
International Workshop

on

Quantified Boolean Formulas 20131

Informal Workshop Report2

Florian Lonsing, Martina Seidl

florian.lonsing@tuwien.ac.at, martina.seidl@jku.at

July 10, 2013

1This work was partially funded by the Vienna Science and Technology Fund
(WWTF) under grant ICT10-018 and by the Austrian Science Fund under grants
S11408-N23 and S11409-N23.

2The copyright of all contributions remains with the authors.

Preface

After a break of more than one decade, the International Workshop on Quanti-
fied Boolean Formulas 2013 (QBF 2013), collocated with the 16th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2013), is
the first event dedicated to research on quantified Boolean formulas (QBF).

Recently, there has been a lot of progress in QBF research on a variety of
topics ranging from solving, to preprocessing, to certifications, and to encod-
ings. All of these results were presented at many different scientific events.
The purpose of the QBF workshop is to provide a dedicated forum for QBF
researchers and users to meet, share ideas, and discuss the status quo. Almost
40 registered participants clearly state the general interest in an event like the
QBF Workshop 2013.

During the workshop seven presentations will be given based on the peer-
reviewed extended abstracts collected in this informal report, which is available
from the workshop’s website:

http://fmv.jku.at/qbf2013/

Due to the informal nature of the QBF Workshop, the authors of accepted
papers are free to submit their work to other scientific events or journals without
any restrictions.

The topics of the contributions are manifold, ranging from theoretical re-
sults to practical encodings. At this point we would like to highlight that all
contributions contain novel content, to a certain extent, which has not been pre-
sented in this form before. Moreover, certain contributions share insights which
are entirely new and have never been published before. This is particularly re-
markable because in the call for contributions we put emphasis on works which
trigger interesting discussions during the workshop. Novelty was not a strict re-
quirement. Therefore, we would like to thank the contributors for their papers
as well as the program committee members and reviewers for their support and
their high quality feedback.

As preparation for the QBF Workshop, we organized the QBF Gallery 2013
which is a non-competitive evaluation of state-of-the-art tools. Like the QBF
Workshop, the QBF Gallery is affiliated to the SAT conference 2013. Details
are available at the event’s website:

http://www.kr.tuwien.ac.at/events/qbfgallery2013/

Results will be presented during the QBF Workshop and at the SAT conference.
We hope that with the seven accepted presentations and with the report on the
QBF Gallery, the QBF Workshop will offer an interesting meeting for the QBF
research community.

Florian Lonsing and Martina Seidl, Wien/Linz, July 2013

5

Program Committee

• Fahiem Bacchus, University of Toronto, Canada

• Armin Biere, University of Linz, Austria

• Nikolaj Björner, Microsoft Research, USA

• Uwe Bubeck, University of Paderborn, Germany

• Hans Kleine Büning, University of Paderborn, Germany

• Hubie Chen, Universidad del Páıs Vasco and Ikerbasque, Spain

• Nadia Creignou, Université de la Méditerranée Aix-Marseille, France

• Uwe Egly, Vienna University of Technology, Austria

• Allen Van Gelder, University of California at Santa Cruz, USA

• Enrico Giunchiglia, Università di Genova, Italy

• Mikoláš Janota, INESC-ID Lisboa, Portugal

• Massimo Narizzano, Università di Genova, Italy

• Stefan Szeider, Vienna University of Technology, Austria

Contents

1 Martin Kronegger, Andreas Pfandler and Reinhard Pichler:
Conformant Planning as a Benchmark for QBF-Solvers 1

2 Uwe Egly and Magdalena Widl: Solution extraction from long-
distance resolution proofs 6

3 Mikoláš Janota and Joao Marques-Silva: ∀-Exp+Res Does not
P-Simulate Q-resolution 17

4 Friedrich Slivovsky and Stefan Szeider: Variable Dependencies
and Q-Resolution 23

5 William Klieber, Mikolas Janota, Joao Marques-Silva and Ed-
mund Clarke: Extending DPLL-Based QBF Solvers to Handle
Free Variables 30

6 Allen Van Gelder: Certificate Extraction from Variable Elimi-
nation QBF Preprocessors 35

7 Charles Jordan and Lukasz Kaiser: Benchmarks from Reduc-
tion Finding 40

vii

Conformant Planning as a Benchmark for
QBF-Solvers�

Martin Kronegger, Andreas Pfandler, and Reinhard Pichler
Vienna University of Technology, Austria

{kronegger, pfandler, pichler}@dbai.tuwien.ac.at

1 Introduction

Planning has a long history as an important field of artificial intelligence. The
task of domain-independent planning is to find a sequence of actions (called a
plan) to achieve a desired goal, given some initial state.

Concerning the computational complexity, even the most basic case, i. e.,
STRIPS-like planning (also called classical planning), is NP-complete when
restricted to plans with length polynomial in the input. To cope with this high
complexity, powerful heuristics such as Fast Forward [9] and Fast Downward [7]
have been developed. In addition, also exact methods have been proposed. For
instance, a planner called SATPLAN [11] reduces a classical planning problem to
SAT. Another promising SAT-based approach is the planner Mp by Rintanen [18].

In practice one often has to deal with uncertainty, i. e., incomplete knowl-
edge. Thus, it is of high importance to study this form of planning (also called
conformant planning). Here we consider the case of deterministic actions with
incomplete knowledge. Baral et al. [2] have shown that the complexity raises to
Σ2P-completeness for this form of planning. Following the successful history of
SAT in the area of classical planning it is a natural step to encode conformant
planning problems as quantified Boolean formulas (QBFs). Several encodings
have been proposed in the literature, such as the encodings by Rintanen [17].

In this paper we present a framework for transforming conformant planning
instances to QBFs in order to analyze how well QBF-solvers can handle planning
problems. Since the planning instances are given in a non-ground modelling
language several refinements are necessary to obtain QBFs of reasonable size.
A key feature of our approach is that we aim at optimal plans, i. e., plans of
minimum length. The goal of this work is to gather some experience with this
approach and highlight desiderata that could improve the performance and
applicability of QBF-solvers in the area of planning.

Our main contributions are as follows: (1) We have implemented a prototype
of our framework that encodes planning instances given in a fragment of the
widely used planning domain definition language (PDDL) with uncertainty in
the initial state as QBFs. (2) We introduce a new kind of benchmarks that has a
strong focus on uncertainty and hence gives challenging new instances. (3) Based
on these instances we perform a detailed experimental evaluation – comparing
specialized planning tools with the performance of several QBF-solvers when
applied to QBFs generated by our framework.

� This research was supported by the Austrian Science Fund (FWF): P25518-N23.

2 Solver

We consider planning instances given in PDDL restricted to the STRIPS-subset
and extended by uncertainty in the initial state. Our framework (depicted in
Figure 1) is capable of computing the minimal plan length of planning instances.
After parsing the input, the grounding algorithm analyzes the given planning
instance and calculates a lower bound � on the plan length. Starting with a plan
length of �, the grounder then grounds only “important” parts of the instances.
The QBF-encoder takes the ground representation as input, transforms it to a
quantified Boolean formula (QBF) that is satisfiable if and only if the planning
problem has a plan of length �. Then, the QBF-encoder invokes an external
QBF-solver. In case the generated QBF is satisfiable, our framework extracts
the plan (with optimal length) from the assignment of the leftmost ∃-block. If
the QBF is unsatisfiable, � is incremented, additional “important” parts of the
problem may need grounding, and the subsequent QBF is passed to the solver.
The grounding step is the bottleneck of the approach, since the planning instances
are given in a non-ground modelling language and a naive implementation can
cause an exponential blow-up in the number of variables. Clearly, a smaller
grounding directly yields smaller QBFs. Therefore, we use information from the
specification to guide the grounding process and apply techniques for computing
lower bounds to avoid the generation of unnecessary QBFs.

The QBF-encoder essentially employs the ∃∀∃-encoding for conformant plan-
ning by Rintanen [17] using explanatory framing axioms. The resulting QBF
expresses “there exists a sequence of actions from the initial state to a goal
state such that for all unknown variables in the initial state there exist a truth
assignment for the remaining variables”. During the generation of the formula,
the encoder also applies mild forms of preprocessing such as unit-propagation and
(in some cases) labeling of sub-formulas. By using these simple enhancements and
the refinements for grounding, we are able to drastically reduce the size of the
generated QBFs by a factor of approximately 17 in the new type of benchmark
which we introduce in Section 3.

3 Evaluation

We have evaluated a prototype of our framework. Below, we show how the runtime
behavior depends on the used QBF-solver and compare it with other planning
tools (T0 [14, 20], ConformantFF [8, 4]). To allow for a better comparison, we
have created a new type of benchmark that focuses on uncertainty in the initial
state. Due to space limitations, we only report on this new benchmark type.

PDDL
instance

Parser QBF-Encoder QBF-SolverGrounder Plan

dyn. grounding

No

Yes

Fig. 1. Architecture of our solver.

The new benchmark we introduce is called “Dungeon”. In this setting a player
wants to defeat monsters living in a dungeon. Each monster requires different
items to be defeated. In the beginning, the player picks at most one item from
each pool of items. In addition, the player can exchange several items for one
more powerful item if he holds all necessary “ingredients”. Eventually, the player
enters the dungeon. When entering the dungeon, the player is forced to pick
additional items. The dilemma is that the player does not know which items he
will get, i. e., the additional items are unknown. The goal is to pick items such
that irrespective of the additional items he defeats at least one monster.

We have run our tests on a server with two Intel Xeon E5345 processors,
48GB RAM, and openSUSE 11.4. We ran the single threaded solvers with a
15 minutes timeout and a memory limit of 16GB. The upper bound for the
plan length of our solver was set to 200. We used AQME [15, 1], DepQBF [12,
5], QuBE[6, 16] and sKizzo [3, 19] in conjunction with our solver. For a better
comparison we also evaluated ConformantFF and T0 on the same instances. If a
QBF-solver supported the generation of certificates or returning an assignment
of the leftmost ∃-block (currently, from the considered solvers only sKizzo and
DepQBF), we enabled this option and included the additional amount of time
needed in the runtime measurement.

Our results indicate that randomly generated “Dungeon” instances are hard
for both, specialized planning tools and QBF-solvers. Considering only the number
of solved instances, T0 is the winner with 102 out of 144 solved instances. The
other solvers were able to solve the following amount of instances: 96 (AQME), 81
(QuBE), 80 (DepQBF), 76 (sKizzo), 64 (ConformantFF). It turned out that the
strength of our framework (with different QBF-solvers) is that it sometimes finds
considerably shorter plans than heuristics do. Compared to T0 our solver found
a shorter plan in 33 instances and compared to ConformantFF in 15 instances.

In Figure 2 we depict the minimum plan lengths obtained for an instance by a
QBF-solver/planning tool. Table 1 shows the performance of the different solvers
on selected interesting cases of the “Dungeon”-instances using the abbreviation
“unsol” for “unsolvable”, “to” for “timeout” and “ex250” for “exit code 250”.

Due to space limitations, we mention only a few observations made in our
evaluation. In the benchmark results we see that AQME explicitly shows that
there is no plan of length at most 200, while other solvers run into a timeout.
Unfortunately, AQME does not return certificates nor assignments, which makes
it inapplicable in practice, as no plans can be extracted. Clearly, building a
portfolio solver that returns certificates is a special challenge, since all solvers in
the portfolio should handle certificates in a uniform way. Interestingly, AQME
performs quite well compared to current state-of-the-art tools. Furthermore, it
seems that a large number of monsters influences the performance of the planning
tools much more than the QBF-based approach. In contrast, a large number
of unknowns seems to be more critical for the QBF-approach. Finally, consider
an instance that has an optimal solution with plan length �. It is interesting to
see that the runtime of the QBF-solvers increases quite dramatically with the
plan length, but drops on satisfiable formulas with plan length �. Due to the
incremental generation of QBFs for each plan length an incremental QBF-solver
(see, e. g., [13]) could give a notable performance boost.

0 20 40 60 80 100 120 140
0

10

20

instance number

p
la
n
le
n
g
th

AQME

ConfFF

DepQBF

QuBE

sKizzo

T0

Fig. 2. An overview of all solutions found by the considered solvers.

AQME ConfFF DepQBF QuBE sKizzo T0
#i #m #u t/pl cl/vars t/pl t/pl cl/vars t/pl cl/vars t/pl cl/vars t/pl

30 10 5 10 603.53 111887 0.04 to 27478 to 9031 to 11826 0.43
>200 41377 unsol ≥49 10271 ≥16 3473 ≥21 4503 unsol?

40 10 20 4 2.24 1733 437.39 0.25 1733 0.29 1733 0.32 1733 0.09
3 648 8 3 648 3 648 3 648 5

72 15 75 10 428.26 7195 to 1.06 7195 0.92 7195 - 5398 565.85
4 2093 - 4 2093 4 2093 ex250 1651 4

111 25 50 3 41.31 63922 to to 35374 to 42511 - 49648 0.62
9 7321 - ≥5 4329 ≥6 5077 ex250 5825 16

143 30 150 5 690.02 133543 to to 65899 to 82810 - 48988 to
8 10616 - ≥4 5756 ≥5 6971 ex250 4541 -

Table 1. Detailed results for some interesting instances showing the instance number
(#), the number of: items (#i), monsters (#m), unknown variables (#u), clauses (cl),
variables (vars), the time in seconds (t) and the plan length (pl).

4 Conclusion

In this work we have presented a framework for transforming planning instances
with uncertainty in the initial state to QBFs. Big collections of conformant
planning instances that fit the input language of our framework (i. e., including
the plethora of instances provided by the International Planning Competition [10]),
thus become accessible as interesting, hard benchmarks for QBF-solvers.

Our experiments have revealed that on some instances the QBF-approach
outperforms conventional planning tools. Still, we see several interesting points to
be addressed by the QBF-community in order to make the QBF-based approach
yet more efficient and beneficial. Returning assignments is necessary to be able
to extract the actual plan. Obtaining full certificates is desirable as it also allows
to verify the solution. Furthermore, as for each plan length a new QBF has to be
generated, incremental QBF-solvers could give especially in this setting a drastic
boost in performance. Since the QBF-solvers need most time on QBF-instances
for plan lengths that are close to a solution, also QBF-solvers biased towards
unsatisfiability could be a promising approach. Clearly any progress made in the
world of QBF-solvers will directly carry over to our approach for planning.

We see further experiments as well as creating solver-specific QBF transforma-
tions as the most important tasks. Also developing additional hard benchmark-
types and improving the dynamic grounder remains future work.

References

1. Website of AQME. http://www.mind-lab.it/aqme/, [accessed: April 25, 2013]
2. Baral, C., Kreinovich, V., Trejo, R.: Computational complexity of planning and

approximate planning in the presence of incompleteness. Artificial Intelligence
122(1-2), 241–267 (2000)

3. Benedetti, M.: Evaluating QBFs via symbolic skolemization. In: Proc. LPAR. pp.
285–300 (2004)

4. Website of ConformantFF. http://fai.cs.uni-saarland.de/hoffmann/cff.html,
[accessed: April 25, 2013]

5. Website of DepQBF. http://fmv.jku.at/depqbf/, [accessed: April 25, 2013]
6. Giunchiglia, E., Marin, P., Narizzano, M.: QuBE7.0, system description. Journal of

Satisfiability. 7(8), 83–88 (2010)
7. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence

Research (JAIR) 26, 191–246 (2006)
8. Hoffmann, J., Brafman, R.I.: Conformant planning via heuristic forward search: A

new approach. Artificial Intelligence 170(6-7), 507–541 (2006)
9. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through

heuristic search. Journal of Artificial Intelligence Research (JAIR) 14, 253–302
(2001)

10. International conference on automated planning and scheduling (ICAPS). http:
//ipc.icaps-conference.org, [accessed: April 25, 2013]

11. Kautz, H., Selman, B., Hoffmann, J.: SATPlan: Planning as satisfiability. In:
Abstract booklet of the 5th International Planning Competition, event in the
context of ICAPS 2006 (2006)

12. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers.
In: Proc. SAT. pp. 158–171 (2010)

13. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs
using incremental QBF solving. In: Proc. DATE. pp. 623–628 (2012)

14. Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning
problems with bounded width. Journal of Artificial Intelligence Research (JAIR)
35, 623–675 (2009)

15. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints 14(1), 80–116 (2009)

16. Website of QuBE. http://www.star-lab.it/~qube/, [accessed: April 25, 2013]
17. Rintanen, J.: Asymptotically optimal encodings of conformant planning in QBF.

In: Proc. AAAI. pp. 1045–1050 (2007)
18. Rintanen, J.: Madagascar: Efficient planning with SAT. In: The 2011 International

Planning Competition – Description of Participating Planners – Deterministic
Track. pp. 61–64 (2011)

19. Website of sKizzo. http://skizzo.info, [accessed: April 25, 2013]
20. Website of T0. http://ldc.usb.ve/~hlp/, [accessed: April 25, 2013]

Solution extraction
from long-distance resolution proofs �

Uwe Egly and Magdalena Widl

Institute of Information Systems, Vienna University of Technology, Austria

{uwe,widl}@kr.tuwien.ac.at

1 Introduction

Much effort has been devoted in the past decade to the development of decision proce-

dures for quantified Boolean formulas (QBFs) in order to improve their performance.

Besides solving the decision problem of whether a closed QBF is true and returning

yes or no, modern QBF solvers can produce clause or cube proofs to certify their an-

swer. These proofs can be used to derive solutions to problems formulated as QBFs.

For instance, if the QBF describes a synthesis problem, the solution to this problem

can be generated from the proof. Examples for representations of such solutions are

control circuits (manifested in Herbrand or Skolem functions) or control strategies. We

review two approaches for solution generation below. We focus on false QBFs and clause

Q-refutations. For true QBFs, both approaches work in a symmetric fashion.

Balabanov and Jiang [1] propose to extract a Herbrand function for each universal

(∀) variable from a Q-refutation of a false QBF. These functions are constructed in such

a way that replacing each ∀ variable by its Herbrand function in the matrix and removing

the prefix yields an unsatisfiable Boolean formula. Unsatisfiability can be checked by a

common SAT solver if required. Their algorithm traverses the refutation and constructs

a formula for each ∀ variable from the nodes of the refutation where the variable is

reduced by universal reduction. The run-time of their extraction algorithm is polynomial

in the size of the refutation.

Goultiaeva et al. [3] employ a game-theoretic view to QBFs. They present an algo-

rithm which executes a winning strategy for the universal player from the refutation. The

existential (∃) player chooses a move, i.e., an assignment of truth values to all ∃ variables

in the outermost quantifier block. The algorithm modifies the Q-refutation according to

this move and removes the current quantifier block from the prefix. From the resulting

refutation, the ∀ player computes her move, i.e., an assignment of truth values to all

∀ variables in the outermost quantifier block which is now universal. Modifications

take place as above and the ∃ player continues. The run-time of this algorithm is also

polynomial in the size of the refutation.

For both methods, their runtime is directly related to the refutation size. It is therefore

desirable to have short refutations. Since there are families of QBFs (like the one from

Kleine Büning et al. [4] discussed below), for which any Q-refutation is exponential,

� This work was supported by the Austrian Science Foundation (FWF) under grant S11409-N23

and by the Vienna Science and Technology Fund (WWTF) through project ICT10-018.

the use of more powerful calculi to allow more succinct refutations is essential for fast

extraction of Herbrand functions or strategies.

A way to strengthen the Q-resolution calculus is to add the additional inference

rules presented in [1]. The resulting calculus is called long-distance resolution (LDQ-

resolution) [9]. Its inference rules are reproduced in Appendix A as rules r1 to r4
and u1. LDQ-resolution allows to resolve two clauses upon an ∃ pivot p resulting in

a resolvent with complementary pairs of ∀ literals provided each pair’s variable has a

higher quantifier level than p. The derived clause is thus tautological.

This paper is intended to advertise the use of LDQ-resolution. First, LDQ-resolution

may greatly simplify the clause learning component [2,6] in current QBF solvers. In

this component, additional effort (in terms of Q-resolution steps) is required in order

to avoid the generation of tautological clauses over ∀ literals. This additional effort

often results in an increase of refutation size. Second, we show that LDQ-resolution has

the potential to produce shorter refutations. More precisely, we show an exponential

speed-up in refutation size compared to Q-resolution using the family (ϕt)t≥1 of false

QBFs introduced by Kleine Büning et al. in [4]. Third, we show that the strategy

extraction algorithm in [3] can handle LDQ-refutations. Therefore, the performance of

this algorithm directly benefits from exponentially shorter LDQ-refutations. Finally, we

point out open questions with respect to the certificate extraction procedure in [1].

2 Short proofs for hard formulas

Let (ϕt)t≥1 be a family of QBFs in PCNF. The formula ϕt has prefix

∃d0d1e1∀x1∃d2e2∀x2∃d3e3 · · · ∀xt−1∃dtet∀xt∃f1 · · · ft
and the following clauses in the matrix:

K0 d0 K1 d0 ∨ d1 ∨ e1
K2j dj ∨ xj ∨ dj+1 ∨ ej+1 K2j+1 ej ∨ xj ∨ dj+1 ∨ ej+1 j = 1, . . . , t− 1

K2t dt ∨ xt ∨ f1 ∨ · · · ∨ ft K2t+1 et ∨ xt ∨ f1 ∨ · · · ∨ ft
B2j−1 xj ∨ fj B2j xj ∨ fj j = 1, . . . , t

Kleine Büning et al. prove in [4, Theorem 3.2] that any Q-refutation for ϕt is exponential

in t. Van Gelder [8] shows that there exists a short Q-resolution refutation for formulas

of this class if resolution over universal variables is allowed. We show that ϕt has

polynomial size LDQ-refutations. They have the form of a directed acyclic graph (DAG).

Following the notation in [1], we will use x∗ as a shorthand for x ∨ x.

1. Derive dt ∨ xt ∨
∨t−1

i=1 fi from B2t and K2t. Derive et ∨ xt ∨
∨t−1

i=1 fi similarly.
2. Use both clauses from Step 1 together with K2(t−1) and derive the clause dt−1 ∨

xt−1 ∨
∨t−1

i=1 fi ∨ x∗
t . Observe that the quantification level of dt and et is less than

the level of xt. Use B2(t−1) to get dt−1 ∨ xt−1 ∨
∨t−2

i=1 fi ∨ x∗
t . Derive the clause

et−1 ∨ xt−1 ∨
∨t−2

i=1 fi ∨ x∗
t in a similar way.

3. Iterate the procedure to derive d2 ∨ x2 ∨
∨1

i=1 fi ∨
∨t

i=3 x
∗
i as well as e2 ∨ x2 ∨∨1

i=1 fi ∨
∨t

i=3 x
∗
i .

4. With K2, derive d1∨x1∨f1∨
∨t

i=2 x
∗
i . Use B2 to obtain d1∨x1∨

∨t
i=2 x

∗
i . Derive

e1 ∨ x1 ∨
∨t

i=2 x
∗
i in a similar fashion.

5. Use the two derived clauses together with K0 and K1 to obtain
∨t

i=1 x
∗
i , which can

be reduced to �.

The number of clauses in this refutation is in O(t).
We have identified formulas which have short LDQ-refutations, but any Q-refutation

of the same formula is exponential. Hence the processing of the short refutations by

extraction algorithms can be much faster provided the algorithms can handle such a

refutation without too much additional complication.

3 Strategy extraction from long-distance resolution

We show that the strategy extraction method from Q-refutations presented by Goultiaeva

et al. in [3] can be applied in the same manner to LDQ-refutations.

As sketched in the introduction, the method is described as a game between a ∀
player and an ∃ player. The game proceeds through the quantifier prefix from the left

to the right alternating the two players according to the quantifier blocks. The ∃ player

arbitrarily chooses an assignment to the variables in the current block. The assignment

for the ∀ player is then computed according to previous assignments as follows.

First, all leaf nodes of the refutation, the clauses of the input formula, are modified

according to the existential assignment as defined below similarly to [3,7].

Definition 1. A (partial) assignment to a set V of variables of a QBF in PCNF is a set σ
of literals of V such that if l ∈ σ then l �∈ σ. A clause K under an assignment σ is denoted
K�σ and defined as follows: K�σ = � if K∩σ �= ∅ and K�σ = K\{q | q ∈ K∧q ∈ σ}
otherwise.

Second, the inner nodes and � are derived by applying LDQ-resolution rules or, in

cases where the pivot element has been removed by the assignment, by applying addi-

tional sound derivation rules (P-rules) presented by Goultiaeva et al. [3] and reproduced

in Appendix A. Then the refutation, now containing rules outside the LDQ-resolution

calculus, is transformed back into an LDQ-refutation. This transformation results in each

∀ variable of the next quantifier block to be reduced at most once. At the ∀ player’s turn,

the assignment to each of these variables is determined by either choosing the opposite

polarity of the variable’s literal removed in the remaining universal reduction or any

polarity in case the variable is not reduced at all. It is shown in [3] that for a Q-refutation,

after each restriction of either the ∃ or the ∀ player, � is derived.

We show that this method also works for LDQ-refutations. First, we show in a

fashion similar to [3,7] that in a refutation applying LDQ-rules and P-rules, each node

generated from the restricted leaves subsumes the restriction of the node by the partial

assignment. The proof of the following lemma can be found in Appendix A.

Lemma 1. (cf. Lemma 2.6 in [7]) Given a QBF in PCNF ψ = ∃V Pφ with V the set of
all variables of the outermost quantifier block, P the prefix of ψ without ∃V , and φ the
matrix of ψ, let K, Kl and Kr be clauses of φ, and σ an assignment to V . Then it holds
that res(Kl

�σ,K
r
�σ, p) ⊆ res(Kl,Kr, p)�σ and red(K�σ, x) ⊆ red(K,x)�σ .

Using this lemma, we show with an argument similar to Goultiaeva et al. [3], that (1)

by applying the restriction rules with respect to an assignment to the variables of an ∃
quantifier block to an LDQ-refutation, the resulting proof derives �, and (2) that further

restricting the LDQ-refutation by the computed assignment to the ∀ variables of the next

turn also derives �. (More details can be found in Appendix A.)

The key reason why this works for LDQ-refutations in the same fashion as for

Q-refutations is the following. In a restricted refutation, the applications of rules deriving

tautologies of some ∀ variables (LD-steps, r2 to r4 in Appendix A) are always removed

by the partial assignment to ∃ variables of the previous quantifier blocks. This is the case

because an LD-step can result in a tautology x ∨ x of some ∀ variable x only if the pivot

element p (an ∃ variable) has a lower quantifier level than x. Thus before the ∀ player’s

turn, the pivot element of each LD-step that results in tautologies involving ∀ variables

of the respective quantifier block is contained in the partial assignment. Therefore, either

of the parents of the LD-step is set to �, and by applying the corresponding derivation

rule, only one polarity of the ∀ variable is left in the derived clause.

4 Conclusion and future work

We have shown an exponential speed-up in refutation size if LDQ-resolution instead

of Q-resolution is employed to any QBF ϕt belonging to the family introduced in [4].

Given the fact that state of the art methods for the extraction of Herbrand functions or

strategies require traversing the refutation, it is desirable to retrieve LDQ-refutations

instead of Q-refutations from QBF solvers in order to speed up such extraction methods.

We have further shown that strategies can be retrieved from LDQ-refutations by applying

the state of the art algorithm described in [3]. This implies an exponential speed-up for

the strategy extraction from any QBF in the family (ϕt)t≥1.

It remains an open question how Herbrand functions can be extracted efficiently from

LDQ-refutations. It is possible to build Boolean formulas from truth tables generated

by the strategy extraction method in [3]. However, since each possible assignment to

the existential variables has to be considered, this naive method is exponential in the

quantifier prefix.

Further, to the best of our knowledge, a workflow including output and verifiation

of LDQ-resolution proofs is currently not supported by state of the art QBF solvers.

(According to Van Gelder [8], QuBE-cert produces tautological clauses, but it is unclear

whether the LDQ calculus is used.) In QBF solvers based on clause learning such as

DepQBF [5], the generation of tautological clauses is avoided by additional resolution

steps which remove existential variables with a higher quantifier level in order to enable

a separate universal reduction for each problematic universal variable. By allowing long

distance resolution steps, the learning component could be simplified and the obtained

refutations could be shorter.

References

1. V. Balabanov and J.-H. R. Jiang. Unified QBF certification and its applications. Formal
Methods in System Design, 41(1):45–65, Apr. 2012.

2. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and Learning in the

Evaluation of Quantified Boolean Formulas. Journal of Artificial Intelligence Research (JAIR),
26:371–416, Sept. 2006.

3. A. Goultiaeva, A. Van Gelder, and F. Bacchus. A uniform approach for generating proofs and

strategies for both true and false QBF formulas. In International joint conference on Artificial
Intelligence (IJCAI), IJCAI’11, pages 546–553. AAAI Press, 2011.

4. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas.

Information and Computation, 117(1):12–18, Feb. 1995.

5. F. Lonsing and A. Biere. DepQBF: A Dependency-Aware QBF Solver (System Description).

Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 7:71–76, 2010.

6. F. Lonsing, U. Egly, and A. Van Gelder. Efficient clause learning for quantified boolean

formulas via QBF pseudo unit propagation. In Theory and Application of Satisfiability Testing
(SAT), 2013.

7. A. Van Gelder. Input Distance and Lower Bounds for Propositional Resolution Proof Length.

In Theory and Application of Satisfiability Testing (SAT), 2005.

8. A. Van Gelder. Contributions to the Theory of Practical Quantified Boolean Formula Solving.

In M. Milano, editor, Principles and Practice of Constraint Programming (CP), Lecture Notes

in Computer Science, pages 647–663. Springer Berlin Heidelberg, 2012.

9. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Conflicts in

Quantified Boolean Formula Evaluation. In P. Hentenryck, editor, Principles and Practice of
Constraint Programming (CP), volume 2470 of Lecture Notes in Computer Science, pages

200–215. Springer Berlin Heidelberg, 2006.

A Strategy extraction from LDQ-resolution proofs

We write e for an existential variable, x (with or without subscript) for a universal

variable, x∗ for x ∨ x, var(q′) for the variable of a literal q′ ∈ {q, q}, lev(q′) for the

quantifier level of the variable var(q′) counting from the left to the right of the prefix,

Kl, Kr, and K for leaf clauses or derived clauses, p for the existential pivot variable,

and � for the empty clause. By QBF we refer to a QBF in PCNF. An LDQ-refutation is

an LDQ-resolution derivation of �.

The following reproduces the rules of the LDQ-resolution calculus (LDQ-rules)

presented by Balabanov and Jiang [1] with the differences that universal reduction is

not integrated in the resolution rules but represented by a separate rule and that only one

universal literal is reduced in one step.

Kl ∨ p Kr ∨ p
[p]

Kl ∨Kr
(r1)

Kl ∨ p ∨ x Kr ∨ p ∨ x
[p]

Kl ∨Kr ∨ x∗ lev(p) < lev(x) (r2)

Kl ∨ p ∨ x Kr ∨ p ∨ x∗
[p]

Kl ∨Kr ∨ x∗ lev(p) < lev(x) (r3)

Kl ∨ p ∨ x∗ Kr ∨ p ∨ x∗
[p]

Kl ∨Kr ∨ x∗ lev(p) < lev(x) (r4)

K ∨ x′
[x]

K

for x′ ∈ {x, x, x∗} and

for all e ∈ K it holds that lev(e) < lev(x′) (u1)

As in [1], we extend universal reduction to delete also x∗ and call x∗ the merged

variable in r2, r3, r4, because x, x occur in both parent clauses, but they are merged into

one occurrence of x∗ in the resolvent. We require the restriction on the quantifier level

in these rules to also apply to other merged variables in Kl and Kr. In r1, Kl and Kr

may contain x, x or x∗ but no merging is allowed.

We define a (partial) assignment and a clause under a (partial) assignment similarly

to [3,7]:

Definition 1. A (partial) assignment to a set V of variables of a QBF in PCNF is a set σ
of literals of V such that if l ∈ σ then l �∈ σ. A clause K under an assignment σ is denoted
K�σ and defined as follows: K�σ = � if K∩σ �= ∅ and K�σ = K\{q | q ∈ K∧q ∈ σ}
otherwise.

The algorithms play and restrict describe the algorithm presented by Goul-

tiaeva et al. [3]. play implements the alternating turns of the universal (∀) and the

existential (∃) player moving from the left to the right in the quantifier prefix. Each

player chooses an assignment to the variables in the current quantifier block. The proof

is modified after each assignment and results in an LDQ-refutation of the QBF under

the partial assignment. The ∃ player chooses an arbitrary assignment and the ∀ player

chooses an assignment that depends on the current modified proof.

The modification of the LDQ-resolution consists of two steps represented by the pro-

cedures restrict and transform. First, restrict restricts the proof according

to the chosen assignment. It modifies the leaves of the proof by applying the assignment

according to Definition 1 and then modifies the successor nodes by either applying one of

the LDQ-resolution rules described above or, if the pivot variable has been removed from

at least one of the parents, by applying one of the additional rules presented in [3,7]. The

additional rules (P-rules) are reproduced in the following (symmetric rules are omitted):

Kl ∨ p �
[p] �

(r5)

Kl ∨ p Kr

[p]
Kr

p �∈ Kr (r6)

Kl Kr
[p]

narrower(Kl,Kr)
p, p �∈ Kland p, p �∈ Kr (r7)

K
[x]

K
x �∈ K (u2)

�
[x] � (u3)

where narrower(Kl,Kr) returns the clause containing less literals. If Kl and Kr contain

the same number of literals, Kl is returned. Observe that � is the narrowest clause and

� contains all literals.

Note that, even though each P-rule represents a sound derivation step, applying

P-rules results in a proof outside the LDQ-calculus. Starting at the leaves of the proof,

the function transform (Πp), where Πp is a proof containing clauses derived using

LDQ-rules and P-rules, removes parts of the proof that have become redundant due to

the application of P-rules. Thereby also all applications of P-rules are removed. More

specifically, for node K = � derived by rule r5, its parent Kl ∨ p is removed with all its

ancestors, and K is merged with its other parent �. A similar procedure is applied to

nodes derived by rules r6 and r7. Each node derived by rules u1 to u3 is merged with its

parent. When � is derived, the procedure stops and all nodes that are not ancestors of �

are removed. �-clauses are eliminated by eventually applying rule r6 or by removing

nodes when � is found. The resulting refutation is an LDQ-refutation.

After restricting the LDQ-refutation by a computed assignment σ∀ to ∀ variables,

only one redundant clause, namely �, has to be removed because after the previous

restriction by σ∃ and the following repair, the refutation contains at most one universal

reduction for any universal variable x of the current quantifier block. This is the case

because the condition for x to be reduced from any clause K is that K does not contain

any ∃ variables with a quantifier level higher than x. Any ∃ variable in K is therefore

in σ∃, and after restricting the refutation, K is either (1) set to � or (2) all ∃ variables

are removed. The topologically first clause (furthest to �) where (2) happens derives �

after reducing each of its ∀ variables. An assignment σ∀ to a ∀ variable x as computed

in Line 8 of Algorithm 1 chooses the opposite polarity of x when it is reduced in node

K. This way, according to Definition 1, K becomes � and only the � derived from K
has to be removed.

In the following we present a proof that restrict, when called in Line 4 or Line

9 of play, returns a derivation of � using LDQ-rules and P-rules. Proposition 1 shows

that this holds for an arbitrary assignment to all ∃ variables in the outermost quantifier

block, and Proposition 2 shows the same for the computed assignment to ∀ variables.

We write res(Kl,Kr,p) for a resolution step over pivot element p according to rules r1
to r7, and red(K,x) for a reduction step reducing variable x according to rules u1 to u3.

We start by showing that any node generated by applying an LDQ-rule or a P-rule

from the restricted leaves subsumes the restriction of the node by the partial assignment.

Lemma 1. (cf. Lemma 2.6 in [7]) Given a QBF in PCNF ψ = ∃V Pφ with V the set of
all variables of the outermost quantifier block, P the prefix of ψ without ∃V , and φ the
matrix of ψ, let K, Kl and Kr be clauses of φ, and σ an assignment to V . Then it holds
that res(Kl

�σ,K
r
�σ, p) ⊆ res(Kl,Kr, p)�σ and red(K�σ, x) ⊆ red(K,x)�σ .

Proof. We distinguish between each case of K containing or not containing literals of σ.

C0(σ,K): ∃q ∈ σ such that q ∈ K ∧ q ∈ K. This case never happens because no

tautologies over ∃ variables are allowed.

C1(σ,K): ∀q ∈ σ it holds that q �∈ K and q �∈ K. Then K�σ = K.

C2(σ,K): ∃q ∈ σ such that q ∈ K. Then K�σ = �.

C3(σ,K): ∀q ∈ σ it holds that q �∈ K and ∃q ∈ σ such that q ∈ K. Then K�σ =
K \ {q | q ∈ σ}.

For resolution steps, either of the following cases applies (symmetric cases are omitted):

(1) C1(σ,K
l) and C1(σ,K

r): Kl
�σ = Kl, Kr

�σ = Kr, and res(Kl,Kr, p)�σ =

res(Kl,Kr, p). By applying rule r1, r2, r3, or r4, we obtain res(Kl
�σ,K

r
�σ, p) =

res(Kl,Kr, p). Therefore the subset relation holds.

(2) C2(σ,K
l) and C1(σ,K

r): Kl
�σ = �, Kr

�σ = Kr, and res(Kl,Kr, p)�σ = �. By

applying rule r5, we obtain res(Kl
�σ,K

r
�σ, p) = �. Therefore the subset relation holds.

(3) C3(σ,K
l) and C1(σ,K

r): Since C1(σ,K
r), ∀q ∈ σ it holds that p �= q and p �= q.

Then Kl
�σ = Kl \{q | q ∈ σ}, Kr

�σ = Kr, and res(Kl,Kr, p)�σ = Kl∪Kr \{q | q ∈
σ}. By applying rule r1, r2, r3, or r4, we obtain res(Kl

�σ,K
r
�σ, p) = Kl∪Kr{q | q ∈ σ}.

Therefore the subset relation holds.

(4) C2(σ,K
l) and C2(σ,K

r): Kl
�σ = �, Kr

�σ = �, and res(Kl,Kr, p)�σ = �. By

applying rule r5, we obtain res(Kl
�σ,K

r
�σ, p) = �. Therefore the subset relation holds.

(5) C2(σ,K
l) and C3(σ,K

r): Then Kl
�σ = �, and Kr

�σ = Kr \ {q | q ∈ σ}. We have

to distinguish two cases:

(a) ∃q ∈ σ such that var(q) = p. Then res(Kl,Kr, p)�σ = (Kl ∪Kr) \ {q | q ∈ σ}.

By applying rule r6, we obtain res(Kl
�σ,K

r
�σ, p) = Kr \ {q | q ∈ σ}. Therefore the

subset relation holds.

(b) Otherwise (σ does not contain the pivot p). Then res(Kl,Kr, p)�σ = �. By applying

rule r5, we obtain res(Kl
�σ,K

r
�σ, p) = �. Therefore the subset relation holds.

(6) C3(σ,K
l) and C3(σ,K

r) Kl
�σ = Kl \ {q | q ∈ σ}, Kr

�σ = Kr \ {q | q ∈ σ}, and

res(Kl,Kr, p)�σ = Kl∪Kr \{q | q ∈ σ}. By applying rule r1, r2, r3, or r4, we obtain

res(Kl
�σ,K

r
�σ, p) = Kl ∪Kr \ {q | q ∈ σ}. Therefore the subset relation holds.

For reduction steps, either of the following cases applies:

(7) C1(σ,K): K�σ = K and red(K,x)�σ = red(K,x). Therefore the subset relation

holds.

(8) C2(σ,K): K�σ = � and red(K,x)�σ = �. By applying rule u3 we obtain

red(K�σ, x) = �. Therefore the subset relation holds.

(9) C3(σ,K): K�σ = K \ {q | q ∈ σ} and red(K,x)�σ = (K \ {x}) \ {q | q ∈ σ}.

By applying rule u1, we obtain red(K�σ, x) = (K \ {x}) \ {q | q ∈ σ}. Therefore the

subset relation holds.
�

With respect to the application of rules r2 to r4 (LD-steps), we observe the following

from the play algorithm and cases (1) to (6) in the above lemma: play iterates over

the quantifier prefix from the left to the right. The condition for a clause to be derived by

an LD-step is that the quantifier level of the pivot variable p is lower than the level of

the merging variable x∗. If the algorithm is executing the existential quantifier level �,
any of the cases (1) to (6) except (5a), i.e. all cases where the pivot remains unassigned,

can only happen on an LD-step if lev(x∗) − � > 1. That is, var(x) is not in the next

quantifier block. Otherwise (if x∗ is on the next quantifier level) p must be assigned in

the current turn and case (5a) applies. Case (5a), where p is assigned, can happen on any

LD-step. In this case, the LD-step is modified by rule r6, which removes the merged

variable. It is thus always the case that after restricting the refutation according to an

existential quantifier block on the �-th level, the refutation does not contain any LD-step

generating a variable x∗ with lev(x∗) = � + 1. Therefore, in the following ∀ player’s

turn, none of the respective ∀ variables occurs as tautology.

Lemma 2. Given a QBF in PCNF ψ = ∃V Pφ with V the set of all variables of the
outermost quantifier block, P the prefix of ψ without ∃V , and φ the matrix of ψ, an
LDQ-resolution Π deriving a clause K from ψ, and an assignment σ∃ to V , it holds
that Π ′ = restrict(Π,σ∃) derives a clause K ′ from Pφ�σ∃ such that K ′ ⊆ K�σ∃ .

Proof. By induction on the structure of Π using Lemma 1.
�

Proposition 1. Given a QBF in PCNF ψ = ∃V Pφ with V the set of all variables of
the outermost quantifier block, P the prefix of ψ without ∃V , and φ the matrix of ψ,
an LDQ-resolution Π deriving � from ψ, and an assignment σ∃ to V , it holds that
Πp = restrict(Π,σ∃) derives � from Pφ�σ∃ .

Proof. By Lemma 2, for any clause K derived in Π it holds that Π ′ derives a clause K ′

such that K ′ ⊆ K�σ∃ . Therefore, if K = �, then Π ′ must derive a clause K ′ = �.
�

Proposition 2. Given a QBF in PCNF ψ = ∀V Pφ with V the set of all variables of
the outermost quantifier block, P the prefix of ψ without ∀V , and φ the matrix of ψ, an
LDQ-resolution Π deriving � from ψ, and an assignment σ∀ to V as computed in Line
8 of Algorithm 1, Πp = restrict(Π,σ∀) derives � from Pφ�σ∀ .

Proof. For any q ∈ σ∀ it holds that q is either not reduced at all, or reduced exactly once

in Π . If q is not reduced at all, then it is not involved in Π and therefore its assignment

does not alter the proof. Let R ⊆ σ∀ be the set of dual literals that are reduced exactly

once in the proof. Then there is a set K with |K| = |R| of nodes such that the nodes

in K are directly following one another, each reducing exactly one literal r in R. The

last reduced node of K results in �. This is the case because all literals of R are in the

outermost quantifier block. restrict (Π ,σ∀) then applies rule u2 to each clause K,

setting each K in K to �.

�

Algorithm 1: play

Input : QBF P.ψ, LDQ-refutation Π
foreach Quantifier block Q in P from left to right do1

if Q is existential then2

σ∃ ← any assignment to variables in Q3

Πp ← restrict (Π ,σ∃) (Πp is not an LDQ-resolution)4

Π ← transform (Πp) (Π is an LDQ-resolution)5

else Q is universal6

K ← topologically first node with no existential literals7

σ∀ ← {x | x ∈ K ∧ var(x) ∈ Q} ∪ {x | x �∈ K ∧ x �∈ K ∧ var(x) ∈ Q}8

Πp ← restrict (Π ,σ∀)9

Π ← transform (Πp)10

11

Algorithm 2: restrict

Input : LDQ-refutation Π , assignment σ for variables in outermost block

Output: Restricted refutation containing LD-rules and P-rules

foreach leaf node K in Π do1

K ← K�σ;2

foreach inner node K topologically in Π do3

if K is a resolution node then4

Kl,Kr ← parents of K5

p ← pivot of K6

K ← res(Kl,Kr,p)7

else K is a reduction node8

Kc ← parent of K9

x ← variable reduced from Kc10

K ← red(Kc,p)11

12

return Π13

∀Exp+Res Does not P-Simulate Q-resolution

Mikoláš Janota1 and Joao Marques-Silva1,2

1 IST/INESC-ID, Lisbon, Portugal
2 University College Dublin, Ireland

1 Introduction

In our recent work [9], we formalized a proof system ∀Exp+Res underlying expansion–

based QBF solvers, namely sKizzo [1], RAReQS [8], and to some extend Quantor [2].

In the same work, we conjectured that ∀Exp+Res and Q-resolution [4] cannot p-

simulate one another. In this work we confirm one half of this conjecture, i.e. that

∀Exp+Res cannot p-simulate Q-resolution. This observation furthers our understand-

ing of the differences between the different underlying methods for solving QBFs as

well as the differences between the underlying proof systems.

2 Preliminaries

A literal is a Boolean variable or its negation. For a literal l, we write l̄ to denote the

literal complementary to l, i.e. x̄ = ¬x, ¬x = x. A clause is a disjunction of finitely

many literals. A formula in conjunctive normal form (CNF) is a conjunction of finitely

many clauses. As usual, whenever convenient, a clause is treated as a set of literals and

a CNF formula as a set of sets of literals.

For a literal l = x or l = x̄, we write var(l) for x. Analogously, for a clause C,

var(C) denotes {var(l) | l ∈ C} and for a CNF ψ, var(ψ) denotes {l | l ∈ var(C), C ∈ ψ}.

Substitutions are denoted as x1/ψ1, . . . , xn/ψn, with xi �= xj for i �= j. The set of

variables x1, . . . , xn is called the domain of the substitution. An application of a substi-

tution is denoted as φ[x1/ψ1, . . . , xn/ψn] meaning that variables xi are simultaneously

substituted with corresponding formulas ψi in φ. A substitution is called an assignment
iff each ψi is one of the constants 0, 1. An assignment is called total, or complete, for a

set of variables X if each x ∈ X is in the domain of the assignment. For substitutions

τ1 = x1/ψ1, . . . , xn/ψn and τ2 = y1/ξ1, . . . , ym/ξm with distinct domains we write

τ1 ∪ τ2 for the substitution x1/ψ1, . . . , xn/ψn, y1/ξ1, . . . , ym/ξm.

Quantified Boolean Formulas (QBFs) [3] are an extension of propositional logic

with quantifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth

assignments as Ψ [x/0] ∧ Ψ [x/1] and ∃x. Ψ as Ψ [x/0] ∨ Ψ [x/1]. Unless specified oth-

erwise, QBFs are in closed prenex form with a CNF matrix, i.e. Q1X1 . . .QkXk. φ,

where Xi are pairwise disjoint sets of variables; Qi ∈ {∃, ∀} and Qi �= Qi+1. The for-

mula φ is in CNF and is defined only on variables X1 ∪ . . .∪Xk. The propositional part

φ is called the matrix and the rest the prefix. We write QCNF to talk about formulas in

this form. If a variable x is in the set Xi, we say that x is at level i and write lv(x) = i;
we write lv(l) for lv(var(l)). A closed QBF is false (resp. true), iff it is semantically

equivalent to the constant 0 (resp. 1).

If a variable is universally quantified, we say that the variable is universal. For a

literal l and a universal variable x such that var(l) = x, we say that l is universal. The

notions of existential variable and literal are defined analogously.

2.1 Q-resolution

Q-resolution [4] is an extension of propositional resolution for showing that a QCNF is

false. For a clause C, a universal literal l ∈ C is blocked by an existential literal k ∈ C
iff lv(l) < lv(k). ∀-reduction is the operation of removing from a clause C all universal

literals that are not blocked by some existential literal. For two ∀-reduced clauses x∨C1

and x̄∨C2, where x is an existential variable, a Q-resolvent [4] is obtained in two steps.

(1) Compute Cu = C1 ∪C2 � {x, x̄}. If Cu contains complementary literals, the Q-

resolvent is undefined. (2) Compute Cr by ∀-reducing Cu; Cr is called the resolvent of

C1 and C2. For a QCNF P .φ, a Q-resolution proof of a clause C is a finite sequence

of clauses C1, . . . , Cn where Cn = C and any Ci in the sequence is part of the given

matrix φ or it is a Q-resolvent for some pair of the preceding clauses. A Q-resolution

proof is called a refutation iff C is the empty clause, denoted by ⊥.

In this paper Q-resolution proofs are treated as connected directed

acyclic graphs, i.e. each clause in the proof corresponds to some

node labeled with that clause. We assume that the input clauses are

already ∀-reduced. Q-resolution steps are depicted as on the right.

Note that the ∀-reduction step is depicted separately. C

Cu

C1 ∨ x C2 ∨ x̄

2.2 Proof complexity

A proof system P is a relation P (Φ, π) computable in polynomial time such that a

formula Φ is true iff there exists a proof π for which P (Φ, π). A proof system P1 p-
simulates a proof system P2 iff any proof in P2 of a formula Φ can be translated into a

proof in P1 of Φ in polynomial time (c.f. [5,10]).

We count the sizes of Q-resolution proofs as the number of resolution steps plus the

number of ∀-reductions where each reduced literal is counted separately.

2.3 Expansions

Based on the equivalence ∀y.Φ = Φ[y/0] ∧ Φ[y/1], expansion of universal quantifiers

enables decreasing the number of quantifiers and maintaining prenex normal form at

the cost of introducing fresh variables. Once all universal variables are expanded, a

SAT solver can be invoked. Partial expansions enable us to mitigate the size of the

formula. For instance, for the formula ∀y∃x. (y∨x)∧ (y∨ x̄) it is sufficient to consider

an expansion with y/0 to show the formula false.

For a general QBF Φ = ∀U1 ∃ E2 . . . ∀U2N−1 ∃ E2N . φ (WLOG we start with a

universal quantifier) our recent work [9] defines an expansion as follows.

Definition 1 (∀-expansion tree). A ∀-expansion tree is a rooted tree T such that each
path p0

τ1→ p1 . . .
τN→ pN in T from the root node p0 to some leaf node pN has ex-

actly N edges and each edge pi−1
τi−→ pi is labeled with a total assignment τi to the

variables U2i−1, for i ∈ 1..N . Each path in T is uniquely determined by its labeling.

DN−2

DN−2 ∨ eN

DN−2 ∨ eN ∨ ūN

DN−2 ∨ ūN ∨ c̄2N eN ∨ c2N

ūN ∨ c2N−1DN−2 ∨ c̄2N−1 ∨ c̄2N

DN−2 ∨ ēN

DN−2 ∨ ēN ∨ uN

DN−2 ∨ uN ∨ c̄2N−1ēN ∨ c2N−1

uN ∨ c2N

Fig. 1. Q-resolution proof sketch (where DN−2 = c̄1 ∨ · · · ∨ c̄2N−3 ∨ c̄2N−2)

Definition 2 (∀-expansion). Let T be a ∀-expansion tree. For a root-to-leaf path P in
T and a clause C, the following rules define the ∀-expansion of C by P , ∀-expansion
of φ by P , and ∀-expansion of Φ by T . These expansions are denoted as E (P,C),
E (P, ψ), and E (T , Φ), respectively.

1. For each path Pk in T from the root, labeled by assignments τ1, . . . , τk, and an
existential variable x with lv(x) = 2k define a fresh variable xτ1,...,τk .

2. For each path P in T from the root to some leaf labeled by τ1, . . . , τN , and a clause
C ∈ φ define E (P,C) as C[τ1 ∪ . . . τN ∪ τR] where

τR = {x/xτ1,...,τk | 1 ≤ k ≤ N, x an existential variable s.t. lv(x) = 2k}

3. For each path P in T from the root to some leaf define E (P, φ) as a union of
E (P,C) for C ∈ φ.

4. Define E (T , Φ) as the union of all E (P, φ) for each root-to-leaf path P in T .

Definition 3. A proof in ∀Exp+Res of a formula Φ is a pair (T , π) where π is a reso-
lution proof of E (T , Φ).

3 Separation

For a natural number N , construct the following formula3.

∃e1∀u1∃c1c2 . . . ∃eN∀uN∃c2N−1c2N .∧
i∈1..N (ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)∧∨
i∈1..2N c̄i

(1)

The formula has a Q-resolution proof comprising linear number of resolution steps.

Starting from the clause
∨

i∈1..2N c̄i, the literals c̄i are gradually resolved away from the

highest to the lowest level. Figure 1 shows how the variables c2N−1, c2N are resolved

away. The other pairs of variables are resolved away in the same fashion resulting in

the empty clause in the end.

Now we show that any ∀Exp+Res proof of the formula is exponential. Let us look

at the expansion of the first universal variable, i.e. the variable u1. We observe that both

3 See http://sat.inesc-id.pt/~mikolas/qbfw13 for a generator.

of the values are needed in the expansion. Let us expand u1, yielding the two following

formulas, one for u1/1 and one for u1/0 (for now other variables are left unexpanded).

∃e2∀u2∃c3c4 . . . ∃eN∀uN∃c2N−1c2N .

(ē1 ∨ c
u1/1
1) ∧ (c

u1/1
1) ∧ (e1 ∨ c

u1/1
2)∧∧

i∈2..N (ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)∧
c̄
u1/1
1 ∨ c̄

u1/1
2 ∨∨

i∈3..2N c̄i

(2)

∃e2∀u2∃c3c4 . . . ∃eN∀uN∃c2N−1c2N .

(ē1 ∨ c
u1/0
1) ∧ (c

u1/0
2) ∧ (e1 ∨ c

u1/0
2)∧∧

i∈2..N (ēi ∨ c2i−1) ∧ (ūi ∨ c2i−1) ∧ (ei ∨ c2i) ∧ (ui ∨ c2i)∧
c̄
u1/0
1 ∨ c̄

u1/0
2 ∨∨

i∈3..2N c̄i

(3)

The formula (2) is satisfiable because e1 can be set to 1, c
u1/1
2 to 0 and the rest of

the existential variables to 1 and similarly for the formula (3). Since both formulas (2)

and (3) are satisfiable, both of them are needed to show unsatisfiability.

Regardless of how the rest of variables in (2) and (3) are expanded, the only vari-

able they share is e1 because universal variables are expanded away and all existential

variables are labeled with u1/1 and u1/0, respectively.

From Craig’s interpolation theorem [6,7], there is an interpolant I using only vari-

ables common to (2) and (3), i.e. e1, and it holds that (2) ⇒ I and (3) ⇒ ¬I . Due to

the structure of the formulas, I must be e1. Equivalently (2) ∧ ē1 and (3) ∧ e1 are false

(unsatisfiable). The formula (2) ∧ ē1 is equivalent to the following.

(c
u1/1
1) ∧ (c

u1/1
2)∧

∃e2∀u2∃c3c4 . . . ∃eN∀uN∃c2N−1c2N .∧
i∈2..N (ēi ∨ c2N−1) ∧ (ūi ∨ c2N−1) ∧ (ei ∨ c2N) ∧ (ui ∨ c2N)∧∨
i∈3..2N c̄i

Since c
u1/1
1 , c

u1/1
2 appear in only the first part of the formula, the second part of

the formula has to be false (i.e. unsatisfiable after full expansion). The second part of

the formula is in the same form as the initial formula just with three less variables.

Repeating the same arguments, this formula has to be fully expanded. Following the

same argument for (3) ∧ e0 shows that the proof needs to expand each variable in both

polarities at all depths. Thus yielding an exponential expansion of the given formula.

4 Conclusion and Future Work

This paper investigates a recently-made conjecture [9] that states that Q-resolution [4]

and expansion-based solving (∀Exp+Res) are incomparable proof systems. We investi-

gated half of the conjecture, namely that ∀Exp+Res does not p-simulate Q-resolution.

This observation further complements the result of [9], where it was shown that ∀Exp+Res

can p-simulate tree Q-resolution. The result shown here confirms that this p-simulation

result is “tight”, i.e. non-tree Q-resolution cannot be simulated. To show that that Q-

resolution cannot simulate ∀Exp+Res is the subject of future work.

References

1. Benedetti, M.: Evaluating QBFs via symbolic Skolemization. In: Baader, F., Voronkov, A.

(eds.) LPAR. pp. 285–300 (2004)

2. Biere, A.: Resolve and expand. In: SAT (2004)

3. Büning, H.K., Bubeck, U.: Theory of quantified Boolean formulas. In: Handbook of Satisfi-

ability. IOS Press (2009)

4. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf.

Comput. 117(1) (1995)

5. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb.

Log. 44(1), 36–50 (1979)

6. Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. J. Symb. Log.

22(3), 250–268 (1957)

7. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University

Press (2009)

8. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with counterexample

guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT. Lecture Notes in Computer

Science, vol. 7317, pp. 114–128. Springer (2012)

9. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution. In: SAT

(2013), a preprint available at http://sat.inesc-id.pt/~mikolas/.

10. Urquhart, A.: The complexity of propositional proofs. Bulletin of the EATCS 64 (1998)

Variable Dependencies and Q-Resolution�

Friedrich Slivovsky and Stefan Szeider

Institute of Information Systems, Vienna University of Technology, Vienna, Austria

fs@kr.tuwien.ac.at,stefan@szeider.net

Abstract. We propose Q(D)-resolution, a proof system for Quantified Boolean

Formulas. Q(D)-resolution is a generalization of Q-resolution parameterized by

a dependency scheme D. This system is closely related to search-based QCNF

solvers that use dependency schemes to generalize the QDPLL algorithm, such

as DepQBF. We prove that Q(Dstd)-resolution is sound by presenting a transfor-

mation of Q(Dstd)-resolution refutations into ordinary Q-resolution refutations,

where Dstd denotes the so-called Standard Dependency Scheme.

1 Introduction

Most QBF solvers generate certificates for the (un)satisfiability of input formulas. These

certificates can help verify the solver’s correctness or provide additional information

to an application that uses the solver as a subroutine. Search-based QBF (QDPLL)

solvers typically use Q-resolution [2] refutations for certificates [5]. QDPLL solvers

normally assign variables in the order induced by the quantifier prefix of an input QBF

(in prenex normal form). In this case, the trace generated by the solver can be used

to construct a Q-resolution refutation or a cube resolution proof of this formula [3].

Since assigning variables in the order given by the quantifier prefix can impair solver

performance, it was suggested to use dependency schemes [6, 7] to give solvers more

freedom in choosing the order of variable assignments [1] (informally, a dependency

scheme is a mapping D that associates each formula F with a binary relation DF on its

variables that represents potential variable dependencies). This idea was successfully

implemented in the state-of-the-art solver DepQBF [4, 1]. However, DepQBF’s use of

dependency schemes breaks the immediate correspondence between solver traces and

Q-resolution proofs.

In this article, we propose Q(D)-resolution, a proof system for Quantified Boolean

Formulas in prenex CNF normal form (QCNF). Q(D)-resolution is a generalization of

Q-resolution, parameterized by a dependency scheme D. Q(D)-resolution uses a more

powerful version of the universal reduction rule found in Q-resolution: a universally

quantified variable x can be removed from a clause as long as that clause contains no

variables that may depend on x, according to D [1]. Q(D)-resolution is closely related

to search-based QCNF solvers that use dependency schemes to generalize the QDPLL

algorithm in the spirit of DepQBF.

Our main contribution is an algorithm that transforms a Q(Dstd)-resolution refuta-

tion of a formula into an ordinary Q-resolution refutation of the same formula, where

� This research was supported by the ERC (COMPLEX REASON, 239962).

Dstd is the so-called Standard Dependency Scheme [7]. Due to space constraints all

proofs are placed in the appendix.

2 Preliminaries

We consider quantified boolean formulas in quantified conjunctive normal form (QCNF).

A QCNF formula consists of a (quantifier) prefix and a CNF formula, called the matrix.

A CNF formula is a finite set of clauses, where each clause is a finite set of literals.

Literals are negated or unnegated propositional variables. If x is a variable, we put

x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. If X is a set of literals, we

write X for the set {x : x ∈ X }. For a clause C, we let var(C) be the set of vari-

ables occuring (negated or unnegated) in C. For a QCNF formula F with matrix F ,

we put var(F) = var(F) = ∪C∈F var(C), and lit(F) = var(F) ∪ var(F). We

call a clause tautological if it contains the same variable negated as well as unnegated.

Unless otherwise stated, we assume that the matrix of a formula contains only non-tau-

tological clauses. The prefix of a QCNF formula F is a sequence Q1x1 . . . Qnxn of

quantifications Qixi, where x1, . . . , xn is a permutation of var(F) and Qi ∈ {∀,∃}
for 1 ≤ i ≤ n. We define the depth of variable xp as δF (xp) = p, and let qF (xp) = Qp.

The sets of existential and universal variables occurring in F are given by var∃(F) =
{x ∈ var(F) : qF (x) = ∃ } and var∀(F) = {x ∈ var(F) : qF (x) = ∀ }, re-

spectively. We define RF = { (x, y) : δF (x) < δF (y) } and write RF (x) = { y ∈
var(F) : (x, y) ∈ RF } and LF (x) = { y ∈ var(F) : (y, x) ∈ RF }, where

x ∈ var(F). A proto-dependency scheme is a mapping D that associates each QCNF

formula F with a binary relation DF ⊆ RF . The trivial dependency scheme Dtrv maps

each QCNF formula F to the relation Dtrv
F = { (x, y) ∈ RF : qF (x) �= qF (y) }.

3 Q(D)-Resolution

Definition 1 (Q(D)-resolution derivation). Let F be a QCNF formula with matrix
F and let D be a proto-dependency scheme. A (tree-like) Q(D)-resolution derivation

from F is a pair (T, λ), where T = (V (T), E(T)) is a rooted binary tree and λ is a
mapping that associates each t ∈ V (T) with a non-tautological clause Ct and satisfies
the following conditions.

1. If t is a leaf of T then Ct ∈ F .
2. If t has distinct children t1 and t2, there is an existential variable e ∈ var∃(F)

such that Ct = (Ct1 ∪ Ct2) \ {e,¬e} and {e,¬e} ⊆ Ct1 ∪ Ct2 .
3. If t has a single child t′, there is a literal � with var(�) ∈ var∀(F) such that � ∈ Ct′

and Ct = Ct′ \ {�}. Moreover, there is no existential variable e ∈ var(Ct) such
that (var(�), e) ∈ DF .

We say π derives Cr, where r denotes the root of T . The derivation π is a Q(D)-reso-

lution refutation of F if it derives the empty clause.

Ordinary (tree-like) Q-resolution [2] corresponds to Q(Dtrv)-resolution (more precisely,

these systems polynomially simulate each other).

Let D be a proto-dependency scheme, and let π = (T, λ) be a Q(D)-resolution

derivation from a QCNF formula F . By the height of π we mean the height of T , while

the size of π is the number of vertices in T . For t ∈ T , let Tt denote the subtree of T
rooted at t, and λt the restriction of λ to Tt. Then πt = (Tt, λt) is a Q(D)-resolution

derivation. We call πt a subderivation of π.

We implicitly associate with π a function ρπ : E(T) → lit(F) that maps an edge

(t, t′) of T to the (unique) literal in λ(t′) \ λ(t), where t is a child of t′. Let e ∈ E(T)
and v = var(ρπ(e)). If v is an existential variable of F then e is a resolution step,

otherwise e is a universal reduction step. In either case we say e is a derivation step and

that e reduces v. The set of variables reduced by some resolution step of π is denoted

resolved(π). We say π is ordered if the sequence of variables reduced on any branch of

T is in the order of RF . That is, for any pair (e1, e2) ∈ E(T)×E(T) such that there is

a path from the root of T to an endpoint of e2 passing through e1 we have (x, y) ∈ RF ,

where x is the variable reduced by e1 and y is the variable reduced by e2.

Lemma 2. Let D be a proto-dependency scheme and F a QCNF formula. Any ordered
Q(D)-resolution refutation of F is a Q(Dtrv)-resolution refutation of F .

We now describe two operations on Q(D)-resolution derivations (detailed defini-

tions are given in the appendix). Let D be a proto-dependency scheme and let F be

a QCNF formula. Let π = (T, λ) and π′ = (T ′, λ′) be Q(D)-resolution derivations

from F deriving the clauses C and C ′, respectively. If u is a universal variable and

u ∈ var(C) then red(π, u) is obtained by attaching a new universal reduction step to

the root of π that reduces u. The resulting derivation is a Q(D)-resolution derivation

that derives C \ {u,¬u} provided there is no existential variable e ∈ var(C) such that

(u, e) ∈ DF .

If {e,¬e} ⊆ C ∪ C ′ for some e ∈ var∃(F), and (C ∪ C ′) \ {e,¬e} is non-tau-

tological then res(π, π′, e) is constructed by attaching a resolution step to the roots

of π and π′ that reduces e. The result is a Q(D)-resolution derivation of the clause

(C ∪ C ′) \ {e,¬e}.

We say π and π′ are equivalent and write π ≡ π′ if there is a bijection f : V (T) →
V (T ′) such that f is an isomorphism of T and T ′, and λ(t) = λ′(f(t)) for each t ∈ T .

4 Standard Dependencies

Definition 3 (Connected). Let F be a QCNF formula with matrix F and X ⊆ var(F).
An X-path between clauses C, C ′ ∈ F is a sequence C1, . . . , Ck of clauses in F with
C1 = C and C ′ = Ck such that var(Ci) ∩ var(Ci+1) ∩ X �= ∅ for all 1 ≤ i < k.
The clauses C, C ′ ∈ F are connected with respect to X if there is an X-path between
them. We extend this to variables and say x, y ∈ var(F) are connected with respect to
X if there are clauses C, C ′ ∈ F such that C and C ′ are connected with respect to X
and x ∈ var(C), y ∈ var(C ′).

Definition 4 (Standard Dependency Scheme [7]). Let F be a QCNF formula with
matrix F and let x, y ∈ var(F) such that qF (x) �= qF (y). We call {x, y} a dependency
pair with respect to X ⊆ var(F) if and x and y are connected with respect to X . The

standard dependency scheme Dstd associates each QCNF formula F with the relation
Dstd

F = { (x, y) ∈ RF : {x, y} is a dependency pair with respect to RF (x)∩var∃(F) }.

Observe that the mapping Dstd is a proto-dependency scheme. The next statement is a

slightly modified version of a result from [9].

Lemma 5. Let D be a proto-dependency scheme and let F be a QCNF formula with
matrix F . Let x, y ∈ var(F) be distinct variables. Let π = (T, λ) be a Q(D)-resolution
derivation from F , and let C be the clause derived by π. If x, y ∈ var(C) then x and y
are connected with respect to resolved(π).

Lemma 5 allows us to establish the following corollary, which is used in the proof of

Lemma 8 below to rule out the existence of universal reduction steps of a certain form.

Corollary 6. Let D be a proto-dependency scheme. Let F be a QCNF formula and
let x, y ∈ var(F) such that (x, y) ∈ RF and qF (x) �= qF (y). Let π = (T, λ) be a
Q(D)-resolution derivation from F with x, y ∈ var(C), where C is the clause derived
by π. If resolved(π) ⊆ RF (x) then (x, y) ∈ Dstd

F .

5 Reordering Q(Dstd)-resolution refutations

The next result shows that universal reduction steps can be inserted into an ordered

Q(D)-resolution derivation to obtain another ordered Q(D)-resolution derivation. This

statement holds for arbitrary proto-dependency schemes D.

Proposition 7. Let D be a proto-dependency scheme. Let F be a QCNF formula with
u ∈ var∀(F), and let π ≡ red(π′, u) be a Q(D)-resolution derivation from F such
that π′ is ordered. Given π, one can compute an ordered Q(D)-resolution derivation
from F that derives the same clause as π.

Lemma 8. Let F be a QCNF formula and let e ∈ var∃(F). Let π ≡ res(π1, π2, e)
be a Q(Dstd)-resolution derivation of a clause C from F such that π1 and π2 are or-
dered. Given π, one can compute an ordered Q(Dstd)-resolution derivation from F that
derives a clause C ′ ⊆ C.

Proposition 7 and Lemma 8 are instrumental in proving our main result, as stated below.

Recall that Q(Dtrv)-resolution is equivalent to ordinary Q-resolution.

Theorem 9. Given a Q(Dstd)-resolution refutation of a QCNF formula F one can
compute a Q(Dtrv)-resolution refutation of F .

6 Conclusion

A Q(Dtrv)-resolution refutation computed from a Q(Dstd)-resolution refutation using

the algorithm of Theorem 9 can be of size exponential in the size of the input refutation.

It is an open question whether this is an artifact of our approach or whether there is in

fact an exponential separation between Q(Dstd)-resolution and Q(Dtrv)-resolution. The

resolution-path dependency scheme [8, 9] is a strict generalization of Dstd. We believe

that an analogue of Theorem 9 can be proved for a slightly restricted version of the

resolution-path dependency scheme.

References

1. Armin Biere and Florian Lonsing. Integrating dependency schemes in search-based QBF

solvers. In Ofer Strichman and Stefan Szeider, editors, Theory and Applications of Satisfia-
bility Testing - SAT 2010, volume 6175 of LNCS, pages 158–171. Springer, 2010.

2. H. Kleine Büning, M. Karpinski, and A. Flögel. Resolution for quantified Boolean formulas.

Information and Computation, 117(1):12–18, 1995.

3. Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. Clause/term resolution

and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. (JAIR),
26:371–416, 2006.

4. Florian Lonsing. Dependency Schemes and Search-Based QBF Solving: Theory and Practice.

PhD thesis, Johannes Kepler University, Linz, Austria, April 2012.

5. Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere. Resolution-

based certificate extraction for QBF. In Alessandro Cimatti and Roberto Sebastiani, editors,

Theory and Applications of Satisfiability Testing SAT 2012, volume 7317 of Lecture Notes in
Computer Science, pages 430–435. Springer Berlin Heidelberg, 2012.

6. Marko Samer. Variable dependencies of quantified CSPs. In Iliano Cervesato, Helmut Veith,

and Andrei Voronkov, editors, Proceedings of LPAR 2008, 15th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning, November 22-27, 2008 Doha,
Qatar, volume 5330 of LNCS, pages 512–527. Springer, 2008.

7. Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean formulas. Journal of
Automated Reasoning, 42(1):77–97, 2009.

8. Friedrich Slivovsky and Stefan Szeider. Computing resolution-path dependencies in linear

time. In Theory and Applications of Satisfiability Testing - SAT 2012, volume 7317 of Lecture
Notes in Computer Science, pages 58–71. Springer, 2012.

9. Allen Van Gelder. Variable independence and resolution paths for quantified boolean formu-

las. In Jimmy Lee, editor, Principles and Practice of Constraint Programming - CP 2011,

volume 6876 of Lecture Notes in Computer Science, pages 789–803. Springer Verlag, 2011.

Appendix

Proof of Lemma 2

Proof. Let π = (T, λ) be an ordered Q(D)-refutation of F . Towards a contradiction

assume that there is a universal reduction step (t, t′) ∈ E(T) reducing the variable

u ∈ var∀(F) such that var(λ(t′)) ∩ var∃(F) ∩ RF (u) �= ∅. Let e ∈ var(λ(t′)) ∩
var∃(F)∩RF (u). Since π is a refutation, on the path from the root of T to t′ there has to

be a resolution step (s, s′) ∈ E(T) that reduces e. But (ρπ((s, s′)), ρπ((t, t′))) = (e, u)
and (e, u) /∈ RF , so π is not ordered.

Definitions of res(π, π′, e) and red(π, u)

Let D be a proto-dependency scheme and let F be a QCNF formula. Let π = (T, λ)
and π′ = (T ′, λ′) be Q(D)-resolution derivations from F deriving the clauses C and

C ′, respectively. If u is a universal variable and u ∈ var(C) then red(π, u) is defined

as follows. We let red(π, u) = (T ′′, λ′′), where V (T ′′) = V (T) ∪ {r′′} for some

r′′ /∈ V (T), E(T ′′) = E(T) ∪ {(r′′, r)}, and r denotes the root of T . The mapping

λ′′ : V (T ′′) → 2lit(F) is given by

λ′′(t) =

{
C \ {u,¬u} if t = r′′;
λ(t) otherwise.

If {e,¬e} ⊆ C∪C ′ for some e ∈ var∃(F), and (C∪C ′)\{e,¬e} is non-tautologi-

cal then res(π, π′, e) = (T ′′, λ′′) is defined as follows. We let V (T ′′) = V (T)∪V (T ′)∪
{r′′} and E(T ′′) = E(T)∪E(T ′)∪{(r′′, r), (r′′, r′)}, where r′′ /∈ V (T)∪V (T ′) and

r, r′ denote the roots of T, T ′, respectively. (Without loss of generality, we will assume

that T and T ′ are vertex-disjoint.) The mapping λ : V (T ′′) → 2lit(F) is given by

λ(t) =

⎧⎪⎨
⎪⎩

(C1 ∪ C2) \ {e,¬e} if t = r′′;
λ1(t) if t ∈ V (T);
λ2(t) otherwise.

Proof of Lemma 5

Proof. By induction on the height h of π. If h = 0 then C ∈ F and {x, y} is a

dependency pair with respect to the empty set. Suppose the statement of the lemma

holds for derivations of height up to k and let h = k + 1. Suppose π ≡ red(π′, u)
for a suitable derivation π′ and a universal variable u. Then x, y ∈ var(C ′), where

C ′ is the clause derived by π′. Hence {x, y} is a dependency pair with respect to

resolved(π′) = resolved(π) by induction hypothesis. Suppose π ≡ res(π1, π2, e) for

suitable derivations π1, π2 and an existential variable e. Let C1 and C2 be the clauses

derived by π1 and π2, respectively. If x, y ∈ var(C1) or x, y ∈ var(C2) the state-

ment again follows by induction hypothesis. So assume, without loss of generality, that

x ∈ var(C1) and y ∈ var(C2). Note that e ∈ var(C1)∩ var(C2) and that both π1 and

π2 have height at most k. By induction hypothesis {x, e} is a dependency pair with re-

spect to resolved(π1), and {y, e} is a dependency pair with respect to resolved(π2). Let

C ′
1, . . . , C

′
k1

be a resolved(π1)-path with x ∈ C ′
1 and e ∈ C ′

k1
, and let C ′′

1 , . . . , C ′′
k2

be a

resolved(π2)-path with e ∈ C ′′
1 and y ∈ C ′′

k2
. The sequence C ′

1, . . . , Ck′
1
, C ′′

1 , . . . , C ′′
k2

is an X-path where X = resolved(π1) ∪ resolved(π2) ∪ {e} = resolved(π), and so x
and y are connected with respect to resolved(π).

Proof of Proposition 7

Proof. We prove a slightly stronger statement saying that the derivation to be computed

has height bounded by the height of π. The proof is by induction on the height h of π.

The base case h = 1 is immediate. Assume the statement holds for derivations up to

height k and let h = k + 1. Suppose π′ ≡ red(π1, v) for suitable π1 and v ∈ var∀(F),
and let C ′ be the clause derived by π′. If v ∈ RF (u) then π is already ordered, so

suppose v ∈ LF (u). Let C1 be the clause derived by π1. We must have u, v ∈ var(C1),
so π2 = red(π1, u) is a Q(D)-resolution derivation of the clause C2 = C1 \ {u,¬u}.

The height of π2 is at most k, so by induction hypothesis one can compute an ordered

derivation π3 of height at most k that derives C2. Moreover, v ∈ var(C2) so red(π3, v)
is an ordered Q(D)-resolution derivation of the clause C3 = C2 \ {v,¬v} with height

at most h. Note that C = (C1 \ {v,¬v}) \ {u,¬u} = (C1 \ {u,¬u}) \ {v,¬v} = C3.

Suppose π′ ≡ res(π1, π2, e) where π1 and π2 derive C1 and C2, respectively, and

e ∈ var∃(F). For i ∈ {1, 2}, let π′
i = red(πi, u) if u ∈ var(Ci) and π′

i = πi otherwise.

Both π′
1 and π′

2 are Q(D)-resolution derivations of height at most k. Moreover, π1 and

π2 are ordered because π′ is. For i ∈ {1, 2}, let π′′
i be a derivation given by applying

the induction hypothesis to π′
i. It is straightforward to check that π∗ = res(π′′

1 , π′′
2 , e)

is an ordered Q(D)-resolution derivation of C and that π∗ has height at most h.

Proof of Lemma 8

Proof. The proof is by induction on the size s of π. The base case where π1 and π2

are of size 1 is immediate. Assume the statement of the lemma holds for derivations of

size less than k > 3 and let s = k. Without loss of generality, we make the following

assumptions.

1. If the sizes of π1 and π2 are both greater than 1, and y and y′ are the variables

reduced by the final reduction steps of π1 and π2, respectively, then y ∈ LF (y′) ∪
{y′}.

2. The size of π1 is greater than 1.

Let y be the variable reduced by the final reduction step of π1 (y is well defined by

assumption 2). If e ∈ LF (y) the derivation π is already ordered, so let e ∈ RF (y).
Suppose y ∈ var∀(F). Then π1 ≡ red(π′

1, y) for a suitable π′
1 deriving a clause C ′

1.

Note that y, e ∈ var(C ′
1). Because π1 is ordered and y is reduced in its final reduction

step we must have resolved(π′
1) ⊆ RF (y). By Corollary 6 we get (y, e) ∈ Dstd

F , which

contradicts π’s being a Q(Dstd)-resolution derivation.

Thus y ∈ var∃(F) and π1 ≡ res(π′
1, π

′′
1 , y) for suitable derivations π′

1 and π′′
1 .

Suppose π′
1, π

′′
1 , and π2 derive the clauses C ′

1, C
′′
1 , and C2, respectively. We distinguish

three cases.

1. Suppose y ∈ var(C2) and let �y ∈ C2 such that var(�y) = y. Either C ′
1 or

C ′′
1 must contain �y . Without loss of generality assume �y ∈ C ′

1. Since the final

resolution step of π reduces e, there is an �e ∈ C2 such that var(�e) = e, and

�e ∈ C ′
1 ∪C ′′

1 . If �e ∈ C ′
1 we let π∗ = res(π′

1, π2, e). It is straightforward to verify

that π∗ is a Q(Dstd)-resolution derivation of size less than k that derives a clause

C ′ ⊆ C. Moreover, both π′
1 and π2 are ordered. Applying the induction hypothesis,

we obtain an ordered Q(Dstd)-resolution derivation of a clause C ′′ ⊆ C ′ ⊆ C. If

�e /∈ C ′
1 then C ′

1 ⊆ C and π′
1 yields the desired derivation.

2. Suppose y /∈ var(C2) and e ∈ var(C ′
1) ∩ var(C ′′

1). Then πa = res(π′
1, π2, e)

and πb = res(π′′
1 , π2, e) are well defined Q(Dstd)-resolution derivations of clauses

Ca and Cb, respectively, and res(πa, πb, y) is a Q(Dstd)-resolution derivation of C.

Both πa and πb have size less than k, and π′
1, π

′′
1 , and π2 are ordered. By induction

hypothesis, we can compute ordered Q(Dstd)-resolution derivations π′
a and π′

b such

that π′
a derives C ′

a ⊆ Ca and π′
b derives C ′

b ⊆ Cb. If y /∈ var(C ′
a) or y /∈ var(C ′

b)
then C ′

a ⊆ C or C ′
b ⊆ C, and so π′

a or π′
b provides the desired derivation. Other-

wise, we let π∗ = res(π′
a, π′

b, y). The derivation π∗ is ordered by assumption 1 in

combination with the fact that both π′
a and π′

b are ordered. Moreover, π∗ derives a

clause C ′ ⊆ C.
3. Suppose y /∈ var(C2) and e /∈ var(C ′

1) ∩ var(C ′′
1). Without loss of generality

assume e ∈ var(C ′
1) \ var(C ′′

1). Then πa = res(π′
1, π2, e) is a Q(Dstd)-resolution

derivation of a clause Ca, and res(πa, π′′
1 , y) is a Q(Dstd)-resolution derivation of

C. The derivation πa has size less than k and both π′
1 and π2 are ordered. By induc-

tion hypothesis, we can compute an ordered Q(Dstd)-resolution derivation π′
a of a

clause C ′
a ⊆ Ca. If y /∈ var(C ′

a) then C ′
a ⊆ C and π′

a yields the desired deriva-

tion. Otherwise, let π∗ = res(π′
a, π′′

1 , y). The derivation π∗ is Q(Dstd)-resolution

derivation of a clause C ′ ⊆ C, and it is ordered by assumption 1.

Proof of Theorem 9

Proof. Let π be a Q(Dstd)-resolution refutation of F . We claim that we can compute

an ordered Q(Dstd)-resolution refutation π′ of F . By Lemma 2 the derivation π′ is a

Q(Dtrv)-resolution refutation of F . We prove the claim by induction on the number

of unordered subderivations of π. If π contains no unordered subderivations, then in

particular π itself is ordered. Otherwise, let πu be an unordered subderivation of π such

that πu contains no unordered subderivations, and let C be the clause derived by πu.

We can apply either Proposition 7 or Lemma 8 to obtain an ordered Q(Dstd)-resolution

derivation πo that derives a clause C ′ ⊆ C. We construct a new Q(Dstd)-resolution

refutation π′ of F by replacing πu with πo in π and (possibly) removing redundant

derivation steps. The number of unordered subderivations of π′ is strictly smaller than

the number of unordered subderivations of π, so we can apply the induction hypothesis

to get an ordered Q(Dstd)-resolution refutation of F .

Extending DPLL-Based QBF Solvers
to Handle Free Variables

William Klieber1, Mikoláš Janota2, Joao Marques-Silva2,3, and Edmund Clarke1

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 IST/INESC-ID, Lisbon, Portugal
3 University College Dublin, Ireland

1 Introduction

In a number of interesting applications (such as automatic synthesis of a reactive
system from a formal specification [1]), one needs to consider open formulas,
i.e., formulas with free (unquantified) variables. A solution to such a QBF is a
formula equivalent to the given one but containing no quantifiers and using only
those variables that appear free in the given formula. For example, a solution
to the open QBF formula (∃x. (x ∧ y) ∨ z) is the formula y ∨ z.

In [10], it was shown how clause/cube learning for DPLL-based CDCL QBF
solvers can be reformulated in terms of sequents and extended to non-CNF,
non-prenex formulas. This technique uses ghost variables to handle non-CNF
formulas in a manner that is symmetric between the existential and universal
quantifiers. We show that this sequent-based technique can be naturally ex-
tended to handle QBFs with free variables.

A näıve way to recursively solve an open QBF Φ is shown in Figure 1.
Roughly, we Shannon-expand on the free variables until we’re left with only
closed-QBF problems, which are then handed to a closed-QBF solver. If the free
variables are always branched on in the same order, then the algorithm effec-
tively builds an ordered BDD [6], assuming that the ite function is memoized
and performs appropriate simplification. The näıve algorithm suffers from many
inefficiencies. In terms of branching behavior, it is similar to the DPLL algo-
rithm, but it lacks non-chronological bracktracking and an equivalent of clause
learning. The main contribution of this extended abstract is to show how an ex-
isting closed-QBF algorithm can be modified to directly consider formulas with
free variables. A more detailed treatment will be published at CP 2013.

function solve(Φ) {
if (Φ has no free variables) {return closed_qbf_solve(Φ);}
x := (a free variable in Φ);
return ite(x, solve(Φ with x substituted with True),

solve(Φ with x substituted with False));
}

Fig. 1. Naive algorithm. The notation “ite(x, φ1, φ2)” denotes a formula with an
if-then-else construct that is logically equivalent to (x ∧ φ1) ∨ (¬x ∧ φ2).

In related work, various approaches [11,5,7] have been proposed for open
QBFs of the form ∃X. φ. For QBFs with arbitrary quantifier prefixes, the only
other work of which we are aware is that of Becker, Ehlers, Lewis, and Marin [1],
which uses computational learning to generate CNF, DNF, or CDNF formulas,
and that of Benedetti and Mangassarian [3], which adapts sKizzo [2] for open
QBF. The use of SAT solvers to build BDDs [13,9] has also been investigated.

1.1 Preliminaries

Input Formulas. We consider prenex formulas of the form (Q1X1...QnXn. φ),
where Qi ∈ {∃,∀} and φ is quantifier-free and represented as a DAG. The logical
connectives allowed in φ are conjunction, disjunction, and negation.

Quantifier Order. In a formula such as ∀x.∃y. φ, where the quantifier of y
occurs inside the scope of the quantifier of x, we say that y is downstream of
x. All quantified variables in are considered downstream of all free variables.

Substitution. Given a partial assignment π, we define “Φ|π” to be the result
of the following: For every assigned variable x, we replace all occurrences of x
in Φ with the assigned value of x (and delete the quantifier of x, if any).

2 Theory

We employ ghost variables to provide a modification of the Tseitin transforma-
tion that is symmetric between the two quantifer types. The idea of using a
symmetric transformation was first explored in [14]. Similar ideas have been
used to handle non-prenex formulas in [10] and “don’t care” propagation in [8].

Where the Tseitin transform would introduce a Tseitin variable g to represent
a subformula, we instead introduce two ghost variables: an existential variable g∃

and a universal variable g∀ . Two new innermost quantification blocks are added
to the formula for the ghost variables. For example, if the original quantifier
prefix was ∃e∀u, then the new prefix would be ∃e∀u ∃g∃ ∀g∀.
Definition 1 (Consistent assignment to ghost variable). Given a quan-
tifier type Q ∈ {∃,∀} and an assignment π, we say that a ghost literal gQ is
assigned consistently under π iff gQ|π = (the formula represented by gQ)|π.
To define the semantics of QBF with ghost variables, we use a three-valued logic
with a third value dontcare. We call it “don’t care” because we need to deal with
assignments with inconsistently assigned ghost variables, but we don’t really care
about such assignments. In our three-valued logic, a conjunction (or respectively
disjunction) of boolean values evaluates to false (resp. true) if any conjunct is
false (resp. if any disjunct is true), and otherwise it evaluates to dontcare if any
conjunct (resp. disjunct) is dontcare. The negation of dontcare is dontcare.

Definition 2 (Semantics with Ghost Vars). Given an assignment π to all
non-ghost variables and a subset of the ghost variables, we define �Φ�π as follows:

�Φ�π :=

{
Φ|π if every ghost variable in π is assigned consistently
dontcare otherwise

For convenience in defining �Φ�π for a partial assignment π, we assume that the
formula is prepended with a dummy “quantifier” block for free variables. For
example, (∃e. e ∧ z) becomes (Fz.∃e. e ∧ z), where F denotes the dummy block
for free variables. We define �Φ�π for a partial assignment π as follows:

�Qx. Φ�π = �Φ�π if x ∈ vars(π)
�∃x. Φ�π = �Φ�(π ∪ {x}) ∨ �Φ�(π ∪ {¬x}) if x �∈ vars(π)
�∀x. Φ�π = �Φ�(π ∪ {x}) ∧ �Φ�(π ∪ {¬x}) if x �∈ vars(π)
�Fx. Φ�π = x ? �Φ�(π ∪ {x}) : �Φ�(π ∪ {¬x}) if x �∈ vars(π)

The notation “x ? φ1 : φ2” denotes a formula with an if-then-else construct that
is logically equivalent to (x∧φ1)∨(¬x∧φ2). Note that if Φ contains free variables
unassigned by π, then �Φ�π is a formula in terms of these free variables.

Definition 3 (Sometimes-Dontcare). A formula φ is said to be sometimes-
dontcare iff there is an assignment π under which φ evaluates to dontcare.

Definition 4 (Game-State Specifier, Match). A game-state specifier is
a pair 〈Lnow, Lfut〉 consisting of two sets of literals, Lnow and Lfut. We say that
〈Lnow, Lfut〉 matches an assignment π iff:

1. for every literal � in Lnow, �|π = true, and
2. for every literal � in Lfut, either �|π = true or � �∈ vars(π).

For example, 〈{e}, {u}〉 matches the assignments {e} and {e, u}, but does not
match {} or {e,¬u}. Note that, for any literal �, if {�,¬�} ⊆ Lfut, then
〈Lnow, Lfut〉 matches an assignment π only if π doesn’t assign �.

Definition 5 (Sequent). The sequent “〈Lnow, Lfut〉 |= Φ ⇔ ψ” means “for all
assignments π that match 〈Lnow, Lfut〉, if �Φ�π is not sometimes-dontcare, then
�Φ�π is logically equivalent to ψ|π”.

3 Algorithm

The top-level algorithm is based on the well-known DPLL algorithm, except
that sequents are used instead of clauses. Similar to how SAT solvers maintain
a clause database, our solver maintains a sequent database. A SAT solver’s
clause database is initialized to contain exactly the set of clauses produced by
the Tseitin transformation of the input formula Φin into CNF. Each clause in
the Tseitin transformation corresponds to two sequents in our initial sequent
database (one with existential ghost variables, and one with universal). Literals
are placed in Lfut if allowed by Proposition 2 of [10]; otherwise, in Lnow.

When the current assignment matches a sequent in the database, the solver
performs learning to add a new sequent of the form 〈Lnow, Lfut〉 |= (Φin ⇔ ψ)
to the database. If Lnow is empty, then the solver returns ψ as the final answer.
Otherwise, it backtracks to the earliest decision level at which the newly learned
sequent will trigger a forced literal in propagation.

Propagation. Propagation is similar to that of closed-QBF solvers. Consider
a sequent 〈Lnow, Lfut〉 |= (Φin ⇔ ψ) in the sequent database. If, under πcur,

1. there is exactly one unassigned literal � in Lnow, and
2. no literals in Lnow ∪ Lfut are assigned false, and
3. � is not downstream of any unassigned literals in Lfut,

then ¬� is forced — it is added to the current assignment πcur. Propagation
ensures that the solver never re-explores areas of the search space for which it
already knows the answer, ensuring progress and eventual termination.

Learning. The solver performs learning after the current assignment πcur

matches a sequent in the database. The learning procedure is based on the
clause learning introduced for SAT in [12] and adapted for QBF in [15] and
adapted for sequents in [10]. We use resolution-like inference rules to infer new
sequents by ‘resolving’ two sequents: (1) a sequent containing a forced literal
r and (2) the sequent that forced r (i.e., the antecedent of r). The rules for
resolving on free variables and existential variables are shown below; the rule for
universal variables is similar.

Resolving on a literal r that is existentially quantified:

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φin ⇔ false)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ)

r is not downstream of any � such that � ∈ Lfut
1 and ¬� ∈ (Lfut

1 ∪ Lfut
2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {¬r}〉 |= (Φin ⇔ ψ)

Resolving on a literal r that is free in Φin:

〈Lnow
1 ∪ {r}, Lfut

1 〉 |= (Φin ⇔ ψ1)

〈Lnow
2 ∪ {¬r}, Lfut

2 〉 |= (Φin ⇔ ψ2)

〈Lnow
1 ∪ Lnow

2 , Lfut
1 ∪ Lfut

2 ∪ {r,¬r}〉 |= (Φin ⇔ (r ? ψ1 : ψ2))

4 Experimental Results

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400 1600 1800

C
P

U
 ti

m
e

(s
)

instances

learner
learner-d
learner-c

GQ
We extended the existing closed-QBF
solver GhostQ [10] to implement the
techniques described in this paper.
For comparison, we used the solvers
and load-balancer benchmarks from
[1]. With a time limit of 800 sec-
onds, GhostQ solved 189 instances
that none of the three solvers from
[1] solved, whereas there were 18 in-
stances solved by at least one solver from [1] but not by GhostQ. The graph to
the right shows the number of non-trivial instances solved by GhostQ (about
1600) and the three “learner” solvers (about 1400 and 1200) from [1]. As future
work, it may be useful to adapt closed-QBF preprocessing techniques such as
blocked-clause elimination [4] to open QBF.

References

1. B. Becker, R. Ehlers, M. D. T. Lewis, and P. Marin. ALLQBF Solving by Com-
putational Learning. In S. Chakraborty and M. Mukund, editors, ATVA, volume
7561 of Lecture Notes in Computer Science, pages 370–384. Springer, 2012.

2. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. In CADE, 2005.
3. M. Benedetti and H. Mangassarian. QBF-Based Formal Verification: Experience

and Perspectives. JSAT, 2008.
4. A. Biere, F. Lonsing, and M. Seidl. Blocked Clause Elimination for QBF. In

CADE, 2011.
5. J. Brauer, A. King, and J. Kriener. Existential Quantification as Incremental SAT.

In G. Gopalakrishnan and S. Qadeer, editors, CAV, volume 6806 of Lecture Notes
in Computer Science, pages 191–207. Springer, 2011.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation. Com-
puters, IEEE Transactions on, 100(8):677–691, 1986.

7. E. Goldberg and P. Manolios. Quantifier elimination by Dependency Sequents. In
G. Cabodi and S. Singh, editors, FMCAD, pages 34–43. IEEE, 2012.

8. A. Goultiaeva and F. Bacchus. Exploiting QBF Duality on a Circuit Representa-
tion. In AAAI, 2010.

9. J. Huang and A. Darwiche. Using DPLL for Efficient OBDD Construction. In
SAT, 2004.

10. W. Klieber, S. Sapra, S. Gao, and E. M. Clarke. A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In SAT, 2010.

11. K. L. McMillan. Applying SAT Methods in Unbounded Symbolic Model Checking.
In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of Lecture Notes in
Computer Science, pages 250–264. Springer, 2002.

12. J. P. M. Silva and K. A. Sakallah. GRASP - a new search algorithm for satisfiability.
In ICCAD, pages 220–227, 1996.

13. R. Wille, G. Fey, and R. Drechsler. Building free binary decision diagrams using
SAT solvers. Facta universitatis-series: Electronics and Energetics, 20(3):381–394,
2007.

14. L. Zhang. Solving QBF by Combining Conjunctive and Disjunctive Normal Forms.
In AAAI 2006.

15. L. Zhang and S. Malik. Towards a Symmetric Treatment of Satisfaction and Con-
flicts in Quantified Boolean Formula Evaluation. In CP 2002.

Certificate Extraction from Variable-Elimination
QBF Preprocessors

Allen Van Gelder

University of California, Santa Cruz http://www.cse.ucsc.edu/~avg

Abstract. Recent solvers for quantified boolean formulas have the abil-
ity to produce a certificate for their conclusion, in the form of a Q-
resolution proof that the input QBF is either true of false. However, in
many cases the solver does not receive the original QBF, so the pro-
duced certificate does not verify the truth value of that original QBF.
This paper addresses some aspects of the question of how to extend the
certificate produced by the QBF solver for the preprocessed QBF so that
it serves as a certificate for the original QBF.

1 Introduction

Solvers for Quantified Boolean Formulas (QBFs) are rapidly increasing in strength,
and are now at the point that they are capable of solving significant problems
and also producing certificates so that their conclusions can be checked during
post-processing. [BJ12,NPL+12].

It is starting to be recognized that simply delivering a 0 or 1 answer is not
good enough, for a solver. There has to be some formal proof system to back up
claimed answers. More than just verifying a claimed answer, users want addi-
tional information relevant to their applications. While this is a very open-ended
topic, this short paper concentrates on producing certificates that can verify the
conclusions of the combined work of a preprocessor and a solver. More precisely
it shows what records may be kept by a variable-elimination preprocessor that
are sufficient to transform a satisfying assignment of the preprocessed formula
into a satisfying assignment of the original formula.

2 Preliminaries

In general, quantified boolean formulas (QBFs) generalize propositional formu-
las by adding universal and existential quantification of boolean variables. See
[KBL99] for a thorough introduction. This paper uses notation and definitions
found in recent QBF papers by the same author. PCNF denotes a formula in
prenex conjunctive normal form. Clauses are enclosed in []. Disjoint union of sets
is denoted by “+”. Lowercase roman letters denote literals or variables, where
the context calls for such. They are existential for letters near the beginning of
the alphabet (e.g., d, e, f), universal for letters near the end of the alphabet

(e.g., u, v, w), and of indeterminate quantifier type near the middle of the al-
phabet (e.g., p, q). Lowercase greek letters, such as α, τ , etc., denote sequences
of literals (or sets where order is immaterial). Exceptions are stated where they
occur.
Definition 1 An assignment is a partial function from variables to truth val-
ues, and is usually represented as the set of literals that it maps to true. (This
is sometimes called a partial assignment.) A total assignment assigns a truth
value to every variable in the quantifier-free formula. Assignments are denoted
by σ, τ , etc.

Applications of an assignment σ to a logical expression are denoted by q�σ,
C�σ, F�σ, etc. If σ assigns variables that are quantified in Ψ , those quantifiers
are deleted in Ψ�σ, and their variables receive the assignment specified by σ.

3 Variable-Elimination Preprocessors

We use bloqqer [BSL11] as an example of the type of preprocessor from which
we wish to draw certificates. Although the pure-literal rule, unit-clause rule, and
variable-elimination resolution rule are usually considered to be distinct actions
on existential variables, they can all be characterized as the variable-elimination

resolution rule (VER). The matrix is partitioned into three sets of clauses after
an existential literal, say q, is chosen:

(A) clauses containing q,
(B) clauses containing q ,
(C) remaining clauses.

Recall that propositional VER forms all resolvents of a clause in set (A) and a
clause in set (B), then discards tautologous resolvents and discards the sets (A)
and (B). Finally, for QBF all resolvents are universally reduced.

If the set (B) is empty and (A) is nonempty, q is a pure literal, and the set of
resolvents is empty. If the set (A) contains the unit clause [q], this is a case of the
unit-clause rule, and the set of resolvents consists of the clauses in set (B) with
the literal q deleted. If the set (B) contains [q], the situation is symmetrical.

We formalize the actions of a variable-elimination (VE) preprocessor as a
sequence of rounds, numbered by r for 1 ≤ r ≤ R. In each round, one variable is
eliminated and records are kept to permit a certificate to be constructed later.
At this stage we are not interested in optimizations.

Variable-Elimination Resolution If the operation for round r is VER, record
the existential variable q that is eliminated, the set of clauses containing q and
the set of clauses containing q ; these two sets are deleted during round r. The
non-tautologous resolvents are given fresh clause IDs and added to the formula;
these do not need to be recorded in connection with round r but their derivations
should be recorded (one resolution each).

The critical situation for generating a certificate is when the formula is true
and a hitting set needs to be found to seed an “initial-reason cube”. The hitting

set (technically consistent hitting set) τr must be a partial assignment such that
every clause in the formula at the beginning of round r has a true literal. But
the formula is a moving target, as it changes every round. So the precondition
for extending the hitting set from the end of round r to the beginning of round
r is that every clause in the formula at the end of round r is made true by τr+1.
To extend τr+1 to τr, all clauses deleted during round r must be made true.

The procedure to accomplish the extension from τr+1 to τr in the proposi-
tional case is known from antiquity, but possibly not published archivally. How-
ever, Dechter and Rish give a closely related procedure [DR94]. Check each clause
that was deleted during round r (due to VER) and if one is found that contains
q (resp. q) and all its other literals are false in τr+1, then add q (resp. q) to
τr+1 giving τr. Call this clause C0. Assume it contains q, as the case for q is
similar. The precondition in the preceding paragraph ensures that clauses with
both q and with q cannot be chosen.

If no clause qualifies for C0 in the preceding paragraph, then choose any
clause that is not made true by τr+1 as C0. Again, assume w.l.o.g. that q ∈ C0.
Now add q and the negation of every other literal in C0 to τr+1, giving τr.
(Some of these literals may already be in τr+1.) Heuristics may be used to try
to improve the choice, but any choice works.

In both cases for C0 it has no true literal in τr+1. So every clause containing q

whose resolvent with C0 is non-tautologous is hit (made true) by τr+1. Also every
clause containing q whose resolvent with C0 is tautologous is hit by τr. Finally
all clauses containing q are hit by τr. So the postcondition at the beginning of
round r is that every clause in the formula at the beginning of round r is hit by
τr.

Universal-Variable Expansion If the operation for round r is universal-

variable expansion (UVE), record the universal variable u that is eliminated,
as well as the set of round-r clauses containing u, called Γ0(u), and the set of
round-r clauses containing u . called Γ1(u).

The details and notation of the UVE operation are now described. Note that
there is no propositional analog of this operation. Define γ0(u) (resp. γ1(u)), the
companion set for u (resp. u) to be the set of existential variables that occur
(with either polarity) in Γ0(u) (resp. Γ1(u)) and are later than u in the prenex.1

Next, define γ∗

0(u) inductively as follows: γ0(u) ⊆ γ∗

0 (u). If variable e ∈ γ∗

0(u)
and variable f is existential and later in the prenex than u and some clause
contains both e and f (with either polarity), then f ∈ γ∗

0(u). The inductive
definition of γ∗

1 (u) is similar. Correctness of this construction can be shown with
standard identities for quantifiers, such as

∀u (F (u) ∧ G()) ≡ ((∀u (F (u)) ∧ G()) where u does not occur in G(),
∃e (F (e) ∧ H()) ≡ ((∃e (F (e)) ∧ H()) where e does not occur in H(),

1 Relaxing the condition to “e depends on u” based on a dependency scheme is future
work.

as well as associativity and commutativity of “∧”.
Supersets of γ∗

0(u) and γ∗

1(u) may be used soundly. In practice the set
of all existential variables later in the prenex than u provides a simple over-
approximation for γ∗

0(u) and γ∗

1(u).
Further, define Γc(u) to be the set of round-r clauses not in Γ0(u) or Γ1(u),

but which have a variable (with either polarity) in (γ∗

0 (u) ∪ γ∗

1 (u)), and define
Γd(u) to be the remaining round-r clauses that are not in any of Γ0(u), Γ1(u), or
Γc(u). The clauses in Γd(u) will persist into round r + 1, while all other round-r
clauses will be deleted during round r.2

The UVE step both deletes variables and clauses and inserts fresh variables
and clauses, as follows. For each (existential) variable e ∈ γ∗

0 (u) create a fresh
variable, say e0

u
, and record that e0

u
evolved from e by instantiating u = 1. For

each (existential) variable e ∈ γ∗

1(u) create a fresh variable, say e1
u
, and record

that e1
u

evolved from e by instantiating u = 1. For each clause C ∈ (Γ0(u)+Γc(u))
create a fresh clause C0

u
by deleting u if present and replacing each variable

f ∈ γ∗

0 (u) by f0
u
. For each clause C ∈ (Γ1(u) + Γc(u)) create a fresh clause C1

u

by deleting u if present and replacing each variable f ∈ γ∗

1(u) by f1
u
. Record

how each C0
u

and C1
u

evolved, similarly to e0
u

and e1
u
. Note that each clause in

Γc(u) evolves into two fresh clauses.
The critical situation for generating a certificate is when the formula is true

and a set of hitting sets needs to be found to seed a set of “initial-reason cubes”.
Each hitting set (technically, consistent hitting set) must be a partial assignment
such that every clause in the formula has a true literal. The key requirement on
the set, following [VGWL12], is that if a hitting set in prenex order has a prefix
α, u, then there must also be a hitting set with prefix α, u , and vice versa.

So the precondition for updating each hitting set τr+1 from the end of round
r to a pair of hitting sets for the beginning of round r is that every clause in the
formula at the end of round r is made true by τr+1. To update to τ0

r
(possibly

containing u) and τ1
r

(possibly containing u), all clauses deleted during round
r must be made true using variables that exist at the beginning of round r.

The idea has some similarities to the VER extraction. Recall that u was
expanded in round r. Partition the round (r + 1) clauses as follows:

1. Δ0
u

consists of clauses with some existential variable of the form f0
u

(which
evolved from f during round r);

2. Δ1
u

consists of clauses with some existential variable of the form f1
u

(which
evolved from f during round r);

3. Δd
u

consists of the remaining clauses.

The hitting set for Δd
u

in τr+1 can be transferred directly into each of τ0
r

and
τ1
r
. Also, add u to τ0

r
and add u to τ1

r
.

First we describe how to complete τ0
r
. For each clause C0

u
∈ Δ0

u
, let C be the

round-r clause that evolved into C0
u
. If some literal q ∈ C already is true in τ0

r
,

there is nothing to do. If this case does not apply, choose any existential literal
2 The usual descriptions include several “optimizations” that are unrelated to correct-

ness, and complicate certificate extraction.

of the form e0
u
∈ C0

u
that is true in τr+1 and add e to τ0

r
. This must be possible

because u �∈ C0
u

and τr+1 intersects C0
u
. For each clause C1

u
∈ Δ1

u
, let C be the

round-r clause that evolved into C1
u
. If u ∈ C, C1

u
does not exist. If u ∈ C, there

is nothing to do. Otherwise, C already intersects τ0
r

at some existential literal,
and again there is nothing to do.

The completion of τ1
r

is similar, except that Δ1
u

is processed first. Thus each
of τ0

r
and τ1

r
is a hitting set for the set of round-r clauses.

In the middle of the rounds a variable may have a sequence of tags, such
as (((e0

w
)1
v
)0
u
)1
t
, where t, u, v and w are universal variables in the reverse order

of their expansions. In the beginning of the round in which u was expanded
this variable was (e0

w
)1
v
. Clause identifiers can similarly consist of an integer ID

for the clause derived by resolution or in the original formula, modified by a
sequence of tags to show where it was duplicated by some universal expansion.

4 Conclusion

A method to extend hitting sets backward through the rounds of a VE pre-
processor (such as bloqqer) is described and the argument for correctness is
sketched. The final result at the beginning of round 0 is required to contain only
variables in the original formula (fed to the VE preprocessor) and to support a
Q-refutation by cube resolution (AKA term resolution). The data that needs to
be recorded to facilitate this extension is specified abstractly.

To realize the scope of the problem, it is perfectly possible that the initial
set of hitting sets presented to the VE post-processor consists of one hitting set
consisting of existential literals, none of which occur in the original formula.

Acknowledgment We thank the anonymous reviewer who pointed out errors
in an earlier version.

References

[BJ12] V. Balabanov and J. R. Jiang. Unified QBF certification and its applica-
tions. Formal Methods in System Design, 41:45–65, 2012.

[BSL11] A. Biere, M. Seidl, and F. Lonsing. Blocked clause elimination for QBF. In
Proc. CADE, 2011.

[DR94] R. Dechter and I. Rish. Directional resolution: the davis-putnam proce-
dure, revisited. In Proc. 4th Int’l Conf. on Principles of Knowledge Repre-
sentation and Reasoning (KR’94), pages 134–145. Morgan Kaufmann, San
Francisco, 1994.

[KBL99] H. Kleine Büning and T. Lettmann. Propositional Logic: Deduction and
Algorithms. Cambridge University Press, 1999.

[NPL+12] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere. Resolution-
based certificate extraction for QBF (tool presentation). In Proc. SAT,
2012.

[VGWL12] A. Van Gelder, S. B. Wood, and F. Lonsing. Extended failed literal detec-
tion for QBF. In Proc. SAT, 2012.

Benchmarks from Reduction Finding

Charles Jordan1� and �Lukasz Kaiser2

1 ERATO Minato Project, JST & Hokkaido University
2 LIAFA, CNRS & Université Paris Diderot

skip@ist.hokudai.ac.jp, kaiser@liafa.univ-paris-diderot.fr

1 Introduction

Consider the problem of searching for a complexity-theoretic reduction between
two decision problems, P and Q. Such a reduction is a function r satisfying
x ∈ P ⇐⇒ r(x) ∈ Q for all structures x for which it makes sense to consider
P . It is not difficult to show that determining the existence of reductions is
undecidable in general. However, sufficiently restricting the class of reductions
and structures considered results in a simpler, decidable variant that is still
meaningful from a complexity-theory perspective.

Once we can encode these reductions and structures in a finite number of bits,
the problem becomes a QBF instance with one quantifier alternation (2QBF):

∃r ∀x (x ∈ P ⇐⇒ r(x) ∈ Q) . (1)

Therefore, reduction finding in this setting is essentially a Σp
2 problem and it

is possible to apply QBF solvers and ASP solvers supporting disjunctive logic
programs. In this paper, we introduce various reduction-finding instances in-
tended for benchmarking QBF solvers. For additional background, details and
comparisons with other approaches, see [4]. Automatic reduction finding was
first considered by [1]. More generally, reduction finding is a form of program
synthesis, and similar approaches can be used more widely, see [3].

2 Background

Although polynomial-time reductions are perhaps the most traditional, we focus
on a weaker class of quantifier-free logical reductions used in descriptive com-
plexity. We do not introduce descriptive complexity and the full motivation for
this class here, see [4] for the definitions we use and [2] for additional material.

The weaker class of logical reduction we consider has a number of advantages.
First, the logical formulas defining the reduction make the explicit construction
of (1) reasonable. Although the class of reductions we consider is extremely lim-
ited, it still suffices to characterize complexity classes and complete problems
generally remain complete under these reductions. Proving that a computation

� Supported in part by KAKENHI No. 25106501.

cannot be done in polynomial-time is notoriously difficult, while there are tech-
niques for proving that something cannot be done in, e.g., first-order logic. So
our reductions are strong enough that they suffice to determine the relationship
between complexity classes, but weak enough to hope for progress.

2.1 Parameters

An instance of a reduction-finding problem is determined by several parameters,
which thus determine the difficulty of the underlying problem. First, we must
fix the two decision problems of interest: P and Q in (1). Our system supports
defining these problems in first-order logic with equality extended by a reflexive
transitive-closure (TC) operator, corresponding to the complexity class NL.

The choice of properties is important: choosing, e.g., the trivial properties
always true and always false results in an easy instance that is not interesting.
From the complexity-theoretic perspective, the hardness of properties defined
in first-order logic (without TC) is fairly well-understood. Therefore, formulas
using TC are most interesting and seem to be significantly harder.

Next, there are several parameters that determine the class of reductions
being considered. Several parameters determine which atomic formulas are al-
lowed to occur in the reduction. In particular, these parameters control whether
successor is allowed between variables (x = y + 1), and whether certain nu-
meric constants (min,max) are available. Then, there is a parameter k fixing
the dimension of the reduction (informally, the dimension determines how much
larger the output of a reduction can be compared to the original structure). Our
reductions are defined by tuples of formulas in DNF – there is also a parameter
c determining how many conjunctions may occur in the DNF.

Finally, there is a parameter n determining the size of structure considered
in (1); we search only3 for reductions that are correct on structures of size n.

Given these parameters, our generator constructs the corresponding QBF
instance of (1) in several formats: qdimacs, negated qdimacs (to avoid an addi-
tional quantifier alternation from CNF conversion), qpro and lparse. Increasing c
provides additional power to the class of reductions (instances become more pos-
itive), and increasing k is similar. Increasing n usually places more restrictions
on the reduction (instances become more negative). A balance between param-
eters is important: large c with small n is unlikely to be meaningful because the
reduction is too powerful for the small class of structures.

3 Instances

Let us describe how we instantiate the parameters described above in practice,
and present some experimental results on a few parameter sets.

For the two decision problems of interest, P and Q in (1), we use one of
48 properties that were translated from the first paper on automatic reduction

3 We support searching for reductions correct on a range of sizes n1 ≤ n2 when using
CEGAR, see [4].

finding [1] to allow to compare performance to their system (cf. [4]). The names
we use for the problems correspond to the names used in the system from [1], and
are always 6 characters long. Below, we give a list describing these 48 problems,
to give an overview what is included.

– trivial, ntrivil, trueque, falsequ, query15, query30 (trivial or almost
trivial problems that we include for correctness testing)

– reachqu (reachability, NL-complete), nreachq (negated reachability, coNL-
complete), query10 (symmetric reachability, SL-complete),

– query06, query31, query33, query34, query36 (L-complete), and query71

(negated query06, coL-complete),
– query42, query44 (non-reflexive reachqu/nreachq, NL/coNL-complete),
– query48, query49 (non-reflexive SL/coSL-complete),
– query54 (strongly connected, NL-complete), query55 (symmetric query54),
– query57, query58, query60, query64 (minor variations of the above),
– the others4 are defined in plain FO and thus correspond to AC0 problems.

Above, we mention the classes coNL, coL, SL and coSL, however, NL=coNL
and L=coL=SL=coSL. Instances corresponding to discovering these famous col-
lapses are interesting and appear hardest among the instances we consider.

We use the largest class of reductions supported: we allow min and max and
successor in the atoms (-min -max -succ) and also the use of numbers when
defining constants (-nbrs). As for the dimension k (-dim), number of conjunc-
tions c (-cls), and structure size n (-elems), the most basic set of parameters
we used was k = 1, c = 1, n = 3. Our generator is ReductionTest.native4 and
the following command can be used to generate the qdimacs file for the above
parameters and P = nreachq, Q = reachqu.

./ReductionTest.native -min -max -succ -nbrs

-from nreachq -to reachqu -dim 1 -cls 1 -elems 3 -qdimacs

The formula generated by the above command has 1731 variables and 18645
clauses, but most of the variables come from CNF conversion – only 66 are
under the first existential quantifier (describing in r from eq. 1) and only 9 under
the second universal one (describing A). Instances that don’t use TC result in
smaller formulas, but already setting -elems 5 above returns 29878 variables
and 530903 clauses. It is also possible to directly generate files for all problems
we consider for a given parameter set using the -gen [directory] option.

./ReductionTest.native -min -max -succ -nbrs

-dim 1 -cls 1 -elems 3 -gen .

In addition to generating files, the generator can test the existence of a re-
duction. This is done with CEGAR using a specified SAT-solver (at present
-minisat, -glueminisat or the standard solver from Intel’s Decision Procedure
Toolkit). For example, one can check the existence of a reduction from P =
nreachq to Q = reachqu with the specified parameters as follows.

4 The generator with instructions, all instance names, and the collection of generated
files we used for testing are available from http://toss.sf.net/reductGen.html.

./ReductionTest.native -min -max -succ -nbrs

-from nreachq -to reachqu -dim 1 -cls 1 -elems 3 -glueminisat

From the 48 properties included, the method above can generate 48 × 48 =
2304 qdimacs files for each parameter set. To avoid an extra quantifier alter-
nation due to CNF conversion in qdimacs, we also tested negating the QBF
formula before CNF conversion – but results were worse than with the added
alternation (cf. [4]). To give an intuition about the hardness of the generated
QBF instances, we present below the results from [4] showing the number of
timeouts on these 2304 instances for 5 QBF solvers. The tests were performed
on an Opteron 1385 (using 1 core) and with a timeout of 120s.

c = 1 n = 3 c = 2 n = 3 c = 3 n = 3 c = 1 n = 4 c = 2 n = 4 c = 3 n = 4
rareqs 0 0 16 19 65 204
depqbf 0 142 547 16 297 711
qube 10 536 949 82 760 1082
cirqit 58 673 1138 511 1092 1357
skizzo 522 1058 1156 975 1327 1434

On our instances, rareqs, a recently introduced CEGAR solver, performed
best. For non-CEGAR solvers, depqbf and qube outperform skizzo and cirqit.
Between depqbf and qube the situation is less clear, some instances work much
better with one of these solvers, others with the other. The comparison between
skizzo and cirqit is difficult as well. As to the dominance of depqbf and
qube over skizzo and cirqit, it holds for almost all queries. Still, there are a
few outliers such as the reduction from query26 to query01, on which depqbf
and qube time out, but skizzo answers almost immediately.

Of course, our generator is not restricted to these problems – any problem in
NL can be defined in first-order logic with transitive closure, and these formulas
can be directly used with the -from and -to options.

Although some interesting reductions can be expressed with dimension 1,
usually this does not suffice. However, even parameters such as k = 2, c = 1, n =
4 or k = 3, c = 1, n = 3 seem to produce very hard instances. Instances with k >
1 where the properties use transitive-closure are often hard, but achieving better
performance on such instances is an important step to finding new reductions
and hopefully new complexity-theoretic knowledge.

References

1. Crouch, M., Immerman, N., Moss, J.E.B.: Finding reductions automatically. In:
Fields of Logic and Computation – Essays Dedicated to Yuri Gurevich on the Oc-
casion of His 70th Birthday. LNCS, vol. 6300, pp. 181–200. Springer (2010)

2. Immerman, N.: Descriptive Complexity. Springer-Verlag (1999)
3. Jordan, C., Kaiser, �L.: Learning programs as logical queries. In: LTC 2013
4. Jordan, C., Kaiser, �L.: Experiments with reduction finding. In: Proc. SAT 2013.

LNCS, vol. 7962, pp. 192–207. Springer (2013)

