (Level-ordered Q-Res)

8 July 2018 Meena Mahajan, IMSc

A derivation in Q-Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e
u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0
u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

ū ∨ c e ∨ c̄ ē ∨ c u ∨ c̄

ū ∨ e ē ∨ u

e ē

�

8 July 2018 Meena Mahajan, IMSc

A derivation in Q-Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e
u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0
u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

ū ∨ c e ∨ c̄ ē ∨ c u ∨ c̄

ū ∨ e ē ∨ u

e ē

�

8 July 2018 Meena Mahajan, IMSc

A derivation in Q-Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e
u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0
u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

ū ∨ c e ∨ c̄ ē ∨ c u ∨ c̄

ū ∨ e ē ∨ u

e ē

�

8 July 2018 Meena Mahajan, IMSc

A derivation in Q-Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e
u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0
u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

ū ∨ c e ∨ c̄ ē ∨ c u ∨ c̄

ū ∨ e ē ∨ u

e ē

�

8 July 2018 Meena Mahajan, IMSc

A derivation in Q-Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e
u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0
u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

ū ∨ c e ∨ c̄ ē ∨ c u ∨ c̄

ū ∨ e ē ∨ u

e ē

�

8 July 2018 Meena Mahajan, IMSc

Adding the ∀-reduction rule

[Beyersdorff,Bonacina,Chew ITCS 2016]

P: Any sound and complete line-based proof system for UNSAT
eg Cutting Planes, Polynomial Calculus, Frege,

restrictions of Frege (AC0-Frege, AC0[p]-Frege, TC0-Frege ...)

⇓

P+∀Red: a sound and complete proof system for QBF

8 July 2018 Meena Mahajan, IMSc

The CP+∀Red proof system

CP+∀Red: Cutting Planes + ∀ Reduction.

[Beyersdorff,Chew,M,Shukla FSTTCS 2016]

Cutting Planes: Encode clauses as integer inequalities.
x ∨ y ∨ z → x + y + z ≥ 1
x ∨ ¬ y ∨ z → x + (1− y) + z ≥ 1

(x − y + z ≥ 0)
x ∨ ¬ y ∨ ¬ z → x + (1− y) + (1− z) ≥ 1

(x − y − z ≥ −1)

Bags of inequalities, not clauses.

Evaluation game: Red tries to satisfy all inequalities.
Blue tries to falsify some inequality.

8 July 2018 Meena Mahajan, IMSc

The rules in Cutting Planes

If Red (∃) can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

(for k ∈ Z>0)

(〈a · x〉 means a1x1 + a2x2 + . . .+ anxn.)

Then Red can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

〈(a + b) · x〉 ≥ A + B
the + rule

〈ka · x〉 ≥ kA
the × rule

〈c · x〉 ≥
⌈
C
k

⌉
the ÷ rule

8 July 2018 Meena Mahajan, IMSc

The rules in Cutting Planes

If Red (∃) can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

(for k ∈ Z>0)

(〈a · x〉 means a1x1 + a2x2 + . . .+ anxn.)

Then Red can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

〈(a + b) · x〉 ≥ A + B
the + rule

〈ka · x〉 ≥ kA
the × rule

〈c · x〉 ≥
⌈
C
k

⌉
the ÷ rule

8 July 2018 Meena Mahajan, IMSc

The rules in Cutting Planes

If Red (∃) can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

(for k ∈ Z>0)

(〈a · x〉 means a1x1 + a2x2 + . . .+ anxn.)

Then Red can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

〈(a + b) · x〉 ≥ A + B
the + rule

〈ka · x〉 ≥ kA
the × rule

〈c · x〉 ≥
⌈
C
k

⌉
the ÷ rule

8 July 2018 Meena Mahajan, IMSc

The rules in Cutting Planes

If Red (∃) can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

(for k ∈ Z>0)

(〈a · x〉 means a1x1 + a2x2 + . . .+ anxn.)

Then Red can win

. . .
〈a · x〉 ≥ A
〈b · x〉 ≥ B
〈kc · x〉 ≥ C

. . .

〈(a + b) · x〉 ≥ A + B
the + rule

〈ka · x〉 ≥ kA
the × rule

〈c · x〉 ≥
⌈
C
k

⌉
the ÷ rule

8 July 2018 Meena Mahajan, IMSc

∀ reduction in CP+∀Red

If Red can win with I containing 〈a · x〉 ≥ A where

the rightmost non-zero coefficient in a is blue,

a = a’ b 00...0, (ie a universal variable, u)

then Red can win with
I ∪ {〈a′000...00〉 · x ≥ A− b}

↑
(Set u = 1)

∪ {〈a′000...0〉 · x ≥ A}
↑

(Set u = 0)

.

This Blue-elimination is the ∀-Reduction rule.

8 July 2018 Meena Mahajan, IMSc

Proofs in the CP+∀Red proof system

Keep using the +, ×, ÷ and ∀Reduction rules.

Red can win with I = I0
⇓

Red can win with I1
⇓

Red can win with I2
⇓
...
⇓

Red can win with It .

If It contains 0 ≥ 1,
then Red can’t win with It , and so Red can’t win with I.

8 July 2018 Meena Mahajan, IMSc

Expansion-Based Systems

∀uQ~x · F (u, ~x) is true

m

[Q~x · F (0, ~x)] ∧ [Q~x · F (1, ~x)] is true

m

Q~xu/0Q~xu/1 ·
[
F (0, ~xu/0) ∧ F (1, ~xu/1)

]
is true

Expand the initial formula judiciously, on the fly.

Then use standard resolution.

Expansion-based systems:
∀Exp+Res [Janota,Marques-Silva 2015],
IR [Beyersdorff,Chew,Janota 2014].

8 July 2018 Meena Mahajan, IMSc

Expansion-Based Systems

∀uQ~x · F (u, ~x) is true

m

[Q~x · F (0, ~x)] ∧ [Q~x · F (1, ~x)] is true

m

Q~xu/0Q~xu/1 ·
[
F (0, ~xu/0) ∧ F (1, ~xu/1)

]
is true

Expand the initial formula judiciously, on the fly.

Then use standard resolution.

Expansion-based systems:
∀Exp+Res [Janota,Marques-Silva 2015],
IR [Beyersdorff,Chew,Janota 2014].

8 July 2018 Meena Mahajan, IMSc

Part of a derivation in ∀Exp+Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e

u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0

u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

cu/1 cu/1 e ∨ du/1 c̄u/1 ∨ d̄u/1

cu/1 e ∨ c̄u/1

e

e

ē ∨ cu/0 ē ∨ cu/0 du/0 c̄u/0 ∨ d̄u/0

ē ∨ cu/0 c̄u/0

ē

ē

�

8 July 2018 Meena Mahajan, IMSc

Part of a derivation in ∀Exp+Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e

u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0

u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

cu/1 cu/1 e ∨ du/1 c̄u/1 ∨ d̄u/1

cu/1 e ∨ c̄u/1

e

e

ē ∨ cu/0 ē ∨ cu/0 du/0 c̄u/0 ∨ d̄u/0

ē ∨ cu/0 c̄u/0

ē

ē

�

8 July 2018 Meena Mahajan, IMSc

Part of a derivation in ∀Exp+Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e

u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0

u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

cu/1 cu/1 e ∨ du/1 c̄u/1 ∨ d̄u/1

cu/1 e ∨ c̄u/1

e

e

ē ∨ cu/0 ē ∨ cu/0 du/0 c̄u/0 ∨ d̄u/0

ē ∨ cu/0 c̄u/0

ē

ē

�

8 July 2018 Meena Mahajan, IMSc

Part of a derivation in ∀Exp+Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e

u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0

u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

cu/1 cu/1 e ∨ du/1 c̄u/1 ∨ d̄u/1

cu/1 e ∨ c̄u/1

e

e

ē ∨ cu/0 ē ∨ cu/0 du/0 c̄u/0 ∨ d̄u/0

ē ∨ cu/0 c̄u/0

ē

ē

�

8 July 2018 Meena Mahajan, IMSc

Part of a derivation in ∀Exp+Res

∃e ∀u ∃c ∃d [(¬ e ∨ c), (¬ u ∨ c), (e ∨ d), (u ∨ d), (¬ c ∨ ¬ d)]

e

u

c

d

(ū ∨ c)
(e ∨ d)

(ū ∨ c)

d

(e ∨ d) (c̄ ∨ d̄)

1

0

u

c

d

(ē ∨ c)
(u ∨ d)

(ē ∨ c)

d

(u ∨ d) (c̄ ∨ d̄)

0

1

cu/1 cu/1 e ∨ du/1 c̄u/1 ∨ d̄u/1

cu/1 e ∨ c̄u/1

e

e

ē ∨ cu/0 ē ∨ cu/0 du/0 c̄u/0 ∨ d̄u/0

ē ∨ cu/0 c̄u/0

ē

ē

�

8 July 2018 Meena Mahajan, IMSc

Merging complementary literals

Consider ∃x ∀u (x ∨ ¬ u)(¬ x ∨ u).

Resolve on x ; instead of tautology u ∨ ¬ u, merge u and ¬ u into u∗.

Intended meaning: Blue’s winning strategy for u is not dictated by
this clause, but will be decided by the setting to x .

Proof Systems that use merging:
LD-Q-Res (Long-Distance QRes), [Balabanov,Jiang 2012]

LQU+-Res, [Balabonav,Widl,Jiang 2014]

IRM (Instantiation, Resolution, Merge) [Beyersdorff,Chew,Janota 2014].

8 July 2018 Meena Mahajan, IMSc

Merging complementary literals

Consider ∃x ∀u (x ∨ ¬ u)(¬ x ∨ u).

Resolve on x ; instead of tautology u ∨ ¬ u, merge u and ¬ u into u∗.

Intended meaning: Blue’s winning strategy for u is not dictated by
this clause, but will be decided by the setting to x .

Proof Systems that use merging:
LD-Q-Res (Long-Distance QRes), [Balabanov,Jiang 2012]

LQU+-Res, [Balabonav,Widl,Jiang 2014]

IRM (Instantiation, Resolution, Merge) [Beyersdorff,Chew,Janota 2014].

8 July 2018 Meena Mahajan, IMSc

Merging complementary literals

Consider ∃x ∀u (x ∨ ¬ u)(¬ x ∨ u).

Resolve on x ; instead of tautology u ∨ ¬ u, merge u and ¬ u into u∗.

Intended meaning: Blue’s winning strategy for u is not dictated by
this clause, but will be decided by the setting to x .

Proof Systems that use merging:
LD-Q-Res (Long-Distance QRes), [Balabanov,Jiang 2012]

LQU+-Res, [Balabonav,Widl,Jiang 2014]

IRM (Instantiation, Resolution, Merge) [Beyersdorff,Chew,Janota 2014].

8 July 2018 Meena Mahajan, IMSc

The relative power of some QBF proof systems:

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR

IRM CP+∀Red PC+∀Red

Frege+∀Red

8 July 2018 Meena Mahajan, IMSc

Lower Bounds for QBF proof systems

from propositional hardness.
not useful for understanding QBF solvers

by adapting techniques for propositional hardness.
let’s review

8 July 2018 Meena Mahajan, IMSc

Lower Bounds for QBF proof systems

from propositional hardness.
not useful for understanding QBF solvers

by adapting techniques for propositional hardness.
let’s review

8 July 2018 Meena Mahajan, IMSc

The Size-Width Relation in Resolution

In Resolution, Short proofs are narrow.
(Size of proof: number of steps. Width of proof: max width of clause in proof.)

Theorem ([Ben-Sasson,Wigderson 2001])

For all unsatisfiable CNFs F in n variables:

S(ResT
F) ≥ 2

w
(

Res F
)
−w(F)

. (tree-like proofs; no reusing clauses)

S(Res F) = exp

(
Ω

((
w
(

Res F
)
− w(F)

)2
n

))
.

8 July 2018 Meena Mahajan, IMSc

The Size-Width relation in Q-Res

In Q-Res, this fails completely!
[Beyersdorff,Chew,M,Shukla STACS 2016, ACM Trans. Comp. Logic 2018]

∀ u1u2 . . . un ∃ e0e1 . . . en

 (e0)
(¬ ei−1 ∨ ui ∨ ei) for i ∈ [n]

(¬ en)


Using Resolution, derive u1 ∨ . . . ∨ un. (n + 1 steps)

Then using ∀Red, derive �. (n steps)

So proof of size O(n). Even tree-like.

We show: Any proof must derive u1 ∨ . . . ∨ un.

So width of any proof Ω(n).

8 July 2018 Meena Mahajan, IMSc

The Size-Width relation in Q-Res

In Q-Res, this fails completely!
[Beyersdorff,Chew,M,Shukla STACS 2016, ACM Trans. Comp. Logic 2018]

∀ u1u2 . . . un ∃ e0e1 . . . en

 (e0)
(¬ ei−1 ∨ ui ∨ ei) for i ∈ [n]

(¬ en)


Using Resolution, derive u1 ∨ . . . ∨ un. (n + 1 steps)

Then using ∀Red, derive �. (n steps)

So proof of size O(n). Even tree-like.

We show: Any proof must derive u1 ∨ . . . ∨ un.

So width of any proof Ω(n).

8 July 2018 Meena Mahajan, IMSc

Re-defining Width For QBFs

Problem: accumulation of universal variables.

Possible fix: Redefine Width∃. Count only existential variables.

Now does an analogue of the short-proofs-are-narrow hold?

No!

Completion Principle: clausal encoding of

∃ X ∈ {0, 1}n×n ∀ z (z ∨ ∃ all-1s row) ∧ (¬ z ∨ ∃all-0s column)

Under appropriate clausal encoding, proof of size O(n2).
Even tree-like proof: no reusing derived clauses.
We show: Any proof must have width∃ Ω(n).

8 July 2018 Meena Mahajan, IMSc

Re-defining Width For QBFs

Problem: accumulation of universal variables.

Possible fix: Redefine Width∃. Count only existential variables.

Now does an analogue of the short-proofs-are-narrow hold?

No!

Completion Principle: clausal encoding of

∃ X ∈ {0, 1}n×n ∀ z (z ∨ ∃ all-1s row) ∧ (¬ z ∨ ∃all-0s column)

Under appropriate clausal encoding, proof of size O(n2).
Even tree-like proof: no reusing derived clauses.
We show: Any proof must have width∃ Ω(n).

8 July 2018 Meena Mahajan, IMSc

Re-defining Width For QBFs

Problem: accumulation of universal variables.

Possible fix: Redefine Width∃. Count only existential variables.

Now does an analogue of the short-proofs-are-narrow hold?

No!

Completion Principle: clausal encoding of

∃ X ∈ {0, 1}n×n ∀ z (z ∨ ∃ all-1s row) ∧ (¬ z ∨ ∃all-0s column)

Under appropriate clausal encoding, proof of size O(n2).
Even tree-like proof: no reusing derived clauses.
We show: Any proof must have width∃ Ω(n).

8 July 2018 Meena Mahajan, IMSc

Size-Width∃ relation for non-tree-like proofs

∃e1∀u1∃c1∃d1 ∃e2∀u2∃c2∃d2 . . . ∃en∀un∃cn∃dn

for i ∈ [n],
(¬ ei ∨ ci) (ei ∨ di)
(¬ ui ∨ ci) (ui ∨ di)

¬ c1 ∨ ¬ d1 ∨ ¬ c2 ∨ ¬ d2 ∨ . . . ∨ ¬ cn ∨ ¬ dn

Winning strategy for universal player: ui = ¬ ei .

Encode last clause with additonal ∃ variables as short clauses.

Short proofs in Q-Res, size nO(1).

We show: Width∃ of any Q-Res proof Ω(n).

Large width requirement does not give size lower bound.

8 July 2018 Meena Mahajan, IMSc

Size-Width∃ relation for non-tree-like proofs

∃e1∀u1∃c1∃d1 ∃e2∀u2∃c2∃d2 . . . ∃en∀un∃cn∃dn

for i ∈ [n],
(¬ ei ∨ ci) (ei ∨ di)
(¬ ui ∨ ci) (ui ∨ di)

¬ c1 ∨ ¬ d1 ∨ ¬ c2 ∨ ¬ d2 ∨ . . . ∨ ¬ cn ∨ ¬ dn

Winning strategy for universal player: ui = ¬ ei .

Encode last clause with additonal ∃ variables as short clauses.

Short proofs in Q-Res, size nO(1).

We show: Width∃ of any Q-Res proof Ω(n).

Large width requirement does not give size lower bound.

8 July 2018 Meena Mahajan, IMSc

Size-Width∃ relation for non-tree-like proofs

∃e1∀u1∃c1∃d1 ∃e2∀u2∃c2∃d2 . . . ∃en∀un∃cn∃dn

for i ∈ [n],
(¬ ei ∨ ci) (ei ∨ di)
(¬ ui ∨ ci) (ui ∨ di)

¬ c1 ∨ ¬ d1 ∨ ¬ c2 ∨ ¬ d2 ∨ . . . ∨ ¬ cn ∨ ¬ dn

Winning strategy for universal player: ui = ¬ ei .

Encode last clause with additonal ∃ variables as short clauses.

Short proofs in Q-Res, size nO(1).

We show: Width∃ of any Q-Res proof Ω(n).

Large width requirement does not give size lower bound.

8 July 2018 Meena Mahajan, IMSc

Size-Width∃ relation for non-tree-like proofs

∃e1∀u1∃c1∃d1 ∃e2∀u2∃c2∃d2 . . . ∃en∀un∃cn∃dn

for i ∈ [n],
(¬ ei ∨ ci) (ei ∨ di)
(¬ ui ∨ ci) (ui ∨ di)

¬ c1 ∨ ¬ d1 ∨ ¬ c2 ∨ ¬ d2 ∨ . . . ∨ ¬ cn ∨ ¬ dn

Winning strategy for universal player: ui = ¬ ei .

Encode last clause with additonal ∃ variables as short clauses.

Short proofs in Q-Res, size nO(1).

We show: Width∃ of any Q-Res proof Ω(n).

Large width requirement does not give size lower bound.

8 July 2018 Meena Mahajan, IMSc

Lower Bounds for QBF proof systems

from propositional hardness.
not useful for understanding QBF solvers

by adapting techniques for propositional hardness.
let’s review:
size-width fails for Q-Res

interpolation?

8 July 2018 Meena Mahajan, IMSc

Lower Bounds for QBF proof systems

from propositional hardness.
not useful for understanding QBF solvers

by adapting techniques for propositional hardness.
let’s review:
size-width fails for Q-Res
interpolation?

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation – the propositional case

F = A(~p, ~q) ∧ B(~p, ~r) in UNSAT

m

for all assignments ~a to ~p, either A(~a, ~q) or B(~a, ~r) in UNSAT.

GIven ~a, can we tell which is in UNSAT?

We want an interpolant circuit C in ~p variables:

C (~a) = 0 =⇒ A(~a, ~q) is in UNSAT, and

C (~a) = 1 =⇒ B(~a, ~r) is in UNSAT.

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation – the propositional case

F = A(~p, ~q) ∧ B(~p, ~r) in UNSAT

m

for all assignments ~a to ~p, either A(~a, ~q) or B(~a, ~r) in UNSAT.

GIven ~a, can we tell which is in UNSAT?

We want an interpolant circuit C in ~p variables:

C (~a) = 0 =⇒ A(~a, ~q) is in UNSAT, and

C (~a) = 1 =⇒ B(~a, ~r) is in UNSAT.

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation – the propositional case

F = A(~p, ~q) ∧ B(~p, ~r) in UNSAT

m

for all assignments ~a to ~p, either A(~a, ~q) or B(~a, ~r) in UNSAT.

GIven ~a, can we tell which is in UNSAT?

We want an interpolant circuit C in ~p variables:

C (~a) = 0 =⇒ A(~a, ~q) is in UNSAT, and

C (~a) = 1 =⇒ B(~a, ~r) is in UNSAT.

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation – the propositional case (cont’d)

Theorem ([Kraj́ıček 1997],[Pudlák 1997])

Resolution proofs of size s give Boolean circuits of size sO(1)

computing interpolants.

Cutting Planes proofs of size s give real arithmetic circuits of size
sO(1) computing interpolants.

If ~p variables appears only positively in A(~p, ~q) or only negatively in
B(~p, ~r), then interpolant circuit is (real-) monotone.

All resolution / cutting-plane proofs of the clique-colour formulas are
of exponential size.

(Clique-colour formulas: CNF encodings of
“∃ a graph that is (k − 1)-colourable and has a k-clique.”)

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation – the propositional case (cont’d)

Theorem ([Kraj́ıček 1997],[Pudlák 1997])

Resolution proofs of size s give Boolean circuits of size sO(1)

computing interpolants.

Cutting Planes proofs of size s give real arithmetic circuits of size
sO(1) computing interpolants.

If ~p variables appears only positively in A(~p, ~q) or only negatively in
B(~p, ~r), then interpolant circuit is (real-) monotone.

All resolution / cutting-plane proofs of the clique-colour formulas are
of exponential size.

(Clique-colour formulas: CNF encodings of
“∃ a graph that is (k − 1)-colourable and has a k-clique.”)

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation – the propositional case (cont’d)

Theorem ([Kraj́ıček 1997],[Pudlák 1997])

Resolution proofs of size s give Boolean circuits of size sO(1)

computing interpolants.

Cutting Planes proofs of size s give real arithmetic circuits of size
sO(1) computing interpolants.

If ~p variables appears only positively in A(~p, ~q) or only negatively in
B(~p, ~r), then interpolant circuit is (real-) monotone.

All resolution / cutting-plane proofs of the clique-colour formulas are
of exponential size.

(Clique-colour formulas: CNF encodings of
“∃ a graph that is (k − 1)-colourable and has a k-clique.”)

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation for QBFs

∃~p Q~q Q~r [A(~p, ~q) ∧ B(~p, ~r)] is false
m

∃~p [Q~qA(~p, ~q) ∧ Q~rB(~p, ~r)] is false
⇓

for all assignments ~a to ~p, either Q~q A(~a, ~q) or Q~r B(~a, ~r) is false.

Interpolant circuit:

C (~a) = 0 =⇒ Q~q A(~a, ~q) is false, and

C (~a) = 1 =⇒ Q~r B(~a, ~r) is false.

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation works for many QBF proof systems

The Clique-coClique formulas: CNF encodings of
“∃ an n-vertex graph G , ∀ u, u implies G has a k-clique,

¬u implies G has no k-clique.
”

(Note: To express no clique, universal quantifiers used.
Not succinctly expressible as UNSAT instance.)

Theorem ([Beyersdorff,Chew,M,Shukla ICALP15, LMCS17, FSTTCS16])

All the resolution-based QBF proof systems
Q-Res, QU-Res, LD-Q-Res, LQU+-Res, ∀Exp+Res, IR, IRM
as well as the proof system CP+∀Red, admit feasible monotone
interpolation.
All Clique-coClique formulas need exponential-sized proofs in all these
proof systems.

8 July 2018 Meena Mahajan, IMSc

Feasible Interpolation works for many QBF proof systems

The Clique-coClique formulas: CNF encodings of
“∃ an n-vertex graph G , ∀ u, u implies G has a k-clique,

¬u implies G has no k-clique.
”

(Note: To express no clique, universal quantifiers used.
Not succinctly expressible as UNSAT instance.)

Theorem ([Beyersdorff,Chew,M,Shukla ICALP15, LMCS17, FSTTCS16])

All the resolution-based QBF proof systems
Q-Res, QU-Res, LD-Q-Res, LQU+-Res, ∀Exp+Res, IR, IRM
as well as the proof system CP+∀Red, admit feasible monotone
interpolation.
All Clique-coClique formulas need exponential-sized proofs in all these
proof systems.

8 July 2018 Meena Mahajan, IMSc

Lower Bounds for QBFproof systems

from propositional hardness.
not useful for understanding QBF solvers

by adapting techniques for propositional hardness. let’s review:

Size lower bounds from Width lower bounds does not work with the
simplest extension of Resolution, Q-Res.
Feasible Interpolation works for all Resolution based systems and for
CP+∀Red.

from strategy extraction.
all-new; specific to QBFs

The winning strategy of the universal player in the evaluation game leads
to new lower bound techniques.

8 July 2018 Meena Mahajan, IMSc

Lower Bounds for QBFproof systems

from propositional hardness.
not useful for understanding QBF solvers

by adapting techniques for propositional hardness. let’s review:

Size lower bounds from Width lower bounds does not work with the
simplest extension of Resolution, Q-Res.
Feasible Interpolation works for all Resolution based systems and for
CP+∀Red.

from strategy extraction.
all-new; specific to QBFs

The winning strategy of the universal player in the evaluation game leads
to new lower bound techniques.

8 July 2018 Meena Mahajan, IMSc

Strategy Extraction

Main idea: A proof reveals information about a winning strategy.

Examine a proof.

Construct a circuit of a special type for computing the winning
strategy.

Circuit type: depends on the proof system
Circuit size: depends on the proof size

If the winning strategy is hard to compute in the relevant circuit
model, then all proofs in the proof system must be large.

8 July 2018 Meena Mahajan, IMSc

From Proof to Decision List for Winning Strategy

Blue has to choose the value of a variable u.
Blue knows values of all variables left of u; partial assignment ~a.
Proof lines L1, L2, . . . , Lm.
∀Red on u at (1 <) i1 < i2 < . . . < ik (≤ m).
Lir : eliminate u from Ljr , jr < ir .

if Li1(~a) false then set u to make Lj1(~a) false
elseif Li2(~a) false then set u to make Lj2(~a) false
...

...
elseif Lik (~a) false then set u to make Ljk (~a) false
else set u = 0.

[Beyersdorff,Chew,Janota 2015], [Beyersdorff,Bonacina,Chew 2016]:
This strategy is a winning strategy for Blue.

Strategy description: A Decision List for each universal variable.

8 July 2018 Meena Mahajan, IMSc

From Proof to Decision List for Winning Strategy

Blue has to choose the value of a variable u.
Blue knows values of all variables left of u; partial assignment ~a.
Proof lines L1, L2, . . . , Lm.
∀Red on u at (1 <) i1 < i2 < . . . < ik (≤ m).
Lir : eliminate u from Ljr , jr < ir .

if Li1(~a) false then set u to make Lj1(~a) false
elseif Li2(~a) false then set u to make Lj2(~a) false
...

...
elseif Lik (~a) false then set u to make Ljk (~a) false
else set u = 0.

[Beyersdorff,Chew,Janota 2015], [Beyersdorff,Bonacina,Chew 2016]:
This strategy is a winning strategy for Blue.

Strategy description: A Decision List for each universal variable.

8 July 2018 Meena Mahajan, IMSc

From Proof to Decision List for Winning Strategy

Blue has to choose the value of a variable u.
Blue knows values of all variables left of u; partial assignment ~a.
Proof lines L1, L2, . . . , Lm.
∀Red on u at (1 <) i1 < i2 < . . . < ik (≤ m).
Lir : eliminate u from Ljr , jr < ir .

if Li1(~a) false then set u to make Lj1(~a) false
elseif Li2(~a) false then set u to make Lj2(~a) false
...

...
elseif Lik (~a) false then set u to make Ljk (~a) false
else set u = 0.

[Beyersdorff,Chew,Janota 2015], [Beyersdorff,Bonacina,Chew 2016]:
This strategy is a winning strategy for Blue.

Strategy description: A Decision List for each universal variable.

8 July 2018 Meena Mahajan, IMSc

Strategy Extraction from P+∀Red proofs

Proof with s ∀Reduction steps

⇓

Winning strategy can be computed by a Decision List with s steps.

QU-Res: Each condition is a clause.

(is a1 ∨ a2 ∨ . . . ∨ an true?)

CP+∀Red: Each condition is a linear threshold function.

(is c1a1 + c2a2 + . . .+ cnan ≥ b?)

8 July 2018 Meena Mahajan, IMSc

Genuine QBF bounds for P+∀Red proofs

Proof with s ∀Reduction steps

⇓

Winning strategy can be computed by a Decision List with s steps.

Contrapositive gives lower bounds on number of ∀Reduction steps, not
just on proof size.

i.e. Proving the QBF false will require large size even with a SAT oracle
(appropriately formalised).

8 July 2018 Meena Mahajan, IMSc

Genuine QBF bounds for P+∀Red proofs

Proof with s ∀Reduction steps

⇓

Winning strategy can be computed by a Decision List with s steps.

Contrapositive gives lower bounds on number of ∀Reduction steps, not
just on proof size.

i.e. Proving the QBF false will require large size even with a SAT oracle
(appropriately formalised).

8 July 2018 Meena Mahajan, IMSc

Winning Strategies compute desired functions

Fix Boolean function f . Fix small circuit C computing f (size m).
Define QBF Qf ,C :

∃x1x2 . . . xn∀w∃z1z2 . . . zm
[

(w 6= zm)
(zi = value of ith gate of C (x)) : i ∈ [m]

]
(zi clauses enforce zm = f (x).)

Blue can choose w = f (x) and force a win.

No other way for Blue to win.

f (x) not hard to compute – it has a small circuit.
If no small decision list, then no small proof.

8 July 2018 Meena Mahajan, IMSc

Winning Strategies compute desired functions

Fix Boolean function f . Fix small circuit C computing f (size m).
Define QBF Qf ,C :

∃x1x2 . . . xn∀w∃z1z2 . . . zm
[

(w 6= zm)
(zi = value of ith gate of C (x)) : i ∈ [m]

]
(zi clauses enforce zm = f (x).)

Blue can choose w = f (x) and force a win.

No other way for Blue to win.

f (x) not hard to compute – it has a small circuit.
If no small decision list, then no small proof.

8 July 2018 Meena Mahajan, IMSc

Winning Strategies Hard for Decision Lists

The Parity function has an O(n) size circuit.
The Parity function requires exponentially long decision lists of
clauses. ([Håstad]: ⊕ 6∈ AC0.) Hence

Theorem ([Beyersdorff,Chew,Janota 2015])

Any Q-Res or QU-Res proof for Q-Parity must be of exponential size.

The Inner Product function has an O(n) size circuit.
IP(x , y) , 〈x · y〉 mod 2.
The IP function needs > 2n/2 − 1 steps in a decision list of linear
threshold functions. ([Turán,Vatan 1997]) Hence

Theorem ([Beyersdorff,Chew,M,Shukla 2016])

Any CP+∀Red proof for Q-IP must be of exponential size.

8 July 2018 Meena Mahajan, IMSc

Winning Strategies Hard for Decision Lists

The Parity function has an O(n) size circuit.
The Parity function requires exponentially long decision lists of
clauses. ([Håstad]: ⊕ 6∈ AC0.) Hence

Theorem ([Beyersdorff,Chew,Janota 2015])

Any Q-Res or QU-Res proof for Q-Parity must be of exponential size.

The Inner Product function has an O(n) size circuit.
IP(x , y) , 〈x · y〉 mod 2.
The IP function needs > 2n/2 − 1 steps in a decision list of linear
threshold functions. ([Turán,Vatan 1997]) Hence

Theorem ([Beyersdorff,Chew,M,Shukla 2016])

Any CP+∀Red proof for Q-IP must be of exponential size.

8 July 2018 Meena Mahajan, IMSc

Other Sources of Hardness

[Beyersdorff,Pich LICS 2016]
Every lower bound in Frege+∀Red stems from

either propositional hardness,
or a circuit lower bound.

No other source of hardness.

Not true for weaker systems.

8 July 2018 Meena Mahajan, IMSc

Other Sources of Hardness

[Beyersdorff,Pich LICS 2016]
Every lower bound in Frege+∀Red stems from

either propositional hardness,
or a circuit lower bound.

No other source of hardness.

Not true for weaker systems.

8 July 2018 Meena Mahajan, IMSc

Other Sources of Hardness (cont’d)

∃x1 · · · xn∀u1 · · · un∃t1 · · · tn
(xi ∨ ui ∨ ti) i ∈ [n]

(¬ xi ∨ ¬ ui ∨ ti) i ∈ [n]
(¬ t1 ∨ · · · ∨ ¬ tn)

Blue has a trivial winning strategy: ui = xi .

But the formula is still hard to prove false in QU-Res. Why?

8 July 2018 Meena Mahajan, IMSc

Winning Strategies needing Varied Responses (cont’d)

Many responses needed in winning strategy.
2n possible values for u1 · · · un, all necessary.
cost of formula high.

Each line can contribute only so much: capacity small.

Hence proof size must be large.

Theorem ([Beyersdorff,Blinkhorn,Hinde ITCS2018])

Size-Cost-Capacity Theorem:
For any proof π of a QBF φ in a system P+∀Red,

Size(π)× Capacity(π) ≥ Cost(φ)

Similar result for expansion-based systems; [Beyersdorff,Blinkhorn STACS 18].

8 July 2018 Meena Mahajan, IMSc

Winning Strategies needing Varied Responses (cont’d)

Many responses needed in winning strategy.
2n possible values for u1 · · · un, all necessary.
cost of formula high.

Each line can contribute only so much: capacity small.

Hence proof size must be large.

Theorem ([Beyersdorff,Blinkhorn,Hinde ITCS2018])

Size-Cost-Capacity Theorem:
For any proof π of a QBF φ in a system P+∀Red,

Size(π)× Capacity(π) ≥ Cost(φ)

Similar result for expansion-based systems; [Beyersdorff,Blinkhorn STACS 18].

8 July 2018 Meena Mahajan, IMSc

To conclude ...

QBF Proof systems

What are they?

Formal systems for proving false QBFs false.

Why do we study them?

Lower bounds can help guide development of better solvers.

What do we know?

Extracting strategies from proofs leads to lower bounds.

What next? Continue the cycle

QBF solver QBF proof system

Lower bound

formalise

underlying system

proveimprove

8 July 2018 Meena Mahajan, IMSc

To conclude ...

QBF Proof systems

What are they?

Formal systems for proving false QBFs false.

Why do we study them?

Lower bounds can help guide development of better solvers.

What do we know?

Extracting strategies from proofs leads to lower bounds.

What next? Continue the cycle

QBF solver QBF proof system

Lower bound

formalise

underlying system

proveimprove

8 July 2018 Meena Mahajan, IMSc

To conclude ...

QBF Proof systems

What are they?

Formal systems for proving false QBFs false.

Why do we study them?

Lower bounds can help guide development of better solvers.

What do we know?

Extracting strategies from proofs leads to lower bounds.

What next? Continue the cycle

QBF solver QBF proof system

Lower bound

formalise

underlying system

proveimprove

8 July 2018 Meena Mahajan, IMSc

Thank you

8 July 2018 Meena Mahajan, IMSc

	Introduction
	Proof Systems for QBFs
	Lower Bounds for QBF proof systems
	Adapting Techniques from Propositional Hardness
	Strategy Extraction
	Conclusion

