Peter Faymonville Bernd Finkbeiner Markus Rabe Leander Tentrup

Reactive Systems Group Saarland University

August 3rd, 2015

Encodings of Reactive Synthesis QUANTIFY 2015, Berlin

Bounded Synthesis

Encodings

Experimental Results

Strategy Extraction

Synthesis of Reactive Systems

- Systems that react on external events
- Interest accelerated towards automatic construction (synthesis)
- Two iterations of SyntComp (restricted safety format)
- Full synthesis track in planning

Reactive Synthesis

Bounded Synthesis

Single Process Synthesis

Single Process Synthesis

Universal Co-Büchi Automata

Example (Simplified Arbiter) $\varphi = \Box(r_1 \to \bigcirc \diamondsuit g_1) \land \Box(r_2 \to \bigcirc \diamondsuit g_2) \land \neg \diamondsuit (g_1 \land g_2)$

Acceptance

A **transition system** is accepted by an universal co-Büchi automaton if **all paths** in the (unique) run graph contain only **finitely** many visits to rejecting states.

Leander Tentrup, Saarland University

QUANTIFY 2015, Berlin

Leander Tentrup, Saarland University

QUANTIFY 2015, Berlin

Annotated Transition System

- collects the paths of the run graph that lead to a state in the transition system
- for each automaton state, indicates whether state visited on some path, and if so, max number of visits to rejecting states

Theorem (Finkbeiner & Schewe'07)

A transition system is accepted by a universal co-Büchi automaton ⇔ it has a valid annotation

Encodings

Build a constraint system that specifies the existence of an annotated transition system

- Representation of transition system
 - states
 - labeling
 - transitions
- Representation of annotation
 - state occurrence
 - rejecting bound

SMT Encoding

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $\mathbb{N}_n = \{0, ..., n-1\}$
 - **labeling**: functions $o : \mathbb{N}_n \to \mathbb{B}$ for every $o \in O$
 - **transitions**: functions $\tau_l : \mathbb{N}_n \to \mathbb{N}_n$
- Representation of annotation
 - **state occurrence**: functions $\lambda_q^{\mathbb{B}} : \mathbb{N}_n \to \mathbb{B}$
 - **rejecting bound**: functions $\lambda_q^{\#} : \mathbb{N}_n \to \mathbb{N}$

SMT Encoding example

 $\forall s. \lambda_G^{\mathbb{B}}(s) \to \lambda_G^{\mathbb{B}}(\tau_{\overline{r_1r_2}}(s)) \land \lambda_G^{\#}(\tau_{\overline{r_1r_2}}(s)) \ge \lambda_G^{\#}(s) \\ \land \lambda_G^{\mathbb{B}}(\tau_{\overline{r_1r_2}}(s)) \land \lambda_G^{\#}(\tau_{\overline{r_1r_2}}(s)) \ge \lambda_G^{\#}(s) \\ \land \lambda_G^{\mathbb{B}}(\tau_{r_1\overline{r_2}}(s)) \land \lambda_G^{\#}(\tau_{r_1\overline{r_2}}(s)) \ge \lambda_G^{\#}(s) \\ \land \lambda_G^{\mathbb{B}}(\tau_{r_1r_2}(s)) \land \lambda_G^{\#}(\tau_{r_1r_2}(s)) \ge \lambda_G^{\#}(s)$

•
$$\forall s. \lambda_G^{\mathbb{B}}(s) \to \neg g_1(s) \lor \neg g_2(s)$$

•
$$\forall s. \lambda_{G}^{\mathbb{B}}(s) \wedge r_{1}(s) \rightarrow \lambda_{B}^{\mathbb{B}}(\tau_{\overline{r_{1}r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{\overline{r_{1}r_{2}}}(s)) > \lambda_{G}^{\#}(s)$$

 $\wedge \lambda_{B}^{\mathbb{B}}(\tau_{\overline{r_{1}r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{\overline{r_{1}r_{2}}}(s)) > \lambda_{G}^{\#}(s)$
 $\wedge \lambda_{B}^{\mathbb{B}}(\tau_{r_{1}\overline{r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{r_{1}\overline{r_{2}}}(s)) > \lambda_{G}^{\#}(s)$
 $\wedge \lambda_{B}^{\mathbb{B}}(\tau_{r_{1}r_{2}}(s)) \wedge \lambda_{B}^{\#}(\tau_{r_{1}r_{2}}(s)) > \lambda_{G}^{\#}(s)$
• $\forall s. \lambda_{B}^{\mathbb{B}}(s) \wedge \neg g_{1}(s) \rightarrow \lambda_{B}^{\mathbb{B}}(\tau_{\overline{r_{1}r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{\overline{r_{1}r_{2}}}(s)) > \lambda_{B}^{\#}(s)$
 $\wedge \lambda_{B}^{\mathbb{B}}(\tau_{\overline{r_{1}r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{\overline{r_{1}r_{2}}}(s)) > \lambda_{B}^{\#}(s)$
 $\wedge \lambda_{B}^{\mathbb{B}}(\tau_{r_{1}\overline{r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{r_{1}\overline{r_{2}}}(s)) > \lambda_{B}^{\#}(s)$
 $\wedge \lambda_{B}^{\mathbb{B}}(\tau_{r_{1}\overline{r_{2}}}(s)) \wedge \lambda_{B}^{\#}(\tau_{r_{1}r_{2}}(s)) > \lambda_{B}^{\#}(s)$

Leander Tentrup, Saarland University

 r_2

g1g2

В

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $S = \{s_0, ..., s_{n-1}\}$
 - □ **labeling**: $o : S \to \mathbb{B}$ for every $o \in O$
 - **transitions**: $\tau : S \times \mathbb{B}^{|I|} \to S$
- Representation of annotation
 - **state occurrence**: $\lambda : S \times Q \rightarrow \mathbb{B}$
 - **rejecting bound**: $\lambda^{\#} : S \times Q \to \mathbb{B}^{b}$ (*b*-bit counter)

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $S = \{s_0, ..., s_{n-1}\}$
 - □ **labeling**: $o : S \to \mathbb{B}$ for every $o \in O$
 - **transitions**: $\tau : S \times \mathbb{B}^{|I|} \to S$
- Representation of annotation
 - **state occurrence**: $\lambda : S \times Q \rightarrow \mathbb{B}$
 - **rejecting bound**: $\lambda^{\#} : S \times Q \to \mathbb{B}^{b}$ (*b*-bit counter)

 $\exists \lambda(s, \mathbf{q}), \lambda^{\#}(s, \mathbf{q}), o(s), \tau(s, i).$

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $S = \{s_0, ..., s_{n-1}\}$
 - □ **labeling**: $o : S \to \mathbb{B}$ for every $o \in O$
 - **transitions**: $\tau : S \times \mathbb{B}^{|I|} \to S$
- Representation of annotation
 - **state occurrence**: $\lambda : S \times Q \rightarrow \mathbb{B}$
 - **rejecting bound**: $\lambda^{\#} : S \times Q \to \mathbb{B}^{b}$ (*b*-bit counter)

 $\exists \lambda(s, q), \lambda^{\#}(s, q), o(s), \tau(s, i). \quad \forall s, s', q, q', i.$

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $S = \{s_0, ..., s_{n-1}\}$
 - □ **labeling**: $o : S \to \mathbb{B}$ for every $o \in O$
 - **transitions**: $\tau : S \times \mathbb{B}^{|I|} \to S$
- Representation of annotation
 - **state occurrence**: $\lambda : S \times Q \rightarrow \mathbb{B}$
 - **rejecting bound**: $\lambda^{\#} : S \times Q \to \mathbb{B}^{b}$ (*b*-bit counter)

 $\exists \lambda(s, q), \lambda^{\#}(s, q), o(s), \tau(s, i). \quad \forall s, s', q, q', i. \quad \lambda(s_0, q_0) \land$

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $S = \{s_0, ..., s_{n-1}\}$
 - □ **labeling**: $o : S \to \mathbb{B}$ for every $o \in O$
 - **transitions**: $\tau : S \times \mathbb{B}^{|I|} \to S$
- Representation of annotation
 - **state occurrence**: $\lambda_{\#} : S \times Q \rightarrow \mathbb{B}_{h}$
 - **rejecting bound**: $\lambda^{\#} : S \times Q \to \mathbb{B}^{b}$ (*b*-bit counter)

 $\exists \lambda(s, q), \lambda^{\#}(s, q), o(s), \tau(s, i). \quad \forall s, s', q, q', i. \quad \lambda(s_0, q_0) \land$ $(\lambda(s, q) \land \delta(q, o(s), i, q') \land (\tau(s, i) = s'))$

Inputs *I*, Outputs *O*, universal co-Büchi automaton $\langle Q, q_0, \delta, R \rangle$

- Representation of transition system
 - **states**: $S = \{s_0, ..., s_{n-1}\}$
 - □ **labeling**: $o : S \to \mathbb{B}$ for every $o \in O$
 - **transitions**: $\tau : S \times \mathbb{B}^{|I|} \to S$
- Representation of annotation
 - state occurrence: $\lambda : S \times Q \rightarrow \mathbb{B}$
 - **rejecting bound**: $\lambda^{\#} : S \times Q \to \mathbb{B}^{b}$ (*b*-bit counter)

 $\exists \lambda(s, q), \lambda^{\#}(s, q), o(s), \tau(s, i). \quad \forall s, s', q, q', i. \quad \lambda(s_0, q_0) \land$ $(\lambda(s, q) \land \delta(q, o(s), i, q') \land (\tau(s, i) = s')) \rightarrow (\lambda(s', q') \land \lambda^{\#}(s', q') \triangleright \lambda^{\#}(s, q))$

 $\triangleright := \begin{cases} > & \text{if } q \text{ rejecting} \\ \ge & \text{otherwise} \end{cases}$

Derived Encodings

SAT: complete unrolling

 $\exists \lambda_{s,q}, \lambda^{\#}_{s,q}, o_s, \tau_{s,i,s'}$

QBF: input symbolic encoding

 $\exists \lambda_{s,q}, \lambda_{s,q}^{\#}, o_s. \forall i. \tau_{s,s'}$

DQBF: state and input symbolic encoding

$$\forall s. \exists \lambda_q, \lambda_q^{\#}, o. \forall i. \tau \\ \forall s'. \exists \lambda_q', \lambda_q^{\#}. \end{cases} \bigwedge_q (s = s') \to (\lambda_q = \lambda_q') \land (\lambda_q^{\#} = \lambda_q'^{\#})$$

$$\bullet \lambda_{s_0,G}$$

•
$$\bigwedge_{s\in S} \left(\lambda_{s,G} \to \neg g_1^s \lor \neg g_2^s \right)$$

•
$$\bigwedge_{s\in S} \left(\lambda_{s,G} \wedge r_1 \rightarrow \bigwedge_{s'\in S} (\tau_{s,s'} \rightarrow \lambda_{s',B} \wedge \lambda_{s',B}^{\#} > \lambda_{s,G}^{\#}) \right)$$

•
$$\bigwedge_{s \in S} \left(\lambda_{s,B} \land \neg g_1^s \to \bigwedge_{s' \in S} (\tau_{s,s'} \to \lambda_{s',B} \land \lambda_{s',B}^{\#} > \lambda_{s,B}^{\#}) \right)$$

Mealy and Moore Transition Systems

Moore: State-labeled transition systems

Mealy: Edge-labeled transition systems

Mealy and Moore Transition Systems

Moore: State-labeled transition systems

 $\exists \lambda_{s,a}, \lambda_{s,a}^{\#}, o_s. \forall i. \exists \tau_{s,s'}$

Mealy: Edge-labeled transition systems

 $\exists \lambda_{s,q}, \lambda_{s,q}^{\#}. \forall i. \exists o_{s}, \tau_{s,s'}$

Implementation

Encoding	Solver	Strategy Extraction
SMT	Z3, CVC4	\checkmark
SAT	MiniSat, PicoSAT	\checkmark
QBF	RAReQS, DepQBF, Bloqqer	\checkmark
DQBF	iDQ, eprover (EPR)	

Experiments

Arbiter

$$\bigwedge_{i} \Box(r_{i} \rightarrow \diamondsuit g_{i})$$
 (response)
$$\bigwedge_{i \neq j} \Box \neg(g_{i} \land g_{j})$$
 (mutex)

Arbiter without spurious grants

$$\bigwedge_{i} \neg ((\neg r_{i} \land \neg g_{i}) \mathcal{U}(\neg r_{i} \land g_{i}))$$
(no-spurious-start)
$$\bigwedge_{i} \neg \diamondsuit \Big(g_{i} \land \bigcirc \Big((\neg r_{i} \land \neg g_{i}) \land ((\neg r_{i} \land \neg g_{i}) \mathcal{U}(\neg r_{i} \land g_{i})) \Big) \Big)$$
(no-spurious)
$$\bigwedge_{i} \Box \big((\neg r_{i} \land g_{i}) \rightarrow \diamondsuit ((r_{i} \land g_{i}) \lor \neg g_{i}) \big)$$
(lowered)

Results

Quad-Core Intel Xeon @ 3.6 GHz, 32 GB RAM, 1h timeout

Instance	SMT Z3		SAT MiniSat		QBF RAReQS+B		DQBF iDQ	
	mealy	moore	mealy	moore	mealy	moore	mealy	moore
arbiter-2	0.22	0.21	0.21	0.21	0.19	0.19	0.23	0.23
arbiter-3	0.45	0.39	0.30	0.31	0.21	0.21	0.62	0.63
arbiter-4	1428	2234	0.73	0.76	0.25	0.25	1.71	1.83
arbiter-5	ТО	ТО	4.15	3.72	0.40	0.40	24.6	24.6
arbiter-6	ТО	ТО	21.0	21.0	0.71	0.71	76.8	79.9
arbiter-7	ТО	ТО	155.6	102.5	7.02	5.98	294.6	294.3
arbiter-8	ТО	ТО	2384	ТО	397.6	406.6	ТО	ТО
full-arbiter-2	0.49	2.75	0.39	0.63	0.28	0.38	20.6	19.9
full-arbiter-3	ТО	ТО	16.6	34.9	9.28	17.6	ТО	ТО
full-arbiter-4	ТО	ТО	ТО	ТО	ТО	ТО	ТО	ТО

QBF Encoding

Quad-Core Intel Xeon @ 3.6 GHz, 32 GB RAM, 1h timeout

Instance	QBF Mealy					
	RAReQS+B	RAReQS	DepQBF+B	DepQBF	RAReQS-QCIR	
arbiter-2	0.19	0.21	0.20	0.21	0.26	
arbiter-3	0.21	0.21	0.22	0.21	0.33	
arbiter-4	0.25	0.31	0.25	0.30	0.52	
arbiter-5	0.40	0.34	0.41	0.45	1.2	
arbiter-6	0.71	0.90	1.28	2.46	4.46	
arbiter-7	7.02	30.3	128.9	ТО	94.8	
arbiter-8	397.6	ТО	ТО	ТО	ТО	
full-arbiter-2	0.28	0.28	0.27	0.35	1.05	
full-arbiter-3	9.28	867	ТО	ТО	968	
full-arbiter-4	то	ТО	то	ТО	ТО	

Strategy Extraction

Use certification feature of solvers to get witness for *o* and τ

- Model from SMT solver
- Assignments from SAT solver
- Skolem functions from QBF solver
- Build transition system and encode it in SMV
- Model-check solution (NuSMV)

Traffic Light Controller (Lily benchmark)

Acacia+ (optimal strategy option)

QBF Encoding

Conclusions and future work

- Generic propositional encoding
- Encodings to SAT, QBF, DQBF
- All propositional encodings outperform SMT
- Optimizations similar to previous work (decompose specification into safety/liveness, conjunctions, etc.)
- Incremental solving