Lower Bound Techniques for QBF Proof Systems

Meena Mahajan

イロト イヨト イヨト イヨト

Meena Mahajan, IMSc

The Institute of Mathematical Sciences, HBNI, Chennai.

Proof Complexity Workshop, FLoC 2018, Oxford, UK. 7,8 July, 2018

My work on QBF proof complexity -

• partially supported by the EU Marie Curie IRSES grant CORCON.

・ロト ・ 戸 ・ ・ ヨ ・ ・

Meena Mahajan, IMSc

joint work with

Olaf Beyersdorff Univ of Leeds, UK Leroy Chew Univ of Leeds, UK Anil Shukla formerly at IMSc, Chennai now at IIT Ropar

- What are they?
- Why do we study them?

• SAT: Satisfiability.

eg. Is there an assignment to x, y, z satisfying all the clauses $(x \lor y \lor z), (x \lor \neg y \lor \neg z), (\neg x \lor y \lor \neg z), (\neg x \lor \neg y \lor z)$?

▲ロト ▲圖ト ▲温ト ▲温ト

- Quintessential NP-complete problem.
- Very hard in theory.

• SAT: Satisfiability.

eg. Is there an assignment to x, y, z satisfying all the clauses $(x \lor y \lor z), (x \lor \neg y \lor \neg z), (\neg x \lor y \lor \neg z), (\neg x \lor \neg y \lor z)$?

- Quintessential NP-complete problem.
- Very hard in theory.

In practice – a solved problem! Many good SAT solvers around.

イロト 不得 トイヨト イヨト

• SAT: Satisfiability.

eg. Is there an assignment to x, y, z satisfying all the clauses $(x \lor y \lor z), (x \lor \neg y \lor \neg z), (\neg x \lor y \lor \neg z), (\neg x \lor \neg y \lor z)?$

- Quintessential NP-complete problem.
- Very hard in theory.

In practice – a solved problem! Many good SAT solvers around.

• Ambitious programs to design good solvers for problems harder than SAT.

イロト イボト イヨト イヨト

• QBF: Quantified Boolean Formula Subsumes SAT. eg. Is this QBF true?

 $\exists x \exists y \exists z (x \lor y \lor z), (x \lor \neg y \lor \neg z), (\neg x \lor y \lor \neg z), (\neg x \lor \neg y \lor z)$

• PSPACE-complete, so much more expressive than SAT. eg. Is this formula true?

$$\exists e \forall u \exists c \exists d \quad (\neg e \lor c)(e \lor d)(\neg u \lor c)(u \lor d)(\neg c \lor \neg d)$$

イロン イ理シ イヨン イヨン 三語

Meena Mahajan, IMSc

 \bullet Quite a few ${\rm QBF}$ solvers developed in the last couple of decades.

- How to improve the performance of a solver?
- Understand where it flounders.

- How to improve the performance of a solver?
- Understand where it flounders.
- \bullet Underlying solver heuristics are formal proof systems: Runs of $\rm SAT/QBF$ solver provide proofs of unsatisfiability/falsity.

イロト イヨト イヨト イ

Meena Mahajan, IMSc

 Lower bounds in formal proof system (no short proof of unsat/falsity)
 ↓

no short runs.

- How to improve the performance of a solver?
- Understand where it flounders.
- \bullet Underlying solver heuristics are formal proof systems: Runs of $\rm SAT/QBF$ solver provide proofs of unsatisfiability/falsity.

イロト イポト イヨト

Meena Mahajan, IMSc

 Lower bounds in formal proof system (no short proof of unsat/falsity)

no short runs.

• Proving lower bounds - back to theory!

The Resolution Proof System for UNSAT

$$C = \begin{bmatrix} \vdots & & \\ A \lor x & \\ B \lor \neg x & \\ \vdots & \\ \end{bmatrix} \quad C' = \begin{bmatrix} \vdots & \\ A \lor x \\ B \lor \neg x \\ \vdots \\ A \lor B \end{bmatrix}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ へ () Meena Mahajan, IMSc

The Resolution Proof System for UNSAT

 $\mathcal{C}_0 \in \mathrm{SAT} \implies \mathcal{C}_1 \in \mathrm{SAT} \implies \ldots \implies \mathcal{C}_{t-1} \in \mathrm{SAT} \implies \mathcal{C}_t \in \mathrm{SAT}$

 $\mathcal{C}_0 \notin \text{SAT} \Leftarrow \ldots \Leftarrow \mathcal{C}_i \notin \text{SAT} \Leftarrow \ldots \Leftarrow \mathcal{C}_t \notin \text{SAT} \Leftarrow \Box \in \mathcal{C}_t$

(ロ) (四) (E) (E) (E) (E)

QBFs: Quantified Boolean Formulas

- W.I.o.g., QBF in prenex CNF: $Q\vec{x} \cdot F(\vec{x})$; F a set of clauses.
- Resolution is sound: If Qx · F(x) is true, and we add a clause C to F through resolution to get F', then Qx · F'(x) is also true.

QBFs: Quantified Boolean Formulas

- W.I.o.g., QBF in prenex CNF: $Q\vec{x} \cdot F(\vec{x})$; F a set of clauses.
- Resolution is sound: If Qx · F(x) is true, and we add a clause C to F through resolution to get F', then Qx · F'(x) is also true.
- But Resolution alone is not enough. Consider

$$\exists x \forall u \quad (x \lor \neg u) \ (\neg x \lor u).$$

Resolution can add $(x \lor \neg x)$ or $(u \lor \neg u)$. Useless.

- Universal variable *u* has to be handled differently.
- Two ways to proceed, modelling CDCL-based solvers
 - expansion-based solvers

The Evaluation Game on QBFs

- QBF $Q\vec{x} \cdot F(x)$
- Two players, Red and Blue, step through quantifier prefix left-to-right. Red picks values for ∃ variables, Blue for ∀ variables. Assignment constructed: ã.

Red wins a run of the game if $F(\tilde{a})$ true. Otherwise Blue wins.

The Evaluation Game on QBFs

- QBF $Q\vec{x} \cdot F(x)$
- Two players, Red and Blue, step through quantifier prefix left-to-right. Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: \tilde{a} .

Red wins a run of the game if $F(\tilde{a})$ true. Otherwise Blue wins.

• example:

$$\exists x \forall u \quad (x \lor \neg u) \ (\neg x \lor u).$$

▲ロト ▲圖ト ▲温ト ▲温ト

The Evaluation Game on QBFs

- QBF $Q\vec{x} \cdot F(x)$
- Two players, Red and Blue, step through quantifier prefix left-to-right. Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: \tilde{a} .

Red wins a run of the game if $F(\tilde{a})$ true. Otherwise Blue wins.

• example:

$$\exists x \forall u \quad (x \lor \neg u) \ (\neg x \lor u).$$

・ロト ・ 日 ト ・ 日 ト ・

Meena Mahajan, IMSc

Red: x = 1, Blue: u = 1: Red wins Red: x = 1, Blue: u = 0: Blue wins Red: x = 0, Blue: u = 1: Blue wins

The Evaluation Game on QBFs

- QBF $Q\vec{x} \cdot F(x)$
- Two players, Red and Blue, step through quantifier prefix left-to-right. Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: \tilde{a} .

Red wins a run of the game if $F(\tilde{a})$ true. Otherwise Blue wins.

example:

$$\exists x \forall u \quad (x \lor \neg u) \ (\neg x \lor u).$$

ヘロト A回ト A注ト A注ト

Meena Mahajan, IMSc

Red: x = 1, Blue: u = 1: Red wins Red: x = 1, Blue: u = 0: Blue wins Red: x = 0, Blue: u = 1: Blue wins Blue can always win: set $u \neq x$.

The Evaluation Game on QBFs

- QBF $Q\vec{x} \cdot F(x)$
- Two players, Red and Blue, step through quantifier prefix left-to-right. Red picks values for ∃ variables, Blue for ∀ variables.

Assignment constructed: ã.

Red wins a run of the game if $F(\tilde{a})$ true. Otherwise Blue wins.

• example:

$$\exists x \forall u \quad (x \lor \neg u) \ (\neg x \lor u).$$

Red: x = 1, Blue: u = 1: Red wins Red: x = 1, Blue: u = 0: Blue wins Red: x = 0, Blue: u = 1: Blue wins Blue can always win: set $u \neq x$.

- $Q\vec{x} \cdot F(x)$ false if and only if Blue has a winning strategy.
- Use this to extend Resolution.

・ロト ・四ト ・ヨト ・ヨト

Consider this scenario:

- $Q\vec{x} \cdot F(x)$ is true. So Red has a winning strategy.
- F(x) has a clause C in which the rightmost variable (as per $Q\vec{x}$) is a universal variable u.

i.e. $C = A \lor \ell$; $\ell \in \{u, \neg u\}$; all variables in A are left of u.

▲口> ▲圖> ▲ヨ> ▲ヨ>

Consider this scenario:

- $Q\vec{x} \cdot F(x)$ is true. So Red has a winning strategy.
- F(x) has a clause C in which the rightmost variable (as per $Q\vec{x}$) is a universal variable u.

(日) (四) (注) (注) (注) (注) (注)

Meena Mahajan, IMSc

i.e. $C = A \lor \ell$; $\ell \in \{u, \neg u\}$; all variables in A are left of u.

Then, by the time Blue has to fix u, Red's strategy must ensure that sub-clause A is already satisfied.

That is, Red has a winning strategy on $Q\vec{x} \cdot [F(x) \wedge A]$. So $Q\vec{x} \cdot [F(x) \wedge A]$ is also true. $Q\vec{x}\cdot C$

Grow the bag of clauses \mathcal{C} using

- Resolution: If A ∨ x and B ∨ ¬ x are in the bag, can add A ∨ B (provided not a tautology),
- ∀-Reduction: If A ∨ ℓ(u) in the bag, and all variables in A left of u, can add A,

イロト イポト イヨト イヨト

Meena Mahajan, IMSc

until the empty clause \Box is added.

- Sound: A derivation of □ reveals a winning strategy for Blue.
 [vanGelder 2012]
- Complete: Use a winning strategy of Blue to decide which clauses to derive.

- Sound: A derivation of □ reveals a winning strategy for Blue.
 [vanGelder 2012]
- Complete: Use a winning strategy of Blue to decide which clauses to derive.
 - Suffices to resolve with existential pivots only (Q-Res, [KleineBüningKarpinskiFlögel 1995])
 - Suffices to eliminate variables in right-to-left order of quantification blocks (Level-ordered Q-Res)

<ロ> (四) (四) (注) (注) (注) (注)

Meena Mahajan, IMSo

Meena Mahajan, IMSc

< 17 ▶

< 17 ▶

Meena Mahajan, IMSc

A D > A D >

Meena Mahajan, IMSc

< 17 ▶

[Beyersdorff,Bonacina,Chew ITCS 2016]

P: Any sound and complete line-based proof system for UNSAT eg Cutting Planes, Polynomial Calculus, Frege, restrictions of Frege (AC⁰-Frege, AC⁰[p]-Frege, TC⁰-Frege ...)

₩

 $\mathsf{P}{+}\forall\mathsf{Red:}$ a sound and complete proof system for QBF

▲ロト ▲圖ト ▲温ト ▲温ト

The CP+ \forall Red proof system

• CP+ \forall Red: Cutting Planes + \forall Reduction.

[Beyersdorff, Chew, M, Shukla FSTTCS 2016]

• Cutting Planes: Encode clauses as integer inequalities.

$$\begin{array}{rcccc} x \lor y \lor z & \rightarrow & x+y+z \ge 1 \\ x \lor \neg y \lor z & \rightarrow & x+(1-y)+z \ge 1 \\ & & (x-y+z \ge 0) \\ x \lor \neg y \lor \neg z & \rightarrow & x+(1-y)+(1-z) \ge 1 \\ & & (x-y-z \ge -1) \end{array}$$

- Bags of inequalities, not clauses.
- Evaluation game: Red tries to satisfy all inequalities. Blue tries to falsify some inequality.

イロト 不得 トイヨト イヨト

If Red (\exists) can win

$$\begin{array}{ccc} \dots & \\ \langle a \cdot x \rangle & \geq & A \\ \langle b \cdot x \rangle & \geq & B \\ \langle kc \cdot x \rangle & \geq & C \\ \dots & \end{array}$$

(for $k\in\mathbb{Z}^{>0}$)

$$(\langle a \cdot x \rangle \text{ means } a_1 x_1 + a_2 x_2 + \ldots + a_n x_n)$$

イロト イピト イヨト イヨト 三日

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- If Red can win with I containing (a ⋅ x) ≥ A where the rightmost non-zero coefficient in a is blue, a = a' b 00...0, (ie a universal variable, u)

イロト 不得下 不足下 不足下

Meena Mahajan, IMSc

• This Blue-elimination is the \forall -Reduction rule.
Keep using the +, \times , \div and $\forall \mathsf{Reduction}$ rules.

```
\begin{array}{c} \mathsf{Red} \ \mathsf{can} \ \mathsf{win} \ \mathsf{with} \ \mathcal{I} = \mathcal{I}_0 \\ & \Downarrow \\ \mathsf{Red} \ \mathsf{can} \ \mathsf{win} \ \mathsf{with} \ \mathcal{I}_1 \\ & \Downarrow \\ \mathsf{Red} \ \mathsf{can} \ \mathsf{win} \ \mathsf{with} \ \mathcal{I}_2 \\ & \Downarrow \\ & \vdots \\ & \Downarrow \\ \mathsf{Red} \ \mathsf{can} \ \mathsf{win} \ \mathsf{with} \ \mathcal{I}_t. \end{array}
```

If \mathcal{I}_t contains $\mathbf{0} \geq \mathbf{1}$, then Red can't win with \mathcal{I}_t , and so Red can't win with \mathcal{I} .

・ロト ・四ト ・ヨト ・ヨト

Expansion-Based Systems

<ロ > < 団 > < 団 > < 亘 > < 亘 > < 亘 > < 亘 > のへへ Meena Mahajan, IMSc

Expansion-Based Systems

$$orall u Q ec{x} \cdot F(u, ec{x})$$
 is true
 $(Q ec{x} \cdot F(0, ec{x})) \wedge [Q ec{x} \cdot F(1, ec{x})]$ is true
 $(Q ec{x}^{u/0} Q ec{x}^{u/1} \cdot [F(0, ec{x}^{u/0}) \wedge F(1, ec{x}^{u/1})]$ is true

イロト イポト イヨト イヨト

Meena Mahajan, IMSc

• Expand the initial formula judiciously, on the fly.

Then use standard resolution.

 Expansion-based systems: ∀Exp+Res [Janota,Marques-Silva 2015], IR [Beyersdorff,Chew,Janota 2014].

≪ ⊡ → < Ξ → < Ξ → Ξ < つ へ ()
 Meena Mahajan, IMSc

- ∢ 🗗 🕨

< 17 ▶

< 17 ▶

Meena Mahajan, IMSc

- ▲ @ ▶ - ▲ 臣

• Consider $\exists x \forall u \ (x \lor \neg u)(\neg x \lor u)$.

- Consider $\exists x \forall u \ (x \lor \neg u)(\neg x \lor u)$.
- Resolve on x; instead of tautology u ∨ ¬ u, merge u and ¬ u into u*.
 Intended meaning: Blue's winning strategy for u is not dictated by this clause, but will be decided by the setting to x.

- Consider $\exists x \forall u \ (x \lor \neg u)(\neg x \lor u)$.
- Resolve on x; instead of tautology u ∨ ¬ u, merge u and ¬ u into u*. Intended meaning: Blue's winning strategy for u is not dictated by this clause, but will be decided by the setting to x.
- Proof Systems that use merging: LD-Q-Res (Long-Distance QRes), [Balabanov,Jiang 2012] LQU⁺-Res, [Balabonav,Widl,Jiang 2014] IRM (Instantiation, Resolution, Merge) [Beyersdorff,Chew,Janota 2014].

イロン イロン イヨン イヨン

Meena Mahajan, IMSc

The relative power of some QBF proof systems:

Meena Mahajan, IMSc

900

• from propositional hardness. not useful for understanding QBF solvers

- from propositional hardness.
 not useful for understanding QBF solvers
- by adapting techniques for propositional hardness. let's review

In Resolution, Short proofs are narrow.

(Size of proof: number of steps. Width of proof: max width of clause in proof.)

Theorem ([Ben-Sasson,Wigderson 2001])

For all unsatisfiable CNFs F in n variables:

 $S(|_{\overline{Res_{\tau}}}F) \geq 2^{w(|_{\overline{Res}}F)-w(F)}$. (tree-like proofs; no reusing clauses)

$$\mathcal{S}(\mid_{\overline{Res}} F) = \exp\left(\Omega\left(\frac{\left(w\left(\mid_{\overline{Res}} F\right) - w(F)\right)^2}{n}\right)\right)$$
.

The Size-Width relation in Q-Res

In Q-Res, this fails completely!

[Beyersdorff, Chew, M, Shukla STACS 2016, ACM Trans. Comp. Logic 2018]

The Size-Width relation in Q-Res

In Q-Res, this fails completely!

[Beyersdorff, Chew, M, Shukla STACS 2016, ACM Trans. Comp. Logic 2018]

$$\forall u_1 u_2 \dots u_n \exists e_0 e_1 \dots e_n \begin{bmatrix} (e_0) \\ (\neg e_{i-1} \lor u_i \lor e_i) & \text{for } i \in [n] \\ (\neg e_n) \end{bmatrix}$$

- Using Resolution, derive $u_1 \vee \ldots \vee u_n$. (n+1 steps)
- Then using $\forall \text{Red}$, derive \Box . (*n* steps)
- So proof of size O(n). Even tree-like.
- We show: Any proof must derive $u_1 \vee \ldots \vee u_n$.
- So width of any proof $\Omega(n)$.

・ロト ・ 戸 ト ・ ヨ ト

Problem: accumulation of universal variables. Possible fix: Redefine Width_{\exists}. Count only existential variables. Now does an analogue of the short-proofs-are-narrow hold?

Problem: accumulation of universal variables. Possible fix: Redefine Width_∃. Count only existential variables. Now does an analogue of the short-proofs-are-narrow hold? No!

Completion Principle: clausal encoding of

 $\exists X \in \{0,1\}^{n \times n} \quad \forall z \ (z \lor \exists \text{ all-1s row}) \land (\neg z \lor \exists \text{ all-0s column})$

≣ ► ≡ ∽ ९. ભ Meena Mahajan, IMSc Problem: accumulation of universal variables. Possible fix: Redefine Width_∃. Count only existential variables. Now does an analogue of the short-proofs-are-narrow hold? No!

Completion Principle: clausal encoding of

 $\exists X \in \{0,1\}^{n \times n} \quad \forall z \quad (z \lor \exists \text{ all-1s row}) \land (\neg z \lor \exists \text{all-0s column})$

Under appropriate clausal encoding, proof of size $O(n^2)$. Even tree-like proof: no reusing derived clauses. We show: Any proof must have width_{\exists} $\Omega(n)$.

・ロト ・四ト ・ヨト ・ヨト

Size-Width_∃ relation for non-tree-like proofs

 $\exists e_1 \forall u_1 \exists c_1 \exists d_1 \quad \exists e_2 \forall u_2 \exists c_2 \exists d_2 \quad \dots \quad \exists e_n \forall u_n \exists c_n \exists d_n$

for
$$i \in [n]$$
,

$$\begin{array}{c} (\neg e_i \lor c_i) \quad (e_i \lor d_i) \\ (\neg u_i \lor c_i) \quad (u_i \lor d_i) \\ \neg c_1 \lor \neg d_1 \lor \neg c_2 \lor \neg d_2 \lor \ldots \lor \neg c_n \lor \neg d_n \end{array}$$

Winning strategy for universal player: $u_i = \neg e_i$.

< □ > < 圕 > < 臣 > < 臣 > = ● へへへ Meena Mahajan, IMSc Size-Width_¬ relation for non-tree-like proofs

 $\exists e_1 \forall u_1 \exists c_1 \exists d_1 \quad \exists e_2 \forall u_2 \exists c_2 \exists d_2 \quad \dots \quad \exists e_n \forall u_n \exists c_n \exists d_n$

for
$$i \in [n]$$
,

$$\begin{array}{ccc}
(\neg e_i \lor c_i) & (e_i \lor d_i) \\
(\neg u_i \lor c_i) & (u_i \lor d_i) \\
\neg c_1 \lor \neg d_1 \lor \neg c_2 \lor \neg d_2 \lor \ldots \lor \neg c_n \lor \neg d_n
\end{array}$$

Winning strategy for universal player: $u_i = \neg e_i$. Encode last clause with additional \exists variables as short clauses.

≣ ► ≡ ∽ ९. ભ Meena Mahajan, IMSc

 $\exists e_1 \forall u_1 \exists c_1 \exists d_1 \quad \exists e_2 \forall u_2 \exists c_2 \exists d_2 \quad \dots \quad \exists e_n \forall u_n \exists c_n \exists d_n$

for
$$i \in [n]$$
,

$$\begin{array}{ccc}
(\neg e_i \lor c_i) & (e_i \lor d_i) \\
(\neg u_i \lor c_i) & (u_i \lor d_i) \\
\neg c_1 \lor \neg d_1 \lor \neg c_2 \lor \neg d_2 \lor \ldots \lor \neg c_n \lor \neg d_n
\end{array}$$

Winning strategy for universal player: $u_i = \neg e_i$. Encode last clause with additonal \exists variables as short clauses. Short proofs in Q-Res, size $n^{O(1)}$. We show: Width_{\exists} of any Q-Res proof $\Omega(n)$.

Meena Mahajan, IMSo

 $\exists e_1 \forall u_1 \exists c_1 \exists d_1 \quad \exists e_2 \forall u_2 \exists c_2 \exists d_2 \quad \dots \quad \exists e_n \forall u_n \exists c_n \exists d_n$

for
$$i \in [n]$$
,

$$\begin{array}{ccc}
(\neg e_i \lor c_i) & (e_i \lor d_i) \\
(\neg u_i \lor c_i) & (u_i \lor d_i) \\
\neg c_1 \lor \neg d_1 \lor \neg c_2 \lor \neg d_2 \lor \ldots \lor \neg c_n \lor \neg d_n
\end{array}$$

Winning strategy for universal player: $u_i = \neg e_i$. Encode last clause with additonal \exists variables as short clauses. Short proofs in Q-Res, size $n^{O(1)}$. We show: Width_{\exists} of any Q-Res proof $\Omega(n)$. Large width requirement does not give size lower bound.

・ロト ・回 ト ・ヨト ・ヨト

Meena Mahajan, IMSc

- from propositional hardness.
 not useful for understanding QBF solvers
- by adapting techniques for propositional hardness. let's review: size-width fails for Q-Res

イロト イポト イヨト イヨト

Meena Mahajan, IMSo

- from propositional hardness.
 not useful for understanding QBF solvers
- by adapting techniques for propositional hardness. let's review: size-width fails for Q-Res interpolation?

メロト メポト メヨト メ

Meena Mahajan, IMSo

Feasible Interpolation – the propositional case

 $F = A(\vec{p}, \vec{q}) \wedge B(\vec{p}, \vec{r})$ in UNSAT

 $\$

for all assignments \vec{a} to \vec{p} , either $A(\vec{a}, \vec{q})$ or $B(\vec{a}, \vec{r})$ in UNSAT.

Feasible Interpolation – the propositional case

 $F = A(\vec{p}, \vec{q}) \wedge B(\vec{p}, \vec{r})$ in UNSAT

 \uparrow

for all assignments \vec{a} to \vec{p} , either $A(\vec{a}, \vec{q})$ or $B(\vec{a}, \vec{r})$ in UNSAT.

• Given \vec{a} , can we tell which is in UNSAT?

 $F = A(\vec{p}, \vec{q}) \wedge B(\vec{p}, \vec{r})$ in UNSAT

 \uparrow

for all assignments \vec{a} to \vec{p} , either $A(\vec{a}, \vec{q})$ or $B(\vec{a}, \vec{r})$ in UNSAT.

- Given \vec{a} , can we tell which is in UNSAT?
- We want an interpolant circuit C in \vec{p} variables:

$$C(\vec{a}) = 0 \implies A(\vec{a}, \vec{q})$$
 is in UNSAT, and
 $C(\vec{a}) = 1 \implies B(\vec{a}, \vec{r})$ is in UNSAT.

・ロト ・ 日 ト ・ 日 ト ・

Theorem ([Krajíček 1997],[Pudlák 1997])

- Resolution proofs of size s give Boolean circuits of size s^{O(1)} computing interpolants.
- Cutting Planes proofs of size s give real arithmetic circuits of size $s^{O(1)}$ computing interpolants.

Theorem ([Krajíček 1997],[Pudlák 1997])

- Resolution proofs of size s give Boolean circuits of size s^{O(1)} computing interpolants.
- Cutting Planes proofs of size s give real arithmetic circuits of size $s^{O(1)}$ computing interpolants.
- If p variables appears only positively in A(p, q) or only negatively in B(p, r), then interpolant circuit is (real-) monotone.

Meena Mahajan, IMSc

Theorem ([Krajíček 1997],[Pudlák 1997])

- Resolution proofs of size s give Boolean circuits of size s^{O(1)} computing interpolants.
- Cutting Planes proofs of size s give real arithmetic circuits of size $s^{O(1)}$ computing interpolants.
- If p variables appears only positively in A(p, q) or only negatively in B(p, r), then interpolant circuit is (real-) monotone.
- All resolution / cutting-plane proofs of the clique-colour formulas are of exponential size.

(Clique-colour formulas: CNF encodings of " \exists a graph that is (k - 1)-colourable and has a k-clique.")

イロト イポト イヨト イヨト

Interpolant circuit:

$$C(\vec{a}) = 0 \implies Q\vec{q} \ A(\vec{a}, \vec{q})$$
 is false, and
 $C(\vec{a}) = 1 \implies Q\vec{r} \ B(\vec{a}, \vec{r})$ is false.

・ロト ・四ト ・ヨト ・ヨト

Feasible Interpolation works for many QBF proof systems

The Clique-coClique formulas: CNF encodings of " \exists an *n*-vertex graph $G, \forall u, u$ implies G has a *k*-clique, $\neg u$ implies G has no *k*-clique.

(Note: To express no clique, universal quantifiers used. Not succinctly expressible as UNSAT instance.)

Meena Mahajan, IMSc

"

Feasible Interpolation works for many QBF proof systems

The Clique-coClique formulas: CNF encodings of " \exists an *n*-vertex graph $G, \forall u, u$ implies G has a *k*-clique, $\neg u$ implies G has no *k*-clique.

(Note: To express no clique, universal quantifiers used. Not succinctly expressible as UNSAT instance.)

Theorem ([Beyersdorff, Chew, M, Shukla ICALP15, LMCS17, FSTTCS16])

All the resolution-based QBF proof systems Q-Res, QU-Res, LD-Q-Res, LQU⁺-Res, \forall Exp+Res, IR, IRM as well as the proof system CP+ \forall Red, admit feasible monotone interpolation. All Clique-coClique formulas need exponential-sized proofs in all these proof systems.

イロト イヨト イヨト

- from propositional hardness. not useful for understanding QBF solvers
- by adapting techniques for propositional hardness. let's review:
 - Size lower bounds from Width lower bounds does not work with the simplest extension of Resolution, Q-Res.
 - $\bullet\,$ Feasible Interpolation works for all Resolution based systems and for CP+ $\forall {\sf Red}.$

イロト イポト イヨト イヨト 二日

Meena Mahajan, IMSc
- from propositional hardness. not useful for understanding QBF solvers
- by adapting techniques for propositional hardness. let's review:
 - Size lower bounds from Width lower bounds does not work with the simplest extension of Resolution, Q-Res.
 - $\bullet\,$ Feasible Interpolation works for all Resolution based systems and for CP+ $\forall {\sf Red}.$

・ロト ・四ト ・ヨト ・ヨト

Meena Mahajan, IMSc

• from strategy extraction. all-new; specific to QBFs

The winning strategy of the universal player in the evaluation game leads to new lower bound techniques.

- Main idea: A proof reveals information about a winning strategy.
- Examine a proof.
- Construct a circuit of a special type for computing the winning strategy.
- Circuit type: depends on the proof system Circuit size: depends on the proof size
- If the winning strategy is hard to compute in the relevant circuit model, then all proofs in the proof system must be large.

・ロト ・ 同ト ・ ヨト ・ ヨト

Meena Mahajan, IMSc

From Proof to Decision List for Winning Strategy

Blue has to choose the value of a variable u. Blue knows values of all variables left of u; partial assignment \vec{a} . Proof lines L_1, L_2, \ldots, L_m . $\forall \text{Red on } u \text{ at } (1 <) i_1 < i_2 < \ldots < i_k \ (\leq m)$. L_{i_r} : eliminate u from $L_{j_r}, j_r < i_r$.

From Proof to Decision List for Winning Strategy

Blue has to choose the value of a variable u. Blue knows values of all variables left of u; partial assignment \vec{a} . Proof lines L_1, L_2, \ldots, L_m . $\forall \text{Red on } u \text{ at } (1 <) i_1 < i_2 < \ldots < i_k \ (\leq m)$. L_{i_r} : eliminate u from $L_{j_r}, j_r < i_r$.

if $L_{i_1}(\vec{a})$ false then set u to make $L_{j_1}(\vec{a})$ false elseif $L_{i_2}(\vec{a})$ false then set u to make $L_{j_2}(\vec{a})$ false \vdots elseif $L_{i_k}(\vec{a})$ false then set u to make $L_{j_k}(\vec{a})$ false else set u = 0.

Meena Mahajan, IMSc

From Proof to Decision List for Winning Strategy

Blue has to choose the value of a variable u. Blue knows values of all variables left of u; partial assignment \vec{a} . Proof lines L_1, L_2, \ldots, L_m . $\forall \text{Red on } u \text{ at } (1 <) i_1 < i_2 < \ldots < i_k \ (\leq m)$. L_{i_r} : eliminate u from $L_{j_r}, j_r < i_r$.

if $L_{i_1}(\vec{a})$ false then set u to make $L_{j_1}(\vec{a})$ false elseif $L_{i_2}(\vec{a})$ false then set u to make $L_{j_2}(\vec{a})$ false \vdots elseif $L_{i_k}(\vec{a})$ false then set u to make $L_{j_k}(\vec{a})$ false else set u = 0.

[Beyersdorff,Chew,Janota 2015], [Beyersdorff,Bonacina,Chew 2016]: This strategy is a winning strategy for Blue.

Strategy description: A Decision List for each universal variable.

イロト イロト イモト イモト 三日

Proof with $s \forall$ Reduction steps

₩

Winning strategy can be computed by a Decision List with *s* steps.

- QU-Res: Each condition is a clause.
 (is a₁ ∨ a₂ ∨ ... ∨ a_n true?)
- CP+∀Red: Each condition is a linear threshold function. (is c₁a₁ + c₂a₂ + ... + c_na_n ≥ b?)

<ロト < 四ト < 三ト < 三ト < 三ト < 三ト < 三 > ...

Meena Mahajan, IMSc

Proof with $s \forall$ Reduction steps

 \Downarrow Winning strategy can be computed by a Decision List with *s* steps.

Contrapositive gives lower bounds on number of $\forall \mbox{Reduction steps, not}$ just on proof size.

イロン イ理シ イヨン イヨン 三語

Proof with $s \forall$ Reduction steps

₩

Winning strategy can be computed by a Decision List with s steps.

Contrapositive gives lower bounds on number of $\forall \mathsf{Reduction}\xspace$ steps, not just on proof size.

i.e. Proving the ${\rm QBF}$ false will require large size even with a ${\rm SAT}$ oracle (appropriately formalised).

▲ロト ▲圖ト ▲温ト ▲温ト

Meena Mahajan, IMSc

Fix Boolean function f. Fix small circuit C computing f (size m). Define QBF $Q_{f,C}$:

$$\exists x_1 x_2 \dots x_n \forall w \exists z_1 z_2 \dots z_m \quad \left[\begin{array}{c} (w \neq z_m) \\ (z_i = \text{value of } i\text{th gate of } C(x)): \quad i \in [m] \end{array} \right]$$

 $(z_i \text{ clauses enforce } z_m = f(x).)$

Fix Boolean function f. Fix small circuit C computing f (size m). Define QBF $Q_{f,C}$:

$$\exists x_1 x_2 \dots x_n \forall w \exists z_1 z_2 \dots z_m \quad \left[\begin{array}{c} (w \neq z_m) \\ (z_i = \text{value of } i\text{th gate of } C(x)): \quad i \in [m] \end{array} \right]$$

 $(z_i \text{ clauses enforce } z_m = f(x).)$

- Blue can choose w = f(x) and force a win.
- No other way for Blue to win.
- f(x) not hard to compute it has a small circuit. If no small decision list, then no small proof.

▲□ > ▲□ > ▲目 > ▲目 > →

Winning Strategies Hard for Decision Lists

 The PARITY function has an O(n) size circuit. The PARITY function requires exponentially long decision lists of clauses. ([Håstad]: ⊕ ∉ AC⁰.) Hence

Theorem ([Beyersdorff, Chew, Janota 2015])

Any Q-Res or QU-Res proof for Q-PARITY must be of exponential size.

Winning Strategies Hard for Decision Lists

 The PARITY function has an O(n) size circuit. The PARITY function requires exponentially long decision lists of clauses. ([Håstad]: ⊕ ∉ AC⁰.) Hence

Theorem ([Beyersdorff, Chew, Janota 2015])

Any Q-Res or QU-Res proof for Q-PARITY must be of exponential size.

 The Inner Product function has an O(n) size circuit. IP(x, y) ≜ ⟨x ⋅ y⟩ mod 2. The IP function needs > 2^{n/2} - 1 steps in a decision list of linear threshold functions. ([Turán,Vatan 1997]) Hence

Theorem ([Beyersdorff,Chew,M,Shukla 2016])

Any $CP + \forall Red proof for Q$ -IP must be of exponential size.

イロト 不得 トイヨト イヨト

• [Beyersdorff, Pich LICS 2016]

Every lower bound in Frege+ $\forall \mathsf{Red}\xspace$ stems from

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Meena Mahajan, IMSc

- either propositional hardness,
- or a circuit lower bound.

No other source of hardness.

• [Beyersdorff,Pich LICS 2016]

Every lower bound in Frege+ $\forall \mathsf{Red}\xspace$ stems from

< □ ト < □ ト < 注 ト < 注 ト .

Meena Mahajan, IMSc

- either propositional hardness,
- or a circuit lower bound.

No other source of hardness.

• Not true for weaker systems.

$$\exists x_1 \cdots x_n \forall u_1 \cdots u_n \exists t_1 \cdots t_n \\ (x_i \lor u_i \lor t_i) & i \in [n] \\ (\neg x_i \lor \neg u_i \lor t_i) & i \in [n] \\ (\neg t_1 \lor \cdots \lor \neg t_n) \end{cases}$$

▲ □ ▶ ▲ 클 ▶ ▲ 클 ▶ ▲ 클 → 의
 Meena Mahajan, IMSc

- Blue has a trivial winning strategy: $u_i = x_i$.
- But the formula is still hard to prove false in QU-Res. Why?

Winning Strategies needing Varied Responses (cont'd)

- Many responses needed in winning strategy.
 2ⁿ possible values for u₁ · · · u_n, all necessary.
 cost of formula high.
- Each line can contribute only so much: capacity small.
- Hence proof size must be large.

Theorem ([Beyersdorff,Blinkhorn,Hinde ITCS2018]) Size-Cost-Capacity Theorem: For any proof π of a QBF ϕ in a system $P+\forall Red$, $Size(\pi) \times Capacity(\pi) \geq Cost(\phi)$

Winning Strategies needing Varied Responses (cont'd)

- Many responses needed in winning strategy.
 2ⁿ possible values for u₁ · · · u_n, all necessary.
 cost of formula high.
- Each line can contribute only so much: capacity small.
- Hence proof size must be large.

Theorem ([Beyersdorff,Blinkhorn,Hinde ITCS2018])

Size-Cost-Capacity Theorem:

For any proof π of a QBF ϕ in a system P+ \forall Red,

 $Size(\pi) \times Capacity(\pi) \geq Cost(\phi)$

Similar result for expansion-based systems; [Beyersdorff,Blinkhorn STACS 18].

イロト イポト イヨト イヨト

To conclude ...

QBF Proof systems

• What are they?

Formal systems for proving false QBFs false.

• Why do we study them?

Lower bounds can help guide development of better solvers.

To conclude ...

QBF Proof systems

• What are they?

Formal systems for proving false QBFs false.

• Why do we study them?

Lower bounds can help guide development of better solvers.

• What do we know?

Extracting strategies from proofs leads to lower bounds.

To conclude ...

QBF Proof systems

• What are they?

Formal systems for proving false QBFs false.

• Why do we study them?

Lower bounds can help guide development of better solvers.

• What do we know?

Extracting strategies from proofs leads to lower bounds.

• What next? Continue the cycle

Thank you

8 July 2018