
Proof Complexity of
Quantified Boolean Formulas

Olaf Beyersdorff

School of Computing, University of Leeds

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 1 / 39



Proof complexity (in one slide)

Main question

What is the size of the shortest proof of a given theorem in a fixed
proof system?

Contributions of proof complexity

• Bounds on proof size: Prove sharp upper and lower bounds for
the size of proofs in various systems.

• Techniques: Lower bounds techniques for the size of proofs.

• Simulations: Understand whether proofs from one system can
be efficiently translated to proofs in another system.

Relations to other fields

• Separating complexity classes (NP vs. coNP, NP vs. PSPACE)

• SAT and QBF solving

• first-order logic



Quantified Boolean Formulas (QBF)

• QBFs are propositional formulas with boolean quantifiers
ranging over 0,1.

• Deciding QBF is PSPACE complete.
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Semantics via a two-player game

• We consider QBFs in prenex form with CNF matrix.

Example: ∀y1y2∃x1x2. (¬y1 ∨ x1) ∧ (y2 ∨ ¬x2)

• A QBF represents a two-player game between ∃ and ∀.

• ∃ wins a game if the matrix becomes true.

• ∀ wins a game if the matrix becomes false.

• A QBF is true iff there exists a winning strategy for ∃.

• A QBF is false iff there exists a winning strategy for ∀.

Example:
∀u∃e. (u ∨ e) ∧ (¬u ∨ ¬e)

∃ wins by playing e ← ¬u.
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Relation to SAT/QBF solving

• SAT — given a Boolean formula, determine if it is satisfiable.

• QBF — given a Quantified Boolean formula (without free
variables), determine if it is true.

• Despite SAT being NP hard, SAT solvers are very successful.

• QBF solving applies to further fields (verification, planning),
but is at a much earlier stage.

• Proof complexity is the main theoretical framework to
understanding performance and limitations of SAT/QBF
solving.

• Runs of the solver on unsatisfiable formulas yield proofs of
unsatisfiability in resolution-type proof systems.

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 5 / 39



QBF proof systems

• There are two main paradigms in QBF solving: Expansion
based solving and CDCL solving.

• Various QBF proof systems model these different solvers.

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

• Various sequent calculi exist as well.
[Kraj́ıček & Pudlák 90], [Cook & Morioka 05], [Egly 12]



QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Q-Resolution (Q-Res)

• QBF analogue of Resolution (?)

• introduced by [Kleine Büning, Karpinski, Flögel 95]

• Tree-Q-Res: tree-like version
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Q-resolution

Q-resolution = resolution rule +∀-reduction

Resolution

l ∨ C1 ¬l ∨ C2 (l existentially quantified)
C1 ∨ C2

Tautologous resolvents are generally unsound and not allowed.

∀-reduction

C ∨ k (k ∈ C is universal with innermost quant. level in C )
C
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Q-resolution Example

∀u∃e. (u ∨ ¬e) ∧ (u ∨ e)

u ∨ eu ∨ ¬e
e

u

⊥
∀u
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Further systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Long-distance resolution (LD-Q-Res)

• allows certain resolution steps forbidden in Q-Res

• merges universal literals u and ¬u in a clause to u∗

• introduced by [Zhang & Malik 02] [Balabanov & Jiang 12]
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QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

Universal resolution (QU-Res)

• allows resolution over universal pivots

• introduced by [Van Gelder 12]
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QBF proof systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

LQU+-Res

• combines long-distance and universal resolution

• introduced by [Balabanov, Widl, Jiang 14]
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Expansion based calculi

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

∀Exp+Res

• expands universal variables (for one or both values 0/1)

• introduced by [Janota & Marques-Silva 13]

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 13 / 39



∀Exp+Res

Annotated literals
couple together existential and universal literals: lα, where

• l is an existential literal.

• α is a partial assignment to universal literals.

Rules of ∀Exp+Res

C in matrix (Axiom){
l [τ ] | l ∈ C , l is existential

}
- τ is a complete assignment to universal variables

s.t. there is no universal literal u ∈ C with τ(u) = 1.

- [τ ] takes only the part of τ that is < l .

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2
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Example proof in ∀Exp+Res

∃e1∀u∃e2

e1 ∨ u ∨ e2 ¬e1 ∨ ¬u ∨ e2

e1 ∨ e
0/u
2 ¬e1 ∨ e

1/u
2

0/u 1/u

¬e2

¬e0/u
2 ¬e1/u

2

0/u 1/u

e
0/u
2 ∨ e

1/u
2

e
1/u
2

⊥
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Further expansion-based systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

IR-calc

• Instantiation + Resolution

• ‘delayed’ expansion

• introduced by [B., Chew, Janota 14]
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Further expansion-based systems at a glance

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc

expansion solving

CDCL solving

IRM-calc

• Instantiation + Resolution + Merging

• allows merged universal literals u∗

• introduced by [B., Chew, Janota 14]
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Some recent results

Towards a proof-theoretic understanding of QBF resolution
systems:

• Develop a new lower bound technique that transfers circuit
lower bounds to proof size lower bounds

• Apply to prove new exponential lower bounds for a number of
QBF resolution systems

• Prove new separations between QBF proof systems

• Reveals full picture of the QBF simulation structure
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Understanding the simulation structure of QBF systems

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc strictly stronger

incomparable

expansion solving

CDCL solving

• In this talk we will concentrate on the separation of
∀Exp+Res and Q-Res.

• Serves as primer for the general lower bound technique.
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Q-Res vs ∀Exp+Res

IR-calc

Tree-Q-Res

Q-Res∀Exp+Res

• ∀Exp+Res does not simulate Q-Res.
[Janota & Marques-Silva 13]

• For the converse we need formulas hard for the CDCL proof
systems but easy for expansion proof systems.

• Need new hard formulas for Q-Res.

Olaf Beyersdorff Proof Complexity of Quantified Boolean Formulas 20 / 39



Exploiting strategies

• We move back to thinking about the two player game.
Remember every false QBF has a winning strategy (for the
universal player).

• Idea: Hard strategies may require large proofs . . .

• . . . or the contrapositive: short proofs may lead to easy
strategies.

• Then we just need to find false formulas with ‘hard strategies’
for the universal player.
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Strategy extraction

Theorem (Balabanov & Jiang 12)

From a Q-Res refutation π of φ, we can extract in poly-time a
winning strategy for the universal player for φ.
For each universal variable u of φ the winning strategy can be
represented as a decision list.

• Short Q-Res proofs give short strategies in decision list format.

• Decision lists can be expressed as bounded depth circuits.
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A hard strategy

Parity(x1, . . . , xn) = x1 ⊕ . . .⊕ xn

Theorem (Furst, Saxe & Sipser 84, Håstad 87)

Parity/∈ AC 0. In fact, every non-uniform family of
bounded-depth circuits computing Parity is of exponential size.

• Now we only need to force the universal strategy to compute
Parity!
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QParity
• Let φn be a propositional formula computing x1 ⊕ . . .⊕ xn.
• Consider the QBF ∃x1, . . . , xn∀z . (z ∨ φn) ∧ (¬z ∨ ¬φn).
• The matrix of this QBF states that z is equivalent to the

opposite value of x1 ⊕ . . .⊕ xn.
• The unique strategy for the universal player is therefore to

play z equal to x1 ⊕ . . .⊕ xn.

Defining φn

• Let xor(o1, o2, o) be the set of clauses
{¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o}.

• Define

QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
n⋃

i=3

xor(ti−1, xi , ti ) ∪ {z ∨ tn,¬z ∨ ¬tn}
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The exponential lower bound

QParityn = ∃x1, . . . , xn ∀z ∃t2, . . . , tn. xor(x1, x2, t2) ∪
n⋃

i=3

xor(ti−1, xi , ti ) ∪ {z ∨ tn,¬z ∨ ¬tn}

Theorem (B., Chew & Janota 15)

QParityn require exponential-size Q-Res refutations.

Proof idea

• By [Balabanov & Jiang 12] we extract strategies from any
Q-Res proof as a decision list in polynomial time.

• But Parity(x1, . . . xn) requires exponential-size decision lists
[Furst, Saxe, Sipser 84][Håstad 87].

• Therefore Q-Res proofs must be of exponential size.
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Separation

IR-calc

Tree-Q-Res

Q-Res∀Exp+Res

Proposition (B., Chew & Janota 15)

QParity has polynomial size proofs in ∀Exp+Res.

Proof idea

• We prove t
0/z
i = t

1/z
i by induction on i and derive a

contradiction on the clauses z ∨ tn, ¬z ∨ ¬tn.
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From propositional proof systems to QBF

A general ∀red rule

• Fix a prenex QBF Φ.

• Let F (x̄ , u) be a propositional line in a refutation of Φ,
where u is universal with innermost quant. level in F

F (x̄ , u)

F (x̄ , 0)

F (x̄ , u)

F (x̄ , 1)

New QBF proof systems

For any ‘natural’ line-based propositional proof system P define
the QBF proof system P + ∀red by adding ∀red to the rules of P.

Proposition (B., Bonacina & Chew 15)

P + ∀red is sound and complete for QBF.
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Important propositional proof systems

Tree-Resolution

Resolution

bounded-depth Frege Cutting Planes

Frege

not polynomially bounded

Frege systems

• Hilbert-type systems

• use axiom schemes and rules, e.g. modus ponens A A→B
B
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A natural hierarchy of QBF systems

Examples

• Res +∀red (= QU-Res)

• Frege +∀red

• Cutting Planes +∀red

A hierarchy of Frege systems

C-Frege+∀red where C is a circuit class restricting the formulas
allowed in the Frege system, e.g.

• AC0-Frege = bounded-depth Frege

• AC0[p]-Frege = bounded-depth Frege with mod p gates for a
prime p
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Strategy extraction for ∀-Red+P

A C-decision list computes a function u = f (x̄)

If C1(x̄) Then u ← c1

Else If C2(x̄) Then u ← c2
...

Else If Cl(x̄) Then u ← cl
Else u ← cl+1 where Ci ∈ C and ci ∈ {0, 1}

Theorem (B., Bonacina, Chew 15)

C-Frege+∀red has strategy extraction in C-decision lists,
i.e. from a refutation π of F (x̄ , ū) you can extract in poly-time a
collection of C-decision lists computing a winning strategy on the
universal variables of F .
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From decision lists to circuits
If C1(x̄) Then u ← c1

Else If C2(x̄) Then u ← c2
...

Else If Cl(x̄) Then u ← cl
Else u ← cl+1 where Ci ∈ C and ci ∈ {0, 1}

Proposition

Each C-decision list as above can be transformed into a C-circuit of
depth max(depth(Ci )) + 2.

Corollary (B., Bonacina, Chew 15)

• depth-d-Frege+∀red has strategy extraction with circuits of
depth d + 2.

• AC0-Frege+∀red has strategy extraction in AC0.

• AC0[p]-Frege+∀red has strategy extraction in AC0[p].
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From functions to QBF

• Let f (x̄) be a boolean function.

• Define the QBF

Q-f = ∃x̄∀z∃t̄. z 6= f (x̄)

• t̄ are auxiliary variables describing the computation of a circuit
for f .

• z 6= f (x̄) is encoded as a CNF.

• The only winning strategy for the universal player is to play
z ← f (x̄).
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From circuit lower bounds to proof size lower bounds

Theorem (B., Bonacina, Chew 15)

Let f be any function hard for depth 3 circuits.
Then Q-f is hard for Res + ∀red.

Proof.

• Let Π be a refutation of Q-f in Res + ∀red.

• By strategy extraction, we obtain from Π a decision list
computing f .

• Transform the decision list into a depth 3 circuit C for f .

• As f is hard to compute in depth 3, Π must be long.
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Strong lower bound example I

Theorem (Razborov 87, Smolensky 87)

For each odd prime p, Parity requires exponential-size AC0[p]
circuits.

Theorem (B., Bonacina, Chew 15)

Q-Parity requires exponential-size AC0[p]-Frege+∀red proofs.

In contrast
No lower bound is known for AC0[p]-Frege.

Theorem (B., Bonacina, Chew 15)

Q-Parity has poly-size Frege+∀red proofs.
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Strong lower bound example II

Theorem (Håstad 89)

The functions Sipserd exponentially separate depth d − 1 from
depth d circuits.

Theorem (B., Bonacina, Chew 15)

Q-Sipserd

• requires exponential-size proofs in depth (d − 3)-Frege+∀red.
• has polynomial-size proofs in depth d-Frege+∀red.

Note

• Q-Sipserd is a quantified CNF.

• Separating depth d Frege systems with constant depth
formulas (independent of d) is a major open problem in the
propositional case.
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Feasible Interpolation
• classical technique relating circuit complexity to proof

complexity.
• transforms lower bounds for monotone circuits into lower

bounds for proof size in e.g. resolution [Kraj́ıček 97]
or Cutting Planes [Pudlák 97].

Theorem (B., Chew, Mahajan, Shukla 15)

All QBF resolution calculi have monotone feasible interpolation.

Relation to strategy extraction

• Each feasible interpolation problem can be transformed into a
strategy extraction problem, where the interpolant
corresponds to the winning strategy of the universal player on
the first universal variable.

• Feasible interpolation can be viewed as a special case of
strategy extraction.
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Further separations for resolution calculi

Tree-Q-Res

Q-Res∀Exp+Res

LD-Q-Res QU-Res

LQU+-Res

IR-calc

IRM-calc strictly stronger

incomparable

expansion solving

CDCL solving

• The lower bound for IR-calc (and implied separations) is
shown by a different, novel technique based on counting.

• The underlying QBFs originate from [Kleine Büning et al. 95].

• We substantially improve previous lower bounds for these
formulas from Q-Res to IR-calc.
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Summary

• We showed many new lower bounds and separations for QBF
resolution systems.

• Developed a new technique via strategy extraction for QBF
proof systems.

• Directly translates circuit lower bounds to proof size lower
bounds for QBF proof systems.

• No such direct transfer known in classical proof complexity.
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Major problems in QBF proof complexity

1. Find hard formulas for QBF systems.
Currently we have:

• Formulas from [Kleine Büning, Karpinski, Flögel 95]
• Formulas from [Janota, Marques-Silva 13]
• Parity Formulas and generalisations [B., Chew, Janota 15]

[B., Bonacina, Chew 15]
• Clique co-clique formulas [B., Chew, Mahajan, Shukla 15]

2. Which (classical) lower-bound techniques work for QBF?
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