Proof Complexity of Quantified Boolean Formulas

Olaf Beyersdorff

School of Computing, University of Leeds
Proof complexity (in one slide)

Main question
What is the size of the shortest proof of a given theorem in a fixed proof system?

Contributions of proof complexity

- **Bounds on proof size**: Prove sharp upper and lower bounds for the size of proofs in various systems.
- **Techniques**: Lower bounds techniques for the size of proofs.
- **Simulations**: Understand whether proofs from one system can be efficiently translated to proofs in another system.

Relations to other fields

- Separating complexity classes (NP vs. coNP, NP vs. PSPACE)
- SAT and QBF solving
- first-order logic
Quantified Boolean Formulas (QBF)

- QBFs are propositional formulas with boolean quantifiers ranging over 0,1.
- Deciding QBF is PSPACE complete.
Semantics via a two-player game

- We consider QBFs in **prenex** form with **CNF matrix**.

 Example: $\forall y_1 y_2 \exists x_1 x_2. (\neg y_1 \lor x_1) \land (y_2 \lor \neg x_2)$

- A QBF represents a two-player game between \exists and \forall.
- \exists wins a game if the matrix becomes true.
- \forall wins a game if the matrix becomes false.
- A QBF is true iff there exists a **winning strategy** for \exists.
- A QBF is false iff there exists a **winning strategy** for \forall.

 Example:

 $\forall u \exists e. (u \lor e) \land (\neg u \lor \neg e)$

 \exists wins by playing $e \leftarrow \neg u$.
Relation to SAT/QBF solving

- **SAT** — given a Boolean formula, determine if it is **satisfiable**.
- **QBF** — given a Quantified Boolean formula (without free variables), determine if it is **true**.
- Despite SAT being NP hard, SAT solvers are very successful.
- QBF solving applies to further fields (verification, planning), but is at a much earlier stage.
- Proof complexity is the main theoretical framework to understanding performance and limitations of SAT/QBF solving.
- Runs of the solver on unsatisfiable formulas yield proofs of unsatisfiability in resolution-type proof systems.
QBF proof systems

- There are two main paradigms in QBF solving: Expansion based solving and CDCL solving.
- Various QBF proof systems model these different solvers.

- Various sequent calculi exist as well. [Krajíček & Pudlák 90], [Cook & Morioka 05], [Egly 12]
QBF proof systems at a glance

Q-Resolution (Q-Res)

- QBF analogue of Resolution (?)
- introduced by [Kleine Büning, Karpinski, Flögel 95]
- Tree-Q-Res: tree-like version
Q-resolution

Q-resolution = resolution rule + ∀-reduction

Resolution

\[
\frac{l \lor C_1 \quad \neg l \lor C_2}{C_1 \lor C_2} \quad (l \text{ existentially quantified})
\]

Tautologous resolvents are generally unsound and not allowed.

∀-reduction

\[
\frac{C \lor k}{C} \quad (k \in C \text{ is universal with innermost quant. level in } C)
\]
\forall u \exists e. (u \lor \neg e) \land (u \lor e)
Further systems at a glance

Long-distance resolution (LD-Q-Res)

- allows certain resolution steps forbidden in Q-Res
- merges universal literals u and $\neg u$ in a clause to u^*
- introduced by [Zhang & Malik 02] [Balabanov & Jiang 12]
Universal resolution (QU-Res)

- allows resolution over universal pivots
- introduced by [Van Gelder 12]
LQU\(^+\)-Res

- combines long-distance and universal resolution
- introduced by [Balabanov, Widl, Jiang 14]
∀Exp+Res

- expands universal variables (for one or both values 0/1)
- introduced by [Janota & Marques-Silva 13]
Annotated literals
couple together existential and universal literals: l^α, where

- l is an existential literal.
- α is a partial assignment to universal literals.

Rules of $\forall\text{Exp}+\text{Res}$

\[
\begin{array}{c}
C \text{ in matrix} \\
\{ l^{[\tau]} \mid l \in C, l \text{ is existential} \}
\end{array}
\] (Axiom)

- τ is a complete assignment to universal variables
 s.t. there is no universal literal $u \in C$ with $\tau(u) = 1$.
- $[\tau]$ takes only the part of τ that is $< l$.

\[
\frac{x^{\tau} \lor C_1 \quad \neg x^{\tau} \lor C_2}{C_1 \cup C_2}
\] (Resolution)
Example proof in $\forall\text{Exp+Res}$

$\exists e_1 \forall u \exists e_2$

\[
\begin{align*}
& e_1 \lor u \lor e_2 \\
& e_1 \lor e_2^{0/u} \\
& e_2 \lor e_2^{1/u} \\
& e_1^{0/u} \lor e_2^{1/u} \\
& e_2^{1/u} \\
& \perp
\end{align*}
\]
Further expansion-based systems at a glance

IR-calc
- Instantiation + Resolution
- ‘delayed’ expansion
- introduced by [B., Chew, Janota 14]
Further expansion-based systems at a glance

IRM-calc

- Instantiation + Resolution + Merging
- allows merged universal literals u^*
- introduced by [B., Chew, Janota 14]
Some recent results

Towards a proof-theoretic understanding of QBF resolution systems:

• Develop a new lower bound technique that transfers circuit lower bounds to proof size lower bounds
• Apply to prove new exponential lower bounds for a number of QBF resolution systems
• Prove new separations between QBF proof systems
• Reveals full picture of the QBF simulation structure
Understanding the simulation structure of QBF systems

- In this talk we will concentrate on the separation of $\forall\text{Exp}+\text{Res}$ and Q-Res.
- Serves as primer for the general lower bound technique.
• $\forall\text{Exp+Res}$ does not simulate Q-Res.
 \cite{JanotaMarques13}

• For the converse we need formulas hard for the CDCL proof systems but easy for expansion proof systems.

• Need new hard formulas for Q-Res.
Exploiting strategies

• We move back to thinking about the two player game. Remember every false QBF has a winning strategy (for the universal player).

• Idea: Hard strategies may require large proofs . . .

• . . . or the contrapositive: short proofs may lead to easy strategies.

• Then we just need to find false formulas with ‘hard strategies’ for the universal player.
Strategy extraction

Theorem (Balabanov & Jiang 12)

From a Q-Res refutation π of ϕ, we can extract in poly-time a winning strategy for the universal player for ϕ. For each universal variable u of ϕ the winning strategy can be represented as a decision list.

- Short Q-Res proofs give short strategies in decision list format.
- Decision lists can be expressed as bounded depth circuits.
A hard strategy

$$\text{Parity}(x_1, \ldots, x_n) = x_1 \oplus \ldots \oplus x_n$$

Theorem (Furst, Saxe & Sipser 84, Håstad 87)

$$\text{Parity} \notin \text{AC}^0.$$ In fact, every non-uniform family of bounded-depth circuits computing Parity is of exponential size.

- Now we only need to force the universal strategy to compute Parity!
QParity

• Let ϕ_n be a propositional formula computing $x_1 \oplus \ldots \oplus x_n$.
• Consider the QBF $\exists x_1, \ldots, x_n \forall z. (z \lor \phi_n) \land (\neg z \lor \neg \phi_n)$.
• The matrix of this QBF states that z is equivalent to the opposite value of $x_1 \oplus \ldots \oplus x_n$.
• The unique strategy for the universal player is therefore to play z equal to $x_1 \oplus \ldots \oplus x_n$.

Defining ϕ_n

• Let $\text{xor}(o_1, o_2, o)$ be the set of clauses
 $\{\neg o_1 \lor \neg o_2 \lor \neg o, o_1 \lor o_2 \lor \neg o, \neg o_1 \lor o_2 \lor o, o_1 \lor \neg o_2 \lor o\}$.
• Define

\[
Q\text{Parity}_n = \exists x_1, \ldots, x_n \forall z \exists t_2, \ldots, t_n. \text{xor}(x_1, x_2, t_2) \cup \bigcup_{i=3}^{n} \text{xor}(t_{i-1}, x_i, t_i) \cup \{z \lor t_n, \neg z \lor \neg t_n\}
\]
The exponential lower bound

\[\text{QParity}_n = \exists x_1, \ldots, x_n \forall z \exists t_2, \ldots, t_n. \text{xor}(x_1, x_2, t_2) \cup \bigcup_{i=3}^{n} \text{xor}(t_{i-1}, x_i, t_i) \cup \{z \lor t_n, \neg z \lor \neg t_n\} \]

Theorem (B., Chew & Janota 15)

\text{QParity}_n \ require \ exponential-size \ Q-Res \ refutations.

Proof idea

- By [Balabanov & Jiang 12] we extract strategies from any Q-Res proof as a decision list in polynomial time.
- But Parity\((x_1, \ldots x_n)\) requires exponential-size decision lists [Furst, Saxe, Sipser 84][Håstad 87].
- Therefore Q-Res proofs must be of exponential size.
Proposition (B., Chew & Janota 15)\
\textsc{QParity} has polynomial size proofs in \(\forall \text{Exp} + \text{Res} \).

Proof idea

- We prove \(t_i^{0/z} = t_i^{1/z} \) by induction on \(i \) and derive a contradiction on the clauses \(z \lor t_n, \neg z \lor \neg t_n \).

\[\square \]
From propositional proof systems to QBF

A general \(\forall \text{red} \) rule

- Fix a prenex QBF \(\Phi \).
- Let \(F(\bar{x}, u) \) be a propositional line in a refutation of \(\Phi \), where \(u \) is universal with innermost quant. level in \(F \)

\[
\frac{F(\bar{x}, u)}{F(\bar{x}, 0)} \quad \frac{F(\bar{x}, u)}{F(\bar{x}, 1)}
\]

New QBF proof systems

For any ‘natural’ line-based propositional proof system \(P \) define the QBF proof system \(P + \forall \text{red} \) by adding \(\forall \text{red} \) to the rules of \(P \).

Proposition (B., Bonacina & Chew 15)

\(P + \forall \text{red} \) is sound and complete for QBF.
Important propositional proof systems

Frege systems

- Hilbert-type systems
- use axiom schemes and rules, e.g. modus ponens $\frac{A \rightarrow B}{B}$
A natural hierarchy of QBF systems

Examples

- Res + ∀red (= QU-Res)
- Frege + ∀red
- Cutting Planes + ∀red

A hierarchy of Frege systems

C-Frege + ∀red where C is a circuit class restricting the formulas allowed in the Frege system, e.g.

- AC^0-Frege = bounded-depth Frege
- $\text{AC}^0[p]$-Frege = bounded-depth Frege with mod p gates for a prime p
A \mathcal{C}-decision list computes a function $u = f(\bar{x})$

If $C_1(\bar{x})$ Then $u \leftarrow c_1$
Else If $C_2(\bar{x})$ Then $u \leftarrow c_2$

\vdots

Else If $C_l(\bar{x})$ Then $u \leftarrow c_l$
Else $u \leftarrow c_{l+1}$

where $C_i \in \mathcal{C}$ and $c_i \in \{0, 1\}$

Theorem (B., Bonacina, Chew 15)

\mathcal{C}-Frege$^+\forall$red has strategy extraction in \mathcal{C}-decision lists, i.e. from a refutation π of $F(\bar{x}, \bar{u})$ you can extract in poly-time a collection of \mathcal{C}-decision lists computing a winning strategy on the universal variables of F.
From decision lists to circuits

\[
\begin{align*}
\text{If } & \quad C_1(\bar{x}) \quad \text{Then} \quad u \leftarrow c_1 \\
\text{Else If} & \quad C_2(\bar{x}) \quad \text{Then} \quad u \leftarrow c_2 \\
& \quad \vdots \\
\text{Else If} & \quad C_l(\bar{x}) \quad \text{Then} \quad u \leftarrow c_l \\
\text{Else} & \quad u \leftarrow c_{l+1}
\end{align*}
\]

where $C_i \in \mathcal{C}$ and $c_i \in \{0, 1\}$

Proposition

Each C-decision list as above can be transformed into a C-circuit of depth $\max(\text{depth}(C_i)) + 2$.

Corollary (B., Bonacina, Chew 15)

- depth-d-Frege+\forallred has strategy extraction with circuits of depth $d + 2$.
- AC^0-Frege+\forallred has strategy extraction in AC^0.
- $AC^0[p]$-Frege+\forallred has strategy extraction in $AC^0[p]$.
From functions to QBF

- Let $f(\overline{x})$ be a boolean function.
- Define the QBF

$$Q-f = \exists \overline{x} \forall z \exists \overline{t}. \ z \neq f(\overline{x})$$

- \overline{t} are auxiliary variables describing the computation of a circuit for f.
- $z \neq f(\overline{x})$ is encoded as a CNF.
- The only winning strategy for the universal player is to play $z \leftarrow f(\overline{x})$.
Theorem (B., Bonacina, Chew 15)

Let \(f \) be any function hard for depth 3 circuits. Then \(Q-f \) is hard for \(\text{Res} + \forall \text{red} \).

Proof.

- Let \(\Pi \) be a refutation of \(Q-f \) in \(\text{Res} + \forall \text{red} \).
- By strategy extraction, we obtain from \(\Pi \) a decision list computing \(f \).
- Transform the decision list into a depth 3 circuit \(C \) for \(f \).
- As \(f \) is hard to compute in depth 3, \(\Pi \) must be long.
Theorem (Razborov 87, Smolensky 87)

For each odd prime p, Parity requires exponential-size $\text{AC}^0[p]$ circuits.

Theorem (B., Bonacina, Chew 15)

Q-Parity requires exponential-size $\text{AC}^0[p]$-$\text{Frege} + \forall \text{red proofs}$.

In contrast

No lower bound is known for $\text{AC}^0[p]$-Frege.

Theorem (B., Bonacina, Chew 15)

Q-Parity has poly-size $\text{Frege} + \forall \text{red proofs}$.
Theorem (Håstad 89)

The functions $Sipser_d$ exponentially separate depth $d - 1$ from depth d circuits.

Theorem (B., Bonacina, Chew 15)

Q-$Sipser_d$

- requires exponential-size proofs in depth $(d - 3)$-$Frege+\forall \text{red}$.
- has polynomial-size proofs in depth d-$Frege+\forall \text{red}$.

Note

- Q-$Sipser_d$ is a quantified CNF.
- Separating depth d Frege systems with constant depth formulas (independent of d) is a major open problem in the propositional case.
Feasible Interpolation

- classical technique relating circuit complexity to proof complexity.
- transforms lower bounds for monotone circuits into lower bounds for proof size in e.g. resolution [Krajíček 97] or Cutting Planes [Pudlák 97].

Theorem (B., Chew, Mahajan, Shukla 15)

All QBF resolution calculi have monotone feasible interpolation.

Relation to strategy extraction

- Each feasible interpolation problem can be transformed into a strategy extraction problem, where the interpolant corresponds to the winning strategy of the universal player on the first universal variable.
- Feasible interpolation can be viewed as a special case of strategy extraction.
Further separations for resolution calculi

- The lower bound for IR-calc (and implied separations) is shown by a different, novel technique based on counting.
- The underlying QBFs originate from [Kleine Büning et al. 95].
- We substantially improve previous lower bounds for these formulas from Q-Res to IR-calc.
Summary

- We showed **many new lower bounds and separations** for QBF resolution systems.
- Developed a **new technique via strategy extraction** for QBF proof systems.
- Directly translates circuit lower bounds to proof size lower bounds for QBF proof systems.
- No such direct transfer known in classical proof complexity.
Major problems in QBF proof complexity

1. Find **hard formulas** for QBF systems. Currently we have:
 - Formulas from [Kleine Büning, Karpinski, Flögel 95]
 - Formulas from [Janota, Marques-Silva 13]
 - Parity Formulas and generalisations [B., Chew, Janota 15]
 [B., Bonacina, Chew 15]
 - Clique co-clique formulas [B., Chew, Mahajan, Shukla 15]

2. Which (classical) **lower-bound techniques** work for QBF?